]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/iio/accel/bmc150-accel.c
Merge branches 'pm-cpu', 'pm-cpuidle' and 'pm-domains'
[mirror_ubuntu-zesty-kernel.git] / drivers / iio / accel / bmc150-accel.c
CommitLineData
bd7fe5b7 1/*
8ecbb3c3
LP
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 * - BMC150
4 * - BMI055
5 * - BMA255
6 * - BMA250E
7 * - BMA222E
8 * - BMA280
9 *
bd7fe5b7
SP
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 */
21
22#include <linux/module.h>
23#include <linux/i2c.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/slab.h>
27#include <linux/acpi.h>
28#include <linux/gpio/consumer.h>
29#include <linux/pm.h>
30#include <linux/pm_runtime.h>
31#include <linux/iio/iio.h>
32#include <linux/iio/sysfs.h>
33#include <linux/iio/buffer.h>
34#include <linux/iio/events.h>
35#include <linux/iio/trigger.h>
36#include <linux/iio/trigger_consumer.h>
37#include <linux/iio/triggered_buffer.h>
38
39#define BMC150_ACCEL_DRV_NAME "bmc150_accel"
40#define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
41#define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
42
43#define BMC150_ACCEL_REG_CHIP_ID 0x00
bd7fe5b7
SP
44
45#define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
46#define BMC150_ACCEL_ANY_MOTION_MASK 0x07
8d5a9781
SP
47#define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
48#define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
49#define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
bd7fe5b7
SP
50#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
51
52#define BMC150_ACCEL_REG_PMU_LPW 0x11
53#define BMC150_ACCEL_PMU_MODE_MASK 0xE0
54#define BMC150_ACCEL_PMU_MODE_SHIFT 5
55#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
57
58#define BMC150_ACCEL_REG_PMU_RANGE 0x0F
59
60#define BMC150_ACCEL_DEF_RANGE_2G 0x03
61#define BMC150_ACCEL_DEF_RANGE_4G 0x05
62#define BMC150_ACCEL_DEF_RANGE_8G 0x08
63#define BMC150_ACCEL_DEF_RANGE_16G 0x0C
64
65/* Default BW: 125Hz */
66#define BMC150_ACCEL_REG_PMU_BW 0x10
67#define BMC150_ACCEL_DEF_BW 125
68
69#define BMC150_ACCEL_REG_INT_MAP_0 0x19
70#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
71
72#define BMC150_ACCEL_REG_INT_MAP_1 0x1A
3bbec977
OP
73#define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
74#define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
75#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
bd7fe5b7
SP
76
77#define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
78#define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
79#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
80#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
81
82#define BMC150_ACCEL_REG_INT_EN_0 0x16
83#define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
84#define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
85#define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
86
87#define BMC150_ACCEL_REG_INT_EN_1 0x17
3bbec977
OP
88#define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
89#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
90#define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
bd7fe5b7
SP
91
92#define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
93#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
94
95#define BMC150_ACCEL_REG_INT_5 0x27
96#define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
97
98#define BMC150_ACCEL_REG_INT_6 0x28
99#define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
100
101/* Slope duration in terms of number of samples */
9e8e228f 102#define BMC150_ACCEL_DEF_SLOPE_DURATION 1
bd7fe5b7 103/* in terms of multiples of g's/LSB, based on range */
9e8e228f 104#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
bd7fe5b7
SP
105
106#define BMC150_ACCEL_REG_XOUT_L 0x02
107
108#define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
109
110/* Sleep Duration values */
111#define BMC150_ACCEL_SLEEP_500_MICRO 0x05
112#define BMC150_ACCEL_SLEEP_1_MS 0x06
113#define BMC150_ACCEL_SLEEP_2_MS 0x07
114#define BMC150_ACCEL_SLEEP_4_MS 0x08
115#define BMC150_ACCEL_SLEEP_6_MS 0x09
116#define BMC150_ACCEL_SLEEP_10_MS 0x0A
117#define BMC150_ACCEL_SLEEP_25_MS 0x0B
118#define BMC150_ACCEL_SLEEP_50_MS 0x0C
119#define BMC150_ACCEL_SLEEP_100_MS 0x0D
120#define BMC150_ACCEL_SLEEP_500_MS 0x0E
121#define BMC150_ACCEL_SLEEP_1_SEC 0x0F
122
123#define BMC150_ACCEL_REG_TEMP 0x08
124#define BMC150_ACCEL_TEMP_CENTER_VAL 24
125
126#define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
127#define BMC150_AUTO_SUSPEND_DELAY_MS 2000
128
3bbec977
OP
129#define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
130#define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
131#define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
132#define BMC150_ACCEL_REG_FIFO_DATA 0x3F
133#define BMC150_ACCEL_FIFO_LENGTH 32
134
bd7fe5b7
SP
135enum bmc150_accel_axis {
136 AXIS_X,
137 AXIS_Y,
138 AXIS_Z,
139};
140
141enum bmc150_power_modes {
142 BMC150_ACCEL_SLEEP_MODE_NORMAL,
143 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
144 BMC150_ACCEL_SLEEP_MODE_LPM,
145 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
146};
147
8ecbb3c3
LP
148struct bmc150_scale_info {
149 int scale;
150 u8 reg_range;
151};
152
153struct bmc150_accel_chip_info {
0ad4bf37 154 const char *name;
8ecbb3c3
LP
155 u8 chip_id;
156 const struct iio_chan_spec *channels;
157 int num_channels;
158 const struct bmc150_scale_info scale_table[4];
159};
160
3e825ec9
OP
161struct bmc150_accel_interrupt {
162 const struct bmc150_accel_interrupt_info *info;
163 atomic_t users;
164};
165
7d963215
OP
166struct bmc150_accel_trigger {
167 struct bmc150_accel_data *data;
168 struct iio_trigger *indio_trig;
169 int (*setup)(struct bmc150_accel_trigger *t, bool state);
170 int intr;
171 bool enabled;
172};
173
3e825ec9
OP
174enum bmc150_accel_interrupt_id {
175 BMC150_ACCEL_INT_DATA_READY,
176 BMC150_ACCEL_INT_ANY_MOTION,
177 BMC150_ACCEL_INT_WATERMARK,
178 BMC150_ACCEL_INTERRUPTS,
179};
180
7d963215
OP
181enum bmc150_accel_trigger_id {
182 BMC150_ACCEL_TRIGGER_DATA_READY,
183 BMC150_ACCEL_TRIGGER_ANY_MOTION,
184 BMC150_ACCEL_TRIGGERS,
185};
186
bd7fe5b7
SP
187struct bmc150_accel_data {
188 struct i2c_client *client;
3e825ec9 189 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
3e825ec9 190 atomic_t active_intr;
7d963215 191 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
bd7fe5b7 192 struct mutex mutex;
3bbec977 193 u8 fifo_mode, watermark;
bd7fe5b7
SP
194 s16 buffer[8];
195 u8 bw_bits;
196 u32 slope_dur;
197 u32 slope_thres;
198 u32 range;
199 int ev_enable_state;
c16bff48 200 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
8ecbb3c3 201 const struct bmc150_accel_chip_info *chip_info;
bd7fe5b7
SP
202};
203
204static const struct {
205 int val;
206 int val2;
207 u8 bw_bits;
0ba8da96
SK
208} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
209 {31, 260000, 0x09},
210 {62, 500000, 0x0A},
211 {125, 0, 0x0B},
212 {250, 0, 0x0C},
213 {500, 0, 0x0D},
214 {1000, 0, 0x0E},
215 {2000, 0, 0x0F} };
bd7fe5b7
SP
216
217static const struct {
218 int bw_bits;
219 int msec;
220} bmc150_accel_sample_upd_time[] = { {0x08, 64},
221 {0x09, 32},
222 {0x0A, 16},
223 {0x0B, 8},
224 {0x0C, 4},
225 {0x0D, 2},
226 {0x0E, 1},
227 {0x0F, 1} };
228
bd7fe5b7
SP
229static const struct {
230 int sleep_dur;
8ecbb3c3 231 u8 reg_value;
bd7fe5b7
SP
232} bmc150_accel_sleep_value_table[] = { {0, 0},
233 {500, BMC150_ACCEL_SLEEP_500_MICRO},
234 {1000, BMC150_ACCEL_SLEEP_1_MS},
235 {2000, BMC150_ACCEL_SLEEP_2_MS},
236 {4000, BMC150_ACCEL_SLEEP_4_MS},
237 {6000, BMC150_ACCEL_SLEEP_6_MS},
238 {10000, BMC150_ACCEL_SLEEP_10_MS},
239 {25000, BMC150_ACCEL_SLEEP_25_MS},
240 {50000, BMC150_ACCEL_SLEEP_50_MS},
241 {100000, BMC150_ACCEL_SLEEP_100_MS},
242 {500000, BMC150_ACCEL_SLEEP_500_MS},
243 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
244
bd7fe5b7
SP
245static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
246 enum bmc150_power_modes mode,
247 int dur_us)
248{
249 int i;
250 int ret;
251 u8 lpw_bits;
252 int dur_val = -1;
253
254 if (dur_us > 0) {
255 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
256 ++i) {
257 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
258 dur_us)
259 dur_val =
260 bmc150_accel_sleep_value_table[i].reg_value;
261 }
e20008ed 262 } else {
bd7fe5b7 263 dur_val = 0;
e20008ed 264 }
bd7fe5b7
SP
265
266 if (dur_val < 0)
267 return -EINVAL;
268
269 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
270 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
271
272 dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
273
274 ret = i2c_smbus_write_byte_data(data->client,
275 BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
276 if (ret < 0) {
277 dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
278 return ret;
279 }
280
281 return 0;
282}
283
284static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
285 int val2)
286{
287 int i;
288 int ret;
289
290 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
291 if (bmc150_accel_samp_freq_table[i].val == val &&
e20008ed 292 bmc150_accel_samp_freq_table[i].val2 == val2) {
bd7fe5b7
SP
293 ret = i2c_smbus_write_byte_data(
294 data->client,
295 BMC150_ACCEL_REG_PMU_BW,
296 bmc150_accel_samp_freq_table[i].bw_bits);
297 if (ret < 0)
298 return ret;
299
300 data->bw_bits =
301 bmc150_accel_samp_freq_table[i].bw_bits;
302 return 0;
303 }
304 }
305
306 return -EINVAL;
307}
308
802a3aef
OP
309static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
310{
311 int ret, val;
312
313 ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
314 data->slope_thres);
315 if (ret < 0) {
316 dev_err(&data->client->dev, "Error writing reg_int_6\n");
317 return ret;
318 }
319
320 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
321 if (ret < 0) {
322 dev_err(&data->client->dev, "Error reading reg_int_5\n");
323 return ret;
324 }
325
326 val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
327 ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
328 val);
329 if (ret < 0) {
330 dev_err(&data->client->dev, "Error write reg_int_5\n");
331 return ret;
332 }
333
334 dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
335 data->slope_dur);
336
337 return ret;
338}
339
7d963215
OP
340static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
341 bool state)
342{
343 if (state)
344 return bmc150_accel_update_slope(t->data);
345
346 return 0;
347}
348
bd7fe5b7
SP
349static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
350 int *val2)
351{
352 int i;
353
354 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
355 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
356 *val = bmc150_accel_samp_freq_table[i].val;
357 *val2 = bmc150_accel_samp_freq_table[i].val2;
358 return IIO_VAL_INT_PLUS_MICRO;
359 }
360 }
361
362 return -EINVAL;
363}
364
6f0a13f2 365#ifdef CONFIG_PM
bd7fe5b7
SP
366static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
367{
368 int i;
369
370 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
371 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
372 return bmc150_accel_sample_upd_time[i].msec;
373 }
374
375 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
376}
377
378static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
379{
380 int ret;
381
e20008ed 382 if (on) {
bd7fe5b7 383 ret = pm_runtime_get_sync(&data->client->dev);
e20008ed 384 } else {
bd7fe5b7
SP
385 pm_runtime_mark_last_busy(&data->client->dev);
386 ret = pm_runtime_put_autosuspend(&data->client->dev);
387 }
e20008ed 388
bd7fe5b7
SP
389 if (ret < 0) {
390 dev_err(&data->client->dev,
391 "Failed: bmc150_accel_set_power_state for %d\n", on);
aaeecd80
SP
392 if (on)
393 pm_runtime_put_noidle(&data->client->dev);
394
bd7fe5b7
SP
395 return ret;
396 }
397
398 return 0;
399}
b31b05cf
LP
400#else
401static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
402{
403 return 0;
404}
405#endif
bd7fe5b7 406
8e22f477
OP
407static const struct bmc150_accel_interrupt_info {
408 u8 map_reg;
409 u8 map_bitmask;
410 u8 en_reg;
411 u8 en_bitmask;
3e825ec9 412} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
8e22f477
OP
413 { /* data ready interrupt */
414 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
415 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
416 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
417 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
418 },
419 { /* motion interrupt */
420 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
421 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
422 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
423 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
424 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
425 BMC150_ACCEL_INT_EN_BIT_SLP_Z
426 },
3bbec977
OP
427 { /* fifo watermark interrupt */
428 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
429 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
430 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
431 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
432 },
8e22f477
OP
433};
434
3e825ec9
OP
435static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
436 struct bmc150_accel_data *data)
437{
438 int i;
439
440 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
441 data->interrupts[i].info = &bmc150_accel_interrupts[i];
442}
443
444static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
8e22f477
OP
445 bool state)
446{
3e825ec9
OP
447 struct bmc150_accel_interrupt *intr = &data->interrupts[i];
448 const struct bmc150_accel_interrupt_info *info = intr->info;
8e22f477
OP
449 int ret;
450
3e825ec9
OP
451 if (state) {
452 if (atomic_inc_return(&intr->users) > 1)
453 return 0;
454 } else {
455 if (atomic_dec_return(&intr->users) > 0)
456 return 0;
457 }
458
8e22f477 459 /*
e20008ed
HK
460 * We will expect the enable and disable to do operation in reverse
461 * order. This will happen here anyway, as our resume operation uses
462 * sync mode runtime pm calls. The suspend operation will be delayed
463 * by autosuspend delay.
464 * So the disable operation will still happen in reverse order of
465 * enable operation. When runtime pm is disabled the mode is always on,
466 * so sequence doesn't matter.
8e22f477
OP
467 */
468 ret = bmc150_accel_set_power_state(data, state);
469 if (ret < 0)
470 return ret;
471
472 /* map the interrupt to the appropriate pins */
473 ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
474 if (ret < 0) {
475 dev_err(&data->client->dev, "Error reading reg_int_map\n");
476 goto out_fix_power_state;
477 }
478 if (state)
479 ret |= info->map_bitmask;
480 else
481 ret &= ~info->map_bitmask;
482
483 ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
484 ret);
485 if (ret < 0) {
486 dev_err(&data->client->dev, "Error writing reg_int_map\n");
487 goto out_fix_power_state;
488 }
489
490 /* enable/disable the interrupt */
491 ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
492 if (ret < 0) {
493 dev_err(&data->client->dev, "Error reading reg_int_en\n");
494 goto out_fix_power_state;
495 }
496
497 if (state)
498 ret |= info->en_bitmask;
499 else
500 ret &= ~info->en_bitmask;
501
502 ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
503 if (ret < 0) {
504 dev_err(&data->client->dev, "Error writing reg_int_en\n");
505 goto out_fix_power_state;
506 }
507
3e825ec9
OP
508 if (state)
509 atomic_inc(&data->active_intr);
510 else
511 atomic_dec(&data->active_intr);
512
8e22f477
OP
513 return 0;
514
515out_fix_power_state:
516 bmc150_accel_set_power_state(data, false);
517 return ret;
518}
519
bd7fe5b7
SP
520static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
521{
522 int ret, i;
523
8ecbb3c3
LP
524 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
525 if (data->chip_info->scale_table[i].scale == val) {
bd7fe5b7 526 ret = i2c_smbus_write_byte_data(
8ecbb3c3
LP
527 data->client,
528 BMC150_ACCEL_REG_PMU_RANGE,
529 data->chip_info->scale_table[i].reg_range);
bd7fe5b7
SP
530 if (ret < 0) {
531 dev_err(&data->client->dev,
532 "Error writing pmu_range\n");
533 return ret;
534 }
535
8ecbb3c3 536 data->range = data->chip_info->scale_table[i].reg_range;
bd7fe5b7
SP
537 return 0;
538 }
539 }
540
541 return -EINVAL;
542}
543
544static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
545{
546 int ret;
547
548 mutex_lock(&data->mutex);
549
550 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
551 if (ret < 0) {
552 dev_err(&data->client->dev, "Error reading reg_temp\n");
553 mutex_unlock(&data->mutex);
554 return ret;
555 }
556 *val = sign_extend32(ret, 7);
557
558 mutex_unlock(&data->mutex);
559
560 return IIO_VAL_INT;
561}
562
8ecbb3c3
LP
563static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
564 struct iio_chan_spec const *chan,
bd7fe5b7
SP
565 int *val)
566{
567 int ret;
8ecbb3c3 568 int axis = chan->scan_index;
bd7fe5b7
SP
569
570 mutex_lock(&data->mutex);
571 ret = bmc150_accel_set_power_state(data, true);
572 if (ret < 0) {
573 mutex_unlock(&data->mutex);
574 return ret;
575 }
576
577 ret = i2c_smbus_read_word_data(data->client,
578 BMC150_ACCEL_AXIS_TO_REG(axis));
579 if (ret < 0) {
580 dev_err(&data->client->dev, "Error reading axis %d\n", axis);
581 bmc150_accel_set_power_state(data, false);
582 mutex_unlock(&data->mutex);
583 return ret;
584 }
8ecbb3c3
LP
585 *val = sign_extend32(ret >> chan->scan_type.shift,
586 chan->scan_type.realbits - 1);
bd7fe5b7
SP
587 ret = bmc150_accel_set_power_state(data, false);
588 mutex_unlock(&data->mutex);
589 if (ret < 0)
590 return ret;
591
592 return IIO_VAL_INT;
593}
594
595static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
596 struct iio_chan_spec const *chan,
597 int *val, int *val2, long mask)
598{
599 struct bmc150_accel_data *data = iio_priv(indio_dev);
600 int ret;
601
602 switch (mask) {
603 case IIO_CHAN_INFO_RAW:
604 switch (chan->type) {
605 case IIO_TEMP:
606 return bmc150_accel_get_temp(data, val);
607 case IIO_ACCEL:
608 if (iio_buffer_enabled(indio_dev))
609 return -EBUSY;
610 else
8ecbb3c3 611 return bmc150_accel_get_axis(data, chan, val);
bd7fe5b7
SP
612 default:
613 return -EINVAL;
614 }
615 case IIO_CHAN_INFO_OFFSET:
616 if (chan->type == IIO_TEMP) {
617 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
618 return IIO_VAL_INT;
e20008ed 619 } else {
bd7fe5b7 620 return -EINVAL;
e20008ed 621 }
bd7fe5b7
SP
622 case IIO_CHAN_INFO_SCALE:
623 *val = 0;
624 switch (chan->type) {
625 case IIO_TEMP:
626 *val2 = 500000;
627 return IIO_VAL_INT_PLUS_MICRO;
628 case IIO_ACCEL:
629 {
630 int i;
8ecbb3c3
LP
631 const struct bmc150_scale_info *si;
632 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
bd7fe5b7 633
8ecbb3c3
LP
634 for (i = 0; i < st_size; ++i) {
635 si = &data->chip_info->scale_table[i];
636 if (si->reg_range == data->range) {
637 *val2 = si->scale;
bd7fe5b7
SP
638 return IIO_VAL_INT_PLUS_MICRO;
639 }
640 }
641 return -EINVAL;
642 }
643 default:
644 return -EINVAL;
645 }
646 case IIO_CHAN_INFO_SAMP_FREQ:
647 mutex_lock(&data->mutex);
648 ret = bmc150_accel_get_bw(data, val, val2);
649 mutex_unlock(&data->mutex);
650 return ret;
651 default:
652 return -EINVAL;
653 }
654}
655
656static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
657 struct iio_chan_spec const *chan,
658 int val, int val2, long mask)
659{
660 struct bmc150_accel_data *data = iio_priv(indio_dev);
661 int ret;
662
663 switch (mask) {
664 case IIO_CHAN_INFO_SAMP_FREQ:
665 mutex_lock(&data->mutex);
666 ret = bmc150_accel_set_bw(data, val, val2);
667 mutex_unlock(&data->mutex);
668 break;
669 case IIO_CHAN_INFO_SCALE:
670 if (val)
671 return -EINVAL;
672
673 mutex_lock(&data->mutex);
674 ret = bmc150_accel_set_scale(data, val2);
675 mutex_unlock(&data->mutex);
676 return ret;
677 default:
678 ret = -EINVAL;
679 }
680
681 return ret;
682}
683
684static int bmc150_accel_read_event(struct iio_dev *indio_dev,
685 const struct iio_chan_spec *chan,
686 enum iio_event_type type,
687 enum iio_event_direction dir,
688 enum iio_event_info info,
689 int *val, int *val2)
690{
691 struct bmc150_accel_data *data = iio_priv(indio_dev);
692
693 *val2 = 0;
694 switch (info) {
695 case IIO_EV_INFO_VALUE:
696 *val = data->slope_thres;
697 break;
698 case IIO_EV_INFO_PERIOD:
802a3aef 699 *val = data->slope_dur;
bd7fe5b7
SP
700 break;
701 default:
702 return -EINVAL;
703 }
704
705 return IIO_VAL_INT;
706}
707
708static int bmc150_accel_write_event(struct iio_dev *indio_dev,
709 const struct iio_chan_spec *chan,
710 enum iio_event_type type,
711 enum iio_event_direction dir,
712 enum iio_event_info info,
713 int val, int val2)
714{
715 struct bmc150_accel_data *data = iio_priv(indio_dev);
716
717 if (data->ev_enable_state)
718 return -EBUSY;
719
720 switch (info) {
721 case IIO_EV_INFO_VALUE:
fdd15f65 722 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
bd7fe5b7
SP
723 break;
724 case IIO_EV_INFO_PERIOD:
802a3aef 725 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
bd7fe5b7
SP
726 break;
727 default:
728 return -EINVAL;
729 }
730
731 return 0;
732}
733
734static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
735 const struct iio_chan_spec *chan,
736 enum iio_event_type type,
737 enum iio_event_direction dir)
738{
bd7fe5b7
SP
739 struct bmc150_accel_data *data = iio_priv(indio_dev);
740
741 return data->ev_enable_state;
742}
743
744static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
745 const struct iio_chan_spec *chan,
746 enum iio_event_type type,
747 enum iio_event_direction dir,
748 int state)
749{
750 struct bmc150_accel_data *data = iio_priv(indio_dev);
751 int ret;
752
14ee64f4 753 if (state == data->ev_enable_state)
bd7fe5b7
SP
754 return 0;
755
756 mutex_lock(&data->mutex);
757
3e825ec9
OP
758 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
759 state);
bd7fe5b7
SP
760 if (ret < 0) {
761 mutex_unlock(&data->mutex);
762 return ret;
763 }
764
765 data->ev_enable_state = state;
766 mutex_unlock(&data->mutex);
767
768 return 0;
769}
770
771static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
e20008ed 772 struct iio_trigger *trig)
bd7fe5b7
SP
773{
774 struct bmc150_accel_data *data = iio_priv(indio_dev);
7d963215 775 int i;
bd7fe5b7 776
7d963215
OP
777 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
778 if (data->triggers[i].indio_trig == trig)
779 return 0;
780 }
bd7fe5b7 781
7d963215 782 return -EINVAL;
bd7fe5b7
SP
783}
784
3bbec977
OP
785static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
786 struct device_attribute *attr,
787 char *buf)
788{
789 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790 struct bmc150_accel_data *data = iio_priv(indio_dev);
791 int wm;
792
793 mutex_lock(&data->mutex);
794 wm = data->watermark;
795 mutex_unlock(&data->mutex);
796
797 return sprintf(buf, "%d\n", wm);
798}
799
800static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
801 struct device_attribute *attr,
802 char *buf)
803{
804 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
805 struct bmc150_accel_data *data = iio_priv(indio_dev);
806 bool state;
807
808 mutex_lock(&data->mutex);
809 state = data->fifo_mode;
810 mutex_unlock(&data->mutex);
811
812 return sprintf(buf, "%d\n", state);
813}
814
815static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
816static IIO_CONST_ATTR(hwfifo_watermark_max,
817 __stringify(BMC150_ACCEL_FIFO_LENGTH));
818static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
819 bmc150_accel_get_fifo_state, NULL, 0);
820static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
821 bmc150_accel_get_fifo_watermark, NULL, 0);
822
823static const struct attribute *bmc150_accel_fifo_attributes[] = {
824 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
825 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
826 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
827 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
828 NULL,
829};
830
831static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
832{
833 struct bmc150_accel_data *data = iio_priv(indio_dev);
834
835 if (val > BMC150_ACCEL_FIFO_LENGTH)
836 val = BMC150_ACCEL_FIFO_LENGTH;
837
838 mutex_lock(&data->mutex);
839 data->watermark = val;
840 mutex_unlock(&data->mutex);
841
842 return 0;
843}
844
845/*
846 * We must read at least one full frame in one burst, otherwise the rest of the
847 * frame data is discarded.
848 */
849static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
850 char *buffer, int samples)
851{
852 int sample_length = 3 * 2;
853 u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
854 int ret = -EIO;
855
856 if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
857 struct i2c_msg msg[2] = {
858 {
859 .addr = client->addr,
860 .flags = 0,
861 .buf = &reg_fifo_data,
862 .len = sizeof(reg_fifo_data),
863 },
864 {
865 .addr = client->addr,
866 .flags = I2C_M_RD,
867 .buf = (u8 *)buffer,
868 .len = samples * sample_length,
869 }
870 };
871
872 ret = i2c_transfer(client->adapter, msg, 2);
873 if (ret != 2)
874 ret = -EIO;
875 else
876 ret = 0;
877 } else {
878 int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
879
880 for (i = 0; i < samples * sample_length; i += step) {
881 ret = i2c_smbus_read_i2c_block_data(client,
882 reg_fifo_data, step,
883 &buffer[i]);
884 if (ret != step) {
885 ret = -EIO;
886 break;
887 }
888
889 ret = 0;
890 }
891 }
892
893 if (ret)
894 dev_err(&client->dev, "Error transferring data from fifo\n");
895
896 return ret;
897}
898
899static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
900 unsigned samples, bool irq)
901{
902 struct bmc150_accel_data *data = iio_priv(indio_dev);
903 int ret, i;
904 u8 count;
905 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
906 int64_t tstamp;
907 uint64_t sample_period;
e20008ed 908
3bbec977
OP
909 ret = i2c_smbus_read_byte_data(data->client,
910 BMC150_ACCEL_REG_FIFO_STATUS);
911 if (ret < 0) {
912 dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
913 return ret;
914 }
915
916 count = ret & 0x7F;
917
918 if (!count)
919 return 0;
920
921 /*
922 * If we getting called from IRQ handler we know the stored timestamp is
923 * fairly accurate for the last stored sample. Otherwise, if we are
924 * called as a result of a read operation from userspace and hence
925 * before the watermark interrupt was triggered, take a timestamp
926 * now. We can fall anywhere in between two samples so the error in this
927 * case is at most one sample period.
928 */
929 if (!irq) {
930 data->old_timestamp = data->timestamp;
931 data->timestamp = iio_get_time_ns();
932 }
933
934 /*
935 * Approximate timestamps for each of the sample based on the sampling
936 * frequency, timestamp for last sample and number of samples.
937 *
938 * Note that we can't use the current bandwidth settings to compute the
939 * sample period because the sample rate varies with the device
940 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
941 * small variation adds when we store a large number of samples and
942 * creates significant jitter between the last and first samples in
943 * different batches (e.g. 32ms vs 21ms).
944 *
945 * To avoid this issue we compute the actual sample period ourselves
946 * based on the timestamp delta between the last two flush operations.
947 */
948 sample_period = (data->timestamp - data->old_timestamp);
949 do_div(sample_period, count);
950 tstamp = data->timestamp - (count - 1) * sample_period;
951
952 if (samples && count > samples)
953 count = samples;
954
955 ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
956 if (ret)
957 return ret;
958
959 /*
960 * Ideally we want the IIO core to handle the demux when running in fifo
961 * mode but not when running in triggered buffer mode. Unfortunately
962 * this does not seem to be possible, so stick with driver demux for
963 * now.
964 */
965 for (i = 0; i < count; i++) {
966 u16 sample[8];
967 int j, bit;
968
969 j = 0;
970 for_each_set_bit(bit, indio_dev->active_scan_mask,
971 indio_dev->masklength)
972 memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
973
974 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
975
976 tstamp += sample_period;
977 }
978
979 return count;
980}
981
982static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
983{
984 struct bmc150_accel_data *data = iio_priv(indio_dev);
985 int ret;
986
987 mutex_lock(&data->mutex);
988 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
989 mutex_unlock(&data->mutex);
990
991 return ret;
992}
993
bd7fe5b7 994static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
0ba8da96 995 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
bd7fe5b7
SP
996
997static struct attribute *bmc150_accel_attributes[] = {
998 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
999 NULL,
1000};
1001
1002static const struct attribute_group bmc150_accel_attrs_group = {
1003 .attrs = bmc150_accel_attributes,
1004};
1005
1006static const struct iio_event_spec bmc150_accel_event = {
1007 .type = IIO_EV_TYPE_ROC,
1174124c 1008 .dir = IIO_EV_DIR_EITHER,
bd7fe5b7
SP
1009 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
1010 BIT(IIO_EV_INFO_ENABLE) |
1011 BIT(IIO_EV_INFO_PERIOD)
1012};
1013
8ecbb3c3 1014#define BMC150_ACCEL_CHANNEL(_axis, bits) { \
bd7fe5b7
SP
1015 .type = IIO_ACCEL, \
1016 .modified = 1, \
1017 .channel2 = IIO_MOD_##_axis, \
1018 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1019 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
1020 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1021 .scan_index = AXIS_##_axis, \
1022 .scan_type = { \
1023 .sign = 's', \
8ecbb3c3 1024 .realbits = (bits), \
bd7fe5b7 1025 .storagebits = 16, \
8ecbb3c3 1026 .shift = 16 - (bits), \
bd7fe5b7
SP
1027 }, \
1028 .event_spec = &bmc150_accel_event, \
1029 .num_event_specs = 1 \
1030}
1031
8ecbb3c3
LP
1032#define BMC150_ACCEL_CHANNELS(bits) { \
1033 { \
1034 .type = IIO_TEMP, \
1035 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1036 BIT(IIO_CHAN_INFO_SCALE) | \
1037 BIT(IIO_CHAN_INFO_OFFSET), \
1038 .scan_index = -1, \
1039 }, \
1040 BMC150_ACCEL_CHANNEL(X, bits), \
1041 BMC150_ACCEL_CHANNEL(Y, bits), \
1042 BMC150_ACCEL_CHANNEL(Z, bits), \
1043 IIO_CHAN_SOFT_TIMESTAMP(3), \
1044}
1045
1046static const struct iio_chan_spec bma222e_accel_channels[] =
1047 BMC150_ACCEL_CHANNELS(8);
1048static const struct iio_chan_spec bma250e_accel_channels[] =
1049 BMC150_ACCEL_CHANNELS(10);
1050static const struct iio_chan_spec bmc150_accel_channels[] =
1051 BMC150_ACCEL_CHANNELS(12);
1052static const struct iio_chan_spec bma280_accel_channels[] =
1053 BMC150_ACCEL_CHANNELS(14);
1054
1055enum {
1056 bmc150,
1057 bmi055,
1058 bma255,
1059 bma250e,
1060 bma222e,
1061 bma280,
1062};
1063
1064static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1065 [bmc150] = {
0ad4bf37 1066 .name = "BMC150A",
8ecbb3c3
LP
1067 .chip_id = 0xFA,
1068 .channels = bmc150_accel_channels,
1069 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1070 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1071 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1072 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1073 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1074 },
1075 [bmi055] = {
0ad4bf37 1076 .name = "BMI055A",
8ecbb3c3
LP
1077 .chip_id = 0xFA,
1078 .channels = bmc150_accel_channels,
1079 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1080 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1081 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1082 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1083 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1084 },
1085 [bma255] = {
0ad4bf37 1086 .name = "BMA0255",
8ecbb3c3
LP
1087 .chip_id = 0xFA,
1088 .channels = bmc150_accel_channels,
1089 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1090 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1091 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1092 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1093 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1094 },
1095 [bma250e] = {
0ad4bf37 1096 .name = "BMA250E",
8ecbb3c3
LP
1097 .chip_id = 0xF9,
1098 .channels = bma250e_accel_channels,
1099 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1100 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1101 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1102 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1103 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1104 },
1105 [bma222e] = {
0ad4bf37 1106 .name = "BMA222E",
8ecbb3c3
LP
1107 .chip_id = 0xF8,
1108 .channels = bma222e_accel_channels,
1109 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1110 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1111 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1112 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1113 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1114 },
1115 [bma280] = {
0ad4bf37 1116 .name = "BMA0280",
8ecbb3c3
LP
1117 .chip_id = 0xFB,
1118 .channels = bma280_accel_channels,
1119 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1120 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1121 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1122 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1123 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
bd7fe5b7 1124 },
bd7fe5b7
SP
1125};
1126
1127static const struct iio_info bmc150_accel_info = {
1128 .attrs = &bmc150_accel_attrs_group,
1129 .read_raw = bmc150_accel_read_raw,
1130 .write_raw = bmc150_accel_write_raw,
1131 .read_event_value = bmc150_accel_read_event,
1132 .write_event_value = bmc150_accel_write_event,
1133 .write_event_config = bmc150_accel_write_event_config,
1134 .read_event_config = bmc150_accel_read_event_config,
bd7fe5b7
SP
1135 .driver_module = THIS_MODULE,
1136};
1137
3bbec977
OP
1138static const struct iio_info bmc150_accel_info_fifo = {
1139 .attrs = &bmc150_accel_attrs_group,
1140 .read_raw = bmc150_accel_read_raw,
1141 .write_raw = bmc150_accel_write_raw,
1142 .read_event_value = bmc150_accel_read_event,
1143 .write_event_value = bmc150_accel_write_event,
1144 .write_event_config = bmc150_accel_write_event_config,
1145 .read_event_config = bmc150_accel_read_event_config,
1146 .validate_trigger = bmc150_accel_validate_trigger,
1147 .hwfifo_set_watermark = bmc150_accel_set_watermark,
1148 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1149 .driver_module = THIS_MODULE,
1150};
1151
bd7fe5b7
SP
1152static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1153{
1154 struct iio_poll_func *pf = p;
1155 struct iio_dev *indio_dev = pf->indio_dev;
1156 struct bmc150_accel_data *data = iio_priv(indio_dev);
1157 int bit, ret, i = 0;
1158
1159 mutex_lock(&data->mutex);
70dddeee 1160 for_each_set_bit(bit, indio_dev->active_scan_mask,
bd7fe5b7
SP
1161 indio_dev->masklength) {
1162 ret = i2c_smbus_read_word_data(data->client,
1163 BMC150_ACCEL_AXIS_TO_REG(bit));
1164 if (ret < 0) {
1165 mutex_unlock(&data->mutex);
1166 goto err_read;
1167 }
1168 data->buffer[i++] = ret;
1169 }
1170 mutex_unlock(&data->mutex);
1171
1172 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
c16bff48 1173 pf->timestamp);
bd7fe5b7
SP
1174err_read:
1175 iio_trigger_notify_done(indio_dev->trig);
1176
1177 return IRQ_HANDLED;
1178}
1179
1180static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1181{
7d963215
OP
1182 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1183 struct bmc150_accel_data *data = t->data;
bd7fe5b7
SP
1184 int ret;
1185
1186 /* new data interrupts don't need ack */
7d963215 1187 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
bd7fe5b7
SP
1188 return 0;
1189
1190 mutex_lock(&data->mutex);
1191 /* clear any latched interrupt */
1192 ret = i2c_smbus_write_byte_data(data->client,
1193 BMC150_ACCEL_REG_INT_RST_LATCH,
1194 BMC150_ACCEL_INT_MODE_LATCH_INT |
1195 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1196 mutex_unlock(&data->mutex);
1197 if (ret < 0) {
1198 dev_err(&data->client->dev,
1199 "Error writing reg_int_rst_latch\n");
1200 return ret;
1201 }
1202
1203 return 0;
1204}
1205
7d963215 1206static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
e20008ed 1207 bool state)
bd7fe5b7 1208{
7d963215
OP
1209 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1210 struct bmc150_accel_data *data = t->data;
bd7fe5b7
SP
1211 int ret;
1212
1213 mutex_lock(&data->mutex);
1214
7d963215
OP
1215 if (t->enabled == state) {
1216 mutex_unlock(&data->mutex);
1217 return 0;
1218 }
1219
1220 if (t->setup) {
1221 ret = t->setup(t, state);
1222 if (ret < 0) {
14ee64f4 1223 mutex_unlock(&data->mutex);
7d963215 1224 return ret;
14ee64f4
OP
1225 }
1226 }
1227
7d963215 1228 ret = bmc150_accel_set_interrupt(data, t->intr, state);
bd7fe5b7
SP
1229 if (ret < 0) {
1230 mutex_unlock(&data->mutex);
1231 return ret;
1232 }
7d963215
OP
1233
1234 t->enabled = state;
bd7fe5b7
SP
1235
1236 mutex_unlock(&data->mutex);
1237
1238 return ret;
1239}
1240
1241static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
7d963215 1242 .set_trigger_state = bmc150_accel_trigger_set_state,
bd7fe5b7
SP
1243 .try_reenable = bmc150_accel_trig_try_reen,
1244 .owner = THIS_MODULE,
1245};
1246
3bbec977 1247static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
bd7fe5b7 1248{
bd7fe5b7 1249 struct bmc150_accel_data *data = iio_priv(indio_dev);
bd7fe5b7 1250 int dir;
3bbec977 1251 int ret;
bd7fe5b7
SP
1252
1253 ret = i2c_smbus_read_byte_data(data->client,
1254 BMC150_ACCEL_REG_INT_STATUS_2);
1255 if (ret < 0) {
1256 dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
3bbec977 1257 return ret;
bd7fe5b7
SP
1258 }
1259
1260 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1261 dir = IIO_EV_DIR_FALLING;
1262 else
1263 dir = IIO_EV_DIR_RISING;
1264
8d5a9781 1265 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
e20008ed
HK
1266 iio_push_event(indio_dev,
1267 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1268 0,
1269 IIO_MOD_X,
1270 IIO_EV_TYPE_ROC,
1271 dir),
1272 data->timestamp);
1273
8d5a9781 1274 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
e20008ed
HK
1275 iio_push_event(indio_dev,
1276 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1277 0,
1278 IIO_MOD_Y,
1279 IIO_EV_TYPE_ROC,
1280 dir),
1281 data->timestamp);
1282
8d5a9781 1283 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
e20008ed
HK
1284 iio_push_event(indio_dev,
1285 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1286 0,
1287 IIO_MOD_Z,
1288 IIO_EV_TYPE_ROC,
1289 dir),
1290 data->timestamp);
1291
3bbec977
OP
1292 return ret;
1293}
1294
1295static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1296{
1297 struct iio_dev *indio_dev = private;
1298 struct bmc150_accel_data *data = iio_priv(indio_dev);
1299 bool ack = false;
1300 int ret;
1301
1302 mutex_lock(&data->mutex);
1303
1304 if (data->fifo_mode) {
1305 ret = __bmc150_accel_fifo_flush(indio_dev,
1306 BMC150_ACCEL_FIFO_LENGTH, true);
1307 if (ret > 0)
1308 ack = true;
1309 }
1310
1311 if (data->ev_enable_state) {
1312 ret = bmc150_accel_handle_roc_event(indio_dev);
1313 if (ret > 0)
1314 ack = true;
1315 }
1316
1317 if (ack) {
bd7fe5b7
SP
1318 ret = i2c_smbus_write_byte_data(data->client,
1319 BMC150_ACCEL_REG_INT_RST_LATCH,
1320 BMC150_ACCEL_INT_MODE_LATCH_INT |
1321 BMC150_ACCEL_INT_MODE_LATCH_RESET);
3bbec977 1322 if (ret)
e20008ed
HK
1323 dev_err(&data->client->dev,
1324 "Error writing reg_int_rst_latch\n");
1325
3bbec977
OP
1326 ret = IRQ_HANDLED;
1327 } else {
1328 ret = IRQ_NONE;
1329 }
bd7fe5b7 1330
3bbec977
OP
1331 mutex_unlock(&data->mutex);
1332
1333 return ret;
bd7fe5b7
SP
1334}
1335
3bbec977 1336static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
bd7fe5b7
SP
1337{
1338 struct iio_dev *indio_dev = private;
1339 struct bmc150_accel_data *data = iio_priv(indio_dev);
3bbec977 1340 bool ack = false;
7d963215 1341 int i;
bd7fe5b7 1342
3bbec977 1343 data->old_timestamp = data->timestamp;
bd7fe5b7
SP
1344 data->timestamp = iio_get_time_ns();
1345
7d963215
OP
1346 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1347 if (data->triggers[i].enabled) {
1348 iio_trigger_poll(data->triggers[i].indio_trig);
3bbec977 1349 ack = true;
7d963215
OP
1350 break;
1351 }
1352 }
bd7fe5b7 1353
3bbec977 1354 if (data->ev_enable_state || data->fifo_mode)
bd7fe5b7 1355 return IRQ_WAKE_THREAD;
3bbec977
OP
1356
1357 if (ack)
bd7fe5b7 1358 return IRQ_HANDLED;
3bbec977
OP
1359
1360 return IRQ_NONE;
bd7fe5b7
SP
1361}
1362
8ecbb3c3 1363static int bmc150_accel_gpio_probe(struct i2c_client *client,
e20008ed 1364 struct bmc150_accel_data *data)
8ecbb3c3 1365{
bd7fe5b7
SP
1366 struct device *dev;
1367 struct gpio_desc *gpio;
1368 int ret;
1369
1370 if (!client)
1371 return -EINVAL;
1372
1373 dev = &client->dev;
bd7fe5b7
SP
1374
1375 /* data ready gpio interrupt pin */
b457f53a 1376 gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
bd7fe5b7 1377 if (IS_ERR(gpio)) {
8ecbb3c3 1378 dev_err(dev, "Failed: gpio get index\n");
bd7fe5b7
SP
1379 return PTR_ERR(gpio);
1380 }
1381
bd7fe5b7
SP
1382 ret = gpiod_to_irq(gpio);
1383
1384 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1385
1386 return ret;
1387}
1388
7d963215
OP
1389static const struct {
1390 int intr;
1391 const char *name;
1392 int (*setup)(struct bmc150_accel_trigger *t, bool state);
1393} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1394 {
1395 .intr = 0,
1396 .name = "%s-dev%d",
1397 },
1398 {
1399 .intr = 1,
1400 .name = "%s-any-motion-dev%d",
1401 .setup = bmc150_accel_any_motion_setup,
1402 },
1403};
1404
1405static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1406 int from)
1407{
1408 int i;
1409
7a1d0d91 1410 for (i = from; i >= 0; i--) {
7d963215
OP
1411 if (data->triggers[i].indio_trig) {
1412 iio_trigger_unregister(data->triggers[i].indio_trig);
1413 data->triggers[i].indio_trig = NULL;
1414 }
1415 }
1416}
1417
1418static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1419 struct bmc150_accel_data *data)
1420{
1421 int i, ret;
1422
1423 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1424 struct bmc150_accel_trigger *t = &data->triggers[i];
1425
1426 t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
1427 bmc150_accel_triggers[i].name,
1428 indio_dev->name,
1429 indio_dev->id);
1430 if (!t->indio_trig) {
1431 ret = -ENOMEM;
1432 break;
1433 }
1434
1435 t->indio_trig->dev.parent = &data->client->dev;
1436 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1437 t->intr = bmc150_accel_triggers[i].intr;
1438 t->data = data;
1439 t->setup = bmc150_accel_triggers[i].setup;
1440 iio_trigger_set_drvdata(t->indio_trig, t);
1441
1442 ret = iio_trigger_register(t->indio_trig);
1443 if (ret)
1444 break;
1445 }
1446
1447 if (ret)
1448 bmc150_accel_unregister_triggers(data, i - 1);
1449
1450 return ret;
1451}
1452
3bbec977
OP
1453#define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1454#define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1455#define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1456
1457static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1458{
1459 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1460 int ret;
1461
1462 ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
1463 if (ret < 0) {
1464 dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
1465 return ret;
1466 }
1467
1468 if (!data->fifo_mode)
1469 return 0;
1470
1471 ret = i2c_smbus_write_byte_data(data->client,
1472 BMC150_ACCEL_REG_FIFO_CONFIG0,
1473 data->watermark);
1474 if (ret < 0)
1475 dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
1476
1477 return ret;
1478}
1479
c16bff48
VD
1480static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1481{
1482 struct bmc150_accel_data *data = iio_priv(indio_dev);
1483
1484 return bmc150_accel_set_power_state(data, true);
1485}
1486
3bbec977
OP
1487static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1488{
1489 struct bmc150_accel_data *data = iio_priv(indio_dev);
1490 int ret = 0;
1491
1492 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1493 return iio_triggered_buffer_postenable(indio_dev);
1494
1495 mutex_lock(&data->mutex);
1496
1497 if (!data->watermark)
1498 goto out;
1499
1500 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1501 true);
1502 if (ret)
1503 goto out;
1504
1505 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1506
1507 ret = bmc150_accel_fifo_set_mode(data);
1508 if (ret) {
1509 data->fifo_mode = 0;
1510 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1511 false);
1512 }
1513
1514out:
1515 mutex_unlock(&data->mutex);
1516
1517 return ret;
1518}
1519
1520static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1521{
1522 struct bmc150_accel_data *data = iio_priv(indio_dev);
1523
1524 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1525 return iio_triggered_buffer_predisable(indio_dev);
1526
1527 mutex_lock(&data->mutex);
1528
1529 if (!data->fifo_mode)
1530 goto out;
1531
1532 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1533 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1534 data->fifo_mode = 0;
1535 bmc150_accel_fifo_set_mode(data);
1536
1537out:
1538 mutex_unlock(&data->mutex);
1539
1540 return 0;
1541}
1542
c16bff48
VD
1543static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1544{
1545 struct bmc150_accel_data *data = iio_priv(indio_dev);
1546
1547 return bmc150_accel_set_power_state(data, false);
1548}
1549
3bbec977 1550static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
c16bff48 1551 .preenable = bmc150_accel_buffer_preenable,
3bbec977
OP
1552 .postenable = bmc150_accel_buffer_postenable,
1553 .predisable = bmc150_accel_buffer_predisable,
c16bff48 1554 .postdisable = bmc150_accel_buffer_postdisable,
3bbec977
OP
1555};
1556
c4eaab79
BN
1557static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1558{
0ad4bf37 1559 int ret, i;
c4eaab79
BN
1560
1561 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
1562 if (ret < 0) {
1563 dev_err(&data->client->dev, "Error: Reading chip id\n");
1564 return ret;
1565 }
1566
1567 dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
0ad4bf37
BN
1568 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1569 if (bmc150_accel_chip_info_tbl[i].chip_id == ret) {
1570 data->chip_info = &bmc150_accel_chip_info_tbl[i];
1571 break;
1572 }
1573 }
1574
1575 if (!data->chip_info) {
1576 dev_err(&data->client->dev, "Unsupported chip %x\n", ret);
c4eaab79
BN
1577 return -ENODEV;
1578 }
1579
1580 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1581 if (ret < 0)
1582 return ret;
1583
1584 /* Set Bandwidth */
1585 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1586 if (ret < 0)
1587 return ret;
1588
1589 /* Set Default Range */
1590 ret = i2c_smbus_write_byte_data(data->client,
1591 BMC150_ACCEL_REG_PMU_RANGE,
1592 BMC150_ACCEL_DEF_RANGE_4G);
1593 if (ret < 0) {
1594 dev_err(&data->client->dev, "Error writing reg_pmu_range\n");
1595 return ret;
1596 }
1597
1598 data->range = BMC150_ACCEL_DEF_RANGE_4G;
1599
1600 /* Set default slope duration and thresholds */
1601 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1602 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1603 ret = bmc150_accel_update_slope(data);
1604 if (ret < 0)
1605 return ret;
1606
1607 /* Set default as latched interrupts */
1608 ret = i2c_smbus_write_byte_data(data->client,
1609 BMC150_ACCEL_REG_INT_RST_LATCH,
1610 BMC150_ACCEL_INT_MODE_LATCH_INT |
1611 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1612 if (ret < 0) {
1613 dev_err(&data->client->dev,
1614 "Error writing reg_int_rst_latch\n");
1615 return ret;
1616 }
1617
1618 return 0;
1619}
1620
bd7fe5b7
SP
1621static int bmc150_accel_probe(struct i2c_client *client,
1622 const struct i2c_device_id *id)
1623{
1624 struct bmc150_accel_data *data;
1625 struct iio_dev *indio_dev;
1626 int ret;
8ecbb3c3 1627 const char *name = NULL;
bd7fe5b7
SP
1628
1629 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1630 if (!indio_dev)
1631 return -ENOMEM;
1632
1633 data = iio_priv(indio_dev);
1634 i2c_set_clientdata(client, indio_dev);
1635 data->client = client;
1636
0ad4bf37 1637 if (id)
8ecbb3c3 1638 name = id->name;
8ecbb3c3 1639
bd7fe5b7
SP
1640 ret = bmc150_accel_chip_init(data);
1641 if (ret < 0)
1642 return ret;
1643
1644 mutex_init(&data->mutex);
1645
1646 indio_dev->dev.parent = &client->dev;
8ecbb3c3
LP
1647 indio_dev->channels = data->chip_info->channels;
1648 indio_dev->num_channels = data->chip_info->num_channels;
0ad4bf37 1649 indio_dev->name = name ? name : data->chip_info->name;
bd7fe5b7
SP
1650 indio_dev->modes = INDIO_DIRECT_MODE;
1651 indio_dev->info = &bmc150_accel_info;
1652
c16bff48
VD
1653 ret = iio_triggered_buffer_setup(indio_dev,
1654 &iio_pollfunc_store_time,
1655 bmc150_accel_trigger_handler,
1656 &bmc150_accel_buffer_ops);
1657 if (ret < 0) {
1658 dev_err(&client->dev, "Failed: iio triggered buffer setup\n");
1659 return ret;
1660 }
1661
bd7fe5b7 1662 if (client->irq < 0)
8ecbb3c3 1663 client->irq = bmc150_accel_gpio_probe(client, data);
bd7fe5b7 1664
c176becd 1665 if (client->irq > 0) {
bd7fe5b7
SP
1666 ret = devm_request_threaded_irq(
1667 &client->dev, client->irq,
3bbec977
OP
1668 bmc150_accel_irq_handler,
1669 bmc150_accel_irq_thread_handler,
bd7fe5b7
SP
1670 IRQF_TRIGGER_RISING,
1671 BMC150_ACCEL_IRQ_NAME,
1672 indio_dev);
1673 if (ret)
c16bff48 1674 goto err_buffer_cleanup;
bd7fe5b7 1675
8e22f477
OP
1676 /*
1677 * Set latched mode interrupt. While certain interrupts are
1678 * non-latched regardless of this settings (e.g. new data) we
1679 * want to use latch mode when we can to prevent interrupt
1680 * flooding.
1681 */
1682 ret = i2c_smbus_write_byte_data(data->client,
1683 BMC150_ACCEL_REG_INT_RST_LATCH,
1684 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1685 if (ret < 0) {
1686 dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
c16bff48 1687 goto err_buffer_cleanup;
8e22f477
OP
1688 }
1689
3e825ec9
OP
1690 bmc150_accel_interrupts_setup(indio_dev, data);
1691
7d963215 1692 ret = bmc150_accel_triggers_setup(indio_dev, data);
bd7fe5b7 1693 if (ret)
c16bff48 1694 goto err_buffer_cleanup;
3bbec977
OP
1695
1696 if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
1697 i2c_check_functionality(client->adapter,
1698 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
1699 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1700 indio_dev->info = &bmc150_accel_info_fifo;
1701 indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1702 }
bd7fe5b7
SP
1703 }
1704
1705 ret = iio_device_register(indio_dev);
1706 if (ret < 0) {
1707 dev_err(&client->dev, "Unable to register iio device\n");
c16bff48 1708 goto err_trigger_unregister;
bd7fe5b7
SP
1709 }
1710
1711 ret = pm_runtime_set_active(&client->dev);
1712 if (ret)
1713 goto err_iio_unregister;
1714
1715 pm_runtime_enable(&client->dev);
1716 pm_runtime_set_autosuspend_delay(&client->dev,
1717 BMC150_AUTO_SUSPEND_DELAY_MS);
1718 pm_runtime_use_autosuspend(&client->dev);
1719
1720 return 0;
1721
1722err_iio_unregister:
1723 iio_device_unregister(indio_dev);
bd7fe5b7 1724err_trigger_unregister:
7d963215 1725 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
c16bff48
VD
1726err_buffer_cleanup:
1727 iio_triggered_buffer_cleanup(indio_dev);
bd7fe5b7
SP
1728
1729 return ret;
1730}
1731
1732static int bmc150_accel_remove(struct i2c_client *client)
1733{
1734 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1735 struct bmc150_accel_data *data = iio_priv(indio_dev);
1736
1737 pm_runtime_disable(&client->dev);
1738 pm_runtime_set_suspended(&client->dev);
1739 pm_runtime_put_noidle(&client->dev);
1740
1741 iio_device_unregister(indio_dev);
1742
7d963215 1743 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
bd7fe5b7 1744
c16bff48
VD
1745 iio_triggered_buffer_cleanup(indio_dev);
1746
bd7fe5b7
SP
1747 mutex_lock(&data->mutex);
1748 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1749 mutex_unlock(&data->mutex);
1750
1751 return 0;
1752}
1753
1754#ifdef CONFIG_PM_SLEEP
1755static int bmc150_accel_suspend(struct device *dev)
1756{
1757 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1758 struct bmc150_accel_data *data = iio_priv(indio_dev);
1759
1760 mutex_lock(&data->mutex);
1761 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1762 mutex_unlock(&data->mutex);
1763
1764 return 0;
1765}
1766
1767static int bmc150_accel_resume(struct device *dev)
1768{
1769 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1770 struct bmc150_accel_data *data = iio_priv(indio_dev);
1771
1772 mutex_lock(&data->mutex);
3e825ec9 1773 if (atomic_read(&data->active_intr))
bd7fe5b7 1774 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
3bbec977 1775 bmc150_accel_fifo_set_mode(data);
bd7fe5b7
SP
1776 mutex_unlock(&data->mutex);
1777
1778 return 0;
1779}
1780#endif
1781
6f0a13f2 1782#ifdef CONFIG_PM
bd7fe5b7
SP
1783static int bmc150_accel_runtime_suspend(struct device *dev)
1784{
1785 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1786 struct bmc150_accel_data *data = iio_priv(indio_dev);
aaeecd80 1787 int ret;
bd7fe5b7
SP
1788
1789 dev_dbg(&data->client->dev, __func__);
aaeecd80
SP
1790 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1791 if (ret < 0)
1792 return -EAGAIN;
bd7fe5b7 1793
aaeecd80 1794 return 0;
bd7fe5b7
SP
1795}
1796
1797static int bmc150_accel_runtime_resume(struct device *dev)
1798{
1799 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1800 struct bmc150_accel_data *data = iio_priv(indio_dev);
1801 int ret;
1802 int sleep_val;
1803
1804 dev_dbg(&data->client->dev, __func__);
1805
1806 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
3bbec977
OP
1807 if (ret < 0)
1808 return ret;
1809 ret = bmc150_accel_fifo_set_mode(data);
bd7fe5b7
SP
1810 if (ret < 0)
1811 return ret;
1812
1813 sleep_val = bmc150_accel_get_startup_times(data);
1814 if (sleep_val < 20)
1815 usleep_range(sleep_val * 1000, 20000);
1816 else
1817 msleep_interruptible(sleep_val);
1818
1819 return 0;
1820}
1821#endif
1822
1823static const struct dev_pm_ops bmc150_accel_pm_ops = {
1824 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1825 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1826 bmc150_accel_runtime_resume, NULL)
1827};
1828
1829static const struct acpi_device_id bmc150_accel_acpi_match[] = {
8ecbb3c3
LP
1830 {"BSBA0150", bmc150},
1831 {"BMC150A", bmc150},
1832 {"BMI055A", bmi055},
1833 {"BMA0255", bma255},
1834 {"BMA250E", bma250e},
1835 {"BMA222E", bma222e},
1836 {"BMA0280", bma280},
bd7fe5b7
SP
1837 { },
1838};
1839MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1840
1841static const struct i2c_device_id bmc150_accel_id[] = {
8ecbb3c3
LP
1842 {"bmc150_accel", bmc150},
1843 {"bmi055_accel", bmi055},
1844 {"bma255", bma255},
1845 {"bma250e", bma250e},
1846 {"bma222e", bma222e},
1847 {"bma280", bma280},
bd7fe5b7
SP
1848 {}
1849};
1850
1851MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1852
1853static struct i2c_driver bmc150_accel_driver = {
1854 .driver = {
1855 .name = BMC150_ACCEL_DRV_NAME,
1856 .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1857 .pm = &bmc150_accel_pm_ops,
1858 },
1859 .probe = bmc150_accel_probe,
1860 .remove = bmc150_accel_remove,
1861 .id_table = bmc150_accel_id,
1862};
1863module_i2c_driver(bmc150_accel_driver);
1864
1865MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1866MODULE_LICENSE("GPL v2");
1867MODULE_DESCRIPTION("BMC150 accelerometer driver");