]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ide/ide-tape.c
IDE: Convert from class_device to device for ide-tape
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / ide-tape.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
36 * ...
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
64 * device interface).
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
68 * buffer cache.
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
76 * ide tapes :-)
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
85 * and irq.
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
134 * requests.
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
199 * bounce buffers.
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 * it in the code!
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
302 * cause DMA errors.
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
312 * already unlocked!
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended. Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
367 *
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
389 *
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
393 *
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 * Possible improvements.
403 *
404 * 1. Support for the ATAPI overlap protocol.
405 *
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
411 * isn't ready.
412 *
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
418 *
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
1da177e4
LT
427#include <linux/module.h>
428#include <linux/types.h>
429#include <linux/string.h>
430#include <linux/kernel.h>
431#include <linux/delay.h>
432#include <linux/timer.h>
433#include <linux/mm.h>
434#include <linux/interrupt.h>
9bae1ff3 435#include <linux/jiffies.h>
1da177e4 436#include <linux/major.h>
1da177e4
LT
437#include <linux/errno.h>
438#include <linux/genhd.h>
439#include <linux/slab.h>
440#include <linux/pci.h>
441#include <linux/ide.h>
442#include <linux/smp_lock.h>
443#include <linux/completion.h>
444#include <linux/bitops.h>
cf8b8975 445#include <linux/mutex.h>
1da177e4
LT
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457 __u8 partition_num;
458 __u8 par_desc_ver;
459 __u16 wrt_pass_cntr;
460 __u32 first_frame_addr;
461 __u32 last_frame_addr;
462 __u32 eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469 __u32 blk_sz;
470 __u16 blk_cnt;
471 __u8 flags;
472 __u8 reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA (0xc)
479#define OS_DAT_FLAGS_MARK (0x1)
480
481typedef struct os_dat_s {
482 __u8 dat_sz;
483 __u8 reserved1;
484 __u8 entry_cnt;
485 __u8 reserved3;
486 os_dat_entry_t dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 * Pipelined mode parameters.
496 *
497 * We try to use the minimum number of stages which is enough to
498 * keep the tape constantly streaming. To accomplish that, we implement
499 * a feedback loop around the maximum number of stages:
500 *
501 * We start from MIN maximum stages (we will not even use MIN stages
502 * if we don't need them), increment it by RATE*(MAX-MIN)
503 * whenever we sense that the pipeline is empty, until we reach
504 * the optimum value or until we reach MAX.
505 *
506 * Setting the following parameter to 0 is illegal: the pipelined mode
507 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES 1
510#define IDETAPE_MAX_PIPELINE_STAGES 400
511#define IDETAPE_INCREASE_STAGES_RATE 20
512
513/*
514 * The following are used to debug the driver:
515 *
516 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 * some places.
520 *
521 * Setting them to 0 will restore normal operation mode:
522 *
523 * 1. Disable logging normal successful operations.
524 * 2. Disable self-sanity checks.
525 * 3. Errors will still be logged, of course.
526 *
527 * All the #if DEBUG code will be removed some day, when the driver
528 * is verified to be stable enough. This will make it much more
529 * esthetic.
530 */
531#define IDETAPE_DEBUG_INFO 0
532#define IDETAPE_DEBUG_LOG 0
533#define IDETAPE_DEBUG_BUGS 1
534
535/*
536 * After each failed packet command we issue a request sense command
537 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES 3
542
543/*
544 * With each packet command, we allocate a buffer of
545 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 * commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE 256
549
550/*
551 * In various places in the driver, we need to allocate storage
552 * for packet commands and requests, which will remain valid while
553 * we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD (900*HZ)
563
564/*
565 * The following parameter is used to select the point in the internal
566 * tape fifo in which we will start to refill the buffer. Decreasing
567 * the following parameter will improve the system's latency and
3a4fa0a2 568 * interactive response, while using a high value might improve system
1da177e4
LT
569 * throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 2
572
573/*
574 * DSC polling parameters.
575 *
576 * Polling for DSC (a single bit in the status register) is a very
577 * important function in ide-tape. There are two cases in which we
578 * poll for DSC:
579 *
580 * 1. Before a read/write packet command, to ensure that we
581 * can transfer data from/to the tape's data buffers, without
582 * causing an actual media access. In case the tape is not
583 * ready yet, we take out our request from the device
584 * request queue, so that ide.c will service requests from
585 * the other device on the same interface meanwhile.
586 *
587 * 2. After the successful initialization of a "media access
588 * packet command", which is a command which can take a long
589 * time to complete (it can be several seconds or even an hour).
590 *
591 * Again, we postpone our request in the middle to free the bus
592 * for the other device. The polling frequency here should be
593 * lower than the read/write frequency since those media access
594 * commands are slow. We start from a "fast" frequency -
595 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 * We also set a timeout for the timer, in case something goes wrong.
600 * The timeout should be longer then the maximum execution time of a
601 * tape operation.
602 */
603
604/*
605 * DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
608#define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
610#define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
617/*
618 * Debugging/Performance analysis
619 *
620 * I/O trace support
621 */
622#define USE_IOTRACE 0
623#if USE_IOTRACE
1da177e4
LT
624#define IO_IDETAPE_FIFO 500
625#endif
626
627/*
628 * Read/Write error simulation
629 */
630#define SIMULATE_ERRORS 0
631
632/*
633 * For general magnetic tape device compatibility.
634 */
635typedef enum {
636 idetape_direction_none,
637 idetape_direction_read,
638 idetape_direction_write
639} idetape_chrdev_direction_t;
640
641struct idetape_bh {
ab057968 642 u32 b_size;
1da177e4
LT
643 atomic_t b_count;
644 struct idetape_bh *b_reqnext;
645 char *b_data;
646};
647
648/*
649 * Our view of a packet command.
650 */
651typedef struct idetape_packet_command_s {
652 u8 c[12]; /* Actual packet bytes */
653 int retries; /* On each retry, we increment retries */
654 int error; /* Error code */
655 int request_transfer; /* Bytes to transfer */
656 int actually_transferred; /* Bytes actually transferred */
657 int buffer_size; /* Size of our data buffer */
658 struct idetape_bh *bh;
659 char *b_data;
660 int b_count;
661 u8 *buffer; /* Data buffer */
662 u8 *current_position; /* Pointer into the above buffer */
663 ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */
664 u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */
665 unsigned long flags; /* Status/Action bit flags: long for set_bit */
666} idetape_pc_t;
667
668/*
669 * Packet command flag bits.
670 */
671/* Set when an error is considered normal - We won't retry */
672#define PC_ABORT 0
673/* 1 When polling for DSC on a media access command */
674#define PC_WAIT_FOR_DSC 1
675/* 1 when we prefer to use DMA if possible */
676#define PC_DMA_RECOMMENDED 2
677/* 1 while DMA in progress */
678#define PC_DMA_IN_PROGRESS 3
679/* 1 when encountered problem during DMA */
680#define PC_DMA_ERROR 4
681/* Data direction */
682#define PC_WRITING 5
683
684/*
685 * Capabilities and Mechanical Status Page
686 */
687typedef struct {
688 unsigned page_code :6; /* Page code - Should be 0x2a */
689 __u8 reserved0_6 :1;
690 __u8 ps :1; /* parameters saveable */
691 __u8 page_length; /* Page Length - Should be 0x12 */
692 __u8 reserved2, reserved3;
693 unsigned ro :1; /* Read Only Mode */
694 unsigned reserved4_1234 :4;
695 unsigned sprev :1; /* Supports SPACE in the reverse direction */
696 unsigned reserved4_67 :2;
697 unsigned reserved5_012 :3;
698 unsigned efmt :1; /* Supports ERASE command initiated formatting */
699 unsigned reserved5_4 :1;
700 unsigned qfa :1; /* Supports the QFA two partition formats */
701 unsigned reserved5_67 :2;
702 unsigned lock :1; /* Supports locking the volume */
703 unsigned locked :1; /* The volume is locked */
704 unsigned prevent :1; /* The device defaults in the prevent state after power up */
705 unsigned eject :1; /* The device can eject the volume */
706 __u8 disconnect :1; /* The device can break request > ctl */
707 __u8 reserved6_5 :1;
708 unsigned ecc :1; /* Supports error correction */
709 unsigned cmprs :1; /* Supports data compression */
710 unsigned reserved7_0 :1;
711 unsigned blk512 :1; /* Supports 512 bytes block size */
712 unsigned blk1024 :1; /* Supports 1024 bytes block size */
713 unsigned reserved7_3_6 :4;
714 unsigned blk32768 :1; /* slowb - the device restricts the byte count for PIO */
715 /* transfers for slow buffer memory ??? */
716 /* Also 32768 block size in some cases */
717 __u16 max_speed; /* Maximum speed supported in KBps */
718 __u8 reserved10, reserved11;
719 __u16 ctl; /* Continuous Transfer Limit in blocks */
720 __u16 speed; /* Current Speed, in KBps */
721 __u16 buffer_size; /* Buffer Size, in 512 bytes */
722 __u8 reserved18, reserved19;
723} idetape_capabilities_page_t;
724
725/*
726 * Block Size Page
727 */
728typedef struct {
729 unsigned page_code :6; /* Page code - Should be 0x30 */
730 unsigned reserved1_6 :1;
731 unsigned ps :1;
732 __u8 page_length; /* Page Length - Should be 2 */
733 __u8 reserved2;
734 unsigned play32 :1;
735 unsigned play32_5 :1;
736 unsigned reserved2_23 :2;
737 unsigned record32 :1;
738 unsigned record32_5 :1;
739 unsigned reserved2_6 :1;
740 unsigned one :1;
741} idetape_block_size_page_t;
742
743/*
744 * A pipeline stage.
745 */
746typedef struct idetape_stage_s {
747 struct request rq; /* The corresponding request */
748 struct idetape_bh *bh; /* The data buffers */
749 struct idetape_stage_s *next; /* Pointer to the next stage */
750} idetape_stage_t;
751
752/*
753 * REQUEST SENSE packet command result - Data Format.
754 */
755typedef struct {
756 unsigned error_code :7; /* Current of deferred errors */
757 unsigned valid :1; /* The information field conforms to QIC-157C */
758 __u8 reserved1 :8; /* Segment Number - Reserved */
759 unsigned sense_key :4; /* Sense Key */
760 unsigned reserved2_4 :1; /* Reserved */
761 unsigned ili :1; /* Incorrect Length Indicator */
762 unsigned eom :1; /* End Of Medium */
763 unsigned filemark :1; /* Filemark */
764 __u32 information __attribute__ ((packed));
765 __u8 asl; /* Additional sense length (n-7) */
766 __u32 command_specific; /* Additional command specific information */
767 __u8 asc; /* Additional Sense Code */
768 __u8 ascq; /* Additional Sense Code Qualifier */
769 __u8 replaceable_unit_code; /* Field Replaceable Unit Code */
770 unsigned sk_specific1 :7; /* Sense Key Specific */
771 unsigned sksv :1; /* Sense Key Specific information is valid */
772 __u8 sk_specific2; /* Sense Key Specific */
773 __u8 sk_specific3; /* Sense Key Specific */
774 __u8 pad[2]; /* Padding to 20 bytes */
775} idetape_request_sense_result_t;
776
777
778/*
779 * Most of our global data which we need to save even as we leave the
780 * driver due to an interrupt or a timer event is stored in a variable
781 * of type idetape_tape_t, defined below.
782 */
783typedef struct ide_tape_obj {
784 ide_drive_t *drive;
785 ide_driver_t *driver;
786 struct gendisk *disk;
787 struct kref kref;
788
789 /*
790 * Since a typical character device operation requires more
791 * than one packet command, we provide here enough memory
792 * for the maximum of interconnected packet commands.
793 * The packet commands are stored in the circular array pc_stack.
794 * pc_stack_index points to the last used entry, and warps around
795 * to the start when we get to the last array entry.
796 *
797 * pc points to the current processed packet command.
798 *
799 * failed_pc points to the last failed packet command, or contains
800 * NULL if we do not need to retry any packet command. This is
801 * required since an additional packet command is needed before the
802 * retry, to get detailed information on what went wrong.
803 */
804 /* Current packet command */
805 idetape_pc_t *pc;
806 /* Last failed packet command */
807 idetape_pc_t *failed_pc;
808 /* Packet command stack */
809 idetape_pc_t pc_stack[IDETAPE_PC_STACK];
810 /* Next free packet command storage space */
811 int pc_stack_index;
812 struct request rq_stack[IDETAPE_PC_STACK];
813 /* We implement a circular array */
814 int rq_stack_index;
815
816 /*
817 * DSC polling variables.
818 *
819 * While polling for DSC we use postponed_rq to postpone the
820 * current request so that ide.c will be able to service
821 * pending requests on the other device. Note that at most
822 * we will have only one DSC (usually data transfer) request
823 * in the device request queue. Additional requests can be
824 * queued in our internal pipeline, but they will be visible
825 * to ide.c only one at a time.
826 */
827 struct request *postponed_rq;
828 /* The time in which we started polling for DSC */
829 unsigned long dsc_polling_start;
830 /* Timer used to poll for dsc */
831 struct timer_list dsc_timer;
832 /* Read/Write dsc polling frequency */
833 unsigned long best_dsc_rw_frequency;
834 /* The current polling frequency */
835 unsigned long dsc_polling_frequency;
836 /* Maximum waiting time */
837 unsigned long dsc_timeout;
838
839 /*
840 * Read position information
841 */
842 u8 partition;
843 /* Current block */
844 unsigned int first_frame_position;
845 unsigned int last_frame_position;
846 unsigned int blocks_in_buffer;
847
848 /*
849 * Last error information
850 */
851 u8 sense_key, asc, ascq;
852
853 /*
854 * Character device operation
855 */
856 unsigned int minor;
857 /* device name */
858 char name[4];
859 /* Current character device data transfer direction */
860 idetape_chrdev_direction_t chrdev_direction;
861
862 /*
863 * Device information
864 */
865 /* Usually 512 or 1024 bytes */
866 unsigned short tape_block_size;
867 int user_bs_factor;
868 /* Copy of the tape's Capabilities and Mechanical Page */
869 idetape_capabilities_page_t capabilities;
870
871 /*
872 * Active data transfer request parameters.
873 *
874 * At most, there is only one ide-tape originated data transfer
875 * request in the device request queue. This allows ide.c to
876 * easily service requests from the other device when we
877 * postpone our active request. In the pipelined operation
878 * mode, we use our internal pipeline structure to hold
879 * more data requests.
880 *
881 * The data buffer size is chosen based on the tape's
882 * recommendation.
883 */
884 /* Pointer to the request which is waiting in the device request queue */
885 struct request *active_data_request;
886 /* Data buffer size (chosen based on the tape's recommendation */
887 int stage_size;
888 idetape_stage_t *merge_stage;
889 int merge_stage_size;
890 struct idetape_bh *bh;
891 char *b_data;
892 int b_count;
893
894 /*
895 * Pipeline parameters.
896 *
897 * To accomplish non-pipelined mode, we simply set the following
898 * variables to zero (or NULL, where appropriate).
899 */
900 /* Number of currently used stages */
901 int nr_stages;
902 /* Number of pending stages */
903 int nr_pending_stages;
904 /* We will not allocate more than this number of stages */
905 int max_stages, min_pipeline, max_pipeline;
906 /* The first stage which will be removed from the pipeline */
907 idetape_stage_t *first_stage;
908 /* The currently active stage */
909 idetape_stage_t *active_stage;
910 /* Will be serviced after the currently active request */
911 idetape_stage_t *next_stage;
912 /* New requests will be added to the pipeline here */
913 idetape_stage_t *last_stage;
914 /* Optional free stage which we can use */
915 idetape_stage_t *cache_stage;
916 int pages_per_stage;
917 /* Wasted space in each stage */
918 int excess_bh_size;
919
920 /* Status/Action flags: long for set_bit */
921 unsigned long flags;
922 /* protects the ide-tape queue */
923 spinlock_t spinlock;
924
925 /*
926 * Measures average tape speed
927 */
928 unsigned long avg_time;
929 int avg_size;
930 int avg_speed;
931
932 /* last sense information */
933 idetape_request_sense_result_t sense;
934
935 char vendor_id[10];
936 char product_id[18];
937 char firmware_revision[6];
938 int firmware_revision_num;
939
940 /* the door is currently locked */
941 int door_locked;
942 /* the tape hardware is write protected */
943 char drv_write_prot;
944 /* the tape is write protected (hardware or opened as read-only) */
945 char write_prot;
946
947 /*
948 * Limit the number of times a request can
949 * be postponed, to avoid an infinite postpone
950 * deadlock.
951 */
952 /* request postpone count limit */
953 int postpone_cnt;
954
955 /*
956 * Measures number of frames:
957 *
958 * 1. written/read to/from the driver pipeline (pipeline_head).
959 * 2. written/read to/from the tape buffers (idetape_bh).
960 * 3. written/read by the tape to/from the media (tape_head).
961 */
962 int pipeline_head;
963 int buffer_head;
964 int tape_head;
965 int last_tape_head;
966
967 /*
968 * Speed control at the tape buffers input/output
969 */
970 unsigned long insert_time;
971 int insert_size;
972 int insert_speed;
973 int max_insert_speed;
974 int measure_insert_time;
975
976 /*
977 * Measure tape still time, in milliseconds
978 */
979 unsigned long tape_still_time_begin;
980 int tape_still_time;
981
982 /*
983 * Speed regulation negative feedback loop
984 */
985 int speed_control;
986 int pipeline_head_speed;
987 int controlled_pipeline_head_speed;
988 int uncontrolled_pipeline_head_speed;
989 int controlled_last_pipeline_head;
990 int uncontrolled_last_pipeline_head;
991 unsigned long uncontrolled_pipeline_head_time;
992 unsigned long controlled_pipeline_head_time;
993 int controlled_previous_pipeline_head;
994 int uncontrolled_previous_pipeline_head;
995 unsigned long controlled_previous_head_time;
996 unsigned long uncontrolled_previous_head_time;
997 int restart_speed_control_req;
998
999 /*
1000 * Debug_level determines amount of debugging output;
1001 * can be changed using /proc/ide/hdx/settings
1002 * 0 : almost no debugging output
1003 * 1 : 0+output errors only
1004 * 2 : 1+output all sensekey/asc
1005 * 3 : 2+follow all chrdev related procedures
1006 * 4 : 3+follow all procedures
1007 * 5 : 4+include pc_stack rq_stack info
1008 * 6 : 5+USE_COUNT updates
1009 */
1010 int debug_level;
1011} idetape_tape_t;
1012
cf8b8975 1013static DEFINE_MUTEX(idetape_ref_mutex);
1da177e4 1014
d5dee80a
WD
1015static struct class *idetape_sysfs_class;
1016
1da177e4
LT
1017#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1018
1019#define ide_tape_g(disk) \
1020 container_of((disk)->private_data, struct ide_tape_obj, driver)
1021
1022static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1023{
1024 struct ide_tape_obj *tape = NULL;
1025
cf8b8975 1026 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
1027 tape = ide_tape_g(disk);
1028 if (tape)
1029 kref_get(&tape->kref);
cf8b8975 1030 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1031 return tape;
1032}
1033
1034static void ide_tape_release(struct kref *);
1035
1036static void ide_tape_put(struct ide_tape_obj *tape)
1037{
cf8b8975 1038 mutex_lock(&idetape_ref_mutex);
1da177e4 1039 kref_put(&tape->kref, ide_tape_release);
cf8b8975 1040 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1041}
1042
1043/*
1044 * Tape door status
1045 */
1046#define DOOR_UNLOCKED 0
1047#define DOOR_LOCKED 1
1048#define DOOR_EXPLICITLY_LOCKED 2
1049
1050/*
1051 * Tape flag bits values.
1052 */
1053#define IDETAPE_IGNORE_DSC 0
1054#define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1055#define IDETAPE_BUSY 2 /* Device already opened */
1056#define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1057#define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1058#define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1059#define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1060#define IDETAPE_READ_ERROR 7
1061#define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1062/* 0 = no tape is loaded, so we don't rewind after ejecting */
1063#define IDETAPE_MEDIUM_PRESENT 9
1064
1065/*
1066 * Supported ATAPI tape drives packet commands
1067 */
1068#define IDETAPE_TEST_UNIT_READY_CMD 0x00
1069#define IDETAPE_REWIND_CMD 0x01
1070#define IDETAPE_REQUEST_SENSE_CMD 0x03
1071#define IDETAPE_READ_CMD 0x08
1072#define IDETAPE_WRITE_CMD 0x0a
1073#define IDETAPE_WRITE_FILEMARK_CMD 0x10
1074#define IDETAPE_SPACE_CMD 0x11
1075#define IDETAPE_INQUIRY_CMD 0x12
1076#define IDETAPE_ERASE_CMD 0x19
1077#define IDETAPE_MODE_SENSE_CMD 0x1a
1078#define IDETAPE_MODE_SELECT_CMD 0x15
1079#define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1080#define IDETAPE_PREVENT_CMD 0x1e
1081#define IDETAPE_LOCATE_CMD 0x2b
1082#define IDETAPE_READ_POSITION_CMD 0x34
1083#define IDETAPE_READ_BUFFER_CMD 0x3c
1084#define IDETAPE_SET_SPEED_CMD 0xbb
1085
1086/*
1087 * Some defines for the READ BUFFER command
1088 */
1089#define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1090
1091/*
1092 * Some defines for the SPACE command
1093 */
1094#define IDETAPE_SPACE_OVER_FILEMARK 1
1095#define IDETAPE_SPACE_TO_EOD 3
1096
1097/*
1098 * Some defines for the LOAD UNLOAD command
1099 */
1100#define IDETAPE_LU_LOAD_MASK 1
1101#define IDETAPE_LU_RETENSION_MASK 2
1102#define IDETAPE_LU_EOT_MASK 4
1103
1104/*
1105 * Special requests for our block device strategy routine.
1106 *
1107 * In order to service a character device command, we add special
1108 * requests to the tail of our block device request queue and wait
1109 * for their completion.
1110 */
1111
1112enum {
1113 REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */
1114 REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */
1115 REQ_IDETAPE_READ = (1 << 2),
1116 REQ_IDETAPE_WRITE = (1 << 3),
1117 REQ_IDETAPE_READ_BUFFER = (1 << 4),
1118};
1119
1120/*
1121 * Error codes which are returned in rq->errors to the higher part
1122 * of the driver.
1123 */
1124#define IDETAPE_ERROR_GENERAL 101
1125#define IDETAPE_ERROR_FILEMARK 102
1126#define IDETAPE_ERROR_EOD 103
1127
1128/*
1129 * The following is used to format the general configuration word of
1130 * the ATAPI IDENTIFY DEVICE command.
1131 */
1132struct idetape_id_gcw {
1133 unsigned packet_size :2; /* Packet Size */
1134 unsigned reserved234 :3; /* Reserved */
1135 unsigned drq_type :2; /* Command packet DRQ type */
1136 unsigned removable :1; /* Removable media */
1137 unsigned device_type :5; /* Device type */
1138 unsigned reserved13 :1; /* Reserved */
1139 unsigned protocol :2; /* Protocol type */
1140};
1141
1142/*
1143 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1144 */
1145typedef struct {
1146 unsigned device_type :5; /* Peripheral Device Type */
1147 unsigned reserved0_765 :3; /* Peripheral Qualifier - Reserved */
1148 unsigned reserved1_6t0 :7; /* Reserved */
1149 unsigned rmb :1; /* Removable Medium Bit */
1150 unsigned ansi_version :3; /* ANSI Version */
1151 unsigned ecma_version :3; /* ECMA Version */
1152 unsigned iso_version :2; /* ISO Version */
1153 unsigned response_format :4; /* Response Data Format */
1154 unsigned reserved3_45 :2; /* Reserved */
1155 unsigned reserved3_6 :1; /* TrmIOP - Reserved */
1156 unsigned reserved3_7 :1; /* AENC - Reserved */
1157 __u8 additional_length; /* Additional Length (total_length-4) */
1158 __u8 rsv5, rsv6, rsv7; /* Reserved */
1159 __u8 vendor_id[8]; /* Vendor Identification */
1160 __u8 product_id[16]; /* Product Identification */
1161 __u8 revision_level[4]; /* Revision Level */
1162 __u8 vendor_specific[20]; /* Vendor Specific - Optional */
1163 __u8 reserved56t95[40]; /* Reserved - Optional */
1164 /* Additional information may be returned */
1165} idetape_inquiry_result_t;
1166
1167/*
1168 * READ POSITION packet command - Data Format (From Table 6-57)
1169 */
1170typedef struct {
1171 unsigned reserved0_10 :2; /* Reserved */
1172 unsigned bpu :1; /* Block Position Unknown */
1173 unsigned reserved0_543 :3; /* Reserved */
1174 unsigned eop :1; /* End Of Partition */
1175 unsigned bop :1; /* Beginning Of Partition */
1176 u8 partition; /* Partition Number */
1177 u8 reserved2, reserved3; /* Reserved */
1178 u32 first_block; /* First Block Location */
1179 u32 last_block; /* Last Block Location (Optional) */
1180 u8 reserved12; /* Reserved */
1181 u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */
1182 u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */
1183} idetape_read_position_result_t;
1184
1185/*
1186 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1187 * packet commands. Those packet commands are still not supported
1188 * by ide-tape.
1189 */
1190#define IDETAPE_BLOCK_DESCRIPTOR 0
1191#define IDETAPE_CAPABILITIES_PAGE 0x2a
1192#define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1193#define IDETAPE_BLOCK_SIZE_PAGE 0x30
1194#define IDETAPE_BUFFER_FILLING_PAGE 0x33
1195
1196/*
1197 * Mode Parameter Header for the MODE SENSE packet command
1198 */
1199typedef struct {
1200 __u8 mode_data_length; /* Length of the following data transfer */
1201 __u8 medium_type; /* Medium Type */
1202 __u8 dsp; /* Device Specific Parameter */
1203 __u8 bdl; /* Block Descriptor Length */
1204#if 0
1205 /* data transfer page */
1206 __u8 page_code :6;
1207 __u8 reserved0_6 :1;
1208 __u8 ps :1; /* parameters saveable */
1209 __u8 page_length; /* page Length == 0x02 */
1210 __u8 reserved2;
1211 __u8 read32k :1; /* 32k blk size (data only) */
1212 __u8 read32k5 :1; /* 32.5k blk size (data&AUX) */
1213 __u8 reserved3_23 :2;
1214 __u8 write32k :1; /* 32k blk size (data only) */
1215 __u8 write32k5 :1; /* 32.5k blk size (data&AUX) */
1216 __u8 reserved3_6 :1;
1217 __u8 streaming :1; /* streaming mode enable */
1218#endif
1219} idetape_mode_parameter_header_t;
1220
1221/*
1222 * Mode Parameter Block Descriptor the MODE SENSE packet command
1223 *
1224 * Support for block descriptors is optional.
1225 */
1226typedef struct {
1227 __u8 density_code; /* Medium density code */
1228 __u8 blocks[3]; /* Number of blocks */
1229 __u8 reserved4; /* Reserved */
1230 __u8 length[3]; /* Block Length */
1231} idetape_parameter_block_descriptor_t;
1232
1233/*
1234 * The Data Compression Page, as returned by the MODE SENSE packet command.
1235 */
1236typedef struct {
1237 unsigned page_code :6; /* Page Code - Should be 0xf */
1238 unsigned reserved0 :1; /* Reserved */
1239 unsigned ps :1;
1240 __u8 page_length; /* Page Length - Should be 14 */
1241 unsigned reserved2 :6; /* Reserved */
1242 unsigned dcc :1; /* Data Compression Capable */
1243 unsigned dce :1; /* Data Compression Enable */
1244 unsigned reserved3 :5; /* Reserved */
1245 unsigned red :2; /* Report Exception on Decompression */
1246 unsigned dde :1; /* Data Decompression Enable */
1247 __u32 ca; /* Compression Algorithm */
1248 __u32 da; /* Decompression Algorithm */
1249 __u8 reserved[4]; /* Reserved */
1250} idetape_data_compression_page_t;
1251
1252/*
1253 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1254 */
1255typedef struct {
1256 unsigned page_code :6; /* Page Code - Should be 0x11 */
1257 unsigned reserved1_6 :1; /* Reserved */
1258 unsigned ps :1;
1259 __u8 page_length; /* Page Length - Should be 6 */
1260 __u8 map; /* Maximum Additional Partitions - Should be 0 */
1261 __u8 apd; /* Additional Partitions Defined - Should be 0 */
1262 unsigned reserved4_012 :3; /* Reserved */
1263 unsigned psum :2; /* Should be 0 */
1264 unsigned idp :1; /* Should be 0 */
1265 unsigned sdp :1; /* Should be 0 */
1266 unsigned fdp :1; /* Fixed Data Partitions */
1267 __u8 mfr; /* Medium Format Recognition */
1268 __u8 reserved[2]; /* Reserved */
1269} idetape_medium_partition_page_t;
1270
1271/*
1272 * Run time configurable parameters.
1273 */
1274typedef struct {
1275 int dsc_rw_frequency;
1276 int dsc_media_access_frequency;
1277 int nr_stages;
1278} idetape_config_t;
1279
1280/*
1281 * The variables below are used for the character device interface.
1282 * Additional state variables are defined in our ide_drive_t structure.
1283 */
1284static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1285
1286#define ide_tape_f(file) ((file)->private_data)
1287
1288static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1289{
1290 struct ide_tape_obj *tape = NULL;
1291
cf8b8975 1292 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
1293 tape = idetape_devs[i];
1294 if (tape)
1295 kref_get(&tape->kref);
cf8b8975 1296 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1297 return tape;
1298}
1299
1300/*
1301 * Function declarations
1302 *
1303 */
1304static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1305static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1306
1307/*
1308 * Too bad. The drive wants to send us data which we are not ready to accept.
1309 * Just throw it away.
1310 */
1311static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1312{
1313 while (bcount--)
1314 (void) HWIF(drive)->INB(IDE_DATA_REG);
1315}
1316
1317static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1318{
1319 struct idetape_bh *bh = pc->bh;
1320 int count;
1321
1322 while (bcount) {
1323#if IDETAPE_DEBUG_BUGS
1324 if (bh == NULL) {
1325 printk(KERN_ERR "ide-tape: bh == NULL in "
1326 "idetape_input_buffers\n");
1327 idetape_discard_data(drive, bcount);
1328 return;
1329 }
1330#endif /* IDETAPE_DEBUG_BUGS */
1331 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1332 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1333 bcount -= count;
1334 atomic_add(count, &bh->b_count);
1335 if (atomic_read(&bh->b_count) == bh->b_size) {
1336 bh = bh->b_reqnext;
1337 if (bh)
1338 atomic_set(&bh->b_count, 0);
1339 }
1340 }
1341 pc->bh = bh;
1342}
1343
1344static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1345{
1346 struct idetape_bh *bh = pc->bh;
1347 int count;
1348
1349 while (bcount) {
1350#if IDETAPE_DEBUG_BUGS
1351 if (bh == NULL) {
1352 printk(KERN_ERR "ide-tape: bh == NULL in "
1353 "idetape_output_buffers\n");
1354 return;
1355 }
1356#endif /* IDETAPE_DEBUG_BUGS */
1357 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1358 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1359 bcount -= count;
1360 pc->b_data += count;
1361 pc->b_count -= count;
1362 if (!pc->b_count) {
1363 pc->bh = bh = bh->b_reqnext;
1364 if (bh) {
1365 pc->b_data = bh->b_data;
1366 pc->b_count = atomic_read(&bh->b_count);
1367 }
1368 }
1369 }
1370}
1371
1372static void idetape_update_buffers (idetape_pc_t *pc)
1373{
1374 struct idetape_bh *bh = pc->bh;
1375 int count;
1376 unsigned int bcount = pc->actually_transferred;
1377
1378 if (test_bit(PC_WRITING, &pc->flags))
1379 return;
1380 while (bcount) {
1381#if IDETAPE_DEBUG_BUGS
1382 if (bh == NULL) {
1383 printk(KERN_ERR "ide-tape: bh == NULL in "
1384 "idetape_update_buffers\n");
1385 return;
1386 }
1387#endif /* IDETAPE_DEBUG_BUGS */
1388 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1389 atomic_set(&bh->b_count, count);
1390 if (atomic_read(&bh->b_count) == bh->b_size)
1391 bh = bh->b_reqnext;
1392 bcount -= count;
1393 }
1394 pc->bh = bh;
1395}
1396
1397/*
1398 * idetape_next_pc_storage returns a pointer to a place in which we can
1399 * safely store a packet command, even though we intend to leave the
1400 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1401 * commands is allocated at initialization time.
1402 */
1403static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1404{
1405 idetape_tape_t *tape = drive->driver_data;
1406
1407#if IDETAPE_DEBUG_LOG
1408 if (tape->debug_level >= 5)
1409 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1410 tape->pc_stack_index);
1411#endif /* IDETAPE_DEBUG_LOG */
1412 if (tape->pc_stack_index == IDETAPE_PC_STACK)
1413 tape->pc_stack_index=0;
1414 return (&tape->pc_stack[tape->pc_stack_index++]);
1415}
1416
1417/*
1418 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1419 * Since we queue packet commands in the request queue, we need to
1420 * allocate a request, along with the allocation of a packet command.
1421 */
1422
1423/**************************************************************
1424 * *
1425 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1426 * followed later on by kfree(). -ml *
1427 * *
1428 **************************************************************/
1429
1430static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1431{
1432 idetape_tape_t *tape = drive->driver_data;
1433
1434#if IDETAPE_DEBUG_LOG
1435 if (tape->debug_level >= 5)
1436 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1437 tape->rq_stack_index);
1438#endif /* IDETAPE_DEBUG_LOG */
1439 if (tape->rq_stack_index == IDETAPE_PC_STACK)
1440 tape->rq_stack_index=0;
1441 return (&tape->rq_stack[tape->rq_stack_index++]);
1442}
1443
1444/*
1445 * idetape_init_pc initializes a packet command.
1446 */
1447static void idetape_init_pc (idetape_pc_t *pc)
1448{
1449 memset(pc->c, 0, 12);
1450 pc->retries = 0;
1451 pc->flags = 0;
1452 pc->request_transfer = 0;
1453 pc->buffer = pc->pc_buffer;
1454 pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1455 pc->bh = NULL;
1456 pc->b_data = NULL;
1457}
1458
1459/*
1460 * idetape_analyze_error is called on each failed packet command retry
1461 * to analyze the request sense. We currently do not utilize this
1462 * information.
1463 */
1464static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1465{
1466 idetape_tape_t *tape = drive->driver_data;
1467 idetape_pc_t *pc = tape->failed_pc;
1468
1469 tape->sense = *result;
1470 tape->sense_key = result->sense_key;
1471 tape->asc = result->asc;
1472 tape->ascq = result->ascq;
1473#if IDETAPE_DEBUG_LOG
1474 /*
1475 * Without debugging, we only log an error if we decided to
1476 * give up retrying.
1477 */
1478 if (tape->debug_level >= 1)
1479 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1480 "asc = %x, ascq = %x\n",
1481 pc->c[0], result->sense_key,
1482 result->asc, result->ascq);
1483#endif /* IDETAPE_DEBUG_LOG */
1484
1485 /*
1486 * Correct pc->actually_transferred by asking the tape.
1487 */
1488 if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1489 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1490 idetape_update_buffers(pc);
1491 }
1492
1493 /*
1494 * If error was the result of a zero-length read or write command,
1495 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1496 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1497 */
1498 if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1499 && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1500 if (result->sense_key == 5) {
1501 /* don't report an error, everything's ok */
1502 pc->error = 0;
1503 /* don't retry read/write */
1504 set_bit(PC_ABORT, &pc->flags);
1505 }
1506 }
1507 if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1508 pc->error = IDETAPE_ERROR_FILEMARK;
1509 set_bit(PC_ABORT, &pc->flags);
1510 }
1511 if (pc->c[0] == IDETAPE_WRITE_CMD) {
1512 if (result->eom ||
1513 (result->sense_key == 0xd && result->asc == 0x0 &&
1514 result->ascq == 0x2)) {
1515 pc->error = IDETAPE_ERROR_EOD;
1516 set_bit(PC_ABORT, &pc->flags);
1517 }
1518 }
1519 if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1520 if (result->sense_key == 8) {
1521 pc->error = IDETAPE_ERROR_EOD;
1522 set_bit(PC_ABORT, &pc->flags);
1523 }
1524 if (!test_bit(PC_ABORT, &pc->flags) &&
1525 pc->actually_transferred)
1526 pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1527 }
1528}
1529
1530/*
1531 * idetape_active_next_stage will declare the next stage as "active".
1532 */
1533static void idetape_active_next_stage (ide_drive_t *drive)
1534{
1535 idetape_tape_t *tape = drive->driver_data;
1536 idetape_stage_t *stage = tape->next_stage;
1537 struct request *rq = &stage->rq;
1538
1539#if IDETAPE_DEBUG_LOG
1540 if (tape->debug_level >= 4)
1541 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1542#endif /* IDETAPE_DEBUG_LOG */
1543#if IDETAPE_DEBUG_BUGS
1544 if (stage == NULL) {
1545 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1546 return;
1547 }
1548#endif /* IDETAPE_DEBUG_BUGS */
1549
1550 rq->rq_disk = tape->disk;
1551 rq->buffer = NULL;
1552 rq->special = (void *)stage->bh;
1553 tape->active_data_request = rq;
1554 tape->active_stage = stage;
1555 tape->next_stage = stage->next;
1556}
1557
1558/*
1559 * idetape_increase_max_pipeline_stages is a part of the feedback
1560 * loop which tries to find the optimum number of stages. In the
1561 * feedback loop, we are starting from a minimum maximum number of
1562 * stages, and if we sense that the pipeline is empty, we try to
1563 * increase it, until we reach the user compile time memory limit.
1564 */
1565static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1566{
1567 idetape_tape_t *tape = drive->driver_data;
1568 int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1569
1570#if IDETAPE_DEBUG_LOG
1571 if (tape->debug_level >= 4)
1572 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1573#endif /* IDETAPE_DEBUG_LOG */
1574
1575 tape->max_stages += max(increase, 1);
1576 tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1577 tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1578}
1579
1580/*
1581 * idetape_kfree_stage calls kfree to completely free a stage, along with
1582 * its related buffers.
1583 */
1584static void __idetape_kfree_stage (idetape_stage_t *stage)
1585{
1586 struct idetape_bh *prev_bh, *bh = stage->bh;
1587 int size;
1588
1589 while (bh != NULL) {
1590 if (bh->b_data != NULL) {
1591 size = (int) bh->b_size;
1592 while (size > 0) {
1593 free_page((unsigned long) bh->b_data);
1594 size -= PAGE_SIZE;
1595 bh->b_data += PAGE_SIZE;
1596 }
1597 }
1598 prev_bh = bh;
1599 bh = bh->b_reqnext;
1600 kfree(prev_bh);
1601 }
1602 kfree(stage);
1603}
1604
1605static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1606{
1607 __idetape_kfree_stage(stage);
1608}
1609
1610/*
1611 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1612 * The caller should avoid race conditions.
1613 */
1614static void idetape_remove_stage_head (ide_drive_t *drive)
1615{
1616 idetape_tape_t *tape = drive->driver_data;
1617 idetape_stage_t *stage;
1618
1619#if IDETAPE_DEBUG_LOG
1620 if (tape->debug_level >= 4)
1621 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1622#endif /* IDETAPE_DEBUG_LOG */
1623#if IDETAPE_DEBUG_BUGS
1624 if (tape->first_stage == NULL) {
1625 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1626 return;
1627 }
1628 if (tape->active_stage == tape->first_stage) {
1629 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1630 return;
1631 }
1632#endif /* IDETAPE_DEBUG_BUGS */
1633 stage = tape->first_stage;
1634 tape->first_stage = stage->next;
1635 idetape_kfree_stage(tape, stage);
1636 tape->nr_stages--;
1637 if (tape->first_stage == NULL) {
1638 tape->last_stage = NULL;
1639#if IDETAPE_DEBUG_BUGS
1640 if (tape->next_stage != NULL)
1641 printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1642 if (tape->nr_stages)
1643 printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1644#endif /* IDETAPE_DEBUG_BUGS */
1645 }
1646}
1647
1648/*
1649 * This will free all the pipeline stages starting from new_last_stage->next
1650 * to the end of the list, and point tape->last_stage to new_last_stage.
1651 */
1652static void idetape_abort_pipeline(ide_drive_t *drive,
1653 idetape_stage_t *new_last_stage)
1654{
1655 idetape_tape_t *tape = drive->driver_data;
1656 idetape_stage_t *stage = new_last_stage->next;
1657 idetape_stage_t *nstage;
1658
1659#if IDETAPE_DEBUG_LOG
1660 if (tape->debug_level >= 4)
1661 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1662#endif
1663 while (stage) {
1664 nstage = stage->next;
1665 idetape_kfree_stage(tape, stage);
1666 --tape->nr_stages;
1667 --tape->nr_pending_stages;
1668 stage = nstage;
1669 }
1670 if (new_last_stage)
1671 new_last_stage->next = NULL;
1672 tape->last_stage = new_last_stage;
1673 tape->next_stage = NULL;
1674}
1675
1676/*
1677 * idetape_end_request is used to finish servicing a request, and to
1678 * insert a pending pipeline request into the main device queue.
1679 */
1680static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1681{
1682 struct request *rq = HWGROUP(drive)->rq;
1683 idetape_tape_t *tape = drive->driver_data;
1684 unsigned long flags;
1685 int error;
1686 int remove_stage = 0;
1687 idetape_stage_t *active_stage;
1688
1689#if IDETAPE_DEBUG_LOG
1690 if (tape->debug_level >= 4)
1691 printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1692#endif /* IDETAPE_DEBUG_LOG */
1693
1694 switch (uptodate) {
1695 case 0: error = IDETAPE_ERROR_GENERAL; break;
1696 case 1: error = 0; break;
1697 default: error = uptodate;
1698 }
1699 rq->errors = error;
1700 if (error)
1701 tape->failed_pc = NULL;
1702
1703 spin_lock_irqsave(&tape->spinlock, flags);
1704
1705 /* The request was a pipelined data transfer request */
1706 if (tape->active_data_request == rq) {
1707 active_stage = tape->active_stage;
1708 tape->active_stage = NULL;
1709 tape->active_data_request = NULL;
1710 tape->nr_pending_stages--;
1711 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1712 remove_stage = 1;
1713 if (error) {
1714 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1715 if (error == IDETAPE_ERROR_EOD)
1716 idetape_abort_pipeline(drive, active_stage);
1717 }
1718 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1719 if (error == IDETAPE_ERROR_EOD) {
1720 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1721 idetape_abort_pipeline(drive, active_stage);
1722 }
1723 }
1724 if (tape->next_stage != NULL) {
1725 idetape_active_next_stage(drive);
1726
1727 /*
1728 * Insert the next request into the request queue.
1729 */
1730 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1731 } else if (!error) {
1732 idetape_increase_max_pipeline_stages(drive);
1733 }
1734 }
1735 ide_end_drive_cmd(drive, 0, 0);
1736// blkdev_dequeue_request(rq);
1737// drive->rq = NULL;
1738// end_that_request_last(rq);
1739
1740 if (remove_stage)
1741 idetape_remove_stage_head(drive);
1742 if (tape->active_data_request == NULL)
1743 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1744 spin_unlock_irqrestore(&tape->spinlock, flags);
1745 return 0;
1746}
1747
1748static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1749{
1750 idetape_tape_t *tape = drive->driver_data;
1751
1752#if IDETAPE_DEBUG_LOG
1753 if (tape->debug_level >= 4)
1754 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1755#endif /* IDETAPE_DEBUG_LOG */
1756 if (!tape->pc->error) {
1757 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1758 idetape_end_request(drive, 1, 0);
1759 } else {
1760 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1761 idetape_end_request(drive, 0, 0);
1762 }
1763 return ide_stopped;
1764}
1765
1766static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1767{
1768 idetape_init_pc(pc);
1769 pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1770 pc->c[4] = 20;
1771 pc->request_transfer = 20;
1772 pc->callback = &idetape_request_sense_callback;
1773}
1774
1775static void idetape_init_rq(struct request *rq, u8 cmd)
1776{
1777 memset(rq, 0, sizeof(*rq));
4aff5e23 1778 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1779 rq->cmd[0] = cmd;
1780}
1781
1782/*
1783 * idetape_queue_pc_head generates a new packet command request in front
1784 * of the request queue, before the current request, so that it will be
1785 * processed immediately, on the next pass through the driver.
1786 *
1787 * idetape_queue_pc_head is called from the request handling part of
1788 * the driver (the "bottom" part). Safe storage for the request should
1789 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1790 * before calling idetape_queue_pc_head.
1791 *
1792 * Memory for those requests is pre-allocated at initialization time, and
1793 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1794 * space for the maximum possible number of inter-dependent packet commands.
1795 *
1796 * The higher level of the driver - The ioctl handler and the character
1797 * device handling functions should queue request to the lower level part
1798 * and wait for their completion using idetape_queue_pc_tail or
1799 * idetape_queue_rw_tail.
1800 */
1801static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1802{
1803 struct ide_tape_obj *tape = drive->driver_data;
1804
1805 idetape_init_rq(rq, REQ_IDETAPE_PC1);
1806 rq->buffer = (char *) pc;
1807 rq->rq_disk = tape->disk;
1808 (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1809}
1810
1811/*
1812 * idetape_retry_pc is called when an error was detected during the
1813 * last packet command. We queue a request sense packet command in
1814 * the head of the request list.
1815 */
1816static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1817{
1818 idetape_tape_t *tape = drive->driver_data;
1819 idetape_pc_t *pc;
1820 struct request *rq;
1821 atapi_error_t error;
1822
1823 error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1824 pc = idetape_next_pc_storage(drive);
1825 rq = idetape_next_rq_storage(drive);
1826 idetape_create_request_sense_cmd(pc);
1827 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1828 idetape_queue_pc_head(drive, pc, rq);
1829 return ide_stopped;
1830}
1831
1832/*
1833 * idetape_postpone_request postpones the current request so that
1834 * ide.c will be able to service requests from another device on
1835 * the same hwgroup while we are polling for DSC.
1836 */
1837static void idetape_postpone_request (ide_drive_t *drive)
1838{
1839 idetape_tape_t *tape = drive->driver_data;
1840
1841#if IDETAPE_DEBUG_LOG
1842 if (tape->debug_level >= 4)
1843 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1844#endif
1845 tape->postponed_rq = HWGROUP(drive)->rq;
1846 ide_stall_queue(drive, tape->dsc_polling_frequency);
1847}
1848
1849/*
1850 * idetape_pc_intr is the usual interrupt handler which will be called
1851 * during a packet command. We will transfer some of the data (as
1852 * requested by the drive) and will re-point interrupt handler to us.
1853 * When data transfer is finished, we will act according to the
1854 * algorithm described before idetape_issue_packet_command.
1855 *
1856 */
1857static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1858{
1859 ide_hwif_t *hwif = drive->hwif;
1860 idetape_tape_t *tape = drive->driver_data;
1861 atapi_status_t status;
1862 atapi_bcount_t bcount;
1863 atapi_ireason_t ireason;
1864 idetape_pc_t *pc = tape->pc;
1865
1866 unsigned int temp;
1867#if SIMULATE_ERRORS
1868 static int error_sim_count = 0;
1869#endif
1870
1871#if IDETAPE_DEBUG_LOG
1872 if (tape->debug_level >= 4)
1873 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1874 "interrupt handler\n");
1875#endif /* IDETAPE_DEBUG_LOG */
1876
1877 /* Clear the interrupt */
1878 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1879
1880 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1881 if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1882 /*
1883 * A DMA error is sometimes expected. For example,
1884 * if the tape is crossing a filemark during a
1885 * READ command, it will issue an irq and position
1886 * itself before the filemark, so that only a partial
1887 * data transfer will occur (which causes the DMA
1888 * error). In that case, we will later ask the tape
1889 * how much bytes of the original request were
1890 * actually transferred (we can't receive that
1891 * information from the DMA engine on most chipsets).
1892 */
1893
1894 /*
1895 * On the contrary, a DMA error is never expected;
1896 * it usually indicates a hardware error or abort.
1897 * If the tape crosses a filemark during a READ
1898 * command, it will issue an irq and position itself
1899 * after the filemark (not before). Only a partial
1900 * data transfer will occur, but no DMA error.
1901 * (AS, 19 Apr 2001)
1902 */
1903 set_bit(PC_DMA_ERROR, &pc->flags);
1904 } else {
1905 pc->actually_transferred = pc->request_transfer;
1906 idetape_update_buffers(pc);
1907 }
1908#if IDETAPE_DEBUG_LOG
1909 if (tape->debug_level >= 4)
1910 printk(KERN_INFO "ide-tape: DMA finished\n");
1911#endif /* IDETAPE_DEBUG_LOG */
1912 }
1913
1914 /* No more interrupts */
1915 if (!status.b.drq) {
1916#if IDETAPE_DEBUG_LOG
1917 if (tape->debug_level >= 2)
1918 printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1919#endif /* IDETAPE_DEBUG_LOG */
1920 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1921
1922 local_irq_enable();
1923
1924#if SIMULATE_ERRORS
1925 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1926 pc->c[0] == IDETAPE_READ_CMD) &&
1927 (++error_sim_count % 100) == 0) {
1928 printk(KERN_INFO "ide-tape: %s: simulating error\n",
1929 tape->name);
1930 status.b.check = 1;
1931 }
1932#endif
1933 if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1934 status.b.check = 0;
1935 if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) { /* Error detected */
1936#if IDETAPE_DEBUG_LOG
1937 if (tape->debug_level >= 1)
1938 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1939 tape->name);
1940#endif /* IDETAPE_DEBUG_LOG */
1941 if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1942 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1943 return ide_do_reset(drive);
1944 }
1945#if IDETAPE_DEBUG_LOG
1946 if (tape->debug_level >= 1)
1947 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1948#endif
1949 /* Retry operation */
1950 return idetape_retry_pc(drive);
1951 }
1952 pc->error = 0;
1953 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1954 !status.b.dsc) {
1955 /* Media access command */
1956 tape->dsc_polling_start = jiffies;
1957 tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1958 tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1959 /* Allow ide.c to handle other requests */
1960 idetape_postpone_request(drive);
1961 return ide_stopped;
1962 }
1963 if (tape->failed_pc == pc)
1964 tape->failed_pc = NULL;
1965 /* Command finished - Call the callback function */
1966 return pc->callback(drive);
1967 }
1968 if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1969 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1970 "interrupts in DMA mode\n");
1971 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
7469aaf6 1972 ide_dma_off(drive);
1da177e4
LT
1973 return ide_do_reset(drive);
1974 }
1975 /* Get the number of bytes to transfer on this interrupt. */
1976 bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1977 bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1978
1979 ireason.all = hwif->INB(IDE_IREASON_REG);
1980
1981 if (ireason.b.cod) {
1982 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1983 return ide_do_reset(drive);
1984 }
1985 if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1986 /* Hopefully, we will never get here */
1987 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1988 ireason.b.io ? "Write":"Read");
1989 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1990 ireason.b.io ? "Read":"Write");
1991 return ide_do_reset(drive);
1992 }
1993 if (!test_bit(PC_WRITING, &pc->flags)) {
1994 /* Reading - Check that we have enough space */
1995 temp = pc->actually_transferred + bcount.all;
1996 if (temp > pc->request_transfer) {
1997 if (temp > pc->buffer_size) {
1998 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1999 idetape_discard_data(drive, bcount.all);
2000 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2001 return ide_started;
2002 }
2003#if IDETAPE_DEBUG_LOG
2004 if (tape->debug_level >= 2)
2005 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2006#endif /* IDETAPE_DEBUG_LOG */
2007 }
2008 }
2009 if (test_bit(PC_WRITING, &pc->flags)) {
2010 if (pc->bh != NULL)
2011 idetape_output_buffers(drive, pc, bcount.all);
2012 else
2013 /* Write the current buffer */
2014 HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2015 } else {
2016 if (pc->bh != NULL)
2017 idetape_input_buffers(drive, pc, bcount.all);
2018 else
2019 /* Read the current buffer */
2020 HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2021 }
2022 /* Update the current position */
2023 pc->actually_transferred += bcount.all;
2024 pc->current_position += bcount.all;
2025#if IDETAPE_DEBUG_LOG
2026 if (tape->debug_level >= 2)
2027 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2028#endif
2029 /* And set the interrupt handler again */
2030 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2031 return ide_started;
2032}
2033
2034/*
2035 * Packet Command Interface
2036 *
2037 * The current Packet Command is available in tape->pc, and will not
2038 * change until we finish handling it. Each packet command is associated
2039 * with a callback function that will be called when the command is
2040 * finished.
2041 *
2042 * The handling will be done in three stages:
2043 *
2044 * 1. idetape_issue_packet_command will send the packet command to the
2045 * drive, and will set the interrupt handler to idetape_pc_intr.
2046 *
2047 * 2. On each interrupt, idetape_pc_intr will be called. This step
2048 * will be repeated until the device signals us that no more
2049 * interrupts will be issued.
2050 *
2051 * 3. ATAPI Tape media access commands have immediate status with a
2052 * delayed process. In case of a successful initiation of a
2053 * media access packet command, the DSC bit will be set when the
2054 * actual execution of the command is finished.
2055 * Since the tape drive will not issue an interrupt, we have to
2056 * poll for this event. In this case, we define the request as
2057 * "low priority request" by setting rq_status to
2058 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2059 * the driver.
2060 *
2061 * ide.c will then give higher priority to requests which
2062 * originate from the other device, until will change rq_status
2063 * to RQ_ACTIVE.
2064 *
2065 * 4. When the packet command is finished, it will be checked for errors.
2066 *
2067 * 5. In case an error was found, we queue a request sense packet
2068 * command in front of the request queue and retry the operation
2069 * up to IDETAPE_MAX_PC_RETRIES times.
2070 *
2071 * 6. In case no error was found, or we decided to give up and not
2072 * to retry again, the callback function will be called and then
2073 * we will handle the next request.
2074 *
2075 */
2076static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2077{
2078 ide_hwif_t *hwif = drive->hwif;
2079 idetape_tape_t *tape = drive->driver_data;
2080 idetape_pc_t *pc = tape->pc;
2081 atapi_ireason_t ireason;
2082 int retries = 100;
2083 ide_startstop_t startstop;
2084
2085 if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2086 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2087 return startstop;
2088 }
2089 ireason.all = hwif->INB(IDE_IREASON_REG);
2090 while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2091 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2092 "a packet command, retrying\n");
2093 udelay(100);
2094 ireason.all = hwif->INB(IDE_IREASON_REG);
2095 if (retries == 0) {
2096 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2097 "issuing a packet command, ignoring\n");
2098 ireason.b.cod = 1;
2099 ireason.b.io = 0;
2100 }
2101 }
2102 if (!ireason.b.cod || ireason.b.io) {
2103 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2104 "a packet command\n");
2105 return ide_do_reset(drive);
2106 }
2107 /* Set the interrupt routine */
2108 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2109#ifdef CONFIG_BLK_DEV_IDEDMA
2110 /* Begin DMA, if necessary */
2111 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2112 hwif->dma_start(drive);
2113#endif
2114 /* Send the actual packet */
2115 HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2116 return ide_started;
2117}
2118
2119static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2120{
2121 ide_hwif_t *hwif = drive->hwif;
2122 idetape_tape_t *tape = drive->driver_data;
2123 atapi_bcount_t bcount;
2124 int dma_ok = 0;
2125
2126#if IDETAPE_DEBUG_BUGS
2127 if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2128 pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2129 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2130 "Two request sense in serial were issued\n");
2131 }
2132#endif /* IDETAPE_DEBUG_BUGS */
2133
2134 if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2135 tape->failed_pc = pc;
2136 /* Set the current packet command */
2137 tape->pc = pc;
2138
2139 if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2140 test_bit(PC_ABORT, &pc->flags)) {
2141 /*
2142 * We will "abort" retrying a packet command in case
2143 * a legitimate error code was received (crossing a
2144 * filemark, or end of the media, for example).
2145 */
2146 if (!test_bit(PC_ABORT, &pc->flags)) {
2147 if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2148 tape->sense_key == 2 && tape->asc == 4 &&
2149 (tape->ascq == 1 || tape->ascq == 8))) {
2150 printk(KERN_ERR "ide-tape: %s: I/O error, "
2151 "pc = %2x, key = %2x, "
2152 "asc = %2x, ascq = %2x\n",
2153 tape->name, pc->c[0],
2154 tape->sense_key, tape->asc,
2155 tape->ascq);
2156 }
2157 /* Giving up */
2158 pc->error = IDETAPE_ERROR_GENERAL;
2159 }
2160 tape->failed_pc = NULL;
2161 return pc->callback(drive);
2162 }
2163#if IDETAPE_DEBUG_LOG
2164 if (tape->debug_level >= 2)
2165 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2166#endif /* IDETAPE_DEBUG_LOG */
2167
2168 pc->retries++;
2169 /* We haven't transferred any data yet */
2170 pc->actually_transferred = 0;
2171 pc->current_position = pc->buffer;
2172 /* Request to transfer the entire buffer at once */
2173 bcount.all = pc->request_transfer;
2174
2175 if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2176 printk(KERN_WARNING "ide-tape: DMA disabled, "
2177 "reverting to PIO\n");
7469aaf6 2178 ide_dma_off(drive);
1da177e4
LT
2179 }
2180 if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2181 dma_ok = !hwif->dma_setup(drive);
2182
2183 if (IDE_CONTROL_REG)
2184 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2185 hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG); /* Use PIO/DMA */
2186 hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2187 hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2188 hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2189 if (dma_ok) /* Will begin DMA later */
2190 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2191 if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2192 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2193 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2194 return ide_started;
2195 } else {
2196 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2197 return idetape_transfer_pc(drive);
2198 }
2199}
2200
2201/*
2202 * General packet command callback function.
2203 */
2204static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2205{
2206 idetape_tape_t *tape = drive->driver_data;
2207
2208#if IDETAPE_DEBUG_LOG
2209 if (tape->debug_level >= 4)
2210 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2211#endif /* IDETAPE_DEBUG_LOG */
2212
2213 idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2214 return ide_stopped;
2215}
2216
2217/*
2218 * A mode sense command is used to "sense" tape parameters.
2219 */
2220static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2221{
2222 idetape_init_pc(pc);
2223 pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2224 if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2225 pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */
2226 pc->c[2] = page_code;
2227 /*
2228 * Changed pc->c[3] to 0 (255 will at best return unused info).
2229 *
2230 * For SCSI this byte is defined as subpage instead of high byte
2231 * of length and some IDE drives seem to interpret it this way
2232 * and return an error when 255 is used.
2233 */
2234 pc->c[3] = 0;
2235 pc->c[4] = 255; /* (We will just discard data in that case) */
2236 if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2237 pc->request_transfer = 12;
2238 else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2239 pc->request_transfer = 24;
2240 else
2241 pc->request_transfer = 50;
2242 pc->callback = &idetape_pc_callback;
2243}
2244
2245static void calculate_speeds(ide_drive_t *drive)
2246{
2247 idetape_tape_t *tape = drive->driver_data;
2248 int full = 125, empty = 75;
2249
2250 if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2251 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2252 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2253 tape->controlled_last_pipeline_head = tape->pipeline_head;
2254 tape->controlled_pipeline_head_time = jiffies;
2255 }
2256 if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2257 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2258 else if (time_after(jiffies, tape->controlled_previous_head_time))
2259 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2260
2261 if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2262 /* -1 for read mode error recovery */
2263 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2264 tape->uncontrolled_pipeline_head_time = jiffies;
2265 tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2266 }
2267 } else {
2268 tape->uncontrolled_previous_head_time = jiffies;
2269 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2270 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2271 tape->uncontrolled_pipeline_head_time = jiffies;
2272 }
2273 }
2274 tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2275 if (tape->speed_control == 0) {
2276 tape->max_insert_speed = 5000;
2277 } else if (tape->speed_control == 1) {
2278 if (tape->nr_pending_stages >= tape->max_stages / 2)
2279 tape->max_insert_speed = tape->pipeline_head_speed +
2280 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2281 else
2282 tape->max_insert_speed = 500 +
2283 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2284 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2285 tape->max_insert_speed = 5000;
2286 } else if (tape->speed_control == 2) {
2287 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2288 (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2289 } else
2290 tape->max_insert_speed = tape->speed_control;
2291 tape->max_insert_speed = max(tape->max_insert_speed, 500);
2292}
2293
2294static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2295{
2296 idetape_tape_t *tape = drive->driver_data;
2297 idetape_pc_t *pc = tape->pc;
2298 atapi_status_t status;
2299
2300 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2301 if (status.b.dsc) {
2302 if (status.b.check) {
2303 /* Error detected */
2304 if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2305 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2306 tape->name);
2307 /* Retry operation */
2308 return idetape_retry_pc(drive);
2309 }
2310 pc->error = 0;
2311 if (tape->failed_pc == pc)
2312 tape->failed_pc = NULL;
2313 } else {
2314 pc->error = IDETAPE_ERROR_GENERAL;
2315 tape->failed_pc = NULL;
2316 }
2317 return pc->callback(drive);
2318}
2319
2320static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2321{
2322 idetape_tape_t *tape = drive->driver_data;
2323 struct request *rq = HWGROUP(drive)->rq;
2324 int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2325
2326 tape->avg_size += blocks * tape->tape_block_size;
2327 tape->insert_size += blocks * tape->tape_block_size;
2328 if (tape->insert_size > 1024 * 1024)
2329 tape->measure_insert_time = 1;
2330 if (tape->measure_insert_time) {
2331 tape->measure_insert_time = 0;
2332 tape->insert_time = jiffies;
2333 tape->insert_size = 0;
2334 }
2335 if (time_after(jiffies, tape->insert_time))
2336 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
9bae1ff3 2337 if (time_after_eq(jiffies, tape->avg_time + HZ)) {
1da177e4
LT
2338 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2339 tape->avg_size = 0;
2340 tape->avg_time = jiffies;
2341 }
2342
2343#if IDETAPE_DEBUG_LOG
2344 if (tape->debug_level >= 4)
2345 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2346#endif /* IDETAPE_DEBUG_LOG */
2347
2348 tape->first_frame_position += blocks;
2349 rq->current_nr_sectors -= blocks;
2350
2351 if (!tape->pc->error)
2352 idetape_end_request(drive, 1, 0);
2353 else
2354 idetape_end_request(drive, tape->pc->error, 0);
2355 return ide_stopped;
2356}
2357
2358static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2359{
2360 idetape_init_pc(pc);
2361 pc->c[0] = IDETAPE_READ_CMD;
2362 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2363 pc->c[1] = 1;
2364 pc->callback = &idetape_rw_callback;
2365 pc->bh = bh;
2366 atomic_set(&bh->b_count, 0);
2367 pc->buffer = NULL;
2368 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2369 if (pc->request_transfer == tape->stage_size)
2370 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2371}
2372
2373static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2374{
2375 int size = 32768;
2376 struct idetape_bh *p = bh;
2377
2378 idetape_init_pc(pc);
2379 pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2380 pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2381 pc->c[7] = size >> 8;
2382 pc->c[8] = size & 0xff;
2383 pc->callback = &idetape_pc_callback;
2384 pc->bh = bh;
2385 atomic_set(&bh->b_count, 0);
2386 pc->buffer = NULL;
2387 while (p) {
2388 atomic_set(&p->b_count, 0);
2389 p = p->b_reqnext;
2390 }
2391 pc->request_transfer = pc->buffer_size = size;
2392}
2393
2394static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2395{
2396 idetape_init_pc(pc);
2397 pc->c[0] = IDETAPE_WRITE_CMD;
2398 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2399 pc->c[1] = 1;
2400 pc->callback = &idetape_rw_callback;
2401 set_bit(PC_WRITING, &pc->flags);
2402 pc->bh = bh;
2403 pc->b_data = bh->b_data;
2404 pc->b_count = atomic_read(&bh->b_count);
2405 pc->buffer = NULL;
2406 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2407 if (pc->request_transfer == tape->stage_size)
2408 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2409}
2410
2411/*
2412 * idetape_do_request is our request handling function.
2413 */
2414static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2415 struct request *rq, sector_t block)
2416{
2417 idetape_tape_t *tape = drive->driver_data;
2418 idetape_pc_t *pc = NULL;
2419 struct request *postponed_rq = tape->postponed_rq;
2420 atapi_status_t status;
2421
2422#if IDETAPE_DEBUG_LOG
2423#if 0
2424 if (tape->debug_level >= 5)
cdd60262
JA
2425 printk(KERN_INFO "ide-tape: %d, "
2426 "dev: %s, cmd: %ld, errors: %d\n",
1da177e4
LT
2427 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2428#endif
2429 if (tape->debug_level >= 2)
2430 printk(KERN_INFO "ide-tape: sector: %ld, "
2431 "nr_sectors: %ld, current_nr_sectors: %d\n",
2432 rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2433#endif /* IDETAPE_DEBUG_LOG */
2434
4aff5e23 2435 if (!blk_special_request(rq)) {
1da177e4
LT
2436 /*
2437 * We do not support buffer cache originated requests.
2438 */
2439 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
4aff5e23 2440 "request queue (%d)\n", drive->name, rq->cmd_type);
1da177e4
LT
2441 ide_end_request(drive, 0, 0);
2442 return ide_stopped;
2443 }
2444
2445 /*
2446 * Retry a failed packet command
2447 */
2448 if (tape->failed_pc != NULL &&
2449 tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2450 return idetape_issue_packet_command(drive, tape->failed_pc);
2451 }
2452#if IDETAPE_DEBUG_BUGS
2453 if (postponed_rq != NULL)
2454 if (rq != postponed_rq) {
2455 printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2456 "Two DSC requests were queued\n");
2457 idetape_end_request(drive, 0, 0);
2458 return ide_stopped;
2459 }
2460#endif /* IDETAPE_DEBUG_BUGS */
2461
2462 tape->postponed_rq = NULL;
2463
2464 /*
2465 * If the tape is still busy, postpone our request and service
2466 * the other device meanwhile.
2467 */
2468 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2469
2470 if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2471 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2472
2473 if (drive->post_reset == 1) {
2474 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2475 drive->post_reset = 0;
2476 }
2477
2478 if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2479 tape->measure_insert_time = 1;
2480 if (time_after(jiffies, tape->insert_time))
2481 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2482 calculate_speeds(drive);
2483 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2484 !status.b.dsc) {
2485 if (postponed_rq == NULL) {
2486 tape->dsc_polling_start = jiffies;
2487 tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2488 tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2489 } else if (time_after(jiffies, tape->dsc_timeout)) {
2490 printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2491 tape->name);
2492 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2493 idetape_media_access_finished(drive);
2494 return ide_stopped;
2495 } else {
2496 return ide_do_reset(drive);
2497 }
9bae1ff3 2498 } else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
1da177e4
LT
2499 tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2500 idetape_postpone_request(drive);
2501 return ide_stopped;
2502 }
2503 if (rq->cmd[0] & REQ_IDETAPE_READ) {
2504 tape->buffer_head++;
2505#if USE_IOTRACE
2506 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2507#endif
2508 tape->postpone_cnt = 0;
2509 pc = idetape_next_pc_storage(drive);
2510 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2511 goto out;
2512 }
2513 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2514 tape->buffer_head++;
2515#if USE_IOTRACE
2516 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2517#endif
2518 tape->postpone_cnt = 0;
2519 pc = idetape_next_pc_storage(drive);
2520 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2521 goto out;
2522 }
2523 if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2524 tape->postpone_cnt = 0;
2525 pc = idetape_next_pc_storage(drive);
2526 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2527 goto out;
2528 }
2529 if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2530 pc = (idetape_pc_t *) rq->buffer;
2531 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2532 rq->cmd[0] |= REQ_IDETAPE_PC2;
2533 goto out;
2534 }
2535 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2536 idetape_media_access_finished(drive);
2537 return ide_stopped;
2538 }
2539 BUG();
2540out:
2541 return idetape_issue_packet_command(drive, pc);
2542}
2543
2544/*
2545 * Pipeline related functions
2546 */
2547static inline int idetape_pipeline_active (idetape_tape_t *tape)
2548{
2549 int rc1, rc2;
2550
2551 rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2552 rc2 = (tape->active_data_request != NULL);
2553 return rc1;
2554}
2555
2556/*
2557 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2558 * stage, along with all the necessary small buffers which together make
2559 * a buffer of size tape->stage_size (or a bit more). We attempt to
2560 * combine sequential pages as much as possible.
2561 *
2562 * Returns a pointer to the new allocated stage, or NULL if we
2563 * can't (or don't want to) allocate a stage.
2564 *
2565 * Pipeline stages are optional and are used to increase performance.
2566 * If we can't allocate them, we'll manage without them.
2567 */
2568static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2569{
2570 idetape_stage_t *stage;
2571 struct idetape_bh *prev_bh, *bh;
2572 int pages = tape->pages_per_stage;
2573 char *b_data = NULL;
2574
5cbded58 2575 if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
1da177e4
LT
2576 return NULL;
2577 stage->next = NULL;
2578
5cbded58 2579 bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
1da177e4
LT
2580 if (bh == NULL)
2581 goto abort;
2582 bh->b_reqnext = NULL;
2583 if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2584 goto abort;
2585 if (clear)
2586 memset(bh->b_data, 0, PAGE_SIZE);
2587 bh->b_size = PAGE_SIZE;
2588 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2589
2590 while (--pages) {
2591 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2592 goto abort;
2593 if (clear)
2594 memset(b_data, 0, PAGE_SIZE);
2595 if (bh->b_data == b_data + PAGE_SIZE) {
2596 bh->b_size += PAGE_SIZE;
2597 bh->b_data -= PAGE_SIZE;
2598 if (full)
2599 atomic_add(PAGE_SIZE, &bh->b_count);
2600 continue;
2601 }
2602 if (b_data == bh->b_data + bh->b_size) {
2603 bh->b_size += PAGE_SIZE;
2604 if (full)
2605 atomic_add(PAGE_SIZE, &bh->b_count);
2606 continue;
2607 }
2608 prev_bh = bh;
5cbded58 2609 if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
1da177e4
LT
2610 free_page((unsigned long) b_data);
2611 goto abort;
2612 }
2613 bh->b_reqnext = NULL;
2614 bh->b_data = b_data;
2615 bh->b_size = PAGE_SIZE;
2616 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2617 prev_bh->b_reqnext = bh;
2618 }
2619 bh->b_size -= tape->excess_bh_size;
2620 if (full)
2621 atomic_sub(tape->excess_bh_size, &bh->b_count);
2622 return stage;
2623abort:
2624 __idetape_kfree_stage(stage);
2625 return NULL;
2626}
2627
2628static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2629{
2630 idetape_stage_t *cache_stage = tape->cache_stage;
2631
2632#if IDETAPE_DEBUG_LOG
2633 if (tape->debug_level >= 4)
2634 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2635#endif /* IDETAPE_DEBUG_LOG */
2636
2637 if (tape->nr_stages >= tape->max_stages)
2638 return NULL;
2639 if (cache_stage != NULL) {
2640 tape->cache_stage = NULL;
2641 return cache_stage;
2642 }
2643 return __idetape_kmalloc_stage(tape, 0, 0);
2644}
2645
dcd96379 2646static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
1da177e4
LT
2647{
2648 struct idetape_bh *bh = tape->bh;
2649 int count;
dcd96379 2650 int ret = 0;
1da177e4
LT
2651
2652 while (n) {
2653#if IDETAPE_DEBUG_BUGS
2654 if (bh == NULL) {
2655 printk(KERN_ERR "ide-tape: bh == NULL in "
2656 "idetape_copy_stage_from_user\n");
dcd96379 2657 return 1;
1da177e4
LT
2658 }
2659#endif /* IDETAPE_DEBUG_BUGS */
2660 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
dcd96379
DW
2661 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2662 ret = 1;
1da177e4
LT
2663 n -= count;
2664 atomic_add(count, &bh->b_count);
2665 buf += count;
2666 if (atomic_read(&bh->b_count) == bh->b_size) {
2667 bh = bh->b_reqnext;
2668 if (bh)
2669 atomic_set(&bh->b_count, 0);
2670 }
2671 }
2672 tape->bh = bh;
dcd96379 2673 return ret;
1da177e4
LT
2674}
2675
dcd96379 2676static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
1da177e4
LT
2677{
2678 struct idetape_bh *bh = tape->bh;
2679 int count;
dcd96379 2680 int ret = 0;
1da177e4
LT
2681
2682 while (n) {
2683#if IDETAPE_DEBUG_BUGS
2684 if (bh == NULL) {
2685 printk(KERN_ERR "ide-tape: bh == NULL in "
2686 "idetape_copy_stage_to_user\n");
dcd96379 2687 return 1;
1da177e4
LT
2688 }
2689#endif /* IDETAPE_DEBUG_BUGS */
2690 count = min(tape->b_count, n);
dcd96379
DW
2691 if (copy_to_user(buf, tape->b_data, count))
2692 ret = 1;
1da177e4
LT
2693 n -= count;
2694 tape->b_data += count;
2695 tape->b_count -= count;
2696 buf += count;
2697 if (!tape->b_count) {
2698 tape->bh = bh = bh->b_reqnext;
2699 if (bh) {
2700 tape->b_data = bh->b_data;
2701 tape->b_count = atomic_read(&bh->b_count);
2702 }
2703 }
2704 }
dcd96379 2705 return ret;
1da177e4
LT
2706}
2707
2708static void idetape_init_merge_stage (idetape_tape_t *tape)
2709{
2710 struct idetape_bh *bh = tape->merge_stage->bh;
2711
2712 tape->bh = bh;
2713 if (tape->chrdev_direction == idetape_direction_write)
2714 atomic_set(&bh->b_count, 0);
2715 else {
2716 tape->b_data = bh->b_data;
2717 tape->b_count = atomic_read(&bh->b_count);
2718 }
2719}
2720
2721static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2722{
2723 struct idetape_bh *tmp;
2724
2725 tmp = stage->bh;
2726 stage->bh = tape->merge_stage->bh;
2727 tape->merge_stage->bh = tmp;
2728 idetape_init_merge_stage(tape);
2729}
2730
2731/*
2732 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2733 */
2734static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2735{
2736 idetape_tape_t *tape = drive->driver_data;
2737 unsigned long flags;
2738
2739#if IDETAPE_DEBUG_LOG
2740 if (tape->debug_level >= 4)
2741 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2742#endif /* IDETAPE_DEBUG_LOG */
2743 spin_lock_irqsave(&tape->spinlock, flags);
2744 stage->next = NULL;
2745 if (tape->last_stage != NULL)
2746 tape->last_stage->next=stage;
2747 else
2748 tape->first_stage = tape->next_stage=stage;
2749 tape->last_stage = stage;
2750 if (tape->next_stage == NULL)
2751 tape->next_stage = tape->last_stage;
2752 tape->nr_stages++;
2753 tape->nr_pending_stages++;
2754 spin_unlock_irqrestore(&tape->spinlock, flags);
2755}
2756
2757/*
2758 * idetape_wait_for_request installs a completion in a pending request
2759 * and sleeps until it is serviced.
2760 *
2761 * The caller should ensure that the request will not be serviced
2762 * before we install the completion (usually by disabling interrupts).
2763 */
2764static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2765{
6e9a4738 2766 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2767 idetape_tape_t *tape = drive->driver_data;
2768
2769#if IDETAPE_DEBUG_BUGS
4aff5e23 2770 if (rq == NULL || !blk_special_request(rq)) {
1da177e4
LT
2771 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2772 return;
2773 }
2774#endif /* IDETAPE_DEBUG_BUGS */
c00895ab 2775 rq->end_io_data = &wait;
1da177e4
LT
2776 rq->end_io = blk_end_sync_rq;
2777 spin_unlock_irq(&tape->spinlock);
2778 wait_for_completion(&wait);
2779 /* The stage and its struct request have been deallocated */
2780 spin_lock_irq(&tape->spinlock);
2781}
2782
2783static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2784{
2785 idetape_tape_t *tape = drive->driver_data;
2786 idetape_read_position_result_t *result;
2787
2788#if IDETAPE_DEBUG_LOG
2789 if (tape->debug_level >= 4)
2790 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2791#endif /* IDETAPE_DEBUG_LOG */
2792
2793 if (!tape->pc->error) {
2794 result = (idetape_read_position_result_t *) tape->pc->buffer;
2795#if IDETAPE_DEBUG_LOG
2796 if (tape->debug_level >= 2)
2797 printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2798 if (tape->debug_level >= 2)
2799 printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2800#endif /* IDETAPE_DEBUG_LOG */
2801 if (result->bpu) {
2802 printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2803 clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2804 idetape_end_request(drive, 0, 0);
2805 } else {
2806#if IDETAPE_DEBUG_LOG
2807 if (tape->debug_level >= 2)
2808 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2809#endif /* IDETAPE_DEBUG_LOG */
2810 tape->partition = result->partition;
2811 tape->first_frame_position = ntohl(result->first_block);
2812 tape->last_frame_position = ntohl(result->last_block);
2813 tape->blocks_in_buffer = result->blocks_in_buffer[2];
2814 set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2815 idetape_end_request(drive, 1, 0);
2816 }
2817 } else {
2818 idetape_end_request(drive, 0, 0);
2819 }
2820 return ide_stopped;
2821}
2822
2823/*
2824 * idetape_create_write_filemark_cmd will:
2825 *
2826 * 1. Write a filemark if write_filemark=1.
2827 * 2. Flush the device buffers without writing a filemark
2828 * if write_filemark=0.
2829 *
2830 */
2831static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2832{
2833 idetape_init_pc(pc);
2834 pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2835 pc->c[4] = write_filemark;
2836 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2837 pc->callback = &idetape_pc_callback;
2838}
2839
2840static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2841{
2842 idetape_init_pc(pc);
2843 pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2844 pc->callback = &idetape_pc_callback;
2845}
2846
2847/*
2848 * idetape_queue_pc_tail is based on the following functions:
2849 *
2850 * ide_do_drive_cmd from ide.c
2851 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2852 *
2853 * We add a special packet command request to the tail of the request
2854 * queue, and wait for it to be serviced.
2855 *
2856 * This is not to be called from within the request handling part
2857 * of the driver ! We allocate here data in the stack, and it is valid
2858 * until the request is finished. This is not the case for the bottom
2859 * part of the driver, where we are always leaving the functions to wait
2860 * for an interrupt or a timer event.
2861 *
2862 * From the bottom part of the driver, we should allocate safe memory
2863 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2864 * the request to the request list without waiting for it to be serviced !
2865 * In that case, we usually use idetape_queue_pc_head.
2866 */
2867static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2868{
2869 struct ide_tape_obj *tape = drive->driver_data;
2870 struct request rq;
2871
2872 idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2873 rq.buffer = (char *) pc;
2874 rq.rq_disk = tape->disk;
2875 return ide_do_drive_cmd(drive, &rq, ide_wait);
2876}
2877
2878static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2879{
2880 idetape_init_pc(pc);
2881 pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2882 pc->c[4] = cmd;
2883 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2884 pc->callback = &idetape_pc_callback;
2885}
2886
2887static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2888{
2889 idetape_tape_t *tape = drive->driver_data;
2890 idetape_pc_t pc;
2891 int load_attempted = 0;
2892
2893 /*
2894 * Wait for the tape to become ready
2895 */
2896 set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2897 timeout += jiffies;
2898 while (time_before(jiffies, timeout)) {
2899 idetape_create_test_unit_ready_cmd(&pc);
2900 if (!__idetape_queue_pc_tail(drive, &pc))
2901 return 0;
2902 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2903 || (tape->asc == 0x3A)) { /* no media */
2904 if (load_attempted)
2905 return -ENOMEDIUM;
2906 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2907 __idetape_queue_pc_tail(drive, &pc);
2908 load_attempted = 1;
2909 /* not about to be ready */
2910 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2911 (tape->ascq == 1 || tape->ascq == 8)))
2912 return -EIO;
80ce45fd 2913 msleep(100);
1da177e4
LT
2914 }
2915 return -EIO;
2916}
2917
2918static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2919{
2920 return __idetape_queue_pc_tail(drive, pc);
2921}
2922
2923static int idetape_flush_tape_buffers (ide_drive_t *drive)
2924{
2925 idetape_pc_t pc;
2926 int rc;
2927
2928 idetape_create_write_filemark_cmd(drive, &pc, 0);
2929 if ((rc = idetape_queue_pc_tail(drive, &pc)))
2930 return rc;
2931 idetape_wait_ready(drive, 60 * 5 * HZ);
2932 return 0;
2933}
2934
2935static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2936{
2937 idetape_init_pc(pc);
2938 pc->c[0] = IDETAPE_READ_POSITION_CMD;
2939 pc->request_transfer = 20;
2940 pc->callback = &idetape_read_position_callback;
2941}
2942
2943static int idetape_read_position (ide_drive_t *drive)
2944{
2945 idetape_tape_t *tape = drive->driver_data;
2946 idetape_pc_t pc;
2947 int position;
2948
2949#if IDETAPE_DEBUG_LOG
2950 if (tape->debug_level >= 4)
2951 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2952#endif /* IDETAPE_DEBUG_LOG */
2953
2954 idetape_create_read_position_cmd(&pc);
2955 if (idetape_queue_pc_tail(drive, &pc))
2956 return -1;
2957 position = tape->first_frame_position;
2958 return position;
2959}
2960
2961static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2962{
2963 idetape_init_pc(pc);
2964 pc->c[0] = IDETAPE_LOCATE_CMD;
2965 pc->c[1] = 2;
2966 put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2967 pc->c[8] = partition;
2968 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2969 pc->callback = &idetape_pc_callback;
2970}
2971
2972static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2973{
2974 idetape_tape_t *tape = drive->driver_data;
2975
2976 if (!tape->capabilities.lock)
2977 return 0;
2978
2979 idetape_init_pc(pc);
2980 pc->c[0] = IDETAPE_PREVENT_CMD;
2981 pc->c[4] = prevent;
2982 pc->callback = &idetape_pc_callback;
2983 return 1;
2984}
2985
2986static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2987{
2988 idetape_tape_t *tape = drive->driver_data;
2989 unsigned long flags;
2990 int cnt;
2991
2992 if (tape->chrdev_direction != idetape_direction_read)
2993 return 0;
2994
2995 /* Remove merge stage. */
2996 cnt = tape->merge_stage_size / tape->tape_block_size;
2997 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2998 ++cnt; /* Filemarks count as 1 sector */
2999 tape->merge_stage_size = 0;
3000 if (tape->merge_stage != NULL) {
3001 __idetape_kfree_stage(tape->merge_stage);
3002 tape->merge_stage = NULL;
3003 }
3004
3005 /* Clear pipeline flags. */
3006 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3007 tape->chrdev_direction = idetape_direction_none;
3008
3009 /* Remove pipeline stages. */
3010 if (tape->first_stage == NULL)
3011 return 0;
3012
3013 spin_lock_irqsave(&tape->spinlock, flags);
3014 tape->next_stage = NULL;
3015 if (idetape_pipeline_active(tape))
3016 idetape_wait_for_request(drive, tape->active_data_request);
3017 spin_unlock_irqrestore(&tape->spinlock, flags);
3018
3019 while (tape->first_stage != NULL) {
3020 struct request *rq_ptr = &tape->first_stage->rq;
3021
3022 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3023 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3024 ++cnt;
3025 idetape_remove_stage_head(drive);
3026 }
3027 tape->nr_pending_stages = 0;
3028 tape->max_stages = tape->min_pipeline;
3029 return cnt;
3030}
3031
3032/*
3033 * idetape_position_tape positions the tape to the requested block
3034 * using the LOCATE packet command. A READ POSITION command is then
3035 * issued to check where we are positioned.
3036 *
3037 * Like all higher level operations, we queue the commands at the tail
3038 * of the request queue and wait for their completion.
3039 *
3040 */
3041static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3042{
3043 idetape_tape_t *tape = drive->driver_data;
3044 int retval;
3045 idetape_pc_t pc;
3046
3047 if (tape->chrdev_direction == idetape_direction_read)
3048 __idetape_discard_read_pipeline(drive);
3049 idetape_wait_ready(drive, 60 * 5 * HZ);
3050 idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3051 retval = idetape_queue_pc_tail(drive, &pc);
3052 if (retval)
3053 return (retval);
3054
3055 idetape_create_read_position_cmd(&pc);
3056 return (idetape_queue_pc_tail(drive, &pc));
3057}
3058
3059static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3060{
3061 idetape_tape_t *tape = drive->driver_data;
3062 int cnt;
3063 int seek, position;
3064
3065 cnt = __idetape_discard_read_pipeline(drive);
3066 if (restore_position) {
3067 position = idetape_read_position(drive);
3068 seek = position > cnt ? position - cnt : 0;
3069 if (idetape_position_tape(drive, seek, 0, 0)) {
3070 printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3071 return;
3072 }
3073 }
3074}
3075
3076/*
3077 * idetape_queue_rw_tail generates a read/write request for the block
3078 * device interface and wait for it to be serviced.
3079 */
3080static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3081{
3082 idetape_tape_t *tape = drive->driver_data;
3083 struct request rq;
3084
3085#if IDETAPE_DEBUG_LOG
3086 if (tape->debug_level >= 2)
3087 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3088#endif /* IDETAPE_DEBUG_LOG */
3089#if IDETAPE_DEBUG_BUGS
3090 if (idetape_pipeline_active(tape)) {
3091 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3092 return (0);
3093 }
3094#endif /* IDETAPE_DEBUG_BUGS */
3095
3096 idetape_init_rq(&rq, cmd);
3097 rq.rq_disk = tape->disk;
3098 rq.special = (void *)bh;
3099 rq.sector = tape->first_frame_position;
3100 rq.nr_sectors = rq.current_nr_sectors = blocks;
3101 (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3102
3103 if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3104 return 0;
3105
3106 if (tape->merge_stage)
3107 idetape_init_merge_stage(tape);
3108 if (rq.errors == IDETAPE_ERROR_GENERAL)
3109 return -EIO;
3110 return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3111}
3112
3113/*
3114 * idetape_insert_pipeline_into_queue is used to start servicing the
3115 * pipeline stages, starting from tape->next_stage.
3116 */
3117static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3118{
3119 idetape_tape_t *tape = drive->driver_data;
3120
3121 if (tape->next_stage == NULL)
3122 return;
3123 if (!idetape_pipeline_active(tape)) {
3124 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3125 idetape_active_next_stage(drive);
3126 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3127 }
3128}
3129
3130static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3131{
3132 idetape_init_pc(pc);
3133 pc->c[0] = IDETAPE_INQUIRY_CMD;
3134 pc->c[4] = pc->request_transfer = 254;
3135 pc->callback = &idetape_pc_callback;
3136}
3137
3138static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3139{
3140 idetape_init_pc(pc);
3141 pc->c[0] = IDETAPE_REWIND_CMD;
3142 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3143 pc->callback = &idetape_pc_callback;
3144}
3145
3146#if 0
3147static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3148{
3149 idetape_init_pc(pc);
3150 set_bit(PC_WRITING, &pc->flags);
3151 pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3152 pc->c[1] = 0x10;
3153 put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3154 pc->request_transfer = 255;
3155 pc->callback = &idetape_pc_callback;
3156}
3157#endif
3158
3159static void idetape_create_erase_cmd (idetape_pc_t *pc)
3160{
3161 idetape_init_pc(pc);
3162 pc->c[0] = IDETAPE_ERASE_CMD;
3163 pc->c[1] = 1;
3164 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3165 pc->callback = &idetape_pc_callback;
3166}
3167
3168static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3169{
3170 idetape_init_pc(pc);
3171 pc->c[0] = IDETAPE_SPACE_CMD;
3172 put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3173 pc->c[1] = cmd;
3174 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3175 pc->callback = &idetape_pc_callback;
3176}
3177
3178static void idetape_wait_first_stage (ide_drive_t *drive)
3179{
3180 idetape_tape_t *tape = drive->driver_data;
3181 unsigned long flags;
3182
3183 if (tape->first_stage == NULL)
3184 return;
3185 spin_lock_irqsave(&tape->spinlock, flags);
3186 if (tape->active_stage == tape->first_stage)
3187 idetape_wait_for_request(drive, tape->active_data_request);
3188 spin_unlock_irqrestore(&tape->spinlock, flags);
3189}
3190
3191/*
3192 * idetape_add_chrdev_write_request tries to add a character device
3193 * originated write request to our pipeline. In case we don't succeed,
3194 * we revert to non-pipelined operation mode for this request.
3195 *
3196 * 1. Try to allocate a new pipeline stage.
3197 * 2. If we can't, wait for more and more requests to be serviced
3198 * and try again each time.
3199 * 3. If we still can't allocate a stage, fallback to
3200 * non-pipelined operation mode for this request.
3201 */
3202static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3203{
3204 idetape_tape_t *tape = drive->driver_data;
3205 idetape_stage_t *new_stage;
3206 unsigned long flags;
3207 struct request *rq;
3208
3209#if IDETAPE_DEBUG_LOG
3210 if (tape->debug_level >= 3)
3211 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3212#endif /* IDETAPE_DEBUG_LOG */
3213
3214 /*
3215 * Attempt to allocate a new stage.
3216 * Pay special attention to possible race conditions.
3217 */
3218 while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3219 spin_lock_irqsave(&tape->spinlock, flags);
3220 if (idetape_pipeline_active(tape)) {
3221 idetape_wait_for_request(drive, tape->active_data_request);
3222 spin_unlock_irqrestore(&tape->spinlock, flags);
3223 } else {
3224 spin_unlock_irqrestore(&tape->spinlock, flags);
3225 idetape_insert_pipeline_into_queue(drive);
3226 if (idetape_pipeline_active(tape))
3227 continue;
3228 /*
3229 * Linux is short on memory. Fallback to
3230 * non-pipelined operation mode for this request.
3231 */
3232 return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3233 }
3234 }
3235 rq = &new_stage->rq;
3236 idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3237 /* Doesn't actually matter - We always assume sequential access */
3238 rq->sector = tape->first_frame_position;
3239 rq->nr_sectors = rq->current_nr_sectors = blocks;
3240
3241 idetape_switch_buffers(tape, new_stage);
3242 idetape_add_stage_tail(drive, new_stage);
3243 tape->pipeline_head++;
3244#if USE_IOTRACE
3245 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3246#endif
3247 calculate_speeds(drive);
3248
3249 /*
3250 * Estimate whether the tape has stopped writing by checking
3251 * if our write pipeline is currently empty. If we are not
3252 * writing anymore, wait for the pipeline to be full enough
3253 * (90%) before starting to service requests, so that we will
3254 * be able to keep up with the higher speeds of the tape.
3255 */
3256 if (!idetape_pipeline_active(tape)) {
3257 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3258 tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3259 tape->measure_insert_time = 1;
3260 tape->insert_time = jiffies;
3261 tape->insert_size = 0;
3262 tape->insert_speed = 0;
3263 idetape_insert_pipeline_into_queue(drive);
3264 }
3265 }
3266 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3267 /* Return a deferred error */
3268 return -EIO;
3269 return blocks;
3270}
3271
3272/*
3273 * idetape_wait_for_pipeline will wait until all pending pipeline
3274 * requests are serviced. Typically called on device close.
3275 */
3276static void idetape_wait_for_pipeline (ide_drive_t *drive)
3277{
3278 idetape_tape_t *tape = drive->driver_data;
3279 unsigned long flags;
3280
3281 while (tape->next_stage || idetape_pipeline_active(tape)) {
3282 idetape_insert_pipeline_into_queue(drive);
3283 spin_lock_irqsave(&tape->spinlock, flags);
3284 if (idetape_pipeline_active(tape))
3285 idetape_wait_for_request(drive, tape->active_data_request);
3286 spin_unlock_irqrestore(&tape->spinlock, flags);
3287 }
3288}
3289
3290static void idetape_empty_write_pipeline (ide_drive_t *drive)
3291{
3292 idetape_tape_t *tape = drive->driver_data;
3293 int blocks, min;
3294 struct idetape_bh *bh;
3295
3296#if IDETAPE_DEBUG_BUGS
3297 if (tape->chrdev_direction != idetape_direction_write) {
3298 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3299 return;
3300 }
3301 if (tape->merge_stage_size > tape->stage_size) {
3302 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3303 tape->merge_stage_size = tape->stage_size;
3304 }
3305#endif /* IDETAPE_DEBUG_BUGS */
3306 if (tape->merge_stage_size) {
3307 blocks = tape->merge_stage_size / tape->tape_block_size;
3308 if (tape->merge_stage_size % tape->tape_block_size) {
3309 unsigned int i;
3310
3311 blocks++;
3312 i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3313 bh = tape->bh->b_reqnext;
3314 while (bh) {
3315 atomic_set(&bh->b_count, 0);
3316 bh = bh->b_reqnext;
3317 }
3318 bh = tape->bh;
3319 while (i) {
3320 if (bh == NULL) {
3321
3322 printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3323 break;
3324 }
3325 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3326 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3327 atomic_add(min, &bh->b_count);
3328 i -= min;
3329 bh = bh->b_reqnext;
3330 }
3331 }
3332 (void) idetape_add_chrdev_write_request(drive, blocks);
3333 tape->merge_stage_size = 0;
3334 }
3335 idetape_wait_for_pipeline(drive);
3336 if (tape->merge_stage != NULL) {
3337 __idetape_kfree_stage(tape->merge_stage);
3338 tape->merge_stage = NULL;
3339 }
3340 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3341 tape->chrdev_direction = idetape_direction_none;
3342
3343 /*
3344 * On the next backup, perform the feedback loop again.
3345 * (I don't want to keep sense information between backups,
3346 * as some systems are constantly on, and the system load
3347 * can be totally different on the next backup).
3348 */
3349 tape->max_stages = tape->min_pipeline;
3350#if IDETAPE_DEBUG_BUGS
3351 if (tape->first_stage != NULL ||
3352 tape->next_stage != NULL ||
3353 tape->last_stage != NULL ||
3354 tape->nr_stages != 0) {
3355 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3356 "first_stage %p, next_stage %p, "
3357 "last_stage %p, nr_stages %d\n",
3358 tape->first_stage, tape->next_stage,
3359 tape->last_stage, tape->nr_stages);
3360 }
3361#endif /* IDETAPE_DEBUG_BUGS */
3362}
3363
3364static void idetape_restart_speed_control (ide_drive_t *drive)
3365{
3366 idetape_tape_t *tape = drive->driver_data;
3367
3368 tape->restart_speed_control_req = 0;
3369 tape->pipeline_head = 0;
3370 tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3371 tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3372 tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3373 tape->uncontrolled_pipeline_head_speed = 0;
3374 tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3375 tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3376}
3377
3378static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3379{
3380 idetape_tape_t *tape = drive->driver_data;
3381 idetape_stage_t *new_stage;
3382 struct request rq;
3383 int bytes_read;
3384 int blocks = tape->capabilities.ctl;
3385
3386 /* Initialize read operation */
3387 if (tape->chrdev_direction != idetape_direction_read) {
3388 if (tape->chrdev_direction == idetape_direction_write) {
3389 idetape_empty_write_pipeline(drive);
3390 idetape_flush_tape_buffers(drive);
3391 }
3392#if IDETAPE_DEBUG_BUGS
3393 if (tape->merge_stage || tape->merge_stage_size) {
3394 printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3395 tape->merge_stage_size = 0;
3396 }
3397#endif /* IDETAPE_DEBUG_BUGS */
3398 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3399 return -ENOMEM;
3400 tape->chrdev_direction = idetape_direction_read;
3401
3402 /*
3403 * Issue a read 0 command to ensure that DSC handshake
3404 * is switched from completion mode to buffer available
3405 * mode.
3406 * No point in issuing this if DSC overlap isn't supported,
3407 * some drives (Seagate STT3401A) will return an error.
3408 */
3409 if (drive->dsc_overlap) {
3410 bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3411 if (bytes_read < 0) {
3412 __idetape_kfree_stage(tape->merge_stage);
3413 tape->merge_stage = NULL;
3414 tape->chrdev_direction = idetape_direction_none;
3415 return bytes_read;
3416 }
3417 }
3418 }
3419 if (tape->restart_speed_control_req)
3420 idetape_restart_speed_control(drive);
3421 idetape_init_rq(&rq, REQ_IDETAPE_READ);
3422 rq.sector = tape->first_frame_position;
3423 rq.nr_sectors = rq.current_nr_sectors = blocks;
3424 if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3425 tape->nr_stages < max_stages) {
3426 new_stage = idetape_kmalloc_stage(tape);
3427 while (new_stage != NULL) {
3428 new_stage->rq = rq;
3429 idetape_add_stage_tail(drive, new_stage);
3430 if (tape->nr_stages >= max_stages)
3431 break;
3432 new_stage = idetape_kmalloc_stage(tape);
3433 }
3434 }
3435 if (!idetape_pipeline_active(tape)) {
3436 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3437 tape->measure_insert_time = 1;
3438 tape->insert_time = jiffies;
3439 tape->insert_size = 0;
3440 tape->insert_speed = 0;
3441 idetape_insert_pipeline_into_queue(drive);
3442 }
3443 }
3444 return 0;
3445}
3446
3447/*
3448 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3449 * to service a character device read request and add read-ahead
3450 * requests to our pipeline.
3451 */
3452static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3453{
3454 idetape_tape_t *tape = drive->driver_data;
3455 unsigned long flags;
3456 struct request *rq_ptr;
3457 int bytes_read;
3458
3459#if IDETAPE_DEBUG_LOG
3460 if (tape->debug_level >= 4)
3461 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3462#endif /* IDETAPE_DEBUG_LOG */
3463
3464 /*
3465 * If we are at a filemark, return a read length of 0
3466 */
3467 if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3468 return 0;
3469
3470 /*
3471 * Wait for the next block to be available at the head
3472 * of the pipeline
3473 */
3474 idetape_initiate_read(drive, tape->max_stages);
3475 if (tape->first_stage == NULL) {
3476 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3477 return 0;
3478 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3479 }
3480 idetape_wait_first_stage(drive);
3481 rq_ptr = &tape->first_stage->rq;
3482 bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3483 rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3484
3485
3486 if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3487 return 0;
3488 else {
3489 idetape_switch_buffers(tape, tape->first_stage);
3490 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3491 set_bit(IDETAPE_FILEMARK, &tape->flags);
3492 spin_lock_irqsave(&tape->spinlock, flags);
3493 idetape_remove_stage_head(drive);
3494 spin_unlock_irqrestore(&tape->spinlock, flags);
3495 tape->pipeline_head++;
3496#if USE_IOTRACE
3497 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3498#endif
3499 calculate_speeds(drive);
3500 }
3501#if IDETAPE_DEBUG_BUGS
3502 if (bytes_read > blocks * tape->tape_block_size) {
3503 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3504 bytes_read = blocks * tape->tape_block_size;
3505 }
3506#endif /* IDETAPE_DEBUG_BUGS */
3507 return (bytes_read);
3508}
3509
3510static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3511{
3512 idetape_tape_t *tape = drive->driver_data;
3513 struct idetape_bh *bh;
3514 int blocks;
3515
3516 while (bcount) {
3517 unsigned int count;
3518
3519 bh = tape->merge_stage->bh;
3520 count = min(tape->stage_size, bcount);
3521 bcount -= count;
3522 blocks = count / tape->tape_block_size;
3523 while (count) {
3524 atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3525 memset(bh->b_data, 0, atomic_read(&bh->b_count));
3526 count -= atomic_read(&bh->b_count);
3527 bh = bh->b_reqnext;
3528 }
3529 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3530 }
3531}
3532
3533static int idetape_pipeline_size (ide_drive_t *drive)
3534{
3535 idetape_tape_t *tape = drive->driver_data;
3536 idetape_stage_t *stage;
3537 struct request *rq;
3538 int size = 0;
3539
3540 idetape_wait_for_pipeline(drive);
3541 stage = tape->first_stage;
3542 while (stage != NULL) {
3543 rq = &stage->rq;
3544 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3545 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3546 size += tape->tape_block_size;
3547 stage = stage->next;
3548 }
3549 size += tape->merge_stage_size;
3550 return size;
3551}
3552
3553/*
3554 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3555 *
3556 * We currently support only one partition.
3557 */
3558static int idetape_rewind_tape (ide_drive_t *drive)
3559{
3560 int retval;
3561 idetape_pc_t pc;
3562#if IDETAPE_DEBUG_LOG
3563 idetape_tape_t *tape = drive->driver_data;
3564 if (tape->debug_level >= 2)
3565 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3566#endif /* IDETAPE_DEBUG_LOG */
3567
3568 idetape_create_rewind_cmd(drive, &pc);
3569 retval = idetape_queue_pc_tail(drive, &pc);
3570 if (retval)
3571 return retval;
3572
3573 idetape_create_read_position_cmd(&pc);
3574 retval = idetape_queue_pc_tail(drive, &pc);
3575 if (retval)
3576 return retval;
3577 return 0;
3578}
3579
3580/*
3581 * Our special ide-tape ioctl's.
3582 *
3583 * Currently there aren't any ioctl's.
3584 * mtio.h compatible commands should be issued to the character device
3585 * interface.
3586 */
3587static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3588{
3589 idetape_tape_t *tape = drive->driver_data;
3590 idetape_config_t config;
3591 void __user *argp = (void __user *)arg;
3592
3593#if IDETAPE_DEBUG_LOG
3594 if (tape->debug_level >= 4)
3595 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3596#endif /* IDETAPE_DEBUG_LOG */
3597 switch (cmd) {
3598 case 0x0340:
3599 if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3600 return -EFAULT;
3601 tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3602 tape->max_stages = config.nr_stages;
3603 break;
3604 case 0x0350:
3605 config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3606 config.nr_stages = tape->max_stages;
3607 if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3608 return -EFAULT;
3609 break;
3610 default:
3611 return -EIO;
3612 }
3613 return 0;
3614}
3615
3616/*
3617 * idetape_space_over_filemarks is now a bit more complicated than just
3618 * passing the command to the tape since we may have crossed some
3619 * filemarks during our pipelined read-ahead mode.
3620 *
3621 * As a minor side effect, the pipeline enables us to support MTFSFM when
3622 * the filemark is in our internal pipeline even if the tape doesn't
3623 * support spacing over filemarks in the reverse direction.
3624 */
3625static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3626{
3627 idetape_tape_t *tape = drive->driver_data;
3628 idetape_pc_t pc;
3629 unsigned long flags;
3630 int retval,count=0;
3631
3632 if (mt_count == 0)
3633 return 0;
3634 if (MTBSF == mt_op || MTBSFM == mt_op) {
3635 if (!tape->capabilities.sprev)
3636 return -EIO;
3637 mt_count = - mt_count;
3638 }
3639
3640 if (tape->chrdev_direction == idetape_direction_read) {
3641 /*
3642 * We have a read-ahead buffer. Scan it for crossed
3643 * filemarks.
3644 */
3645 tape->merge_stage_size = 0;
3646 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3647 ++count;
3648 while (tape->first_stage != NULL) {
3649 if (count == mt_count) {
3650 if (mt_op == MTFSFM)
3651 set_bit(IDETAPE_FILEMARK, &tape->flags);
3652 return 0;
3653 }
3654 spin_lock_irqsave(&tape->spinlock, flags);
3655 if (tape->first_stage == tape->active_stage) {
3656 /*
3657 * We have reached the active stage in the read pipeline.
3658 * There is no point in allowing the drive to continue
3659 * reading any farther, so we stop the pipeline.
3660 *
3661 * This section should be moved to a separate subroutine,
3662 * because a similar function is performed in
3663 * __idetape_discard_read_pipeline(), for example.
3664 */
3665 tape->next_stage = NULL;
3666 spin_unlock_irqrestore(&tape->spinlock, flags);
3667 idetape_wait_first_stage(drive);
3668 tape->next_stage = tape->first_stage->next;
3669 } else
3670 spin_unlock_irqrestore(&tape->spinlock, flags);
3671 if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3672 ++count;
3673 idetape_remove_stage_head(drive);
3674 }
3675 idetape_discard_read_pipeline(drive, 0);
3676 }
3677
3678 /*
3679 * The filemark was not found in our internal pipeline.
3680 * Now we can issue the space command.
3681 */
3682 switch (mt_op) {
3683 case MTFSF:
3684 case MTBSF:
3685 idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3686 return (idetape_queue_pc_tail(drive, &pc));
3687 case MTFSFM:
3688 case MTBSFM:
3689 if (!tape->capabilities.sprev)
3690 return (-EIO);
3691 retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3692 if (retval) return (retval);
3693 count = (MTBSFM == mt_op ? 1 : -1);
3694 return (idetape_space_over_filemarks(drive, MTFSF, count));
3695 default:
3696 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3697 return (-EIO);
3698 }
3699}
3700
3701
3702/*
3703 * Our character device read / write functions.
3704 *
3705 * The tape is optimized to maximize throughput when it is transferring
3706 * an integral number of the "continuous transfer limit", which is
3707 * a parameter of the specific tape (26 KB on my particular tape).
3708 * (32 kB for Onstream)
3709 *
3710 * As of version 1.3 of the driver, the character device provides an
3711 * abstract continuous view of the media - any mix of block sizes (even 1
3712 * byte) on the same backup/restore procedure is supported. The driver
3713 * will internally convert the requests to the recommended transfer unit,
3714 * so that an unmatch between the user's block size to the recommended
3715 * size will only result in a (slightly) increased driver overhead, but
3716 * will no longer hit performance.
3717 * This is not applicable to Onstream.
3718 */
3719static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3720 size_t count, loff_t *ppos)
3721{
3722 struct ide_tape_obj *tape = ide_tape_f(file);
3723 ide_drive_t *drive = tape->drive;
3724 ssize_t bytes_read,temp, actually_read = 0, rc;
dcd96379 3725 ssize_t ret = 0;
1da177e4
LT
3726
3727#if IDETAPE_DEBUG_LOG
3728 if (tape->debug_level >= 3)
3729 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3730#endif /* IDETAPE_DEBUG_LOG */
3731
3732 if (tape->chrdev_direction != idetape_direction_read) {
3733 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3734 if (count > tape->tape_block_size &&
3735 (count % tape->tape_block_size) == 0)
3736 tape->user_bs_factor = count / tape->tape_block_size;
3737 }
3738 if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3739 return rc;
3740 if (count == 0)
3741 return (0);
3742 if (tape->merge_stage_size) {
3743 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
dcd96379
DW
3744 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3745 ret = -EFAULT;
1da177e4
LT
3746 buf += actually_read;
3747 tape->merge_stage_size -= actually_read;
3748 count -= actually_read;
3749 }
3750 while (count >= tape->stage_size) {
3751 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3752 if (bytes_read <= 0)
3753 goto finish;
dcd96379
DW
3754 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3755 ret = -EFAULT;
1da177e4
LT
3756 buf += bytes_read;
3757 count -= bytes_read;
3758 actually_read += bytes_read;
3759 }
3760 if (count) {
3761 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3762 if (bytes_read <= 0)
3763 goto finish;
3764 temp = min((unsigned long)count, (unsigned long)bytes_read);
dcd96379
DW
3765 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3766 ret = -EFAULT;
1da177e4
LT
3767 actually_read += temp;
3768 tape->merge_stage_size = bytes_read-temp;
3769 }
3770finish:
3771 if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3772#if IDETAPE_DEBUG_LOG
3773 if (tape->debug_level >= 2)
3774 printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3775#endif
3776 idetape_space_over_filemarks(drive, MTFSF, 1);
3777 return 0;
3778 }
dcd96379
DW
3779
3780 return (ret) ? ret : actually_read;
1da177e4
LT
3781}
3782
3783static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3784 size_t count, loff_t *ppos)
3785{
3786 struct ide_tape_obj *tape = ide_tape_f(file);
3787 ide_drive_t *drive = tape->drive;
dcd96379
DW
3788 ssize_t actually_written = 0;
3789 ssize_t ret = 0;
1da177e4
LT
3790
3791 /* The drive is write protected. */
3792 if (tape->write_prot)
3793 return -EACCES;
3794
3795#if IDETAPE_DEBUG_LOG
3796 if (tape->debug_level >= 3)
3797 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3798 "count %Zd\n", count);
3799#endif /* IDETAPE_DEBUG_LOG */
3800
3801 /* Initialize write operation */
3802 if (tape->chrdev_direction != idetape_direction_write) {
3803 if (tape->chrdev_direction == idetape_direction_read)
3804 idetape_discard_read_pipeline(drive, 1);
3805#if IDETAPE_DEBUG_BUGS
3806 if (tape->merge_stage || tape->merge_stage_size) {
3807 printk(KERN_ERR "ide-tape: merge_stage_size "
3808 "should be 0 now\n");
3809 tape->merge_stage_size = 0;
3810 }
3811#endif /* IDETAPE_DEBUG_BUGS */
3812 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3813 return -ENOMEM;
3814 tape->chrdev_direction = idetape_direction_write;
3815 idetape_init_merge_stage(tape);
3816
3817 /*
3818 * Issue a write 0 command to ensure that DSC handshake
3819 * is switched from completion mode to buffer available
3820 * mode.
3821 * No point in issuing this if DSC overlap isn't supported,
3822 * some drives (Seagate STT3401A) will return an error.
3823 */
3824 if (drive->dsc_overlap) {
dcd96379 3825 ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
1da177e4
LT
3826 if (retval < 0) {
3827 __idetape_kfree_stage(tape->merge_stage);
3828 tape->merge_stage = NULL;
3829 tape->chrdev_direction = idetape_direction_none;
3830 return retval;
3831 }
3832 }
3833 }
3834 if (count == 0)
3835 return (0);
3836 if (tape->restart_speed_control_req)
3837 idetape_restart_speed_control(drive);
3838 if (tape->merge_stage_size) {
3839#if IDETAPE_DEBUG_BUGS
3840 if (tape->merge_stage_size >= tape->stage_size) {
3841 printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3842 tape->merge_stage_size = 0;
3843 }
3844#endif /* IDETAPE_DEBUG_BUGS */
3845 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
dcd96379
DW
3846 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3847 ret = -EFAULT;
1da177e4
LT
3848 buf += actually_written;
3849 tape->merge_stage_size += actually_written;
3850 count -= actually_written;
3851
3852 if (tape->merge_stage_size == tape->stage_size) {
dcd96379 3853 ssize_t retval;
1da177e4
LT
3854 tape->merge_stage_size = 0;
3855 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3856 if (retval <= 0)
3857 return (retval);
3858 }
3859 }
3860 while (count >= tape->stage_size) {
dcd96379
DW
3861 ssize_t retval;
3862 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3863 ret = -EFAULT;
1da177e4
LT
3864 buf += tape->stage_size;
3865 count -= tape->stage_size;
3866 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3867 actually_written += tape->stage_size;
3868 if (retval <= 0)
3869 return (retval);
3870 }
3871 if (count) {
3872 actually_written += count;
dcd96379
DW
3873 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3874 ret = -EFAULT;
1da177e4
LT
3875 tape->merge_stage_size += count;
3876 }
dcd96379 3877 return (ret) ? ret : actually_written;
1da177e4
LT
3878}
3879
3880static int idetape_write_filemark (ide_drive_t *drive)
3881{
3882 idetape_pc_t pc;
3883
3884 /* Write a filemark */
3885 idetape_create_write_filemark_cmd(drive, &pc, 1);
3886 if (idetape_queue_pc_tail(drive, &pc)) {
3887 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3888 return -EIO;
3889 }
3890 return 0;
3891}
3892
3893/*
3894 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3895 * the general mtio MTIOCTOP ioctl is requested.
3896 *
3897 * We currently support the following mtio.h operations:
3898 *
3899 * MTFSF - Space over mt_count filemarks in the positive direction.
3900 * The tape is positioned after the last spaced filemark.
3901 *
3902 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3903 * last filemark.
3904 *
3905 * MTBSF - Steps background over mt_count filemarks, tape is
3906 * positioned before the last filemark.
3907 *
3908 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3909 *
3910 * Note:
3911 *
3912 * MTBSF and MTBSFM are not supported when the tape doesn't
3913 * support spacing over filemarks in the reverse direction.
3914 * In this case, MTFSFM is also usually not supported (it is
3915 * supported in the rare case in which we crossed the filemark
3916 * during our read-ahead pipelined operation mode).
3917 *
3918 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3919 * the last written filemark.
3920 *
3921 * MTREW - Rewinds tape.
3922 *
3923 * MTLOAD - Loads the tape.
3924 *
3925 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3926 * MTUNLOAD prevents further access until the media is replaced.
3927 *
3928 * MTNOP - Flushes tape buffers.
3929 *
3930 * MTRETEN - Retension media. This typically consists of one end
3931 * to end pass on the media.
3932 *
3933 * MTEOM - Moves to the end of recorded data.
3934 *
3935 * MTERASE - Erases tape.
3936 *
3937 * MTSETBLK - Sets the user block size to mt_count bytes. If
3938 * mt_count is 0, we will attempt to autodetect
3939 * the block size.
3940 *
3941 * MTSEEK - Positions the tape in a specific block number, where
3942 * each block is assumed to contain which user_block_size
3943 * bytes.
3944 *
3945 * MTSETPART - Switches to another tape partition.
3946 *
3947 * MTLOCK - Locks the tape door.
3948 *
3949 * MTUNLOCK - Unlocks the tape door.
3950 *
3951 * The following commands are currently not supported:
3952 *
3953 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3954 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3955 */
3956static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3957{
3958 idetape_tape_t *tape = drive->driver_data;
3959 idetape_pc_t pc;
3960 int i,retval;
3961
3962#if IDETAPE_DEBUG_LOG
3963 if (tape->debug_level >= 1)
3964 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3965 "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3966#endif /* IDETAPE_DEBUG_LOG */
3967 /*
3968 * Commands which need our pipelined read-ahead stages.
3969 */
3970 switch (mt_op) {
3971 case MTFSF:
3972 case MTFSFM:
3973 case MTBSF:
3974 case MTBSFM:
3975 if (!mt_count)
3976 return (0);
3977 return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3978 default:
3979 break;
3980 }
3981 switch (mt_op) {
3982 case MTWEOF:
3983 if (tape->write_prot)
3984 return -EACCES;
3985 idetape_discard_read_pipeline(drive, 1);
3986 for (i = 0; i < mt_count; i++) {
3987 retval = idetape_write_filemark(drive);
3988 if (retval)
3989 return retval;
3990 }
3991 return (0);
3992 case MTREW:
3993 idetape_discard_read_pipeline(drive, 0);
3994 if (idetape_rewind_tape(drive))
3995 return -EIO;
3996 return 0;
3997 case MTLOAD:
3998 idetape_discard_read_pipeline(drive, 0);
3999 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
4000 return (idetape_queue_pc_tail(drive, &pc));
4001 case MTUNLOAD:
4002 case MTOFFL:
4003 /*
4004 * If door is locked, attempt to unlock before
4005 * attempting to eject.
4006 */
4007 if (tape->door_locked) {
4008 if (idetape_create_prevent_cmd(drive, &pc, 0))
4009 if (!idetape_queue_pc_tail(drive, &pc))
4010 tape->door_locked = DOOR_UNLOCKED;
4011 }
4012 idetape_discard_read_pipeline(drive, 0);
4013 idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
4014 retval = idetape_queue_pc_tail(drive, &pc);
4015 if (!retval)
4016 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
4017 return retval;
4018 case MTNOP:
4019 idetape_discard_read_pipeline(drive, 0);
4020 return (idetape_flush_tape_buffers(drive));
4021 case MTRETEN:
4022 idetape_discard_read_pipeline(drive, 0);
4023 idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4024 return (idetape_queue_pc_tail(drive, &pc));
4025 case MTEOM:
4026 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4027 return (idetape_queue_pc_tail(drive, &pc));
4028 case MTERASE:
4029 (void) idetape_rewind_tape(drive);
4030 idetape_create_erase_cmd(&pc);
4031 return (idetape_queue_pc_tail(drive, &pc));
4032 case MTSETBLK:
4033 if (mt_count) {
4034 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4035 return -EIO;
4036 tape->user_bs_factor = mt_count / tape->tape_block_size;
4037 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4038 } else
4039 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4040 return 0;
4041 case MTSEEK:
4042 idetape_discard_read_pipeline(drive, 0);
4043 return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4044 case MTSETPART:
4045 idetape_discard_read_pipeline(drive, 0);
4046 return (idetape_position_tape(drive, 0, mt_count, 0));
4047 case MTFSR:
4048 case MTBSR:
4049 case MTLOCK:
4050 if (!idetape_create_prevent_cmd(drive, &pc, 1))
4051 return 0;
4052 retval = idetape_queue_pc_tail(drive, &pc);
4053 if (retval) return retval;
4054 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4055 return 0;
4056 case MTUNLOCK:
4057 if (!idetape_create_prevent_cmd(drive, &pc, 0))
4058 return 0;
4059 retval = idetape_queue_pc_tail(drive, &pc);
4060 if (retval) return retval;
4061 tape->door_locked = DOOR_UNLOCKED;
4062 return 0;
4063 default:
4064 printk(KERN_ERR "ide-tape: MTIO operation %d not "
4065 "supported\n", mt_op);
4066 return (-EIO);
4067 }
4068}
4069
4070/*
4071 * Our character device ioctls.
4072 *
4073 * General mtio.h magnetic io commands are supported here, and not in
4074 * the corresponding block interface.
4075 *
4076 * The following ioctls are supported:
4077 *
4078 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4079 *
4080 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4081 * will be set to (user block size in bytes <<
4082 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4083 *
4084 * The mt_blkno is set to the current user block number.
4085 * The other mtget fields are not supported.
4086 *
4087 * MTIOCPOS - The current tape "block position" is returned. We
4088 * assume that each block contains user_block_size
4089 * bytes.
4090 *
4091 * Our own ide-tape ioctls are supported on both interfaces.
4092 */
4093static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4094{
4095 struct ide_tape_obj *tape = ide_tape_f(file);
4096 ide_drive_t *drive = tape->drive;
4097 struct mtop mtop;
4098 struct mtget mtget;
4099 struct mtpos mtpos;
4100 int block_offset = 0, position = tape->first_frame_position;
4101 void __user *argp = (void __user *)arg;
4102
4103#if IDETAPE_DEBUG_LOG
4104 if (tape->debug_level >= 3)
4105 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4106 "cmd=%u\n", cmd);
4107#endif /* IDETAPE_DEBUG_LOG */
4108
4109 tape->restart_speed_control_req = 1;
4110 if (tape->chrdev_direction == idetape_direction_write) {
4111 idetape_empty_write_pipeline(drive);
4112 idetape_flush_tape_buffers(drive);
4113 }
4114 if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4115 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4116 if ((position = idetape_read_position(drive)) < 0)
4117 return -EIO;
4118 }
4119 switch (cmd) {
4120 case MTIOCTOP:
4121 if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4122 return -EFAULT;
4123 return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4124 case MTIOCGET:
4125 memset(&mtget, 0, sizeof (struct mtget));
4126 mtget.mt_type = MT_ISSCSI2;
4127 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4128 mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4129 if (tape->drv_write_prot) {
4130 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4131 }
4132 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4133 return -EFAULT;
4134 return 0;
4135 case MTIOCPOS:
4136 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4137 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4138 return -EFAULT;
4139 return 0;
4140 default:
4141 if (tape->chrdev_direction == idetape_direction_read)
4142 idetape_discard_read_pipeline(drive, 1);
4143 return idetape_blkdev_ioctl(drive, cmd, arg);
4144 }
4145}
4146
4147static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4148
4149/*
4150 * Our character device open function.
4151 */
4152static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4153{
4154 unsigned int minor = iminor(inode), i = minor & ~0xc0;
4155 ide_drive_t *drive;
4156 idetape_tape_t *tape;
4157 idetape_pc_t pc;
4158 int retval;
4159
4160 /*
4161 * We really want to do nonseekable_open(inode, filp); here, but some
4162 * versions of tar incorrectly call lseek on tapes and bail out if that
4163 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4164 */
4165 filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4166
4167#if IDETAPE_DEBUG_LOG
4168 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4169#endif /* IDETAPE_DEBUG_LOG */
4170
4171 if (i >= MAX_HWIFS * MAX_DRIVES)
4172 return -ENXIO;
4173
4174 if (!(tape = ide_tape_chrdev_get(i)))
4175 return -ENXIO;
4176
4177 drive = tape->drive;
4178
4179 filp->private_data = tape;
4180
4181 if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4182 retval = -EBUSY;
4183 goto out_put_tape;
4184 }
4185
4186 retval = idetape_wait_ready(drive, 60 * HZ);
4187 if (retval) {
4188 clear_bit(IDETAPE_BUSY, &tape->flags);
4189 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4190 goto out_put_tape;
4191 }
4192
4193 idetape_read_position(drive);
4194 if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4195 (void)idetape_rewind_tape(drive);
4196
4197 if (tape->chrdev_direction != idetape_direction_read)
4198 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4199
4200 /* Read block size and write protect status from drive. */
4201 idetape_get_blocksize_from_block_descriptor(drive);
4202
4203 /* Set write protect flag if device is opened as read-only. */
4204 if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4205 tape->write_prot = 1;
4206 else
4207 tape->write_prot = tape->drv_write_prot;
4208
4209 /* Make sure drive isn't write protected if user wants to write. */
4210 if (tape->write_prot) {
4211 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4212 (filp->f_flags & O_ACCMODE) == O_RDWR) {
4213 clear_bit(IDETAPE_BUSY, &tape->flags);
4214 retval = -EROFS;
4215 goto out_put_tape;
4216 }
4217 }
4218
4219 /*
4220 * Lock the tape drive door so user can't eject.
4221 */
4222 if (tape->chrdev_direction == idetape_direction_none) {
4223 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4224 if (!idetape_queue_pc_tail(drive, &pc)) {
4225 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4226 tape->door_locked = DOOR_LOCKED;
4227 }
4228 }
4229 }
4230 idetape_restart_speed_control(drive);
4231 tape->restart_speed_control_req = 0;
4232 return 0;
4233
4234out_put_tape:
4235 ide_tape_put(tape);
4236 return retval;
4237}
4238
4239static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4240{
4241 idetape_tape_t *tape = drive->driver_data;
4242
4243 idetape_empty_write_pipeline(drive);
4244 tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4245 if (tape->merge_stage != NULL) {
4246 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4247 __idetape_kfree_stage(tape->merge_stage);
4248 tape->merge_stage = NULL;
4249 }
4250 idetape_write_filemark(drive);
4251 idetape_flush_tape_buffers(drive);
4252 idetape_flush_tape_buffers(drive);
4253}
4254
4255/*
4256 * Our character device release function.
4257 */
4258static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4259{
4260 struct ide_tape_obj *tape = ide_tape_f(filp);
4261 ide_drive_t *drive = tape->drive;
4262 idetape_pc_t pc;
4263 unsigned int minor = iminor(inode);
4264
4265 lock_kernel();
4266 tape = drive->driver_data;
4267#if IDETAPE_DEBUG_LOG
4268 if (tape->debug_level >= 3)
4269 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4270#endif /* IDETAPE_DEBUG_LOG */
4271
4272 if (tape->chrdev_direction == idetape_direction_write)
4273 idetape_write_release(drive, minor);
4274 if (tape->chrdev_direction == idetape_direction_read) {
4275 if (minor < 128)
4276 idetape_discard_read_pipeline(drive, 1);
4277 else
4278 idetape_wait_for_pipeline(drive);
4279 }
4280 if (tape->cache_stage != NULL) {
4281 __idetape_kfree_stage(tape->cache_stage);
4282 tape->cache_stage = NULL;
4283 }
4284 if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4285 (void) idetape_rewind_tape(drive);
4286 if (tape->chrdev_direction == idetape_direction_none) {
4287 if (tape->door_locked == DOOR_LOCKED) {
4288 if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4289 if (!idetape_queue_pc_tail(drive, &pc))
4290 tape->door_locked = DOOR_UNLOCKED;
4291 }
4292 }
4293 }
4294 clear_bit(IDETAPE_BUSY, &tape->flags);
4295 ide_tape_put(tape);
4296 unlock_kernel();
4297 return 0;
4298}
4299
4300/*
4301 * idetape_identify_device is called to check the contents of the
4302 * ATAPI IDENTIFY command results. We return:
4303 *
4304 * 1 If the tape can be supported by us, based on the information
4305 * we have so far.
4306 *
4307 * 0 If this tape driver is not currently supported by us.
4308 */
4309static int idetape_identify_device (ide_drive_t *drive)
4310{
4311 struct idetape_id_gcw gcw;
4312 struct hd_driveid *id = drive->id;
4313#if IDETAPE_DEBUG_INFO
4314 unsigned short mask,i;
4315#endif /* IDETAPE_DEBUG_INFO */
4316
4317 if (drive->id_read == 0)
4318 return 1;
4319
4320 *((unsigned short *) &gcw) = id->config;
4321
4322#if IDETAPE_DEBUG_INFO
4323 printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4324 printk(KERN_INFO "ide-tape: Protocol Type: ");
4325 switch (gcw.protocol) {
4326 case 0: case 1: printk("ATA\n");break;
4327 case 2: printk("ATAPI\n");break;
4328 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4329 }
4330 printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4331 switch (gcw.device_type) {
4332 case 0: printk("Direct-access Device\n");break;
4333 case 1: printk("Streaming Tape Device\n");break;
4334 case 2: case 3: case 4: printk("Reserved\n");break;
4335 case 5: printk("CD-ROM Device\n");break;
4336 case 6: printk("Reserved\n");
4337 case 7: printk("Optical memory Device\n");break;
4338 case 0x1f: printk("Unknown or no Device type\n");break;
4339 default: printk("Reserved\n");
4340 }
4341 printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4342 printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4343 switch (gcw.drq_type) {
4344 case 0: printk("Microprocessor DRQ\n");break;
4345 case 1: printk("Interrupt DRQ\n");break;
4346 case 2: printk("Accelerated DRQ\n");break;
4347 case 3: printk("Reserved\n");break;
4348 }
4349 printk(KERN_INFO "ide-tape: Command Packet Size: ");
4350 switch (gcw.packet_size) {
4351 case 0: printk("12 bytes\n");break;
4352 case 1: printk("16 bytes\n");break;
4353 default: printk("Reserved\n");break;
4354 }
4355 printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4356 printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4357 printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4358 printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4359 printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4360 printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4361 printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4362 printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4363 printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4364 printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4365 printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4366 printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4367 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4368 if (id->dma_1word & mask)
4369 printk("%d ",i);
4370 if (id->dma_1word & (mask << 8))
4371 printk("(active) ");
4372 }
4373 printk("\n");
4374 printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4375 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4376 if (id->dma_mword & mask)
4377 printk("%d ",i);
4378 if (id->dma_mword & (mask << 8))
4379 printk("(active) ");
4380 }
4381 printk("\n");
4382 if (id->field_valid & 0x0002) {
4383 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4384 id->eide_pio_modes & 1 ? "Mode 3":"None");
4385 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4386 if (id->eide_dma_min == 0)
4387 printk("Not supported\n");
4388 else
4389 printk("%d ns\n",id->eide_dma_min);
4390
4391 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4392 if (id->eide_dma_time == 0)
4393 printk("Not supported\n");
4394 else
4395 printk("%d ns\n",id->eide_dma_time);
4396
4397 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4398 if (id->eide_pio == 0)
4399 printk("Not supported\n");
4400 else
4401 printk("%d ns\n",id->eide_pio);
4402
4403 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4404 if (id->eide_pio_iordy == 0)
4405 printk("Not supported\n");
4406 else
4407 printk("%d ns\n",id->eide_pio_iordy);
4408
4409 } else
4410 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4411#endif /* IDETAPE_DEBUG_INFO */
4412
4413 /* Check that we can support this device */
4414
4415 if (gcw.protocol !=2 )
4416 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4417 else if (gcw.device_type != 1)
4418 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4419 else if (!gcw.removable)
4420 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4421 else if (gcw.packet_size != 0) {
4422 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4423 if (gcw.packet_size == 1)
4424 printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4425 } else
4426 return 1;
4427 return 0;
4428}
4429
4430/*
4431 * Use INQUIRY to get the firmware revision
4432 */
4433static void idetape_get_inquiry_results (ide_drive_t *drive)
4434{
4435 char *r;
4436 idetape_tape_t *tape = drive->driver_data;
4437 idetape_pc_t pc;
4438 idetape_inquiry_result_t *inquiry;
4439
4440 idetape_create_inquiry_cmd(&pc);
4441 if (idetape_queue_pc_tail(drive, &pc)) {
4442 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4443 return;
4444 }
4445 inquiry = (idetape_inquiry_result_t *) pc.buffer;
4446 memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4447 memcpy(tape->product_id, inquiry->product_id, 16);
4448 memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4449 ide_fixstring(tape->vendor_id, 10, 0);
4450 ide_fixstring(tape->product_id, 18, 0);
4451 ide_fixstring(tape->firmware_revision, 6, 0);
4452 r = tape->firmware_revision;
4453 if (*(r + 1) == '.')
4454 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4455 printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4456}
4457
4458/*
4459 * idetape_get_mode_sense_results asks the tape about its various
4460 * parameters. In particular, we will adjust our data transfer buffer
4461 * size to the recommended value as returned by the tape.
4462 */
4463static void idetape_get_mode_sense_results (ide_drive_t *drive)
4464{
4465 idetape_tape_t *tape = drive->driver_data;
4466 idetape_pc_t pc;
4467 idetape_mode_parameter_header_t *header;
4468 idetape_capabilities_page_t *capabilities;
4469
4470 idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4471 if (idetape_queue_pc_tail(drive, &pc)) {
4472 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4473 tape->tape_block_size = 512;
4474 tape->capabilities.ctl = 52;
4475 tape->capabilities.speed = 450;
4476 tape->capabilities.buffer_size = 6 * 52;
4477 return;
4478 }
4479 header = (idetape_mode_parameter_header_t *) pc.buffer;
4480 capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4481
4482 capabilities->max_speed = ntohs(capabilities->max_speed);
4483 capabilities->ctl = ntohs(capabilities->ctl);
4484 capabilities->speed = ntohs(capabilities->speed);
4485 capabilities->buffer_size = ntohs(capabilities->buffer_size);
4486
4487 if (!capabilities->speed) {
4488 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4489 capabilities->speed = 650;
4490 }
4491 if (!capabilities->max_speed) {
4492 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4493 capabilities->max_speed = 650;
4494 }
4495
4496 tape->capabilities = *capabilities; /* Save us a copy */
4497 if (capabilities->blk512)
4498 tape->tape_block_size = 512;
4499 else if (capabilities->blk1024)
4500 tape->tape_block_size = 1024;
4501
4502#if IDETAPE_DEBUG_INFO
4503 printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4504 printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4505 printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4506 printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4507 printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4508 printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4509
4510 printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4511 printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4512 printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4513 printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4514 printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4515 printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4516 printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4517 printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4518 printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4519 printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4520 printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4521 printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4522 printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4523 printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4524 printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4525 printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4526 printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4527 printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4528 printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4529 printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4530#endif /* IDETAPE_DEBUG_INFO */
4531}
4532
4533/*
4534 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4535 * and if it succeeds sets the tape block size with the reported value
4536 */
4537static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4538{
4539
4540 idetape_tape_t *tape = drive->driver_data;
4541 idetape_pc_t pc;
4542 idetape_mode_parameter_header_t *header;
4543 idetape_parameter_block_descriptor_t *block_descrp;
4544
4545 idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4546 if (idetape_queue_pc_tail(drive, &pc)) {
4547 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4548 if (tape->tape_block_size == 0) {
4549 printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4550 tape->tape_block_size = 32768;
4551 }
4552 return;
4553 }
4554 header = (idetape_mode_parameter_header_t *) pc.buffer;
4555 block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4556 tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4557 tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4558
4559#if IDETAPE_DEBUG_INFO
4560 printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4561#endif /* IDETAPE_DEBUG_INFO */
4562}
7662d046
BZ
4563
4564#ifdef CONFIG_IDE_PROC_FS
1da177e4
LT
4565static void idetape_add_settings (ide_drive_t *drive)
4566{
4567 idetape_tape_t *tape = drive->driver_data;
4568
4569/*
1497943e 4570 * drive setting name read/write data type min max mul_factor div_factor data pointer set function
1da177e4 4571 */
1497943e
BZ
4572 ide_add_setting(drive, "buffer", SETTING_READ, TYPE_SHORT, 0, 0xffff, 1, 2, &tape->capabilities.buffer_size, NULL);
4573 ide_add_setting(drive, "pipeline_min", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
4574 ide_add_setting(drive, "pipeline", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL);
4575 ide_add_setting(drive, "pipeline_max", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
4576 ide_add_setting(drive, "pipeline_used", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL);
4577 ide_add_setting(drive, "pipeline_pending", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL);
4578 ide_add_setting(drive, "speed", SETTING_READ, TYPE_SHORT, 0, 0xffff, 1, 1, &tape->capabilities.speed, NULL);
4579 ide_add_setting(drive, "stage", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL);
4580 ide_add_setting(drive, "tdsc", SETTING_RW, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL);
4581 ide_add_setting(drive, "dsc_overlap", SETTING_RW, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL);
4582 ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL);
4583 ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed,NULL);
4584 ide_add_setting(drive, "avg_speed", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL);
4585 ide_add_setting(drive, "debug_level", SETTING_RW, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL);
1da177e4 4586}
7662d046
BZ
4587#else
4588static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4589#endif
1da177e4
LT
4590
4591/*
4592 * ide_setup is called to:
4593 *
4594 * 1. Initialize our various state variables.
4595 * 2. Ask the tape for its capabilities.
4596 * 3. Allocate a buffer which will be used for data
4597 * transfer. The buffer size is chosen based on
4598 * the recommendation which we received in step (2).
4599 *
4600 * Note that at this point ide.c already assigned us an irq, so that
4601 * we can queue requests here and wait for their completion.
4602 */
4603static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4604{
4605 unsigned long t1, tmid, tn, t;
4606 int speed;
4607 struct idetape_id_gcw gcw;
4608 int stage_size;
4609 struct sysinfo si;
4610
4611 spin_lock_init(&tape->spinlock);
4612 drive->dsc_overlap = 1;
4613#ifdef CONFIG_BLK_DEV_IDEPCI
4614 if (HWIF(drive)->pci_dev != NULL) {
4615 /*
4616 * These two ide-pci host adapters appear to need DSC overlap disabled.
4617 * This probably needs further analysis.
4618 */
4619 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4620 (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4621 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4622 drive->dsc_overlap = 0;
4623 }
4624 }
4625#endif /* CONFIG_BLK_DEV_IDEPCI */
4626 /* Seagate Travan drives do not support DSC overlap. */
4627 if (strstr(drive->id->model, "Seagate STT3401"))
4628 drive->dsc_overlap = 0;
4629 tape->minor = minor;
4630 tape->name[0] = 'h';
4631 tape->name[1] = 't';
4632 tape->name[2] = '0' + minor;
4633 tape->chrdev_direction = idetape_direction_none;
4634 tape->pc = tape->pc_stack;
4635 tape->max_insert_speed = 10000;
4636 tape->speed_control = 1;
4637 *((unsigned short *) &gcw) = drive->id->config;
4638 if (gcw.drq_type == 1)
4639 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4640
4641 tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4642
4643 idetape_get_inquiry_results(drive);
4644 idetape_get_mode_sense_results(drive);
4645 idetape_get_blocksize_from_block_descriptor(drive);
4646 tape->user_bs_factor = 1;
4647 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4648 while (tape->stage_size > 0xffff) {
4649 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4650 tape->capabilities.ctl /= 2;
4651 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4652 }
4653 stage_size = tape->stage_size;
4654 tape->pages_per_stage = stage_size / PAGE_SIZE;
4655 if (stage_size % PAGE_SIZE) {
4656 tape->pages_per_stage++;
4657 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4658 }
4659
4660 /*
4661 * Select the "best" DSC read/write polling frequency
4662 * and pipeline size.
4663 */
4664 speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4665
4666 tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4667
4668 /*
4669 * Limit memory use for pipeline to 10% of physical memory
4670 */
4671 si_meminfo(&si);
4672 if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4673 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4674 tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4675 tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4676 tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4677 if (tape->max_stages == 0)
4678 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4679
4680 t1 = (tape->stage_size * HZ) / (speed * 1000);
4681 tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4682 tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4683
4684 if (tape->max_stages)
4685 t = tn;
4686 else
4687 t = t1;
4688
4689 /*
4690 * Ensure that the number we got makes sense; limit
4691 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4692 */
4693 tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4694 printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4695 "%dkB pipeline, %lums tDSC%s\n",
4696 drive->name, tape->name, tape->capabilities.speed,
4697 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4698 tape->stage_size / 1024,
4699 tape->max_stages * tape->stage_size / 1024,
4700 tape->best_dsc_rw_frequency * 1000 / HZ,
4701 drive->using_dma ? ", DMA":"");
4702
4703 idetape_add_settings(drive);
4704}
4705
4031bbe4 4706static void ide_tape_remove(ide_drive_t *drive)
1da177e4
LT
4707{
4708 idetape_tape_t *tape = drive->driver_data;
1da177e4 4709
7662d046 4710 ide_proc_unregister_driver(drive, tape->driver);
1da177e4
LT
4711
4712 ide_unregister_region(tape->disk);
4713
4714 ide_tape_put(tape);
1da177e4
LT
4715}
4716
4717static void ide_tape_release(struct kref *kref)
4718{
4719 struct ide_tape_obj *tape = to_ide_tape(kref);
4720 ide_drive_t *drive = tape->drive;
4721 struct gendisk *g = tape->disk;
4722
8604affd
BZ
4723 BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4724
1da177e4
LT
4725 drive->dsc_overlap = 0;
4726 drive->driver_data = NULL;
dbc1272e
TJ
4727 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4728 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
1da177e4
LT
4729 idetape_devs[tape->minor] = NULL;
4730 g->private_data = NULL;
4731 put_disk(g);
4732 kfree(tape);
4733}
4734
ecfd80e4 4735#ifdef CONFIG_IDE_PROC_FS
1da177e4
LT
4736static int proc_idetape_read_name
4737 (char *page, char **start, off_t off, int count, int *eof, void *data)
4738{
4739 ide_drive_t *drive = (ide_drive_t *) data;
4740 idetape_tape_t *tape = drive->driver_data;
4741 char *out = page;
4742 int len;
4743
4744 len = sprintf(out, "%s\n", tape->name);
4745 PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4746}
4747
4748static ide_proc_entry_t idetape_proc[] = {
4749 { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL },
4750 { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL },
4751 { NULL, 0, NULL, NULL }
4752};
1da177e4
LT
4753#endif
4754
4031bbe4 4755static int ide_tape_probe(ide_drive_t *);
1da177e4 4756
1da177e4 4757static ide_driver_t idetape_driver = {
8604affd 4758 .gen_driver = {
4ef3b8f4 4759 .owner = THIS_MODULE,
8604affd
BZ
4760 .name = "ide-tape",
4761 .bus = &ide_bus_type,
8604affd 4762 },
4031bbe4
RK
4763 .probe = ide_tape_probe,
4764 .remove = ide_tape_remove,
1da177e4
LT
4765 .version = IDETAPE_VERSION,
4766 .media = ide_tape,
1da177e4 4767 .supports_dsc_overlap = 1,
1da177e4
LT
4768 .do_request = idetape_do_request,
4769 .end_request = idetape_end_request,
4770 .error = __ide_error,
4771 .abort = __ide_abort,
7662d046 4772#ifdef CONFIG_IDE_PROC_FS
1da177e4 4773 .proc = idetape_proc,
7662d046 4774#endif
1da177e4
LT
4775};
4776
4777/*
4778 * Our character device supporting functions, passed to register_chrdev.
4779 */
2b8693c0 4780static const struct file_operations idetape_fops = {
1da177e4
LT
4781 .owner = THIS_MODULE,
4782 .read = idetape_chrdev_read,
4783 .write = idetape_chrdev_write,
4784 .ioctl = idetape_chrdev_ioctl,
4785 .open = idetape_chrdev_open,
4786 .release = idetape_chrdev_release,
4787};
4788
4789static int idetape_open(struct inode *inode, struct file *filp)
4790{
4791 struct gendisk *disk = inode->i_bdev->bd_disk;
4792 struct ide_tape_obj *tape;
1da177e4
LT
4793
4794 if (!(tape = ide_tape_get(disk)))
4795 return -ENXIO;
4796
1da177e4
LT
4797 return 0;
4798}
4799
4800static int idetape_release(struct inode *inode, struct file *filp)
4801{
4802 struct gendisk *disk = inode->i_bdev->bd_disk;
4803 struct ide_tape_obj *tape = ide_tape_g(disk);
1da177e4
LT
4804
4805 ide_tape_put(tape);
4806
4807 return 0;
4808}
4809
4810static int idetape_ioctl(struct inode *inode, struct file *file,
4811 unsigned int cmd, unsigned long arg)
4812{
4813 struct block_device *bdev = inode->i_bdev;
4814 struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4815 ide_drive_t *drive = tape->drive;
4816 int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4817 if (err == -EINVAL)
4818 err = idetape_blkdev_ioctl(drive, cmd, arg);
4819 return err;
4820}
4821
4822static struct block_device_operations idetape_block_ops = {
4823 .owner = THIS_MODULE,
4824 .open = idetape_open,
4825 .release = idetape_release,
4826 .ioctl = idetape_ioctl,
4827};
4828
4031bbe4 4829static int ide_tape_probe(ide_drive_t *drive)
1da177e4
LT
4830{
4831 idetape_tape_t *tape;
4832 struct gendisk *g;
4833 int minor;
4834
4835 if (!strstr("ide-tape", drive->driver_req))
4836 goto failed;
4837 if (!drive->present)
4838 goto failed;
4839 if (drive->media != ide_tape)
4840 goto failed;
4841 if (!idetape_identify_device (drive)) {
4842 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4843 goto failed;
4844 }
4845 if (drive->scsi) {
4846 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4847 goto failed;
4848 }
4849 if (strstr(drive->id->model, "OnStream DI-")) {
4850 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4851 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4852 }
5cbded58 4853 tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
1da177e4
LT
4854 if (tape == NULL) {
4855 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4856 goto failed;
4857 }
4858
4859 g = alloc_disk(1 << PARTN_BITS);
4860 if (!g)
4861 goto out_free_tape;
4862
4863 ide_init_disk(g, drive);
4864
7662d046 4865 ide_proc_register_driver(drive, &idetape_driver);
1da177e4 4866
1da177e4
LT
4867 kref_init(&tape->kref);
4868
4869 tape->drive = drive;
4870 tape->driver = &idetape_driver;
4871 tape->disk = g;
4872
4873 g->private_data = &tape->driver;
4874
4875 drive->driver_data = tape;
4876
cf8b8975 4877 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
4878 for (minor = 0; idetape_devs[minor]; minor++)
4879 ;
4880 idetape_devs[minor] = tape;
cf8b8975 4881 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
4882
4883 idetape_setup(drive, tape, minor);
4884
dbc1272e
TJ
4885 device_create(idetape_sysfs_class, &drive->gendev,
4886 MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4887 device_create(idetape_sysfs_class, &drive->gendev,
4888 MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
d5dee80a 4889
1da177e4
LT
4890 g->fops = &idetape_block_ops;
4891 ide_register_region(g);
4892
4893 return 0;
8604affd 4894
1da177e4
LT
4895out_free_tape:
4896 kfree(tape);
4897failed:
8604affd 4898 return -ENODEV;
1da177e4
LT
4899}
4900
4901MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4902MODULE_LICENSE("GPL");
4903
4904static void __exit idetape_exit (void)
4905{
8604affd 4906 driver_unregister(&idetape_driver.gen_driver);
d5dee80a 4907 class_destroy(idetape_sysfs_class);
1da177e4
LT
4908 unregister_chrdev(IDETAPE_MAJOR, "ht");
4909}
4910
17514e8a 4911static int __init idetape_init(void)
1da177e4 4912{
d5dee80a
WD
4913 int error = 1;
4914 idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4915 if (IS_ERR(idetape_sysfs_class)) {
4916 idetape_sysfs_class = NULL;
4917 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4918 error = -EBUSY;
4919 goto out;
4920 }
4921
1da177e4
LT
4922 if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4923 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
d5dee80a
WD
4924 error = -EBUSY;
4925 goto out_free_class;
1da177e4 4926 }
d5dee80a
WD
4927
4928 error = driver_register(&idetape_driver.gen_driver);
4929 if (error)
4930 goto out_free_driver;
4931
4932 return 0;
4933
4934out_free_driver:
4935 driver_unregister(&idetape_driver.gen_driver);
4936out_free_class:
4937 class_destroy(idetape_sysfs_class);
4938out:
4939 return error;
1da177e4
LT
4940}
4941
263756ec 4942MODULE_ALIAS("ide:*m-tape*");
1da177e4
LT
4943module_init(idetape_init);
4944module_exit(idetape_exit);
4945MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);