]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/iio/magnetometer/bmc150_magn.c
iio: core: Introduce IIO_CHAN_INFO_OVERSAMPLING_RATIO
[mirror_ubuntu-hirsute-kernel.git] / drivers / iio / magnetometer / bmc150_magn.c
CommitLineData
c91746a2
IT
1/*
2 * Bosch BMC150 three-axis magnetic field sensor driver
3 *
4 * Copyright (c) 2015, Intel Corporation.
5 *
6 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7 *
8 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 */
19
20#include <linux/module.h>
21#include <linux/i2c.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/slab.h>
25#include <linux/acpi.h>
26#include <linux/gpio/consumer.h>
27#include <linux/pm.h>
28#include <linux/pm_runtime.h>
29#include <linux/iio/iio.h>
30#include <linux/iio/sysfs.h>
31#include <linux/iio/buffer.h>
32#include <linux/iio/events.h>
33#include <linux/iio/trigger.h>
34#include <linux/iio/trigger_consumer.h>
35#include <linux/iio/triggered_buffer.h>
36#include <linux/regmap.h>
37
38#define BMC150_MAGN_DRV_NAME "bmc150_magn"
39#define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
40#define BMC150_MAGN_GPIO_INT "interrupt"
41
42#define BMC150_MAGN_REG_CHIP_ID 0x40
43#define BMC150_MAGN_CHIP_ID_VAL 0x32
44
45#define BMC150_MAGN_REG_X_L 0x42
46#define BMC150_MAGN_REG_X_M 0x43
47#define BMC150_MAGN_REG_Y_L 0x44
48#define BMC150_MAGN_REG_Y_M 0x45
49#define BMC150_MAGN_SHIFT_XY_L 3
50#define BMC150_MAGN_REG_Z_L 0x46
51#define BMC150_MAGN_REG_Z_M 0x47
52#define BMC150_MAGN_SHIFT_Z_L 1
53#define BMC150_MAGN_REG_RHALL_L 0x48
54#define BMC150_MAGN_REG_RHALL_M 0x49
55#define BMC150_MAGN_SHIFT_RHALL_L 2
56
57#define BMC150_MAGN_REG_INT_STATUS 0x4A
58
59#define BMC150_MAGN_REG_POWER 0x4B
60#define BMC150_MAGN_MASK_POWER_CTL BIT(0)
61
62#define BMC150_MAGN_REG_OPMODE_ODR 0x4C
63#define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
64#define BMC150_MAGN_SHIFT_OPMODE 1
65#define BMC150_MAGN_MODE_NORMAL 0x00
66#define BMC150_MAGN_MODE_FORCED 0x01
67#define BMC150_MAGN_MODE_SLEEP 0x03
68#define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
69#define BMC150_MAGN_SHIFT_ODR 3
70
71#define BMC150_MAGN_REG_INT 0x4D
72
73#define BMC150_MAGN_REG_INT_DRDY 0x4E
74#define BMC150_MAGN_MASK_DRDY_EN BIT(7)
75#define BMC150_MAGN_SHIFT_DRDY_EN 7
76#define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
77#define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
78#define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
79#define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
80#define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
81#define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
82#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
83
84#define BMC150_MAGN_REG_LOW_THRESH 0x4F
85#define BMC150_MAGN_REG_HIGH_THRESH 0x50
86#define BMC150_MAGN_REG_REP_XY 0x51
87#define BMC150_MAGN_REG_REP_Z 0x52
88
89#define BMC150_MAGN_REG_TRIM_START 0x5D
90#define BMC150_MAGN_REG_TRIM_END 0x71
91
92#define BMC150_MAGN_XY_OVERFLOW_VAL -4096
93#define BMC150_MAGN_Z_OVERFLOW_VAL -16384
94
95/* Time from SUSPEND to SLEEP */
96#define BMC150_MAGN_START_UP_TIME_MS 3
97
98#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
99
100#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
101#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
102#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
103#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
104
105enum bmc150_magn_axis {
106 AXIS_X,
107 AXIS_Y,
108 AXIS_Z,
109 RHALL,
110 AXIS_XYZ_MAX = RHALL,
111 AXIS_XYZR_MAX,
112};
113
114enum bmc150_magn_power_modes {
115 BMC150_MAGN_POWER_MODE_SUSPEND,
116 BMC150_MAGN_POWER_MODE_SLEEP,
117 BMC150_MAGN_POWER_MODE_NORMAL,
118};
119
120struct bmc150_magn_trim_regs {
121 s8 x1;
122 s8 y1;
123 __le16 reserved1;
124 u8 reserved2;
125 __le16 z4;
126 s8 x2;
127 s8 y2;
128 __le16 reserved3;
129 __le16 z2;
130 __le16 z1;
131 __le16 xyz1;
132 __le16 z3;
133 s8 xy2;
134 u8 xy1;
135} __packed;
136
137struct bmc150_magn_data {
138 struct i2c_client *client;
139 /*
140 * 1. Protect this structure.
141 * 2. Serialize sequences that power on/off the device and access HW.
142 */
143 struct mutex mutex;
144 struct regmap *regmap;
145 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
146 s32 buffer[6];
147 struct iio_trigger *dready_trig;
148 bool dready_trigger_on;
149};
150
151static const struct {
152 int freq;
153 u8 reg_val;
154} bmc150_magn_samp_freq_table[] = { {2, 0x01},
155 {6, 0x02},
156 {8, 0x03},
157 {10, 0x00},
158 {15, 0x04},
159 {20, 0x05},
160 {25, 0x06},
161 {30, 0x07} };
162
163enum bmc150_magn_presets {
164 LOW_POWER_PRESET,
165 REGULAR_PRESET,
166 ENHANCED_REGULAR_PRESET,
167 HIGH_ACCURACY_PRESET
168};
169
170static const struct bmc150_magn_preset {
171 u8 rep_xy;
172 u8 rep_z;
173 u8 odr;
174} bmc150_magn_presets_table[] = {
175 [LOW_POWER_PRESET] = {3, 3, 10},
176 [REGULAR_PRESET] = {9, 15, 10},
177 [ENHANCED_REGULAR_PRESET] = {15, 27, 10},
178 [HIGH_ACCURACY_PRESET] = {47, 83, 20},
179};
180
181#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
182
183static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
184{
185 switch (reg) {
186 case BMC150_MAGN_REG_POWER:
187 case BMC150_MAGN_REG_OPMODE_ODR:
188 case BMC150_MAGN_REG_INT:
189 case BMC150_MAGN_REG_INT_DRDY:
190 case BMC150_MAGN_REG_LOW_THRESH:
191 case BMC150_MAGN_REG_HIGH_THRESH:
192 case BMC150_MAGN_REG_REP_XY:
193 case BMC150_MAGN_REG_REP_Z:
194 return true;
195 default:
196 return false;
197 };
198}
199
200static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
201{
202 switch (reg) {
203 case BMC150_MAGN_REG_X_L:
204 case BMC150_MAGN_REG_X_M:
205 case BMC150_MAGN_REG_Y_L:
206 case BMC150_MAGN_REG_Y_M:
207 case BMC150_MAGN_REG_Z_L:
208 case BMC150_MAGN_REG_Z_M:
209 case BMC150_MAGN_REG_RHALL_L:
210 case BMC150_MAGN_REG_RHALL_M:
211 case BMC150_MAGN_REG_INT_STATUS:
212 return true;
213 default:
214 return false;
215 }
216}
217
218static const struct regmap_config bmc150_magn_regmap_config = {
219 .reg_bits = 8,
220 .val_bits = 8,
221
222 .max_register = BMC150_MAGN_REG_TRIM_END,
223 .cache_type = REGCACHE_RBTREE,
224
225 .writeable_reg = bmc150_magn_is_writeable_reg,
226 .volatile_reg = bmc150_magn_is_volatile_reg,
227};
228
229static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
230 enum bmc150_magn_power_modes mode,
231 bool state)
232{
233 int ret;
234
235 switch (mode) {
236 case BMC150_MAGN_POWER_MODE_SUSPEND:
237 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
238 BMC150_MAGN_MASK_POWER_CTL, !state);
239 if (ret < 0)
240 return ret;
241 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
242 return 0;
243 case BMC150_MAGN_POWER_MODE_SLEEP:
244 return regmap_update_bits(data->regmap,
245 BMC150_MAGN_REG_OPMODE_ODR,
246 BMC150_MAGN_MASK_OPMODE,
247 BMC150_MAGN_MODE_SLEEP <<
248 BMC150_MAGN_SHIFT_OPMODE);
249 case BMC150_MAGN_POWER_MODE_NORMAL:
250 return regmap_update_bits(data->regmap,
251 BMC150_MAGN_REG_OPMODE_ODR,
252 BMC150_MAGN_MASK_OPMODE,
253 BMC150_MAGN_MODE_NORMAL <<
254 BMC150_MAGN_SHIFT_OPMODE);
255 }
256
257 return -EINVAL;
258}
259
260static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
261{
262#ifdef CONFIG_PM
263 int ret;
264
265 if (on) {
266 ret = pm_runtime_get_sync(&data->client->dev);
267 } else {
268 pm_runtime_mark_last_busy(&data->client->dev);
269 ret = pm_runtime_put_autosuspend(&data->client->dev);
270 }
271
272 if (ret < 0) {
273 dev_err(&data->client->dev,
274 "failed to change power state to %d\n", on);
275 if (on)
276 pm_runtime_put_noidle(&data->client->dev);
277
278 return ret;
279 }
280#endif
281
282 return 0;
283}
284
285static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
286{
287 int ret, reg_val;
288 u8 i, odr_val;
289
290 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
291 if (ret < 0)
292 return ret;
293 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
294
295 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
296 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
297 *val = bmc150_magn_samp_freq_table[i].freq;
298 return 0;
299 }
300
301 return -EINVAL;
302}
303
304static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
305{
306 int ret;
307 u8 i;
308
309 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
310 if (bmc150_magn_samp_freq_table[i].freq == val) {
311 ret = regmap_update_bits(data->regmap,
312 BMC150_MAGN_REG_OPMODE_ODR,
313 BMC150_MAGN_MASK_ODR,
314 bmc150_magn_samp_freq_table[i].
315 reg_val <<
316 BMC150_MAGN_SHIFT_ODR);
317 if (ret < 0)
318 return ret;
319 return 0;
320 }
321 }
322
323 return -EINVAL;
324}
325
326static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
327 u16 rhall)
328{
329 s16 val;
330 u16 xyz1 = le16_to_cpu(tregs->xyz1);
331
332 if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
333 return S32_MIN;
334
335 if (!rhall)
336 rhall = xyz1;
337
338 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
339 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
340 ((s32)val)) >> 7)) + (((s32)val) *
341 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
342 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
343 (((s16)tregs->x1) << 3);
344
345 return (s32)val;
346}
347
348static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
349 u16 rhall)
350{
351 s16 val;
352 u16 xyz1 = le16_to_cpu(tregs->xyz1);
353
354 if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
355 return S32_MIN;
356
357 if (!rhall)
358 rhall = xyz1;
359
360 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
361 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
362 ((s32)val)) >> 7)) + (((s32)val) *
363 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
364 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
365 (((s16)tregs->y1) << 3);
366
367 return (s32)val;
368}
369
370static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
371 u16 rhall)
372{
373 s32 val;
374 u16 xyz1 = le16_to_cpu(tregs->xyz1);
375 u16 z1 = le16_to_cpu(tregs->z1);
376 s16 z2 = le16_to_cpu(tregs->z2);
377 s16 z3 = le16_to_cpu(tregs->z3);
378 s16 z4 = le16_to_cpu(tregs->z4);
379
380 if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
381 return S32_MIN;
382
383 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
384 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
385 ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
386
387 return val;
388}
389
390static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
391{
392 int ret;
393 __le16 values[AXIS_XYZR_MAX];
394 s16 raw_x, raw_y, raw_z;
395 u16 rhall;
396 struct bmc150_magn_trim_regs tregs;
397
398 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
399 values, sizeof(values));
400 if (ret < 0)
401 return ret;
402
403 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
404 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
405 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
406 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
407
408 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
409 &tregs, sizeof(tregs));
410 if (ret < 0)
411 return ret;
412
413 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
414 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
415 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
416
417 return 0;
418}
419
420static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
421 struct iio_chan_spec const *chan,
422 int *val, int *val2, long mask)
423{
424 struct bmc150_magn_data *data = iio_priv(indio_dev);
425 int ret;
426 s32 values[AXIS_XYZ_MAX];
427
428 switch (mask) {
429 case IIO_CHAN_INFO_RAW:
430 if (iio_buffer_enabled(indio_dev))
431 return -EBUSY;
432 mutex_lock(&data->mutex);
433
434 ret = bmc150_magn_set_power_state(data, true);
435 if (ret < 0) {
436 mutex_unlock(&data->mutex);
437 return ret;
438 }
439
440 ret = bmc150_magn_read_xyz(data, values);
441 if (ret < 0) {
442 bmc150_magn_set_power_state(data, false);
443 mutex_unlock(&data->mutex);
444 return ret;
445 }
446 *val = values[chan->scan_index];
447
448 ret = bmc150_magn_set_power_state(data, false);
449 if (ret < 0) {
450 mutex_unlock(&data->mutex);
451 return ret;
452 }
453
454 mutex_unlock(&data->mutex);
455 return IIO_VAL_INT;
456 case IIO_CHAN_INFO_SCALE:
457 /*
458 * The API/driver performs an off-chip temperature
459 * compensation and outputs x/y/z magnetic field data in
460 * 16 LSB/uT to the upper application layer.
461 */
462 *val = 0;
463 *val2 = 625;
464 return IIO_VAL_INT_PLUS_MICRO;
465 case IIO_CHAN_INFO_SAMP_FREQ:
466 ret = bmc150_magn_get_odr(data, val);
467 if (ret < 0)
468 return ret;
469 return IIO_VAL_INT;
470 default:
471 return -EINVAL;
472 }
473}
474
475static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
476 struct iio_chan_spec const *chan,
477 int val, int val2, long mask)
478{
479 struct bmc150_magn_data *data = iio_priv(indio_dev);
480 int ret;
481
482 switch (mask) {
483 case IIO_CHAN_INFO_SAMP_FREQ:
484 mutex_lock(&data->mutex);
485 ret = bmc150_magn_set_odr(data, val);
486 mutex_unlock(&data->mutex);
487 return ret;
488 default:
489 return -EINVAL;
490 }
491}
492
493static int bmc150_magn_validate_trigger(struct iio_dev *indio_dev,
494 struct iio_trigger *trig)
495{
496 struct bmc150_magn_data *data = iio_priv(indio_dev);
497
498 if (data->dready_trig != trig)
499 return -EINVAL;
500
501 return 0;
502}
503
504static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("2 6 8 10 15 20 25 30");
505
506static struct attribute *bmc150_magn_attributes[] = {
507 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
508 NULL,
509};
510
511static const struct attribute_group bmc150_magn_attrs_group = {
512 .attrs = bmc150_magn_attributes,
513};
514
515#define BMC150_MAGN_CHANNEL(_axis) { \
516 .type = IIO_MAGN, \
517 .modified = 1, \
518 .channel2 = IIO_MOD_##_axis, \
519 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
520 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
521 BIT(IIO_CHAN_INFO_SCALE), \
522 .scan_index = AXIS_##_axis, \
523 .scan_type = { \
524 .sign = 's', \
525 .realbits = 32, \
526 .storagebits = 32, \
527 .endianness = IIO_LE \
528 }, \
529}
530
531static const struct iio_chan_spec bmc150_magn_channels[] = {
532 BMC150_MAGN_CHANNEL(X),
533 BMC150_MAGN_CHANNEL(Y),
534 BMC150_MAGN_CHANNEL(Z),
535 IIO_CHAN_SOFT_TIMESTAMP(3),
536};
537
538static const struct iio_info bmc150_magn_info = {
539 .attrs = &bmc150_magn_attrs_group,
540 .read_raw = bmc150_magn_read_raw,
541 .write_raw = bmc150_magn_write_raw,
542 .validate_trigger = bmc150_magn_validate_trigger,
543 .driver_module = THIS_MODULE,
544};
545
546static const unsigned long bmc150_magn_scan_masks[] = {0x07, 0};
547
548static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
549{
550 struct iio_poll_func *pf = p;
551 struct iio_dev *indio_dev = pf->indio_dev;
552 struct bmc150_magn_data *data = iio_priv(indio_dev);
553 int ret;
554
555 mutex_lock(&data->mutex);
556 ret = bmc150_magn_read_xyz(data, data->buffer);
557 mutex_unlock(&data->mutex);
558 if (ret < 0)
559 goto err;
560
561 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
562 pf->timestamp);
563
564err:
565 iio_trigger_notify_done(data->dready_trig);
566
567 return IRQ_HANDLED;
568}
569
570static int bmc150_magn_init(struct bmc150_magn_data *data)
571{
572 int ret, chip_id;
573 struct bmc150_magn_preset preset;
574
575 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
576 false);
577 if (ret < 0) {
578 dev_err(&data->client->dev,
579 "Failed to bring up device from suspend mode\n");
580 return ret;
581 }
582
583 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
584 if (ret < 0) {
585 dev_err(&data->client->dev, "Failed reading chip id\n");
586 goto err_poweroff;
587 }
588 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
589 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", ret);
590 ret = -ENODEV;
591 goto err_poweroff;
592 }
593 dev_dbg(&data->client->dev, "Chip id %x\n", ret);
594
595 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
596 ret = bmc150_magn_set_odr(data, preset.odr);
597 if (ret < 0) {
598 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
599 preset.odr);
600 goto err_poweroff;
601 }
602
603 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
604 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
605 if (ret < 0) {
606 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
607 preset.rep_xy);
608 goto err_poweroff;
609 }
610
611 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
612 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
613 if (ret < 0) {
614 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
615 preset.rep_z);
616 goto err_poweroff;
617 }
618
619 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
620 true);
621 if (ret < 0) {
622 dev_err(&data->client->dev, "Failed to power on device\n");
623 goto err_poweroff;
624 }
625
626 return 0;
627
628err_poweroff:
629 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
630 return ret;
631}
632
633static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
634{
635 int tmp;
636
637 /*
638 * Data Ready (DRDY) is always cleared after
639 * readout of data registers ends.
640 */
641 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
642}
643
644static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
645{
646 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
647 struct bmc150_magn_data *data = iio_priv(indio_dev);
648 int ret;
649
650 if (!data->dready_trigger_on)
651 return 0;
652
653 mutex_lock(&data->mutex);
654 ret = bmc150_magn_reset_intr(data);
655 mutex_unlock(&data->mutex);
656
657 return ret;
658}
659
660static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
661 bool state)
662{
663 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
664 struct bmc150_magn_data *data = iio_priv(indio_dev);
665 int ret = 0;
666
667 mutex_lock(&data->mutex);
668 if (state == data->dready_trigger_on)
669 goto err_unlock;
670
671 ret = bmc150_magn_set_power_state(data, state);
672 if (ret < 0)
673 goto err_unlock;
674
675 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
676 BMC150_MAGN_MASK_DRDY_EN,
677 state << BMC150_MAGN_SHIFT_DRDY_EN);
678 if (ret < 0)
679 goto err_poweroff;
680
681 data->dready_trigger_on = state;
682
683 if (state) {
684 ret = bmc150_magn_reset_intr(data);
685 if (ret < 0)
686 goto err_poweroff;
687 }
688 mutex_unlock(&data->mutex);
689
690 return 0;
691
692err_poweroff:
693 bmc150_magn_set_power_state(data, false);
694err_unlock:
695 mutex_unlock(&data->mutex);
696 return ret;
697}
698
699static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
700 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
701 .try_reenable = bmc150_magn_trig_try_reen,
702 .owner = THIS_MODULE,
703};
704
705static int bmc150_magn_gpio_probe(struct i2c_client *client)
706{
707 struct device *dev;
708 struct gpio_desc *gpio;
709 int ret;
710
711 if (!client)
712 return -EINVAL;
713
714 dev = &client->dev;
715
716 /* data ready GPIO interrupt pin */
717 gpio = devm_gpiod_get_index(dev, BMC150_MAGN_GPIO_INT, 0);
718 if (IS_ERR(gpio)) {
719 dev_err(dev, "ACPI GPIO get index failed\n");
720 return PTR_ERR(gpio);
721 }
722
723 ret = gpiod_direction_input(gpio);
724 if (ret)
725 return ret;
726
727 ret = gpiod_to_irq(gpio);
728
729 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
730
731 return ret;
732}
733
734static const char *bmc150_magn_match_acpi_device(struct device *dev)
735{
736 const struct acpi_device_id *id;
737
738 id = acpi_match_device(dev->driver->acpi_match_table, dev);
739 if (!id)
740 return NULL;
741
742 return dev_name(dev);
743}
744
745static int bmc150_magn_probe(struct i2c_client *client,
746 const struct i2c_device_id *id)
747{
748 struct bmc150_magn_data *data;
749 struct iio_dev *indio_dev;
750 const char *name = NULL;
751 int ret;
752
753 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
754 if (!indio_dev)
755 return -ENOMEM;
756
757 data = iio_priv(indio_dev);
758 i2c_set_clientdata(client, indio_dev);
759 data->client = client;
760
761 if (id)
762 name = id->name;
763 else if (ACPI_HANDLE(&client->dev))
764 name = bmc150_magn_match_acpi_device(&client->dev);
765 else
766 return -ENOSYS;
767
768 mutex_init(&data->mutex);
769 data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
770 if (IS_ERR(data->regmap)) {
771 dev_err(&client->dev, "Failed to allocate register map\n");
772 return PTR_ERR(data->regmap);
773 }
774
775 ret = bmc150_magn_init(data);
776 if (ret < 0)
777 return ret;
778
779 indio_dev->dev.parent = &client->dev;
780 indio_dev->channels = bmc150_magn_channels;
781 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
782 indio_dev->available_scan_masks = bmc150_magn_scan_masks;
783 indio_dev->name = name;
784 indio_dev->modes = INDIO_DIRECT_MODE;
785 indio_dev->info = &bmc150_magn_info;
786
787 if (client->irq <= 0)
788 client->irq = bmc150_magn_gpio_probe(client);
789
790 if (client->irq > 0) {
791 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
792 "%s-dev%d",
793 indio_dev->name,
794 indio_dev->id);
795 if (!data->dready_trig) {
796 ret = -ENOMEM;
797 dev_err(&client->dev, "iio trigger alloc failed\n");
798 goto err_poweroff;
799 }
800
801 data->dready_trig->dev.parent = &client->dev;
802 data->dready_trig->ops = &bmc150_magn_trigger_ops;
803 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
804 ret = iio_trigger_register(data->dready_trig);
805 if (ret) {
806 dev_err(&client->dev, "iio trigger register failed\n");
807 goto err_poweroff;
808 }
809
810 ret = iio_triggered_buffer_setup(indio_dev,
811 &iio_pollfunc_store_time,
812 bmc150_magn_trigger_handler,
813 NULL);
814 if (ret < 0) {
815 dev_err(&client->dev,
816 "iio triggered buffer setup failed\n");
817 goto err_trigger_unregister;
818 }
819
820 ret = request_threaded_irq(client->irq,
821 iio_trigger_generic_data_rdy_poll,
822 NULL,
823 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
824 BMC150_MAGN_IRQ_NAME,
825 data->dready_trig);
826 if (ret < 0) {
827 dev_err(&client->dev, "request irq %d failed\n",
828 client->irq);
829 goto err_buffer_cleanup;
830 }
831 }
832
833 ret = iio_device_register(indio_dev);
834 if (ret < 0) {
835 dev_err(&client->dev, "unable to register iio device\n");
836 goto err_free_irq;
837 }
838
839 ret = pm_runtime_set_active(&client->dev);
840 if (ret)
841 goto err_iio_unregister;
842
843 pm_runtime_enable(&client->dev);
844 pm_runtime_set_autosuspend_delay(&client->dev,
845 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
846 pm_runtime_use_autosuspend(&client->dev);
847
848 dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
849
850 return 0;
851
852err_iio_unregister:
853 iio_device_unregister(indio_dev);
854err_free_irq:
855 if (client->irq > 0)
856 free_irq(client->irq, data->dready_trig);
857err_buffer_cleanup:
858 if (data->dready_trig)
859 iio_triggered_buffer_cleanup(indio_dev);
860err_trigger_unregister:
861 if (data->dready_trig)
862 iio_trigger_unregister(data->dready_trig);
863err_poweroff:
864 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
865 return ret;
866}
867
868static int bmc150_magn_remove(struct i2c_client *client)
869{
870 struct iio_dev *indio_dev = i2c_get_clientdata(client);
871 struct bmc150_magn_data *data = iio_priv(indio_dev);
872
873 pm_runtime_disable(&client->dev);
874 pm_runtime_set_suspended(&client->dev);
875 pm_runtime_put_noidle(&client->dev);
876
877 iio_device_unregister(indio_dev);
878
879 if (client->irq > 0)
880 free_irq(data->client->irq, data->dready_trig);
881
882 if (data->dready_trig) {
883 iio_triggered_buffer_cleanup(indio_dev);
884 iio_trigger_unregister(data->dready_trig);
885 }
886
887 mutex_lock(&data->mutex);
888 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
889 mutex_unlock(&data->mutex);
890
891 return 0;
892}
893
894#ifdef CONFIG_PM
895static int bmc150_magn_runtime_suspend(struct device *dev)
896{
897 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
898 struct bmc150_magn_data *data = iio_priv(indio_dev);
899 int ret;
900
901 mutex_lock(&data->mutex);
902 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
903 true);
904 mutex_unlock(&data->mutex);
905 if (ret < 0) {
906 dev_err(&data->client->dev, "powering off device failed\n");
907 return ret;
908 }
909 return 0;
910}
911
912static int bmc150_magn_runtime_resume(struct device *dev)
913{
914 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
915 struct bmc150_magn_data *data = iio_priv(indio_dev);
916
917 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
918 true);
919}
920#endif
921
922#ifdef CONFIG_PM_SLEEP
923static int bmc150_magn_suspend(struct device *dev)
924{
925 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
926 struct bmc150_magn_data *data = iio_priv(indio_dev);
927 int ret;
928
929 mutex_lock(&data->mutex);
930 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
931 true);
932 mutex_unlock(&data->mutex);
933
934 return ret;
935}
936
937static int bmc150_magn_resume(struct device *dev)
938{
939 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
940 struct bmc150_magn_data *data = iio_priv(indio_dev);
941 int ret;
942
943 mutex_lock(&data->mutex);
944 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
945 true);
946 mutex_unlock(&data->mutex);
947
948 return ret;
949}
950#endif
951
952static const struct dev_pm_ops bmc150_magn_pm_ops = {
953 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
954 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
955 bmc150_magn_runtime_resume, NULL)
956};
957
958static const struct acpi_device_id bmc150_magn_acpi_match[] = {
959 {"BMC150B", 0},
960 {},
961};
962MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
963
964static const struct i2c_device_id bmc150_magn_id[] = {
965 {"bmc150_magn", 0},
966 {},
967};
968MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
969
970static struct i2c_driver bmc150_magn_driver = {
971 .driver = {
972 .name = BMC150_MAGN_DRV_NAME,
973 .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
974 .pm = &bmc150_magn_pm_ops,
975 },
976 .probe = bmc150_magn_probe,
977 .remove = bmc150_magn_remove,
978 .id_table = bmc150_magn_id,
979};
980module_i2c_driver(bmc150_magn_driver);
981
982MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
983MODULE_LICENSE("GPL v2");
984MODULE_DESCRIPTION("BMC150 magnetometer driver");