]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iio/accel/bmc150-accel.c
iio:accel:bmc150-accel: Move bmc150_accel_chip_init()
[mirror_ubuntu-artful-kernel.git] / drivers / iio / accel / bmc150-accel.c
CommitLineData
bd7fe5b7 1/*
8ecbb3c3
LP
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 * - BMC150
4 * - BMI055
5 * - BMA255
6 * - BMA250E
7 * - BMA222E
8 * - BMA280
9 *
bd7fe5b7
SP
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 */
21
22#include <linux/module.h>
23#include <linux/i2c.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/slab.h>
27#include <linux/acpi.h>
28#include <linux/gpio/consumer.h>
29#include <linux/pm.h>
30#include <linux/pm_runtime.h>
31#include <linux/iio/iio.h>
32#include <linux/iio/sysfs.h>
33#include <linux/iio/buffer.h>
34#include <linux/iio/events.h>
35#include <linux/iio/trigger.h>
36#include <linux/iio/trigger_consumer.h>
37#include <linux/iio/triggered_buffer.h>
38
39#define BMC150_ACCEL_DRV_NAME "bmc150_accel"
40#define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
41#define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
42
43#define BMC150_ACCEL_REG_CHIP_ID 0x00
bd7fe5b7
SP
44
45#define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
46#define BMC150_ACCEL_ANY_MOTION_MASK 0x07
8d5a9781
SP
47#define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
48#define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
49#define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
bd7fe5b7
SP
50#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
51
52#define BMC150_ACCEL_REG_PMU_LPW 0x11
53#define BMC150_ACCEL_PMU_MODE_MASK 0xE0
54#define BMC150_ACCEL_PMU_MODE_SHIFT 5
55#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
57
58#define BMC150_ACCEL_REG_PMU_RANGE 0x0F
59
60#define BMC150_ACCEL_DEF_RANGE_2G 0x03
61#define BMC150_ACCEL_DEF_RANGE_4G 0x05
62#define BMC150_ACCEL_DEF_RANGE_8G 0x08
63#define BMC150_ACCEL_DEF_RANGE_16G 0x0C
64
65/* Default BW: 125Hz */
66#define BMC150_ACCEL_REG_PMU_BW 0x10
67#define BMC150_ACCEL_DEF_BW 125
68
69#define BMC150_ACCEL_REG_INT_MAP_0 0x19
70#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
71
72#define BMC150_ACCEL_REG_INT_MAP_1 0x1A
3bbec977
OP
73#define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
74#define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
75#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
bd7fe5b7
SP
76
77#define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
78#define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
79#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
80#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
81
82#define BMC150_ACCEL_REG_INT_EN_0 0x16
83#define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
84#define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
85#define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
86
87#define BMC150_ACCEL_REG_INT_EN_1 0x17
3bbec977
OP
88#define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
89#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
90#define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
bd7fe5b7
SP
91
92#define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
93#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
94
95#define BMC150_ACCEL_REG_INT_5 0x27
96#define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
97
98#define BMC150_ACCEL_REG_INT_6 0x28
99#define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
100
101/* Slope duration in terms of number of samples */
9e8e228f 102#define BMC150_ACCEL_DEF_SLOPE_DURATION 1
bd7fe5b7 103/* in terms of multiples of g's/LSB, based on range */
9e8e228f 104#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
bd7fe5b7
SP
105
106#define BMC150_ACCEL_REG_XOUT_L 0x02
107
108#define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
109
110/* Sleep Duration values */
111#define BMC150_ACCEL_SLEEP_500_MICRO 0x05
112#define BMC150_ACCEL_SLEEP_1_MS 0x06
113#define BMC150_ACCEL_SLEEP_2_MS 0x07
114#define BMC150_ACCEL_SLEEP_4_MS 0x08
115#define BMC150_ACCEL_SLEEP_6_MS 0x09
116#define BMC150_ACCEL_SLEEP_10_MS 0x0A
117#define BMC150_ACCEL_SLEEP_25_MS 0x0B
118#define BMC150_ACCEL_SLEEP_50_MS 0x0C
119#define BMC150_ACCEL_SLEEP_100_MS 0x0D
120#define BMC150_ACCEL_SLEEP_500_MS 0x0E
121#define BMC150_ACCEL_SLEEP_1_SEC 0x0F
122
123#define BMC150_ACCEL_REG_TEMP 0x08
124#define BMC150_ACCEL_TEMP_CENTER_VAL 24
125
126#define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
127#define BMC150_AUTO_SUSPEND_DELAY_MS 2000
128
3bbec977
OP
129#define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
130#define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
131#define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
132#define BMC150_ACCEL_REG_FIFO_DATA 0x3F
133#define BMC150_ACCEL_FIFO_LENGTH 32
134
bd7fe5b7
SP
135enum bmc150_accel_axis {
136 AXIS_X,
137 AXIS_Y,
138 AXIS_Z,
139};
140
141enum bmc150_power_modes {
142 BMC150_ACCEL_SLEEP_MODE_NORMAL,
143 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
144 BMC150_ACCEL_SLEEP_MODE_LPM,
145 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
146};
147
8ecbb3c3
LP
148struct bmc150_scale_info {
149 int scale;
150 u8 reg_range;
151};
152
153struct bmc150_accel_chip_info {
154 u8 chip_id;
155 const struct iio_chan_spec *channels;
156 int num_channels;
157 const struct bmc150_scale_info scale_table[4];
158};
159
3e825ec9
OP
160struct bmc150_accel_interrupt {
161 const struct bmc150_accel_interrupt_info *info;
162 atomic_t users;
163};
164
7d963215
OP
165struct bmc150_accel_trigger {
166 struct bmc150_accel_data *data;
167 struct iio_trigger *indio_trig;
168 int (*setup)(struct bmc150_accel_trigger *t, bool state);
169 int intr;
170 bool enabled;
171};
172
3e825ec9
OP
173enum bmc150_accel_interrupt_id {
174 BMC150_ACCEL_INT_DATA_READY,
175 BMC150_ACCEL_INT_ANY_MOTION,
176 BMC150_ACCEL_INT_WATERMARK,
177 BMC150_ACCEL_INTERRUPTS,
178};
179
7d963215
OP
180enum bmc150_accel_trigger_id {
181 BMC150_ACCEL_TRIGGER_DATA_READY,
182 BMC150_ACCEL_TRIGGER_ANY_MOTION,
183 BMC150_ACCEL_TRIGGERS,
184};
185
bd7fe5b7
SP
186struct bmc150_accel_data {
187 struct i2c_client *client;
3e825ec9 188 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
3e825ec9 189 atomic_t active_intr;
7d963215 190 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
bd7fe5b7 191 struct mutex mutex;
3bbec977 192 u8 fifo_mode, watermark;
bd7fe5b7
SP
193 s16 buffer[8];
194 u8 bw_bits;
195 u32 slope_dur;
196 u32 slope_thres;
197 u32 range;
198 int ev_enable_state;
c16bff48 199 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
8ecbb3c3 200 const struct bmc150_accel_chip_info *chip_info;
bd7fe5b7
SP
201};
202
203static const struct {
204 int val;
205 int val2;
206 u8 bw_bits;
0ba8da96
SK
207} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
208 {31, 260000, 0x09},
209 {62, 500000, 0x0A},
210 {125, 0, 0x0B},
211 {250, 0, 0x0C},
212 {500, 0, 0x0D},
213 {1000, 0, 0x0E},
214 {2000, 0, 0x0F} };
bd7fe5b7
SP
215
216static const struct {
217 int bw_bits;
218 int msec;
219} bmc150_accel_sample_upd_time[] = { {0x08, 64},
220 {0x09, 32},
221 {0x0A, 16},
222 {0x0B, 8},
223 {0x0C, 4},
224 {0x0D, 2},
225 {0x0E, 1},
226 {0x0F, 1} };
227
bd7fe5b7
SP
228static const struct {
229 int sleep_dur;
8ecbb3c3 230 u8 reg_value;
bd7fe5b7
SP
231} bmc150_accel_sleep_value_table[] = { {0, 0},
232 {500, BMC150_ACCEL_SLEEP_500_MICRO},
233 {1000, BMC150_ACCEL_SLEEP_1_MS},
234 {2000, BMC150_ACCEL_SLEEP_2_MS},
235 {4000, BMC150_ACCEL_SLEEP_4_MS},
236 {6000, BMC150_ACCEL_SLEEP_6_MS},
237 {10000, BMC150_ACCEL_SLEEP_10_MS},
238 {25000, BMC150_ACCEL_SLEEP_25_MS},
239 {50000, BMC150_ACCEL_SLEEP_50_MS},
240 {100000, BMC150_ACCEL_SLEEP_100_MS},
241 {500000, BMC150_ACCEL_SLEEP_500_MS},
242 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
243
bd7fe5b7
SP
244static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
245 enum bmc150_power_modes mode,
246 int dur_us)
247{
248 int i;
249 int ret;
250 u8 lpw_bits;
251 int dur_val = -1;
252
253 if (dur_us > 0) {
254 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
255 ++i) {
256 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
257 dur_us)
258 dur_val =
259 bmc150_accel_sleep_value_table[i].reg_value;
260 }
e20008ed 261 } else {
bd7fe5b7 262 dur_val = 0;
e20008ed 263 }
bd7fe5b7
SP
264
265 if (dur_val < 0)
266 return -EINVAL;
267
268 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
269 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
270
271 dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
272
273 ret = i2c_smbus_write_byte_data(data->client,
274 BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
275 if (ret < 0) {
276 dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
277 return ret;
278 }
279
280 return 0;
281}
282
283static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
284 int val2)
285{
286 int i;
287 int ret;
288
289 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
290 if (bmc150_accel_samp_freq_table[i].val == val &&
e20008ed 291 bmc150_accel_samp_freq_table[i].val2 == val2) {
bd7fe5b7
SP
292 ret = i2c_smbus_write_byte_data(
293 data->client,
294 BMC150_ACCEL_REG_PMU_BW,
295 bmc150_accel_samp_freq_table[i].bw_bits);
296 if (ret < 0)
297 return ret;
298
299 data->bw_bits =
300 bmc150_accel_samp_freq_table[i].bw_bits;
301 return 0;
302 }
303 }
304
305 return -EINVAL;
306}
307
802a3aef
OP
308static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
309{
310 int ret, val;
311
312 ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
313 data->slope_thres);
314 if (ret < 0) {
315 dev_err(&data->client->dev, "Error writing reg_int_6\n");
316 return ret;
317 }
318
319 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
320 if (ret < 0) {
321 dev_err(&data->client->dev, "Error reading reg_int_5\n");
322 return ret;
323 }
324
325 val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
326 ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
327 val);
328 if (ret < 0) {
329 dev_err(&data->client->dev, "Error write reg_int_5\n");
330 return ret;
331 }
332
333 dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
334 data->slope_dur);
335
336 return ret;
337}
338
7d963215
OP
339static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
340 bool state)
341{
342 if (state)
343 return bmc150_accel_update_slope(t->data);
344
345 return 0;
346}
347
bd7fe5b7
SP
348static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
349 int *val2)
350{
351 int i;
352
353 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
354 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
355 *val = bmc150_accel_samp_freq_table[i].val;
356 *val2 = bmc150_accel_samp_freq_table[i].val2;
357 return IIO_VAL_INT_PLUS_MICRO;
358 }
359 }
360
361 return -EINVAL;
362}
363
6f0a13f2 364#ifdef CONFIG_PM
bd7fe5b7
SP
365static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
366{
367 int i;
368
369 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
370 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
371 return bmc150_accel_sample_upd_time[i].msec;
372 }
373
374 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
375}
376
377static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
378{
379 int ret;
380
e20008ed 381 if (on) {
bd7fe5b7 382 ret = pm_runtime_get_sync(&data->client->dev);
e20008ed 383 } else {
bd7fe5b7
SP
384 pm_runtime_mark_last_busy(&data->client->dev);
385 ret = pm_runtime_put_autosuspend(&data->client->dev);
386 }
e20008ed 387
bd7fe5b7
SP
388 if (ret < 0) {
389 dev_err(&data->client->dev,
390 "Failed: bmc150_accel_set_power_state for %d\n", on);
aaeecd80
SP
391 if (on)
392 pm_runtime_put_noidle(&data->client->dev);
393
bd7fe5b7
SP
394 return ret;
395 }
396
397 return 0;
398}
b31b05cf
LP
399#else
400static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
401{
402 return 0;
403}
404#endif
bd7fe5b7 405
8e22f477
OP
406static const struct bmc150_accel_interrupt_info {
407 u8 map_reg;
408 u8 map_bitmask;
409 u8 en_reg;
410 u8 en_bitmask;
3e825ec9 411} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
8e22f477
OP
412 { /* data ready interrupt */
413 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
414 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
415 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
416 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
417 },
418 { /* motion interrupt */
419 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
420 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
421 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
422 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
423 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
424 BMC150_ACCEL_INT_EN_BIT_SLP_Z
425 },
3bbec977
OP
426 { /* fifo watermark interrupt */
427 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
428 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
429 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
430 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
431 },
8e22f477
OP
432};
433
3e825ec9
OP
434static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
435 struct bmc150_accel_data *data)
436{
437 int i;
438
439 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
440 data->interrupts[i].info = &bmc150_accel_interrupts[i];
441}
442
443static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
8e22f477
OP
444 bool state)
445{
3e825ec9
OP
446 struct bmc150_accel_interrupt *intr = &data->interrupts[i];
447 const struct bmc150_accel_interrupt_info *info = intr->info;
8e22f477
OP
448 int ret;
449
3e825ec9
OP
450 if (state) {
451 if (atomic_inc_return(&intr->users) > 1)
452 return 0;
453 } else {
454 if (atomic_dec_return(&intr->users) > 0)
455 return 0;
456 }
457
8e22f477 458 /*
e20008ed
HK
459 * We will expect the enable and disable to do operation in reverse
460 * order. This will happen here anyway, as our resume operation uses
461 * sync mode runtime pm calls. The suspend operation will be delayed
462 * by autosuspend delay.
463 * So the disable operation will still happen in reverse order of
464 * enable operation. When runtime pm is disabled the mode is always on,
465 * so sequence doesn't matter.
8e22f477
OP
466 */
467 ret = bmc150_accel_set_power_state(data, state);
468 if (ret < 0)
469 return ret;
470
471 /* map the interrupt to the appropriate pins */
472 ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
473 if (ret < 0) {
474 dev_err(&data->client->dev, "Error reading reg_int_map\n");
475 goto out_fix_power_state;
476 }
477 if (state)
478 ret |= info->map_bitmask;
479 else
480 ret &= ~info->map_bitmask;
481
482 ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
483 ret);
484 if (ret < 0) {
485 dev_err(&data->client->dev, "Error writing reg_int_map\n");
486 goto out_fix_power_state;
487 }
488
489 /* enable/disable the interrupt */
490 ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
491 if (ret < 0) {
492 dev_err(&data->client->dev, "Error reading reg_int_en\n");
493 goto out_fix_power_state;
494 }
495
496 if (state)
497 ret |= info->en_bitmask;
498 else
499 ret &= ~info->en_bitmask;
500
501 ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
502 if (ret < 0) {
503 dev_err(&data->client->dev, "Error writing reg_int_en\n");
504 goto out_fix_power_state;
505 }
506
3e825ec9
OP
507 if (state)
508 atomic_inc(&data->active_intr);
509 else
510 atomic_dec(&data->active_intr);
511
8e22f477
OP
512 return 0;
513
514out_fix_power_state:
515 bmc150_accel_set_power_state(data, false);
516 return ret;
517}
518
bd7fe5b7
SP
519static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
520{
521 int ret, i;
522
8ecbb3c3
LP
523 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
524 if (data->chip_info->scale_table[i].scale == val) {
bd7fe5b7 525 ret = i2c_smbus_write_byte_data(
8ecbb3c3
LP
526 data->client,
527 BMC150_ACCEL_REG_PMU_RANGE,
528 data->chip_info->scale_table[i].reg_range);
bd7fe5b7
SP
529 if (ret < 0) {
530 dev_err(&data->client->dev,
531 "Error writing pmu_range\n");
532 return ret;
533 }
534
8ecbb3c3 535 data->range = data->chip_info->scale_table[i].reg_range;
bd7fe5b7
SP
536 return 0;
537 }
538 }
539
540 return -EINVAL;
541}
542
543static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
544{
545 int ret;
546
547 mutex_lock(&data->mutex);
548
549 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
550 if (ret < 0) {
551 dev_err(&data->client->dev, "Error reading reg_temp\n");
552 mutex_unlock(&data->mutex);
553 return ret;
554 }
555 *val = sign_extend32(ret, 7);
556
557 mutex_unlock(&data->mutex);
558
559 return IIO_VAL_INT;
560}
561
8ecbb3c3
LP
562static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
563 struct iio_chan_spec const *chan,
bd7fe5b7
SP
564 int *val)
565{
566 int ret;
8ecbb3c3 567 int axis = chan->scan_index;
bd7fe5b7
SP
568
569 mutex_lock(&data->mutex);
570 ret = bmc150_accel_set_power_state(data, true);
571 if (ret < 0) {
572 mutex_unlock(&data->mutex);
573 return ret;
574 }
575
576 ret = i2c_smbus_read_word_data(data->client,
577 BMC150_ACCEL_AXIS_TO_REG(axis));
578 if (ret < 0) {
579 dev_err(&data->client->dev, "Error reading axis %d\n", axis);
580 bmc150_accel_set_power_state(data, false);
581 mutex_unlock(&data->mutex);
582 return ret;
583 }
8ecbb3c3
LP
584 *val = sign_extend32(ret >> chan->scan_type.shift,
585 chan->scan_type.realbits - 1);
bd7fe5b7
SP
586 ret = bmc150_accel_set_power_state(data, false);
587 mutex_unlock(&data->mutex);
588 if (ret < 0)
589 return ret;
590
591 return IIO_VAL_INT;
592}
593
594static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
595 struct iio_chan_spec const *chan,
596 int *val, int *val2, long mask)
597{
598 struct bmc150_accel_data *data = iio_priv(indio_dev);
599 int ret;
600
601 switch (mask) {
602 case IIO_CHAN_INFO_RAW:
603 switch (chan->type) {
604 case IIO_TEMP:
605 return bmc150_accel_get_temp(data, val);
606 case IIO_ACCEL:
607 if (iio_buffer_enabled(indio_dev))
608 return -EBUSY;
609 else
8ecbb3c3 610 return bmc150_accel_get_axis(data, chan, val);
bd7fe5b7
SP
611 default:
612 return -EINVAL;
613 }
614 case IIO_CHAN_INFO_OFFSET:
615 if (chan->type == IIO_TEMP) {
616 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
617 return IIO_VAL_INT;
e20008ed 618 } else {
bd7fe5b7 619 return -EINVAL;
e20008ed 620 }
bd7fe5b7
SP
621 case IIO_CHAN_INFO_SCALE:
622 *val = 0;
623 switch (chan->type) {
624 case IIO_TEMP:
625 *val2 = 500000;
626 return IIO_VAL_INT_PLUS_MICRO;
627 case IIO_ACCEL:
628 {
629 int i;
8ecbb3c3
LP
630 const struct bmc150_scale_info *si;
631 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
bd7fe5b7 632
8ecbb3c3
LP
633 for (i = 0; i < st_size; ++i) {
634 si = &data->chip_info->scale_table[i];
635 if (si->reg_range == data->range) {
636 *val2 = si->scale;
bd7fe5b7
SP
637 return IIO_VAL_INT_PLUS_MICRO;
638 }
639 }
640 return -EINVAL;
641 }
642 default:
643 return -EINVAL;
644 }
645 case IIO_CHAN_INFO_SAMP_FREQ:
646 mutex_lock(&data->mutex);
647 ret = bmc150_accel_get_bw(data, val, val2);
648 mutex_unlock(&data->mutex);
649 return ret;
650 default:
651 return -EINVAL;
652 }
653}
654
655static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
656 struct iio_chan_spec const *chan,
657 int val, int val2, long mask)
658{
659 struct bmc150_accel_data *data = iio_priv(indio_dev);
660 int ret;
661
662 switch (mask) {
663 case IIO_CHAN_INFO_SAMP_FREQ:
664 mutex_lock(&data->mutex);
665 ret = bmc150_accel_set_bw(data, val, val2);
666 mutex_unlock(&data->mutex);
667 break;
668 case IIO_CHAN_INFO_SCALE:
669 if (val)
670 return -EINVAL;
671
672 mutex_lock(&data->mutex);
673 ret = bmc150_accel_set_scale(data, val2);
674 mutex_unlock(&data->mutex);
675 return ret;
676 default:
677 ret = -EINVAL;
678 }
679
680 return ret;
681}
682
683static int bmc150_accel_read_event(struct iio_dev *indio_dev,
684 const struct iio_chan_spec *chan,
685 enum iio_event_type type,
686 enum iio_event_direction dir,
687 enum iio_event_info info,
688 int *val, int *val2)
689{
690 struct bmc150_accel_data *data = iio_priv(indio_dev);
691
692 *val2 = 0;
693 switch (info) {
694 case IIO_EV_INFO_VALUE:
695 *val = data->slope_thres;
696 break;
697 case IIO_EV_INFO_PERIOD:
802a3aef 698 *val = data->slope_dur;
bd7fe5b7
SP
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return IIO_VAL_INT;
705}
706
707static int bmc150_accel_write_event(struct iio_dev *indio_dev,
708 const struct iio_chan_spec *chan,
709 enum iio_event_type type,
710 enum iio_event_direction dir,
711 enum iio_event_info info,
712 int val, int val2)
713{
714 struct bmc150_accel_data *data = iio_priv(indio_dev);
715
716 if (data->ev_enable_state)
717 return -EBUSY;
718
719 switch (info) {
720 case IIO_EV_INFO_VALUE:
fdd15f65 721 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
bd7fe5b7
SP
722 break;
723 case IIO_EV_INFO_PERIOD:
802a3aef 724 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
bd7fe5b7
SP
725 break;
726 default:
727 return -EINVAL;
728 }
729
730 return 0;
731}
732
733static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
734 const struct iio_chan_spec *chan,
735 enum iio_event_type type,
736 enum iio_event_direction dir)
737{
bd7fe5b7
SP
738 struct bmc150_accel_data *data = iio_priv(indio_dev);
739
740 return data->ev_enable_state;
741}
742
743static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
744 const struct iio_chan_spec *chan,
745 enum iio_event_type type,
746 enum iio_event_direction dir,
747 int state)
748{
749 struct bmc150_accel_data *data = iio_priv(indio_dev);
750 int ret;
751
14ee64f4 752 if (state == data->ev_enable_state)
bd7fe5b7
SP
753 return 0;
754
755 mutex_lock(&data->mutex);
756
3e825ec9
OP
757 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
758 state);
bd7fe5b7
SP
759 if (ret < 0) {
760 mutex_unlock(&data->mutex);
761 return ret;
762 }
763
764 data->ev_enable_state = state;
765 mutex_unlock(&data->mutex);
766
767 return 0;
768}
769
770static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
e20008ed 771 struct iio_trigger *trig)
bd7fe5b7
SP
772{
773 struct bmc150_accel_data *data = iio_priv(indio_dev);
7d963215 774 int i;
bd7fe5b7 775
7d963215
OP
776 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
777 if (data->triggers[i].indio_trig == trig)
778 return 0;
779 }
bd7fe5b7 780
7d963215 781 return -EINVAL;
bd7fe5b7
SP
782}
783
3bbec977
OP
784static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
785 struct device_attribute *attr,
786 char *buf)
787{
788 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
789 struct bmc150_accel_data *data = iio_priv(indio_dev);
790 int wm;
791
792 mutex_lock(&data->mutex);
793 wm = data->watermark;
794 mutex_unlock(&data->mutex);
795
796 return sprintf(buf, "%d\n", wm);
797}
798
799static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
800 struct device_attribute *attr,
801 char *buf)
802{
803 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
804 struct bmc150_accel_data *data = iio_priv(indio_dev);
805 bool state;
806
807 mutex_lock(&data->mutex);
808 state = data->fifo_mode;
809 mutex_unlock(&data->mutex);
810
811 return sprintf(buf, "%d\n", state);
812}
813
814static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
815static IIO_CONST_ATTR(hwfifo_watermark_max,
816 __stringify(BMC150_ACCEL_FIFO_LENGTH));
817static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
818 bmc150_accel_get_fifo_state, NULL, 0);
819static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
820 bmc150_accel_get_fifo_watermark, NULL, 0);
821
822static const struct attribute *bmc150_accel_fifo_attributes[] = {
823 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
824 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
825 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
826 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
827 NULL,
828};
829
830static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
831{
832 struct bmc150_accel_data *data = iio_priv(indio_dev);
833
834 if (val > BMC150_ACCEL_FIFO_LENGTH)
835 val = BMC150_ACCEL_FIFO_LENGTH;
836
837 mutex_lock(&data->mutex);
838 data->watermark = val;
839 mutex_unlock(&data->mutex);
840
841 return 0;
842}
843
844/*
845 * We must read at least one full frame in one burst, otherwise the rest of the
846 * frame data is discarded.
847 */
848static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
849 char *buffer, int samples)
850{
851 int sample_length = 3 * 2;
852 u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
853 int ret = -EIO;
854
855 if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
856 struct i2c_msg msg[2] = {
857 {
858 .addr = client->addr,
859 .flags = 0,
860 .buf = &reg_fifo_data,
861 .len = sizeof(reg_fifo_data),
862 },
863 {
864 .addr = client->addr,
865 .flags = I2C_M_RD,
866 .buf = (u8 *)buffer,
867 .len = samples * sample_length,
868 }
869 };
870
871 ret = i2c_transfer(client->adapter, msg, 2);
872 if (ret != 2)
873 ret = -EIO;
874 else
875 ret = 0;
876 } else {
877 int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
878
879 for (i = 0; i < samples * sample_length; i += step) {
880 ret = i2c_smbus_read_i2c_block_data(client,
881 reg_fifo_data, step,
882 &buffer[i]);
883 if (ret != step) {
884 ret = -EIO;
885 break;
886 }
887
888 ret = 0;
889 }
890 }
891
892 if (ret)
893 dev_err(&client->dev, "Error transferring data from fifo\n");
894
895 return ret;
896}
897
898static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
899 unsigned samples, bool irq)
900{
901 struct bmc150_accel_data *data = iio_priv(indio_dev);
902 int ret, i;
903 u8 count;
904 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
905 int64_t tstamp;
906 uint64_t sample_period;
e20008ed 907
3bbec977
OP
908 ret = i2c_smbus_read_byte_data(data->client,
909 BMC150_ACCEL_REG_FIFO_STATUS);
910 if (ret < 0) {
911 dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
912 return ret;
913 }
914
915 count = ret & 0x7F;
916
917 if (!count)
918 return 0;
919
920 /*
921 * If we getting called from IRQ handler we know the stored timestamp is
922 * fairly accurate for the last stored sample. Otherwise, if we are
923 * called as a result of a read operation from userspace and hence
924 * before the watermark interrupt was triggered, take a timestamp
925 * now. We can fall anywhere in between two samples so the error in this
926 * case is at most one sample period.
927 */
928 if (!irq) {
929 data->old_timestamp = data->timestamp;
930 data->timestamp = iio_get_time_ns();
931 }
932
933 /*
934 * Approximate timestamps for each of the sample based on the sampling
935 * frequency, timestamp for last sample and number of samples.
936 *
937 * Note that we can't use the current bandwidth settings to compute the
938 * sample period because the sample rate varies with the device
939 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
940 * small variation adds when we store a large number of samples and
941 * creates significant jitter between the last and first samples in
942 * different batches (e.g. 32ms vs 21ms).
943 *
944 * To avoid this issue we compute the actual sample period ourselves
945 * based on the timestamp delta between the last two flush operations.
946 */
947 sample_period = (data->timestamp - data->old_timestamp);
948 do_div(sample_period, count);
949 tstamp = data->timestamp - (count - 1) * sample_period;
950
951 if (samples && count > samples)
952 count = samples;
953
954 ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
955 if (ret)
956 return ret;
957
958 /*
959 * Ideally we want the IIO core to handle the demux when running in fifo
960 * mode but not when running in triggered buffer mode. Unfortunately
961 * this does not seem to be possible, so stick with driver demux for
962 * now.
963 */
964 for (i = 0; i < count; i++) {
965 u16 sample[8];
966 int j, bit;
967
968 j = 0;
969 for_each_set_bit(bit, indio_dev->active_scan_mask,
970 indio_dev->masklength)
971 memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
972
973 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
974
975 tstamp += sample_period;
976 }
977
978 return count;
979}
980
981static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
982{
983 struct bmc150_accel_data *data = iio_priv(indio_dev);
984 int ret;
985
986 mutex_lock(&data->mutex);
987 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
988 mutex_unlock(&data->mutex);
989
990 return ret;
991}
992
bd7fe5b7 993static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
0ba8da96 994 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
bd7fe5b7
SP
995
996static struct attribute *bmc150_accel_attributes[] = {
997 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
998 NULL,
999};
1000
1001static const struct attribute_group bmc150_accel_attrs_group = {
1002 .attrs = bmc150_accel_attributes,
1003};
1004
1005static const struct iio_event_spec bmc150_accel_event = {
1006 .type = IIO_EV_TYPE_ROC,
1174124c 1007 .dir = IIO_EV_DIR_EITHER,
bd7fe5b7
SP
1008 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
1009 BIT(IIO_EV_INFO_ENABLE) |
1010 BIT(IIO_EV_INFO_PERIOD)
1011};
1012
8ecbb3c3 1013#define BMC150_ACCEL_CHANNEL(_axis, bits) { \
bd7fe5b7
SP
1014 .type = IIO_ACCEL, \
1015 .modified = 1, \
1016 .channel2 = IIO_MOD_##_axis, \
1017 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1018 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
1019 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1020 .scan_index = AXIS_##_axis, \
1021 .scan_type = { \
1022 .sign = 's', \
8ecbb3c3 1023 .realbits = (bits), \
bd7fe5b7 1024 .storagebits = 16, \
8ecbb3c3 1025 .shift = 16 - (bits), \
bd7fe5b7
SP
1026 }, \
1027 .event_spec = &bmc150_accel_event, \
1028 .num_event_specs = 1 \
1029}
1030
8ecbb3c3
LP
1031#define BMC150_ACCEL_CHANNELS(bits) { \
1032 { \
1033 .type = IIO_TEMP, \
1034 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1035 BIT(IIO_CHAN_INFO_SCALE) | \
1036 BIT(IIO_CHAN_INFO_OFFSET), \
1037 .scan_index = -1, \
1038 }, \
1039 BMC150_ACCEL_CHANNEL(X, bits), \
1040 BMC150_ACCEL_CHANNEL(Y, bits), \
1041 BMC150_ACCEL_CHANNEL(Z, bits), \
1042 IIO_CHAN_SOFT_TIMESTAMP(3), \
1043}
1044
1045static const struct iio_chan_spec bma222e_accel_channels[] =
1046 BMC150_ACCEL_CHANNELS(8);
1047static const struct iio_chan_spec bma250e_accel_channels[] =
1048 BMC150_ACCEL_CHANNELS(10);
1049static const struct iio_chan_spec bmc150_accel_channels[] =
1050 BMC150_ACCEL_CHANNELS(12);
1051static const struct iio_chan_spec bma280_accel_channels[] =
1052 BMC150_ACCEL_CHANNELS(14);
1053
1054enum {
1055 bmc150,
1056 bmi055,
1057 bma255,
1058 bma250e,
1059 bma222e,
1060 bma280,
1061};
1062
1063static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1064 [bmc150] = {
1065 .chip_id = 0xFA,
1066 .channels = bmc150_accel_channels,
1067 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1068 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1069 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1070 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1071 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1072 },
1073 [bmi055] = {
1074 .chip_id = 0xFA,
1075 .channels = bmc150_accel_channels,
1076 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1077 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1078 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1079 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1080 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1081 },
1082 [bma255] = {
1083 .chip_id = 0xFA,
1084 .channels = bmc150_accel_channels,
1085 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1086 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1087 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1088 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1089 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1090 },
1091 [bma250e] = {
1092 .chip_id = 0xF9,
1093 .channels = bma250e_accel_channels,
1094 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1095 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1096 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1097 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1098 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1099 },
1100 [bma222e] = {
1101 .chip_id = 0xF8,
1102 .channels = bma222e_accel_channels,
1103 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1104 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1105 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1106 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1107 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1108 },
1109 [bma280] = {
1110 .chip_id = 0xFB,
1111 .channels = bma280_accel_channels,
1112 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1113 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1114 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1115 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1116 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
bd7fe5b7 1117 },
bd7fe5b7
SP
1118};
1119
1120static const struct iio_info bmc150_accel_info = {
1121 .attrs = &bmc150_accel_attrs_group,
1122 .read_raw = bmc150_accel_read_raw,
1123 .write_raw = bmc150_accel_write_raw,
1124 .read_event_value = bmc150_accel_read_event,
1125 .write_event_value = bmc150_accel_write_event,
1126 .write_event_config = bmc150_accel_write_event_config,
1127 .read_event_config = bmc150_accel_read_event_config,
bd7fe5b7
SP
1128 .driver_module = THIS_MODULE,
1129};
1130
3bbec977
OP
1131static const struct iio_info bmc150_accel_info_fifo = {
1132 .attrs = &bmc150_accel_attrs_group,
1133 .read_raw = bmc150_accel_read_raw,
1134 .write_raw = bmc150_accel_write_raw,
1135 .read_event_value = bmc150_accel_read_event,
1136 .write_event_value = bmc150_accel_write_event,
1137 .write_event_config = bmc150_accel_write_event_config,
1138 .read_event_config = bmc150_accel_read_event_config,
1139 .validate_trigger = bmc150_accel_validate_trigger,
1140 .hwfifo_set_watermark = bmc150_accel_set_watermark,
1141 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1142 .driver_module = THIS_MODULE,
1143};
1144
bd7fe5b7
SP
1145static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1146{
1147 struct iio_poll_func *pf = p;
1148 struct iio_dev *indio_dev = pf->indio_dev;
1149 struct bmc150_accel_data *data = iio_priv(indio_dev);
1150 int bit, ret, i = 0;
1151
1152 mutex_lock(&data->mutex);
70dddeee 1153 for_each_set_bit(bit, indio_dev->active_scan_mask,
bd7fe5b7
SP
1154 indio_dev->masklength) {
1155 ret = i2c_smbus_read_word_data(data->client,
1156 BMC150_ACCEL_AXIS_TO_REG(bit));
1157 if (ret < 0) {
1158 mutex_unlock(&data->mutex);
1159 goto err_read;
1160 }
1161 data->buffer[i++] = ret;
1162 }
1163 mutex_unlock(&data->mutex);
1164
1165 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
c16bff48 1166 pf->timestamp);
bd7fe5b7
SP
1167err_read:
1168 iio_trigger_notify_done(indio_dev->trig);
1169
1170 return IRQ_HANDLED;
1171}
1172
1173static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1174{
7d963215
OP
1175 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1176 struct bmc150_accel_data *data = t->data;
bd7fe5b7
SP
1177 int ret;
1178
1179 /* new data interrupts don't need ack */
7d963215 1180 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
bd7fe5b7
SP
1181 return 0;
1182
1183 mutex_lock(&data->mutex);
1184 /* clear any latched interrupt */
1185 ret = i2c_smbus_write_byte_data(data->client,
1186 BMC150_ACCEL_REG_INT_RST_LATCH,
1187 BMC150_ACCEL_INT_MODE_LATCH_INT |
1188 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1189 mutex_unlock(&data->mutex);
1190 if (ret < 0) {
1191 dev_err(&data->client->dev,
1192 "Error writing reg_int_rst_latch\n");
1193 return ret;
1194 }
1195
1196 return 0;
1197}
1198
7d963215 1199static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
e20008ed 1200 bool state)
bd7fe5b7 1201{
7d963215
OP
1202 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1203 struct bmc150_accel_data *data = t->data;
bd7fe5b7
SP
1204 int ret;
1205
1206 mutex_lock(&data->mutex);
1207
7d963215
OP
1208 if (t->enabled == state) {
1209 mutex_unlock(&data->mutex);
1210 return 0;
1211 }
1212
1213 if (t->setup) {
1214 ret = t->setup(t, state);
1215 if (ret < 0) {
14ee64f4 1216 mutex_unlock(&data->mutex);
7d963215 1217 return ret;
14ee64f4
OP
1218 }
1219 }
1220
7d963215 1221 ret = bmc150_accel_set_interrupt(data, t->intr, state);
bd7fe5b7
SP
1222 if (ret < 0) {
1223 mutex_unlock(&data->mutex);
1224 return ret;
1225 }
7d963215
OP
1226
1227 t->enabled = state;
bd7fe5b7
SP
1228
1229 mutex_unlock(&data->mutex);
1230
1231 return ret;
1232}
1233
1234static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
7d963215 1235 .set_trigger_state = bmc150_accel_trigger_set_state,
bd7fe5b7
SP
1236 .try_reenable = bmc150_accel_trig_try_reen,
1237 .owner = THIS_MODULE,
1238};
1239
3bbec977 1240static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
bd7fe5b7 1241{
bd7fe5b7 1242 struct bmc150_accel_data *data = iio_priv(indio_dev);
bd7fe5b7 1243 int dir;
3bbec977 1244 int ret;
bd7fe5b7
SP
1245
1246 ret = i2c_smbus_read_byte_data(data->client,
1247 BMC150_ACCEL_REG_INT_STATUS_2);
1248 if (ret < 0) {
1249 dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
3bbec977 1250 return ret;
bd7fe5b7
SP
1251 }
1252
1253 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1254 dir = IIO_EV_DIR_FALLING;
1255 else
1256 dir = IIO_EV_DIR_RISING;
1257
8d5a9781 1258 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
e20008ed
HK
1259 iio_push_event(indio_dev,
1260 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1261 0,
1262 IIO_MOD_X,
1263 IIO_EV_TYPE_ROC,
1264 dir),
1265 data->timestamp);
1266
8d5a9781 1267 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
e20008ed
HK
1268 iio_push_event(indio_dev,
1269 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1270 0,
1271 IIO_MOD_Y,
1272 IIO_EV_TYPE_ROC,
1273 dir),
1274 data->timestamp);
1275
8d5a9781 1276 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
e20008ed
HK
1277 iio_push_event(indio_dev,
1278 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1279 0,
1280 IIO_MOD_Z,
1281 IIO_EV_TYPE_ROC,
1282 dir),
1283 data->timestamp);
1284
3bbec977
OP
1285 return ret;
1286}
1287
1288static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1289{
1290 struct iio_dev *indio_dev = private;
1291 struct bmc150_accel_data *data = iio_priv(indio_dev);
1292 bool ack = false;
1293 int ret;
1294
1295 mutex_lock(&data->mutex);
1296
1297 if (data->fifo_mode) {
1298 ret = __bmc150_accel_fifo_flush(indio_dev,
1299 BMC150_ACCEL_FIFO_LENGTH, true);
1300 if (ret > 0)
1301 ack = true;
1302 }
1303
1304 if (data->ev_enable_state) {
1305 ret = bmc150_accel_handle_roc_event(indio_dev);
1306 if (ret > 0)
1307 ack = true;
1308 }
1309
1310 if (ack) {
bd7fe5b7
SP
1311 ret = i2c_smbus_write_byte_data(data->client,
1312 BMC150_ACCEL_REG_INT_RST_LATCH,
1313 BMC150_ACCEL_INT_MODE_LATCH_INT |
1314 BMC150_ACCEL_INT_MODE_LATCH_RESET);
3bbec977 1315 if (ret)
e20008ed
HK
1316 dev_err(&data->client->dev,
1317 "Error writing reg_int_rst_latch\n");
1318
3bbec977
OP
1319 ret = IRQ_HANDLED;
1320 } else {
1321 ret = IRQ_NONE;
1322 }
bd7fe5b7 1323
3bbec977
OP
1324 mutex_unlock(&data->mutex);
1325
1326 return ret;
bd7fe5b7
SP
1327}
1328
3bbec977 1329static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
bd7fe5b7
SP
1330{
1331 struct iio_dev *indio_dev = private;
1332 struct bmc150_accel_data *data = iio_priv(indio_dev);
3bbec977 1333 bool ack = false;
7d963215 1334 int i;
bd7fe5b7 1335
3bbec977 1336 data->old_timestamp = data->timestamp;
bd7fe5b7
SP
1337 data->timestamp = iio_get_time_ns();
1338
7d963215
OP
1339 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1340 if (data->triggers[i].enabled) {
1341 iio_trigger_poll(data->triggers[i].indio_trig);
3bbec977 1342 ack = true;
7d963215
OP
1343 break;
1344 }
1345 }
bd7fe5b7 1346
3bbec977 1347 if (data->ev_enable_state || data->fifo_mode)
bd7fe5b7 1348 return IRQ_WAKE_THREAD;
3bbec977
OP
1349
1350 if (ack)
bd7fe5b7 1351 return IRQ_HANDLED;
3bbec977
OP
1352
1353 return IRQ_NONE;
bd7fe5b7
SP
1354}
1355
8ecbb3c3 1356static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data)
bd7fe5b7
SP
1357{
1358 const struct acpi_device_id *id;
8ecbb3c3
LP
1359
1360 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1361
1362 if (!id)
1363 return NULL;
1364
e20008ed 1365 *data = (int)id->driver_data;
8ecbb3c3
LP
1366
1367 return dev_name(dev);
1368}
1369
1370static int bmc150_accel_gpio_probe(struct i2c_client *client,
e20008ed 1371 struct bmc150_accel_data *data)
8ecbb3c3 1372{
bd7fe5b7
SP
1373 struct device *dev;
1374 struct gpio_desc *gpio;
1375 int ret;
1376
1377 if (!client)
1378 return -EINVAL;
1379
1380 dev = &client->dev;
bd7fe5b7
SP
1381
1382 /* data ready gpio interrupt pin */
b457f53a 1383 gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
bd7fe5b7 1384 if (IS_ERR(gpio)) {
8ecbb3c3 1385 dev_err(dev, "Failed: gpio get index\n");
bd7fe5b7
SP
1386 return PTR_ERR(gpio);
1387 }
1388
bd7fe5b7
SP
1389 ret = gpiod_to_irq(gpio);
1390
1391 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1392
1393 return ret;
1394}
1395
7d963215
OP
1396static const struct {
1397 int intr;
1398 const char *name;
1399 int (*setup)(struct bmc150_accel_trigger *t, bool state);
1400} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1401 {
1402 .intr = 0,
1403 .name = "%s-dev%d",
1404 },
1405 {
1406 .intr = 1,
1407 .name = "%s-any-motion-dev%d",
1408 .setup = bmc150_accel_any_motion_setup,
1409 },
1410};
1411
1412static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1413 int from)
1414{
1415 int i;
1416
1417 for (i = from; i >= 0; i++) {
1418 if (data->triggers[i].indio_trig) {
1419 iio_trigger_unregister(data->triggers[i].indio_trig);
1420 data->triggers[i].indio_trig = NULL;
1421 }
1422 }
1423}
1424
1425static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1426 struct bmc150_accel_data *data)
1427{
1428 int i, ret;
1429
1430 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1431 struct bmc150_accel_trigger *t = &data->triggers[i];
1432
1433 t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
1434 bmc150_accel_triggers[i].name,
1435 indio_dev->name,
1436 indio_dev->id);
1437 if (!t->indio_trig) {
1438 ret = -ENOMEM;
1439 break;
1440 }
1441
1442 t->indio_trig->dev.parent = &data->client->dev;
1443 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1444 t->intr = bmc150_accel_triggers[i].intr;
1445 t->data = data;
1446 t->setup = bmc150_accel_triggers[i].setup;
1447 iio_trigger_set_drvdata(t->indio_trig, t);
1448
1449 ret = iio_trigger_register(t->indio_trig);
1450 if (ret)
1451 break;
1452 }
1453
1454 if (ret)
1455 bmc150_accel_unregister_triggers(data, i - 1);
1456
1457 return ret;
1458}
1459
3bbec977
OP
1460#define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1461#define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1462#define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1463
1464static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1465{
1466 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1467 int ret;
1468
1469 ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
1470 if (ret < 0) {
1471 dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
1472 return ret;
1473 }
1474
1475 if (!data->fifo_mode)
1476 return 0;
1477
1478 ret = i2c_smbus_write_byte_data(data->client,
1479 BMC150_ACCEL_REG_FIFO_CONFIG0,
1480 data->watermark);
1481 if (ret < 0)
1482 dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
1483
1484 return ret;
1485}
1486
c16bff48
VD
1487static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1488{
1489 struct bmc150_accel_data *data = iio_priv(indio_dev);
1490
1491 return bmc150_accel_set_power_state(data, true);
1492}
1493
3bbec977
OP
1494static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1495{
1496 struct bmc150_accel_data *data = iio_priv(indio_dev);
1497 int ret = 0;
1498
1499 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1500 return iio_triggered_buffer_postenable(indio_dev);
1501
1502 mutex_lock(&data->mutex);
1503
1504 if (!data->watermark)
1505 goto out;
1506
1507 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1508 true);
1509 if (ret)
1510 goto out;
1511
1512 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1513
1514 ret = bmc150_accel_fifo_set_mode(data);
1515 if (ret) {
1516 data->fifo_mode = 0;
1517 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1518 false);
1519 }
1520
1521out:
1522 mutex_unlock(&data->mutex);
1523
1524 return ret;
1525}
1526
1527static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1528{
1529 struct bmc150_accel_data *data = iio_priv(indio_dev);
1530
1531 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1532 return iio_triggered_buffer_predisable(indio_dev);
1533
1534 mutex_lock(&data->mutex);
1535
1536 if (!data->fifo_mode)
1537 goto out;
1538
1539 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1540 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1541 data->fifo_mode = 0;
1542 bmc150_accel_fifo_set_mode(data);
1543
1544out:
1545 mutex_unlock(&data->mutex);
1546
1547 return 0;
1548}
1549
c16bff48
VD
1550static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1551{
1552 struct bmc150_accel_data *data = iio_priv(indio_dev);
1553
1554 return bmc150_accel_set_power_state(data, false);
1555}
1556
3bbec977 1557static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
c16bff48 1558 .preenable = bmc150_accel_buffer_preenable,
3bbec977
OP
1559 .postenable = bmc150_accel_buffer_postenable,
1560 .predisable = bmc150_accel_buffer_predisable,
c16bff48 1561 .postdisable = bmc150_accel_buffer_postdisable,
3bbec977
OP
1562};
1563
c4eaab79
BN
1564static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1565{
1566 int ret;
1567
1568 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
1569 if (ret < 0) {
1570 dev_err(&data->client->dev, "Error: Reading chip id\n");
1571 return ret;
1572 }
1573
1574 dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
1575 if (ret != data->chip_info->chip_id) {
1576 dev_err(&data->client->dev, "Invalid chip %x\n", ret);
1577 return -ENODEV;
1578 }
1579
1580 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1581 if (ret < 0)
1582 return ret;
1583
1584 /* Set Bandwidth */
1585 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1586 if (ret < 0)
1587 return ret;
1588
1589 /* Set Default Range */
1590 ret = i2c_smbus_write_byte_data(data->client,
1591 BMC150_ACCEL_REG_PMU_RANGE,
1592 BMC150_ACCEL_DEF_RANGE_4G);
1593 if (ret < 0) {
1594 dev_err(&data->client->dev, "Error writing reg_pmu_range\n");
1595 return ret;
1596 }
1597
1598 data->range = BMC150_ACCEL_DEF_RANGE_4G;
1599
1600 /* Set default slope duration and thresholds */
1601 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1602 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1603 ret = bmc150_accel_update_slope(data);
1604 if (ret < 0)
1605 return ret;
1606
1607 /* Set default as latched interrupts */
1608 ret = i2c_smbus_write_byte_data(data->client,
1609 BMC150_ACCEL_REG_INT_RST_LATCH,
1610 BMC150_ACCEL_INT_MODE_LATCH_INT |
1611 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1612 if (ret < 0) {
1613 dev_err(&data->client->dev,
1614 "Error writing reg_int_rst_latch\n");
1615 return ret;
1616 }
1617
1618 return 0;
1619}
1620
bd7fe5b7
SP
1621static int bmc150_accel_probe(struct i2c_client *client,
1622 const struct i2c_device_id *id)
1623{
1624 struct bmc150_accel_data *data;
1625 struct iio_dev *indio_dev;
1626 int ret;
8ecbb3c3
LP
1627 const char *name = NULL;
1628 int chip_id = 0;
bd7fe5b7
SP
1629
1630 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1631 if (!indio_dev)
1632 return -ENOMEM;
1633
1634 data = iio_priv(indio_dev);
1635 i2c_set_clientdata(client, indio_dev);
1636 data->client = client;
1637
8ecbb3c3
LP
1638 if (id) {
1639 name = id->name;
1640 chip_id = id->driver_data;
1641 }
1642
1643 if (ACPI_HANDLE(&client->dev))
1644 name = bmc150_accel_match_acpi_device(&client->dev, &chip_id);
1645
1646 data->chip_info = &bmc150_accel_chip_info_tbl[chip_id];
1647
bd7fe5b7
SP
1648 ret = bmc150_accel_chip_init(data);
1649 if (ret < 0)
1650 return ret;
1651
1652 mutex_init(&data->mutex);
1653
1654 indio_dev->dev.parent = &client->dev;
8ecbb3c3
LP
1655 indio_dev->channels = data->chip_info->channels;
1656 indio_dev->num_channels = data->chip_info->num_channels;
1657 indio_dev->name = name;
bd7fe5b7
SP
1658 indio_dev->modes = INDIO_DIRECT_MODE;
1659 indio_dev->info = &bmc150_accel_info;
1660
c16bff48
VD
1661 ret = iio_triggered_buffer_setup(indio_dev,
1662 &iio_pollfunc_store_time,
1663 bmc150_accel_trigger_handler,
1664 &bmc150_accel_buffer_ops);
1665 if (ret < 0) {
1666 dev_err(&client->dev, "Failed: iio triggered buffer setup\n");
1667 return ret;
1668 }
1669
bd7fe5b7 1670 if (client->irq < 0)
8ecbb3c3 1671 client->irq = bmc150_accel_gpio_probe(client, data);
bd7fe5b7 1672
c176becd 1673 if (client->irq > 0) {
bd7fe5b7
SP
1674 ret = devm_request_threaded_irq(
1675 &client->dev, client->irq,
3bbec977
OP
1676 bmc150_accel_irq_handler,
1677 bmc150_accel_irq_thread_handler,
bd7fe5b7
SP
1678 IRQF_TRIGGER_RISING,
1679 BMC150_ACCEL_IRQ_NAME,
1680 indio_dev);
1681 if (ret)
c16bff48 1682 goto err_buffer_cleanup;
bd7fe5b7 1683
8e22f477
OP
1684 /*
1685 * Set latched mode interrupt. While certain interrupts are
1686 * non-latched regardless of this settings (e.g. new data) we
1687 * want to use latch mode when we can to prevent interrupt
1688 * flooding.
1689 */
1690 ret = i2c_smbus_write_byte_data(data->client,
1691 BMC150_ACCEL_REG_INT_RST_LATCH,
1692 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1693 if (ret < 0) {
1694 dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
c16bff48 1695 goto err_buffer_cleanup;
8e22f477
OP
1696 }
1697
3e825ec9
OP
1698 bmc150_accel_interrupts_setup(indio_dev, data);
1699
7d963215 1700 ret = bmc150_accel_triggers_setup(indio_dev, data);
bd7fe5b7 1701 if (ret)
c16bff48 1702 goto err_buffer_cleanup;
3bbec977
OP
1703
1704 if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
1705 i2c_check_functionality(client->adapter,
1706 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
1707 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1708 indio_dev->info = &bmc150_accel_info_fifo;
1709 indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1710 }
bd7fe5b7
SP
1711 }
1712
1713 ret = iio_device_register(indio_dev);
1714 if (ret < 0) {
1715 dev_err(&client->dev, "Unable to register iio device\n");
c16bff48 1716 goto err_trigger_unregister;
bd7fe5b7
SP
1717 }
1718
1719 ret = pm_runtime_set_active(&client->dev);
1720 if (ret)
1721 goto err_iio_unregister;
1722
1723 pm_runtime_enable(&client->dev);
1724 pm_runtime_set_autosuspend_delay(&client->dev,
1725 BMC150_AUTO_SUSPEND_DELAY_MS);
1726 pm_runtime_use_autosuspend(&client->dev);
1727
1728 return 0;
1729
1730err_iio_unregister:
1731 iio_device_unregister(indio_dev);
bd7fe5b7 1732err_trigger_unregister:
7d963215 1733 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
c16bff48
VD
1734err_buffer_cleanup:
1735 iio_triggered_buffer_cleanup(indio_dev);
bd7fe5b7
SP
1736
1737 return ret;
1738}
1739
1740static int bmc150_accel_remove(struct i2c_client *client)
1741{
1742 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1743 struct bmc150_accel_data *data = iio_priv(indio_dev);
1744
1745 pm_runtime_disable(&client->dev);
1746 pm_runtime_set_suspended(&client->dev);
1747 pm_runtime_put_noidle(&client->dev);
1748
1749 iio_device_unregister(indio_dev);
1750
7d963215 1751 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
bd7fe5b7 1752
c16bff48
VD
1753 iio_triggered_buffer_cleanup(indio_dev);
1754
bd7fe5b7
SP
1755 mutex_lock(&data->mutex);
1756 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1757 mutex_unlock(&data->mutex);
1758
1759 return 0;
1760}
1761
1762#ifdef CONFIG_PM_SLEEP
1763static int bmc150_accel_suspend(struct device *dev)
1764{
1765 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1766 struct bmc150_accel_data *data = iio_priv(indio_dev);
1767
1768 mutex_lock(&data->mutex);
1769 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1770 mutex_unlock(&data->mutex);
1771
1772 return 0;
1773}
1774
1775static int bmc150_accel_resume(struct device *dev)
1776{
1777 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1778 struct bmc150_accel_data *data = iio_priv(indio_dev);
1779
1780 mutex_lock(&data->mutex);
3e825ec9 1781 if (atomic_read(&data->active_intr))
bd7fe5b7 1782 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
3bbec977 1783 bmc150_accel_fifo_set_mode(data);
bd7fe5b7
SP
1784 mutex_unlock(&data->mutex);
1785
1786 return 0;
1787}
1788#endif
1789
6f0a13f2 1790#ifdef CONFIG_PM
bd7fe5b7
SP
1791static int bmc150_accel_runtime_suspend(struct device *dev)
1792{
1793 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1794 struct bmc150_accel_data *data = iio_priv(indio_dev);
aaeecd80 1795 int ret;
bd7fe5b7
SP
1796
1797 dev_dbg(&data->client->dev, __func__);
aaeecd80
SP
1798 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1799 if (ret < 0)
1800 return -EAGAIN;
bd7fe5b7 1801
aaeecd80 1802 return 0;
bd7fe5b7
SP
1803}
1804
1805static int bmc150_accel_runtime_resume(struct device *dev)
1806{
1807 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1808 struct bmc150_accel_data *data = iio_priv(indio_dev);
1809 int ret;
1810 int sleep_val;
1811
1812 dev_dbg(&data->client->dev, __func__);
1813
1814 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
3bbec977
OP
1815 if (ret < 0)
1816 return ret;
1817 ret = bmc150_accel_fifo_set_mode(data);
bd7fe5b7
SP
1818 if (ret < 0)
1819 return ret;
1820
1821 sleep_val = bmc150_accel_get_startup_times(data);
1822 if (sleep_val < 20)
1823 usleep_range(sleep_val * 1000, 20000);
1824 else
1825 msleep_interruptible(sleep_val);
1826
1827 return 0;
1828}
1829#endif
1830
1831static const struct dev_pm_ops bmc150_accel_pm_ops = {
1832 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1833 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1834 bmc150_accel_runtime_resume, NULL)
1835};
1836
1837static const struct acpi_device_id bmc150_accel_acpi_match[] = {
8ecbb3c3
LP
1838 {"BSBA0150", bmc150},
1839 {"BMC150A", bmc150},
1840 {"BMI055A", bmi055},
1841 {"BMA0255", bma255},
1842 {"BMA250E", bma250e},
1843 {"BMA222E", bma222e},
1844 {"BMA0280", bma280},
bd7fe5b7
SP
1845 { },
1846};
1847MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1848
1849static const struct i2c_device_id bmc150_accel_id[] = {
8ecbb3c3
LP
1850 {"bmc150_accel", bmc150},
1851 {"bmi055_accel", bmi055},
1852 {"bma255", bma255},
1853 {"bma250e", bma250e},
1854 {"bma222e", bma222e},
1855 {"bma280", bma280},
bd7fe5b7
SP
1856 {}
1857};
1858
1859MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1860
1861static struct i2c_driver bmc150_accel_driver = {
1862 .driver = {
1863 .name = BMC150_ACCEL_DRV_NAME,
1864 .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1865 .pm = &bmc150_accel_pm_ops,
1866 },
1867 .probe = bmc150_accel_probe,
1868 .remove = bmc150_accel_remove,
1869 .id_table = bmc150_accel_id,
1870};
1871module_i2c_driver(bmc150_accel_driver);
1872
1873MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1874MODULE_LICENSE("GPL v2");
1875MODULE_DESCRIPTION("BMC150 accelerometer driver");