]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iio/buffer/industrialio-buffer-dma.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / iio / buffer / industrialio-buffer-dma.c
CommitLineData
670b19ae
LPC
1/*
2 * Copyright 2013-2015 Analog Devices Inc.
3 * Author: Lars-Peter Clausen <lars@metafoo.de>
4 *
5 * Licensed under the GPL-2.
6 */
7
8#include <linux/slab.h>
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/device.h>
12#include <linux/workqueue.h>
13#include <linux/mutex.h>
14#include <linux/sched.h>
15#include <linux/poll.h>
16#include <linux/iio/buffer.h>
838519b8 17#include <linux/iio/buffer_impl.h>
670b19ae
LPC
18#include <linux/iio/buffer-dma.h>
19#include <linux/dma-mapping.h>
20#include <linux/sizes.h>
21
22/*
23 * For DMA buffers the storage is sub-divided into so called blocks. Each block
24 * has its own memory buffer. The size of the block is the granularity at which
25 * memory is exchanged between the hardware and the application. Increasing the
26 * basic unit of data exchange from one sample to one block decreases the
27 * management overhead that is associated with each sample. E.g. if we say the
28 * management overhead for one exchange is x and the unit of exchange is one
29 * sample the overhead will be x for each sample. Whereas when using a block
30 * which contains n samples the overhead per sample is reduced to x/n. This
31 * allows to achieve much higher samplerates than what can be sustained with
32 * the one sample approach.
33 *
34 * Blocks are exchanged between the DMA controller and the application via the
35 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
36 * incoming queue are waiting for the DMA controller to pick them up and fill
37 * them with data. Block on the outgoing queue have been filled with data and
38 * are waiting for the application to dequeue them and read the data.
39 *
40 * A block can be in one of the following states:
41 * * Owned by the application. In this state the application can read data from
42 * the block.
43 * * On the incoming list: Blocks on the incoming list are queued up to be
44 * processed by the DMA controller.
45 * * Owned by the DMA controller: The DMA controller is processing the block
46 * and filling it with data.
47 * * On the outgoing list: Blocks on the outgoing list have been successfully
48 * processed by the DMA controller and contain data. They can be dequeued by
49 * the application.
50 * * Dead: A block that is dead has been marked as to be freed. It might still
51 * be owned by either the application or the DMA controller at the moment.
52 * But once they are done processing it instead of going to either the
53 * incoming or outgoing queue the block will be freed.
54 *
55 * In addition to this blocks are reference counted and the memory associated
56 * with both the block structure as well as the storage memory for the block
57 * will be freed when the last reference to the block is dropped. This means a
58 * block must not be accessed without holding a reference.
59 *
60 * The iio_dma_buffer implementation provides a generic infrastructure for
61 * managing the blocks.
62 *
63 * A driver for a specific piece of hardware that has DMA capabilities need to
64 * implement the submit() callback from the iio_dma_buffer_ops structure. This
65 * callback is supposed to initiate the DMA transfer copying data from the
66 * converter to the memory region of the block. Once the DMA transfer has been
67 * completed the driver must call iio_dma_buffer_block_done() for the completed
68 * block.
69 *
70 * Prior to this it must set the bytes_used field of the block contains
71 * the actual number of bytes in the buffer. Typically this will be equal to the
72 * size of the block, but if the DMA hardware has certain alignment requirements
73 * for the transfer length it might choose to use less than the full size. In
74 * either case it is expected that bytes_used is a multiple of the bytes per
75 * datum, i.e. the block must not contain partial samples.
76 *
77 * The driver must call iio_dma_buffer_block_done() for each block it has
78 * received through its submit_block() callback, even if it does not actually
79 * perform a DMA transfer for the block, e.g. because the buffer was disabled
80 * before the block transfer was started. In this case it should set bytes_used
81 * to 0.
82 *
83 * In addition it is recommended that a driver implements the abort() callback.
84 * It will be called when the buffer is disabled and can be used to cancel
85 * pending and stop active transfers.
86 *
87 * The specific driver implementation should use the default callback
88 * implementations provided by this module for the iio_buffer_access_funcs
89 * struct. It may overload some callbacks with custom variants if the hardware
90 * has special requirements that are not handled by the generic functions. If a
91 * driver chooses to overload a callback it has to ensure that the generic
92 * callback is called from within the custom callback.
93 */
94
95static void iio_buffer_block_release(struct kref *kref)
96{
97 struct iio_dma_buffer_block *block = container_of(kref,
98 struct iio_dma_buffer_block, kref);
99
100 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
101
102 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
103 block->vaddr, block->phys_addr);
104
105 iio_buffer_put(&block->queue->buffer);
106 kfree(block);
107}
108
109static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
110{
111 kref_get(&block->kref);
112}
113
114static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
115{
116 kref_put(&block->kref, iio_buffer_block_release);
117}
118
119/*
120 * dma_free_coherent can sleep, hence we need to take some special care to be
121 * able to drop a reference from an atomic context.
122 */
123static LIST_HEAD(iio_dma_buffer_dead_blocks);
124static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
125
126static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
127{
128 struct iio_dma_buffer_block *block, *_block;
129 LIST_HEAD(block_list);
130
131 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
132 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
133 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
134
135 list_for_each_entry_safe(block, _block, &block_list, head)
136 iio_buffer_block_release(&block->kref);
137}
138static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
139
140static void iio_buffer_block_release_atomic(struct kref *kref)
141{
142 struct iio_dma_buffer_block *block;
143 unsigned long flags;
144
145 block = container_of(kref, struct iio_dma_buffer_block, kref);
146
147 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
148 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
149 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
150
151 schedule_work(&iio_dma_buffer_cleanup_work);
152}
153
154/*
155 * Version of iio_buffer_block_put() that can be called from atomic context
156 */
157static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
158{
159 kref_put(&block->kref, iio_buffer_block_release_atomic);
160}
161
162static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
163{
164 return container_of(buf, struct iio_dma_buffer_queue, buffer);
165}
166
167static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
168 struct iio_dma_buffer_queue *queue, size_t size)
169{
170 struct iio_dma_buffer_block *block;
171
172 block = kzalloc(sizeof(*block), GFP_KERNEL);
173 if (!block)
174 return NULL;
175
176 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
177 &block->phys_addr, GFP_KERNEL);
178 if (!block->vaddr) {
179 kfree(block);
180 return NULL;
181 }
182
183 block->size = size;
184 block->state = IIO_BLOCK_STATE_DEQUEUED;
185 block->queue = queue;
186 INIT_LIST_HEAD(&block->head);
187 kref_init(&block->kref);
188
189 iio_buffer_get(&queue->buffer);
190
191 return block;
192}
193
194static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
195{
196 struct iio_dma_buffer_queue *queue = block->queue;
197
198 /*
199 * The buffer has already been freed by the application, just drop the
200 * reference.
201 */
202 if (block->state != IIO_BLOCK_STATE_DEAD) {
203 block->state = IIO_BLOCK_STATE_DONE;
204 list_add_tail(&block->head, &queue->outgoing);
205 }
206}
207
208/**
209 * iio_dma_buffer_block_done() - Indicate that a block has been completed
210 * @block: The completed block
211 *
212 * Should be called when the DMA controller has finished handling the block to
213 * pass back ownership of the block to the queue.
214 */
215void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
216{
217 struct iio_dma_buffer_queue *queue = block->queue;
218 unsigned long flags;
219
220 spin_lock_irqsave(&queue->list_lock, flags);
221 _iio_dma_buffer_block_done(block);
222 spin_unlock_irqrestore(&queue->list_lock, flags);
223
224 iio_buffer_block_put_atomic(block);
225 wake_up_interruptible_poll(&queue->buffer.pollq, POLLIN | POLLRDNORM);
226}
227EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
228
229/**
230 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
231 * aborted
232 * @queue: Queue for which to complete blocks.
233 * @list: List of aborted blocks. All blocks in this list must be from @queue.
234 *
235 * Typically called from the abort() callback after the DMA controller has been
236 * stopped. This will set bytes_used to 0 for each block in the list and then
237 * hand the blocks back to the queue.
238 */
239void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
240 struct list_head *list)
241{
242 struct iio_dma_buffer_block *block, *_block;
243 unsigned long flags;
244
245 spin_lock_irqsave(&queue->list_lock, flags);
246 list_for_each_entry_safe(block, _block, list, head) {
247 list_del(&block->head);
248 block->bytes_used = 0;
249 _iio_dma_buffer_block_done(block);
250 iio_buffer_block_put_atomic(block);
251 }
252 spin_unlock_irqrestore(&queue->list_lock, flags);
253
254 wake_up_interruptible_poll(&queue->buffer.pollq, POLLIN | POLLRDNORM);
255}
256EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
257
258static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
259{
260 /*
261 * If the core owns the block it can be re-used. This should be the
262 * default case when enabling the buffer, unless the DMA controller does
263 * not support abort and has not given back the block yet.
264 */
265 switch (block->state) {
266 case IIO_BLOCK_STATE_DEQUEUED:
267 case IIO_BLOCK_STATE_QUEUED:
268 case IIO_BLOCK_STATE_DONE:
269 return true;
270 default:
271 return false;
272 }
273}
274
275/**
276 * iio_dma_buffer_request_update() - DMA buffer request_update callback
277 * @buffer: The buffer which to request an update
278 *
279 * Should be used as the iio_dma_buffer_request_update() callback for
280 * iio_buffer_access_ops struct for DMA buffers.
281 */
282int iio_dma_buffer_request_update(struct iio_buffer *buffer)
283{
284 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
285 struct iio_dma_buffer_block *block;
286 bool try_reuse = false;
287 size_t size;
288 int ret = 0;
289 int i;
290
291 /*
292 * Split the buffer into two even parts. This is used as a double
293 * buffering scheme with usually one block at a time being used by the
294 * DMA and the other one by the application.
295 */
296 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
297 queue->buffer.length, 2);
298
299 mutex_lock(&queue->lock);
300
301 /* Allocations are page aligned */
302 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
303 try_reuse = true;
304
305 queue->fileio.block_size = size;
306 queue->fileio.active_block = NULL;
307
308 spin_lock_irq(&queue->list_lock);
29e3e06d 309 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
670b19ae
LPC
310 block = queue->fileio.blocks[i];
311
312 /* If we can't re-use it free it */
313 if (block && (!iio_dma_block_reusable(block) || !try_reuse))
314 block->state = IIO_BLOCK_STATE_DEAD;
315 }
316
317 /*
318 * At this point all blocks are either owned by the core or marked as
319 * dead. This means we can reset the lists without having to fear
320 * corrution.
321 */
322 INIT_LIST_HEAD(&queue->outgoing);
323 spin_unlock_irq(&queue->list_lock);
324
325 INIT_LIST_HEAD(&queue->incoming);
326
29e3e06d 327 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
670b19ae
LPC
328 if (queue->fileio.blocks[i]) {
329 block = queue->fileio.blocks[i];
330 if (block->state == IIO_BLOCK_STATE_DEAD) {
331 /* Could not reuse it */
332 iio_buffer_block_put(block);
333 block = NULL;
334 } else {
335 block->size = size;
336 }
337 } else {
338 block = NULL;
339 }
340
341 if (!block) {
342 block = iio_dma_buffer_alloc_block(queue, size);
343 if (!block) {
344 ret = -ENOMEM;
345 goto out_unlock;
346 }
347 queue->fileio.blocks[i] = block;
348 }
349
350 block->state = IIO_BLOCK_STATE_QUEUED;
351 list_add_tail(&block->head, &queue->incoming);
352 }
353
354out_unlock:
355 mutex_unlock(&queue->lock);
356
357 return ret;
358}
359EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
360
361static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
362 struct iio_dma_buffer_block *block)
363{
364 int ret;
365
366 /*
367 * If the hardware has already been removed we put the block into
368 * limbo. It will neither be on the incoming nor outgoing list, nor will
369 * it ever complete. It will just wait to be freed eventually.
370 */
371 if (!queue->ops)
372 return;
373
374 block->state = IIO_BLOCK_STATE_ACTIVE;
375 iio_buffer_block_get(block);
376 ret = queue->ops->submit(queue, block);
377 if (ret) {
378 /*
379 * This is a bit of a problem and there is not much we can do
380 * other then wait for the buffer to be disabled and re-enabled
381 * and try again. But it should not really happen unless we run
382 * out of memory or something similar.
383 *
384 * TODO: Implement support in the IIO core to allow buffers to
385 * notify consumers that something went wrong and the buffer
386 * should be disabled.
387 */
388 iio_buffer_block_put(block);
389 }
390}
391
392/**
393 * iio_dma_buffer_enable() - Enable DMA buffer
394 * @buffer: IIO buffer to enable
395 * @indio_dev: IIO device the buffer is attached to
396 *
397 * Needs to be called when the device that the buffer is attached to starts
398 * sampling. Typically should be the iio_buffer_access_ops enable callback.
399 *
400 * This will allocate the DMA buffers and start the DMA transfers.
401 */
402int iio_dma_buffer_enable(struct iio_buffer *buffer,
403 struct iio_dev *indio_dev)
404{
405 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
406 struct iio_dma_buffer_block *block, *_block;
407
408 mutex_lock(&queue->lock);
409 queue->active = true;
410 list_for_each_entry_safe(block, _block, &queue->incoming, head) {
411 list_del(&block->head);
412 iio_dma_buffer_submit_block(queue, block);
413 }
414 mutex_unlock(&queue->lock);
415
416 return 0;
417}
418EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
419
420/**
421 * iio_dma_buffer_disable() - Disable DMA buffer
422 * @buffer: IIO DMA buffer to disable
423 * @indio_dev: IIO device the buffer is attached to
424 *
425 * Needs to be called when the device that the buffer is attached to stops
426 * sampling. Typically should be the iio_buffer_access_ops disable callback.
427 */
428int iio_dma_buffer_disable(struct iio_buffer *buffer,
429 struct iio_dev *indio_dev)
430{
431 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
432
433 mutex_lock(&queue->lock);
434 queue->active = false;
435
436 if (queue->ops && queue->ops->abort)
437 queue->ops->abort(queue);
438 mutex_unlock(&queue->lock);
439
440 return 0;
441}
442EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
443
444static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
445 struct iio_dma_buffer_block *block)
446{
447 if (block->state == IIO_BLOCK_STATE_DEAD) {
448 iio_buffer_block_put(block);
449 } else if (queue->active) {
450 iio_dma_buffer_submit_block(queue, block);
451 } else {
452 block->state = IIO_BLOCK_STATE_QUEUED;
453 list_add_tail(&block->head, &queue->incoming);
454 }
455}
456
457static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
458 struct iio_dma_buffer_queue *queue)
459{
460 struct iio_dma_buffer_block *block;
461
462 spin_lock_irq(&queue->list_lock);
463 block = list_first_entry_or_null(&queue->outgoing, struct
464 iio_dma_buffer_block, head);
465 if (block != NULL) {
466 list_del(&block->head);
467 block->state = IIO_BLOCK_STATE_DEQUEUED;
468 }
469 spin_unlock_irq(&queue->list_lock);
470
471 return block;
472}
473
474/**
475 * iio_dma_buffer_read() - DMA buffer read callback
476 * @buffer: Buffer to read form
477 * @n: Number of bytes to read
478 * @user_buffer: Userspace buffer to copy the data to
479 *
480 * Should be used as the read_first_n callback for iio_buffer_access_ops
481 * struct for DMA buffers.
482 */
483int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
484 char __user *user_buffer)
485{
486 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
487 struct iio_dma_buffer_block *block;
488 int ret;
489
490 if (n < buffer->bytes_per_datum)
491 return -EINVAL;
492
493 mutex_lock(&queue->lock);
494
495 if (!queue->fileio.active_block) {
496 block = iio_dma_buffer_dequeue(queue);
497 if (block == NULL) {
498 ret = 0;
499 goto out_unlock;
500 }
501 queue->fileio.pos = 0;
502 queue->fileio.active_block = block;
503 } else {
504 block = queue->fileio.active_block;
505 }
506
507 n = rounddown(n, buffer->bytes_per_datum);
508 if (n > block->bytes_used - queue->fileio.pos)
509 n = block->bytes_used - queue->fileio.pos;
510
511 if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
512 ret = -EFAULT;
513 goto out_unlock;
514 }
515
516 queue->fileio.pos += n;
517
518 if (queue->fileio.pos == block->bytes_used) {
519 queue->fileio.active_block = NULL;
520 iio_dma_buffer_enqueue(queue, block);
521 }
522
523 ret = n;
524
525out_unlock:
526 mutex_unlock(&queue->lock);
527
528 return ret;
529}
530EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
531
532/**
533 * iio_dma_buffer_data_available() - DMA buffer data_available callback
534 * @buf: Buffer to check for data availability
535 *
536 * Should be used as the data_available callback for iio_buffer_access_ops
537 * struct for DMA buffers.
538 */
539size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
540{
541 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
542 struct iio_dma_buffer_block *block;
543 size_t data_available = 0;
544
545 /*
546 * For counting the available bytes we'll use the size of the block not
547 * the number of actual bytes available in the block. Otherwise it is
548 * possible that we end up with a value that is lower than the watermark
549 * but won't increase since all blocks are in use.
550 */
551
552 mutex_lock(&queue->lock);
553 if (queue->fileio.active_block)
554 data_available += queue->fileio.active_block->size;
555
556 spin_lock_irq(&queue->list_lock);
557 list_for_each_entry(block, &queue->outgoing, head)
558 data_available += block->size;
559 spin_unlock_irq(&queue->list_lock);
560 mutex_unlock(&queue->lock);
561
562 return data_available;
563}
564EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
565
566/**
567 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
568 * @buffer: Buffer to set the bytes-per-datum for
569 * @bpd: The new bytes-per-datum value
570 *
571 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
572 * struct for DMA buffers.
573 */
574int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
575{
576 buffer->bytes_per_datum = bpd;
577
578 return 0;
579}
580EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
581
582/**
583 * iio_dma_buffer_set_length - DMA buffer set_length callback
584 * @buffer: Buffer to set the length for
585 * @length: The new buffer length
586 *
587 * Should be used as the set_length callback for iio_buffer_access_ops
588 * struct for DMA buffers.
589 */
590int iio_dma_buffer_set_length(struct iio_buffer *buffer, int length)
591{
592 /* Avoid an invalid state */
593 if (length < 2)
594 length = 2;
595 buffer->length = length;
596 buffer->watermark = length / 2;
597
598 return 0;
599}
600EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
601
602/**
603 * iio_dma_buffer_init() - Initialize DMA buffer queue
604 * @queue: Buffer to initialize
605 * @dev: DMA device
606 * @ops: DMA buffer queue callback operations
607 *
608 * The DMA device will be used by the queue to do DMA memory allocations. So it
609 * should refer to the device that will perform the DMA to ensure that
610 * allocations are done from a memory region that can be accessed by the device.
611 */
612int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
613 struct device *dev, const struct iio_dma_buffer_ops *ops)
614{
615 iio_buffer_init(&queue->buffer);
616 queue->buffer.length = PAGE_SIZE;
617 queue->buffer.watermark = queue->buffer.length / 2;
618 queue->dev = dev;
619 queue->ops = ops;
620
621 INIT_LIST_HEAD(&queue->incoming);
622 INIT_LIST_HEAD(&queue->outgoing);
623
624 mutex_init(&queue->lock);
625 spin_lock_init(&queue->list_lock);
626
627 return 0;
628}
629EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
630
631/**
632 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
633 * @queue: Buffer to cleanup
634 *
635 * After this function has completed it is safe to free any resources that are
636 * associated with the buffer and are accessed inside the callback operations.
637 */
638void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
639{
640 unsigned int i;
641
642 mutex_lock(&queue->lock);
643
644 spin_lock_irq(&queue->list_lock);
645 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
646 if (!queue->fileio.blocks[i])
647 continue;
648 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
649 }
650 INIT_LIST_HEAD(&queue->outgoing);
651 spin_unlock_irq(&queue->list_lock);
652
653 INIT_LIST_HEAD(&queue->incoming);
654
655 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
656 if (!queue->fileio.blocks[i])
657 continue;
658 iio_buffer_block_put(queue->fileio.blocks[i]);
659 queue->fileio.blocks[i] = NULL;
660 }
661 queue->fileio.active_block = NULL;
662 queue->ops = NULL;
663
664 mutex_unlock(&queue->lock);
665}
666EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
667
668/**
669 * iio_dma_buffer_release() - Release final buffer resources
670 * @queue: Buffer to release
671 *
672 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
673 * called in the buffers release callback implementation right before freeing
674 * the memory associated with the buffer.
675 */
676void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
677{
678 mutex_destroy(&queue->lock);
679}
680EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
681
682MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
683MODULE_DESCRIPTION("DMA buffer for the IIO framework");
684MODULE_LICENSE("GPL v2");