]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/iio/adc/xilinx-xadc-core.c
iio: adc: xilinx: Fix VREFP scale
[mirror_ubuntu-jammy-kernel.git] / drivers / iio / adc / xilinx-xadc-core.c
CommitLineData
bdc8cda1
LPC
1/*
2 * Xilinx XADC driver
3 *
4 * Copyright 2013-2014 Analog Devices Inc.
5 * Author: Lars-Peter Clauen <lars@metafoo.de>
6 *
7 * Licensed under the GPL-2.
8 *
9 * Documentation for the parts can be found at:
10 * - XADC hardmacro: Xilinx UG480
11 * - ZYNQ XADC interface: Xilinx UG585
12 * - AXI XADC interface: Xilinx PG019
13 */
14
15#include <linux/clk.h>
16#include <linux/device.h>
17#include <linux/err.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/slab.h>
25#include <linux/sysfs.h>
26
27#include <linux/iio/buffer.h>
28#include <linux/iio/events.h>
29#include <linux/iio/iio.h>
30#include <linux/iio/sysfs.h>
31#include <linux/iio/trigger.h>
32#include <linux/iio/trigger_consumer.h>
33#include <linux/iio/triggered_buffer.h>
34
35#include "xilinx-xadc.h"
36
37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39/* ZYNQ register definitions */
40#define XADC_ZYNQ_REG_CFG 0x00
41#define XADC_ZYNQ_REG_INTSTS 0x04
42#define XADC_ZYNQ_REG_INTMSK 0x08
43#define XADC_ZYNQ_REG_STATUS 0x0c
44#define XADC_ZYNQ_REG_CFIFO 0x10
45#define XADC_ZYNQ_REG_DFIFO 0x14
46#define XADC_ZYNQ_REG_CTL 0x18
47
48#define XADC_ZYNQ_CFG_ENABLE BIT(31)
49#define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51#define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53#define XADC_ZYNQ_CFG_WEDGE BIT(13)
54#define XADC_ZYNQ_CFG_REDGE BIT(12)
55#define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56#define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57#define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58#define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59#define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60#define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61#define XADC_ZYNQ_CFG_IGAP(x) (x)
62
63#define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64#define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65#define XADC_ZYNQ_INT_ALARM_MASK 0xff
66#define XADC_ZYNQ_INT_ALARM_OFFSET 0
67
68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72#define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73#define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74#define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75#define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76#define XADC_ZYNQ_STATUS_OT BIT(7)
77#define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78
79#define XADC_ZYNQ_CTL_RESET BIT(4)
80
81#define XADC_ZYNQ_CMD_NOP 0x00
82#define XADC_ZYNQ_CMD_READ 0x01
83#define XADC_ZYNQ_CMD_WRITE 0x02
84
85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87/* AXI register definitions */
88#define XADC_AXI_REG_RESET 0x00
89#define XADC_AXI_REG_STATUS 0x04
90#define XADC_AXI_REG_ALARM_STATUS 0x08
91#define XADC_AXI_REG_CONVST 0x0c
92#define XADC_AXI_REG_XADC_RESET 0x10
93#define XADC_AXI_REG_GIER 0x5c
94#define XADC_AXI_REG_IPISR 0x60
95#define XADC_AXI_REG_IPIER 0x68
96#define XADC_AXI_ADC_REG_OFFSET 0x200
97
98#define XADC_AXI_RESET_MAGIC 0xa
99#define XADC_AXI_GIER_ENABLE BIT(31)
100
101#define XADC_AXI_INT_EOS BIT(4)
102#define XADC_AXI_INT_ALARM_MASK 0x3c0f
103
104#define XADC_FLAGS_BUFFERED BIT(0)
105
106static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
107 uint32_t val)
108{
109 writel(val, xadc->base + reg);
110}
111
112static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
113 uint32_t *val)
114{
115 *val = readl(xadc->base + reg);
116}
117
118/*
119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
120 * XADC. Reads and writes to the XADC register are performed by submitting a
121 * request to the command FIFO (CFIFO), once the request has been completed the
122 * result can be read from the data FIFO (DFIFO). The method currently used in
123 * this driver is to submit the request for a read/write operation, then go to
124 * sleep and wait for an interrupt that signals that a response is available in
125 * the data FIFO.
126 */
127
128static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
129 unsigned int n)
130{
131 unsigned int i;
132
133 for (i = 0; i < n; i++)
134 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
135}
136
137static void xadc_zynq_drain_fifo(struct xadc *xadc)
138{
139 uint32_t status, tmp;
140
141 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
142
143 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
144 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
145 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
146 }
147}
148
149static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
150 unsigned int val)
151{
152 xadc->zynq_intmask &= ~mask;
153 xadc->zynq_intmask |= val;
154
155 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
156 xadc->zynq_intmask | xadc->zynq_masked_alarm);
157}
158
159static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
160 uint16_t val)
161{
162 uint32_t cmd[1];
163 uint32_t tmp;
164 int ret;
165
166 spin_lock_irq(&xadc->lock);
167 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
168 XADC_ZYNQ_INT_DFIFO_GTH);
169
170 reinit_completion(&xadc->completion);
171
172 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
173 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
174 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
175 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
176 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
177 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
178
179 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
180 spin_unlock_irq(&xadc->lock);
181
182 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
183 if (ret == 0)
184 ret = -EIO;
185 else
186 ret = 0;
187
188 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
189
190 return ret;
191}
192
193static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
194 uint16_t *val)
195{
196 uint32_t cmd[2];
197 uint32_t resp, tmp;
198 int ret;
199
200 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
201 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
202
203 spin_lock_irq(&xadc->lock);
204 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
205 XADC_ZYNQ_INT_DFIFO_GTH);
206 xadc_zynq_drain_fifo(xadc);
207 reinit_completion(&xadc->completion);
208
209 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
210 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
211 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
212 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
213 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
214
215 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
216 spin_unlock_irq(&xadc->lock);
217 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
218 if (ret == 0)
219 ret = -EIO;
220 if (ret < 0)
221 return ret;
222
223 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
224 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
225
226 *val = resp & 0xffff;
227
228 return 0;
229}
230
231static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
232{
233 return ((alarm & 0x80) >> 4) |
234 ((alarm & 0x78) << 1) |
235 (alarm & 0x07);
236}
237
238/*
239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
240 * threshold condition go way from within the interrupt handler, this means as
241 * soon as a threshold condition is present we would enter the interrupt handler
242 * again and again. To work around this we mask all active thresholds interrupts
243 * in the interrupt handler and start a timer. In this timer we poll the
244 * interrupt status and only if the interrupt is inactive we unmask it again.
245 */
246static void xadc_zynq_unmask_worker(struct work_struct *work)
247{
248 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
249 unsigned int misc_sts, unmask;
250
251 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
252
253 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
254
255 spin_lock_irq(&xadc->lock);
256
257 /* Clear those bits which are not active anymore */
258 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
259 xadc->zynq_masked_alarm &= misc_sts;
260
261 /* Also clear those which are masked out anyway */
262 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
263
264 /* Clear the interrupts before we unmask them */
265 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
266
267 xadc_zynq_update_intmsk(xadc, 0, 0);
268
269 spin_unlock_irq(&xadc->lock);
270
271 /* if still pending some alarm re-trigger the timer */
272 if (xadc->zynq_masked_alarm) {
273 schedule_delayed_work(&xadc->zynq_unmask_work,
274 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
275 }
276}
277
278static irqreturn_t xadc_zynq_threaded_interrupt_handler(int irq, void *devid)
279{
280 struct iio_dev *indio_dev = devid;
281 struct xadc *xadc = iio_priv(indio_dev);
282 unsigned int alarm;
283
284 spin_lock_irq(&xadc->lock);
285 alarm = xadc->zynq_alarm;
286 xadc->zynq_alarm = 0;
287 spin_unlock_irq(&xadc->lock);
288
289 xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(alarm));
290
291 /* unmask the required interrupts in timer. */
292 schedule_delayed_work(&xadc->zynq_unmask_work,
293 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
294
295 return IRQ_HANDLED;
296}
297
298static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
299{
300 struct iio_dev *indio_dev = devid;
301 struct xadc *xadc = iio_priv(indio_dev);
302 irqreturn_t ret = IRQ_HANDLED;
303 uint32_t status;
304
305 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
306
307 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
308
309 if (!status)
310 return IRQ_NONE;
311
312 spin_lock(&xadc->lock);
313
314 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
315
316 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
317 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
318 XADC_ZYNQ_INT_DFIFO_GTH);
319 complete(&xadc->completion);
320 }
321
322 status &= XADC_ZYNQ_INT_ALARM_MASK;
323 if (status) {
324 xadc->zynq_alarm |= status;
325 xadc->zynq_masked_alarm |= status;
326 /*
327 * mask the current event interrupt,
328 * unmask it when the interrupt is no more active.
329 */
330 xadc_zynq_update_intmsk(xadc, 0, 0);
331 ret = IRQ_WAKE_THREAD;
332 }
333 spin_unlock(&xadc->lock);
334
335 return ret;
336}
337
338#define XADC_ZYNQ_TCK_RATE_MAX 50000000
339#define XADC_ZYNQ_IGAP_DEFAULT 20
340
341static int xadc_zynq_setup(struct platform_device *pdev,
342 struct iio_dev *indio_dev, int irq)
343{
344 struct xadc *xadc = iio_priv(indio_dev);
345 unsigned long pcap_rate;
346 unsigned int tck_div;
347 unsigned int div;
348 unsigned int igap;
349 unsigned int tck_rate;
350
351 /* TODO: Figure out how to make igap and tck_rate configurable */
352 igap = XADC_ZYNQ_IGAP_DEFAULT;
353 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
354
355 xadc->zynq_intmask = ~0;
356
357 pcap_rate = clk_get_rate(xadc->clk);
358
359 if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
360 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
361 if (tck_rate > pcap_rate / 2) {
362 div = 2;
363 } else {
364 div = pcap_rate / tck_rate;
365 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
366 div++;
367 }
368
369 if (div <= 3)
370 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
371 else if (div <= 7)
372 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
373 else if (div <= 15)
374 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
375 else
376 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
377
378 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
379 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
380 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
381 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
382 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
383 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
384 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
385
386 return 0;
387}
388
389static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
390{
391 unsigned int div;
392 uint32_t val;
393
394 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
395
396 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
397 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
398 div = 4;
399 break;
400 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
401 div = 8;
402 break;
403 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
404 div = 16;
405 break;
406 default:
407 div = 2;
408 break;
409 }
410
411 return clk_get_rate(xadc->clk) / div;
412}
413
414static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
415{
416 unsigned long flags;
417 uint32_t status;
418
419 /* Move OT to bit 7 */
420 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
421
422 spin_lock_irqsave(&xadc->lock, flags);
423
424 /* Clear previous interrupts if any. */
425 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
426 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
427
428 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
429 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
430
431 spin_unlock_irqrestore(&xadc->lock, flags);
432}
433
434static const struct xadc_ops xadc_zynq_ops = {
435 .read = xadc_zynq_read_adc_reg,
436 .write = xadc_zynq_write_adc_reg,
437 .setup = xadc_zynq_setup,
438 .get_dclk_rate = xadc_zynq_get_dclk_rate,
439 .interrupt_handler = xadc_zynq_interrupt_handler,
440 .threaded_interrupt_handler = xadc_zynq_threaded_interrupt_handler,
441 .update_alarm = xadc_zynq_update_alarm,
442};
443
444static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
445 uint16_t *val)
446{
447 uint32_t val32;
448
449 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
450 *val = val32 & 0xffff;
451
452 return 0;
453}
454
455static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
456 uint16_t val)
457{
458 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
459
460 return 0;
461}
462
463static int xadc_axi_setup(struct platform_device *pdev,
464 struct iio_dev *indio_dev, int irq)
465{
466 struct xadc *xadc = iio_priv(indio_dev);
467
468 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
469 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
470
471 return 0;
472}
473
474static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
475{
476 struct iio_dev *indio_dev = devid;
477 struct xadc *xadc = iio_priv(indio_dev);
478 uint32_t status, mask;
479 unsigned int events;
480
481 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
482 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
483 status &= mask;
484
485 if (!status)
486 return IRQ_NONE;
487
488 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
398fd22b 489 iio_trigger_poll(xadc->trigger);
bdc8cda1
LPC
490
491 if (status & XADC_AXI_INT_ALARM_MASK) {
492 /*
493 * The order of the bits in the AXI-XADC status register does
494 * not match the order of the bits in the XADC alarm enable
495 * register. xadc_handle_events() expects the events to be in
496 * the same order as the XADC alarm enable register.
497 */
498 events = (status & 0x000e) >> 1;
499 events |= (status & 0x0001) << 3;
500 events |= (status & 0x3c00) >> 6;
501 xadc_handle_events(indio_dev, events);
502 }
503
504 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
505
506 return IRQ_HANDLED;
507}
508
509static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
510{
511 uint32_t val;
512 unsigned long flags;
513
514 /*
515 * The order of the bits in the AXI-XADC status register does not match
516 * the order of the bits in the XADC alarm enable register. We get
517 * passed the alarm mask in the same order as in the XADC alarm enable
518 * register.
519 */
520 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
521 ((alarm & 0xf0) << 6);
522
523 spin_lock_irqsave(&xadc->lock, flags);
524 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
525 val &= ~XADC_AXI_INT_ALARM_MASK;
526 val |= alarm;
527 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
528 spin_unlock_irqrestore(&xadc->lock, flags);
529}
530
531static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
532{
533 return clk_get_rate(xadc->clk);
534}
535
536static const struct xadc_ops xadc_axi_ops = {
537 .read = xadc_axi_read_adc_reg,
538 .write = xadc_axi_write_adc_reg,
539 .setup = xadc_axi_setup,
540 .get_dclk_rate = xadc_axi_get_dclk,
541 .update_alarm = xadc_axi_update_alarm,
542 .interrupt_handler = xadc_axi_interrupt_handler,
543 .flags = XADC_FLAGS_BUFFERED,
544};
545
546static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
547 uint16_t mask, uint16_t val)
548{
549 uint16_t tmp;
550 int ret;
551
552 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
553 if (ret)
554 return ret;
555
556 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
557}
558
559static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
560 uint16_t mask, uint16_t val)
561{
562 int ret;
563
564 mutex_lock(&xadc->mutex);
565 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
566 mutex_unlock(&xadc->mutex);
567
568 return ret;
569}
570
571static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
572{
573 return xadc->ops->get_dclk_rate(xadc);
574}
575
576static int xadc_update_scan_mode(struct iio_dev *indio_dev,
577 const unsigned long *mask)
578{
579 struct xadc *xadc = iio_priv(indio_dev);
580 unsigned int n;
581
582 n = bitmap_weight(mask, indio_dev->masklength);
583
584 kfree(xadc->data);
585 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
586 if (!xadc->data)
587 return -ENOMEM;
588
589 return 0;
590}
591
592static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
593{
594 switch (scan_index) {
595 case 5:
596 return XADC_REG_VCCPINT;
597 case 6:
598 return XADC_REG_VCCPAUX;
599 case 7:
600 return XADC_REG_VCCO_DDR;
601 case 8:
602 return XADC_REG_TEMP;
603 case 9:
604 return XADC_REG_VCCINT;
605 case 10:
606 return XADC_REG_VCCAUX;
607 case 11:
608 return XADC_REG_VPVN;
609 case 12:
610 return XADC_REG_VREFP;
611 case 13:
612 return XADC_REG_VREFN;
613 case 14:
614 return XADC_REG_VCCBRAM;
615 default:
616 return XADC_REG_VAUX(scan_index - 16);
617 }
618}
619
620static irqreturn_t xadc_trigger_handler(int irq, void *p)
621{
622 struct iio_poll_func *pf = p;
623 struct iio_dev *indio_dev = pf->indio_dev;
624 struct xadc *xadc = iio_priv(indio_dev);
625 unsigned int chan;
626 int i, j;
627
628 if (!xadc->data)
629 goto out;
630
631 j = 0;
632 for_each_set_bit(i, indio_dev->active_scan_mask,
633 indio_dev->masklength) {
634 chan = xadc_scan_index_to_channel(i);
635 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
636 j++;
637 }
638
639 iio_push_to_buffers(indio_dev, xadc->data);
640
641out:
642 iio_trigger_notify_done(indio_dev->trig);
643
644 return IRQ_HANDLED;
645}
646
647static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
648{
649 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
650 unsigned long flags;
651 unsigned int convst;
652 unsigned int val;
653 int ret = 0;
654
655 mutex_lock(&xadc->mutex);
656
657 if (state) {
658 /* Only one of the two triggers can be active at the a time. */
659 if (xadc->trigger != NULL) {
660 ret = -EBUSY;
661 goto err_out;
662 } else {
663 xadc->trigger = trigger;
664 if (trigger == xadc->convst_trigger)
665 convst = XADC_CONF0_EC;
666 else
667 convst = 0;
668 }
669 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
670 convst);
671 if (ret)
672 goto err_out;
673 } else {
674 xadc->trigger = NULL;
675 }
676
677 spin_lock_irqsave(&xadc->lock, flags);
678 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
679 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
680 if (state)
681 val |= XADC_AXI_INT_EOS;
682 else
683 val &= ~XADC_AXI_INT_EOS;
684 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
685 spin_unlock_irqrestore(&xadc->lock, flags);
686
687err_out:
688 mutex_unlock(&xadc->mutex);
689
690 return ret;
691}
692
693static const struct iio_trigger_ops xadc_trigger_ops = {
694 .owner = THIS_MODULE,
695 .set_trigger_state = &xadc_trigger_set_state,
696};
697
698static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
699 const char *name)
700{
701 struct iio_trigger *trig;
702 int ret;
703
704 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
705 indio_dev->id, name);
706 if (trig == NULL)
707 return ERR_PTR(-ENOMEM);
708
709 trig->dev.parent = indio_dev->dev.parent;
710 trig->ops = &xadc_trigger_ops;
711 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
712
713 ret = iio_trigger_register(trig);
714 if (ret)
715 goto error_free_trig;
716
717 return trig;
718
719error_free_trig:
720 iio_trigger_free(trig);
721 return ERR_PTR(ret);
722}
723
724static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
725{
726 uint16_t val;
727
728 switch (seq_mode) {
729 case XADC_CONF1_SEQ_SIMULTANEOUS:
730 case XADC_CONF1_SEQ_INDEPENDENT:
731 val = XADC_CONF2_PD_ADC_B;
732 break;
733 default:
734 val = 0;
735 break;
736 }
737
738 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
739 val);
740}
741
742static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
743{
744 unsigned int aux_scan_mode = scan_mode >> 16;
745
746 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
747 return XADC_CONF1_SEQ_SIMULTANEOUS;
748
749 if ((aux_scan_mode & 0xff00) == 0 ||
750 (aux_scan_mode & 0x00ff) == 0)
751 return XADC_CONF1_SEQ_CONTINUOUS;
752
753 return XADC_CONF1_SEQ_SIMULTANEOUS;
754}
755
756static int xadc_postdisable(struct iio_dev *indio_dev)
757{
758 struct xadc *xadc = iio_priv(indio_dev);
759 unsigned long scan_mask;
760 int ret;
761 int i;
762
763 scan_mask = 1; /* Run calibration as part of the sequence */
764 for (i = 0; i < indio_dev->num_channels; i++)
765 scan_mask |= BIT(indio_dev->channels[i].scan_index);
766
767 /* Enable all channels and calibration */
768 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
769 if (ret)
770 return ret;
771
772 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
773 if (ret)
774 return ret;
775
776 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
777 XADC_CONF1_SEQ_CONTINUOUS);
778 if (ret)
779 return ret;
780
781 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
782}
783
784static int xadc_preenable(struct iio_dev *indio_dev)
785{
786 struct xadc *xadc = iio_priv(indio_dev);
787 unsigned long scan_mask;
788 int seq_mode;
789 int ret;
790
791 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
792 XADC_CONF1_SEQ_DEFAULT);
793 if (ret)
794 goto err;
795
796 scan_mask = *indio_dev->active_scan_mask;
797 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
798
799 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
800 if (ret)
801 goto err;
802
803 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
804 if (ret)
805 goto err;
806
807 ret = xadc_power_adc_b(xadc, seq_mode);
808 if (ret)
809 goto err;
810
811 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
812 seq_mode);
813 if (ret)
814 goto err;
815
816 return 0;
817err:
818 xadc_postdisable(indio_dev);
819 return ret;
820}
821
822static struct iio_buffer_setup_ops xadc_buffer_ops = {
823 .preenable = &xadc_preenable,
824 .postenable = &iio_triggered_buffer_postenable,
825 .predisable = &iio_triggered_buffer_predisable,
826 .postdisable = &xadc_postdisable,
827};
828
829static int xadc_read_raw(struct iio_dev *indio_dev,
830 struct iio_chan_spec const *chan, int *val, int *val2, long info)
831{
832 struct xadc *xadc = iio_priv(indio_dev);
833 unsigned int div;
834 uint16_t val16;
835 int ret;
836
837 switch (info) {
838 case IIO_CHAN_INFO_RAW:
839 if (iio_buffer_enabled(indio_dev))
840 return -EBUSY;
841 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
842 if (ret < 0)
843 return ret;
844
845 val16 >>= 4;
846 if (chan->scan_type.sign == 'u')
847 *val = val16;
848 else
849 *val = sign_extend32(val16, 11);
850
851 return IIO_VAL_INT;
852 case IIO_CHAN_INFO_SCALE:
853 switch (chan->type) {
854 case IIO_VOLTAGE:
855 /* V = (val * 3.0) / 4096 */
856 switch (chan->address) {
857 case XADC_REG_VCCINT:
858 case XADC_REG_VCCAUX:
00db4e52 859 case XADC_REG_VREFP:
bdc8cda1
LPC
860 case XADC_REG_VCCBRAM:
861 case XADC_REG_VCCPINT:
862 case XADC_REG_VCCPAUX:
863 case XADC_REG_VCCO_DDR:
864 *val = 3000;
865 break;
866 default:
867 *val = 1000;
868 break;
869 }
870 *val2 = 12;
871 return IIO_VAL_FRACTIONAL_LOG2;
872 case IIO_TEMP:
873 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
874 *val = 503975;
875 *val2 = 12;
876 return IIO_VAL_FRACTIONAL_LOG2;
877 default:
878 return -EINVAL;
879 }
880 case IIO_CHAN_INFO_OFFSET:
881 /* Only the temperature channel has an offset */
882 *val = -((273150 << 12) / 503975);
883 return IIO_VAL_INT;
884 case IIO_CHAN_INFO_SAMP_FREQ:
885 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
886 if (ret)
887 return ret;
888
889 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
890 if (div < 2)
891 div = 2;
892
893 *val = xadc_get_dclk_rate(xadc) / div / 26;
894
895 return IIO_VAL_INT;
896 default:
897 return -EINVAL;
898 }
899}
900
901static int xadc_write_raw(struct iio_dev *indio_dev,
902 struct iio_chan_spec const *chan, int val, int val2, long info)
903{
904 struct xadc *xadc = iio_priv(indio_dev);
905 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
906 unsigned int div;
907
908 if (info != IIO_CHAN_INFO_SAMP_FREQ)
909 return -EINVAL;
910
911 if (val <= 0)
912 return -EINVAL;
913
914 /* Max. 150 kSPS */
915 if (val > 150000)
916 val = 150000;
917
918 val *= 26;
919
920 /* Min 1MHz */
921 if (val < 1000000)
922 val = 1000000;
923
924 /*
925 * We want to round down, but only if we do not exceed the 150 kSPS
926 * limit.
927 */
928 div = clk_rate / val;
929 if (clk_rate / div / 26 > 150000)
930 div++;
931 if (div < 2)
932 div = 2;
933 else if (div > 0xff)
934 div = 0xff;
935
936 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
937 div << XADC_CONF2_DIV_OFFSET);
938}
939
940static const struct iio_event_spec xadc_temp_events[] = {
941 {
942 .type = IIO_EV_TYPE_THRESH,
943 .dir = IIO_EV_DIR_RISING,
944 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
945 BIT(IIO_EV_INFO_VALUE) |
946 BIT(IIO_EV_INFO_HYSTERESIS),
947 },
948};
949
950/* Separate values for upper and lower thresholds, but only a shared enabled */
951static const struct iio_event_spec xadc_voltage_events[] = {
952 {
953 .type = IIO_EV_TYPE_THRESH,
954 .dir = IIO_EV_DIR_RISING,
955 .mask_separate = BIT(IIO_EV_INFO_VALUE),
956 }, {
957 .type = IIO_EV_TYPE_THRESH,
958 .dir = IIO_EV_DIR_FALLING,
959 .mask_separate = BIT(IIO_EV_INFO_VALUE),
960 }, {
961 .type = IIO_EV_TYPE_THRESH,
962 .dir = IIO_EV_DIR_EITHER,
963 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
964 },
965};
966
967#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
968 .type = IIO_TEMP, \
969 .indexed = 1, \
970 .channel = (_chan), \
971 .address = (_addr), \
972 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
973 BIT(IIO_CHAN_INFO_SCALE) | \
974 BIT(IIO_CHAN_INFO_OFFSET), \
975 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
976 .event_spec = xadc_temp_events, \
977 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
978 .scan_index = (_scan_index), \
979 .scan_type = { \
980 .sign = 'u', \
981 .realbits = 12, \
982 .storagebits = 16, \
983 .shift = 4, \
984 .endianness = IIO_CPU, \
985 }, \
986}
987
988#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
989 .type = IIO_VOLTAGE, \
990 .indexed = 1, \
991 .channel = (_chan), \
992 .address = (_addr), \
993 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
994 BIT(IIO_CHAN_INFO_SCALE), \
995 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
996 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
997 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
998 .scan_index = (_scan_index), \
999 .scan_type = { \
1000 .sign = 'u', \
1001 .realbits = 12, \
1002 .storagebits = 16, \
1003 .shift = 4, \
1004 .endianness = IIO_CPU, \
1005 }, \
1006 .extend_name = _ext, \
1007}
1008
1009static const struct iio_chan_spec xadc_channels[] = {
1010 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1011 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
d6c96c42 1012 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
bdc8cda1
LPC
1013 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1014 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1015 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1016 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1017 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1018 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1019 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1020 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1021 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1022 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1023 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1024 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1025 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1026 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1027 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1028 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1029 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1030 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1031 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1032 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1033 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1034 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1035 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1036};
1037
1038static const struct iio_info xadc_info = {
1039 .read_raw = &xadc_read_raw,
1040 .write_raw = &xadc_write_raw,
1041 .read_event_config = &xadc_read_event_config,
1042 .write_event_config = &xadc_write_event_config,
1043 .read_event_value = &xadc_read_event_value,
1044 .write_event_value = &xadc_write_event_value,
1045 .update_scan_mode = &xadc_update_scan_mode,
1046 .driver_module = THIS_MODULE,
1047};
1048
1049static const struct of_device_id xadc_of_match_table[] = {
1050 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1051 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1052 { },
1053};
1054MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1055
1056static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1057 unsigned int *conf)
1058{
1059 struct xadc *xadc = iio_priv(indio_dev);
1060 struct iio_chan_spec *channels, *chan;
1061 struct device_node *chan_node, *child;
1062 unsigned int num_channels;
1063 const char *external_mux;
1064 u32 ext_mux_chan;
1065 int reg;
1066 int ret;
1067
1068 *conf = 0;
1069
1070 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1071 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1072 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1073 else if (strcasecmp(external_mux, "single") == 0)
1074 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1075 else if (strcasecmp(external_mux, "dual") == 0)
1076 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1077 else
1078 return -EINVAL;
1079
1080 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1081 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1082 &ext_mux_chan);
1083 if (ret < 0)
1084 return ret;
1085
1086 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1087 if (ext_mux_chan == 0)
1088 ext_mux_chan = XADC_REG_VPVN;
1089 else if (ext_mux_chan <= 16)
1090 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1091 else
1092 return -EINVAL;
1093 } else {
1094 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1095 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1096 else
1097 return -EINVAL;
1098 }
1099
1100 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1101 }
1102
1103 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1104 if (!channels)
1105 return -ENOMEM;
1106
1107 num_channels = 9;
1108 chan = &channels[9];
1109
1110 chan_node = of_get_child_by_name(np, "xlnx,channels");
1111 if (chan_node) {
1112 for_each_child_of_node(chan_node, child) {
1113 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1114 of_node_put(child);
1115 break;
1116 }
1117
1118 ret = of_property_read_u32(child, "reg", &reg);
1119 if (ret || reg > 16)
1120 continue;
1121
1122 if (of_property_read_bool(child, "xlnx,bipolar"))
1123 chan->scan_type.sign = 's';
1124
1125 if (reg == 0) {
1126 chan->scan_index = 11;
1127 chan->address = XADC_REG_VPVN;
1128 } else {
1129 chan->scan_index = 15 + reg;
1887e724 1130 chan->address = XADC_REG_VAUX(reg - 1);
bdc8cda1
LPC
1131 }
1132 num_channels++;
1133 chan++;
1134 }
1135 }
1136 of_node_put(chan_node);
1137
1138 indio_dev->num_channels = num_channels;
1139 indio_dev->channels = krealloc(channels, sizeof(*channels) *
1140 num_channels, GFP_KERNEL);
1141 /* If we can't resize the channels array, just use the original */
1142 if (!indio_dev->channels)
1143 indio_dev->channels = channels;
1144
1145 return 0;
1146}
1147
1148static int xadc_probe(struct platform_device *pdev)
1149{
1150 const struct of_device_id *id;
1151 struct iio_dev *indio_dev;
1152 unsigned int bipolar_mask;
1153 struct resource *mem;
1154 unsigned int conf0;
1155 struct xadc *xadc;
1156 int ret;
1157 int irq;
1158 int i;
1159
1160 if (!pdev->dev.of_node)
1161 return -ENODEV;
1162
1163 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1164 if (!id)
1165 return -EINVAL;
1166
1167 irq = platform_get_irq(pdev, 0);
1168 if (irq <= 0)
1169 return -ENXIO;
1170
1171 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1172 if (!indio_dev)
1173 return -ENOMEM;
1174
1175 xadc = iio_priv(indio_dev);
1176 xadc->ops = id->data;
1177 init_completion(&xadc->completion);
1178 mutex_init(&xadc->mutex);
1179 spin_lock_init(&xadc->lock);
1180 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1181
1182 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1183 xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1184 if (IS_ERR(xadc->base))
1185 return PTR_ERR(xadc->base);
1186
1187 indio_dev->dev.parent = &pdev->dev;
1188 indio_dev->dev.of_node = pdev->dev.of_node;
1189 indio_dev->name = "xadc";
1190 indio_dev->modes = INDIO_DIRECT_MODE;
1191 indio_dev->info = &xadc_info;
1192
1193 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1194 if (ret)
1195 goto err_device_free;
1196
1197 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1198 ret = iio_triggered_buffer_setup(indio_dev,
1199 &iio_pollfunc_store_time, &xadc_trigger_handler,
1200 &xadc_buffer_ops);
1201 if (ret)
1202 goto err_device_free;
1203
1204 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
889c5580
JL
1205 if (IS_ERR(xadc->convst_trigger)) {
1206 ret = PTR_ERR(xadc->convst_trigger);
bdc8cda1 1207 goto err_triggered_buffer_cleanup;
889c5580 1208 }
bdc8cda1
LPC
1209 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1210 "samplerate");
889c5580
JL
1211 if (IS_ERR(xadc->samplerate_trigger)) {
1212 ret = PTR_ERR(xadc->samplerate_trigger);
bdc8cda1 1213 goto err_free_convst_trigger;
889c5580 1214 }
bdc8cda1
LPC
1215 }
1216
1217 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1218 if (IS_ERR(xadc->clk)) {
1219 ret = PTR_ERR(xadc->clk);
1220 goto err_free_samplerate_trigger;
1221 }
1222 clk_prepare_enable(xadc->clk);
1223
1224 ret = xadc->ops->setup(pdev, indio_dev, irq);
1225 if (ret)
1226 goto err_free_samplerate_trigger;
1227
1228 ret = request_threaded_irq(irq, xadc->ops->interrupt_handler,
1229 xadc->ops->threaded_interrupt_handler,
1230 0, dev_name(&pdev->dev), indio_dev);
1231 if (ret)
1232 goto err_clk_disable_unprepare;
1233
1234 for (i = 0; i < 16; i++)
1235 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1236 &xadc->threshold[i]);
1237
1238 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1239 if (ret)
1240 goto err_free_irq;
1241
1242 bipolar_mask = 0;
1243 for (i = 0; i < indio_dev->num_channels; i++) {
1244 if (indio_dev->channels[i].scan_type.sign == 's')
1245 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1246 }
1247
1248 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1249 if (ret)
1250 goto err_free_irq;
1251 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1252 bipolar_mask >> 16);
1253 if (ret)
1254 goto err_free_irq;
1255
1256 /* Disable all alarms */
1257 xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1258 XADC_CONF1_ALARM_MASK);
1259
1260 /* Set thresholds to min/max */
1261 for (i = 0; i < 16; i++) {
1262 /*
1263 * Set max voltage threshold and both temperature thresholds to
1264 * 0xffff, min voltage threshold to 0.
1265 */
1266 if (i % 8 < 4 || i == 7)
1267 xadc->threshold[i] = 0xffff;
1268 else
1269 xadc->threshold[i] = 0;
1270 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1271 xadc->threshold[i]);
1272 }
1273
1274 /* Go to non-buffered mode */
1275 xadc_postdisable(indio_dev);
1276
1277 ret = iio_device_register(indio_dev);
1278 if (ret)
1279 goto err_free_irq;
1280
1281 platform_set_drvdata(pdev, indio_dev);
1282
1283 return 0;
1284
1285err_free_irq:
1286 free_irq(irq, indio_dev);
1287err_free_samplerate_trigger:
1288 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1289 iio_trigger_free(xadc->samplerate_trigger);
1290err_free_convst_trigger:
1291 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1292 iio_trigger_free(xadc->convst_trigger);
1293err_triggered_buffer_cleanup:
1294 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1295 iio_triggered_buffer_cleanup(indio_dev);
1296err_clk_disable_unprepare:
1297 clk_disable_unprepare(xadc->clk);
1298err_device_free:
1299 kfree(indio_dev->channels);
1300
1301 return ret;
1302}
1303
1304static int xadc_remove(struct platform_device *pdev)
1305{
1306 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1307 struct xadc *xadc = iio_priv(indio_dev);
1308 int irq = platform_get_irq(pdev, 0);
1309
1310 iio_device_unregister(indio_dev);
1311 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1312 iio_trigger_free(xadc->samplerate_trigger);
1313 iio_trigger_free(xadc->convst_trigger);
1314 iio_triggered_buffer_cleanup(indio_dev);
1315 }
1316 free_irq(irq, indio_dev);
1317 clk_disable_unprepare(xadc->clk);
1318 cancel_delayed_work(&xadc->zynq_unmask_work);
1319 kfree(xadc->data);
1320 kfree(indio_dev->channels);
1321
1322 return 0;
1323}
1324
1325static struct platform_driver xadc_driver = {
1326 .probe = xadc_probe,
1327 .remove = xadc_remove,
1328 .driver = {
1329 .name = "xadc",
bdc8cda1
LPC
1330 .of_match_table = xadc_of_match_table,
1331 },
1332};
1333module_platform_driver(xadc_driver);
1334
1335MODULE_LICENSE("GPL v2");
1336MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1337MODULE_DESCRIPTION("Xilinx XADC IIO driver");