]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/infiniband/hw/hfi1/chip.c
IB/hfi1: Fix a subcontext memory leak
[mirror_ubuntu-jammy-kernel.git] / drivers / infiniband / hw / hfi1 / chip.c
CommitLineData
77241056 1/*
5e6e9424 2 * Copyright(c) 2015 - 2017 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
5d9157aa 63#include "efivar.h"
8ebd4cf1 64#include "platform.h"
affa48de 65#include "aspm.h"
4197344b 66#include "affinity.h"
243d9f43 67#include "debugfs.h"
77241056
MM
68
69#define NUM_IB_PORTS 1
70
71uint kdeth_qp;
72module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76module_param(num_vls, uint, S_IRUGO);
77MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79/*
80 * Default time to aggregate two 10K packets from the idle state
81 * (timer not running). The timer starts at the end of the first packet,
82 * so only the time for one 10K packet and header plus a bit extra is needed.
83 * 10 * 1024 + 64 header byte = 10304 byte
84 * 10304 byte / 12.5 GB/s = 824.32ns
85 */
86uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87module_param(rcv_intr_timeout, uint, S_IRUGO);
88MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90uint rcv_intr_count = 16; /* same as qib */
91module_param(rcv_intr_count, uint, S_IRUGO);
92MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94ushort link_crc_mask = SUPPORTED_CRCS;
95module_param(link_crc_mask, ushort, S_IRUGO);
96MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98uint loopback;
99module_param_named(loopback, loopback, uint, S_IRUGO);
100MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102/* Other driver tunables */
103uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104static ushort crc_14b_sideband = 1;
105static uint use_flr = 1;
106uint quick_linkup; /* skip LNI */
107
108struct flag_table {
109 u64 flag; /* the flag */
110 char *str; /* description string */
111 u16 extra; /* extra information */
112 u16 unused0;
113 u32 unused1;
114};
115
116/* str must be a string constant */
117#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118#define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120/* Send Error Consequences */
121#define SEC_WRITE_DROPPED 0x1
122#define SEC_PACKET_DROPPED 0x2
123#define SEC_SC_HALTED 0x4 /* per-context only */
124#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
125
8784ac02 126#define DEFAULT_KRCVQS 2
77241056 127#define MIN_KERNEL_KCTXTS 2
82c2611d 128#define FIRST_KERNEL_KCTXT 1
2280740f
VN
129
130/*
131 * RSM instance allocation
132 * 0 - Verbs
133 * 1 - User Fecn Handling
134 * 2 - Vnic
135 */
136#define RSM_INS_VERBS 0
137#define RSM_INS_FECN 1
138#define RSM_INS_VNIC 2
77241056
MM
139
140/* Bit offset into the GUID which carries HFI id information */
141#define GUID_HFI_INDEX_SHIFT 39
142
143/* extract the emulation revision */
144#define emulator_rev(dd) ((dd)->irev >> 8)
145/* parallel and serial emulation versions are 3 and 4 respectively */
146#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
2280740f 149/* RSM fields for Verbs */
77241056
MM
150/* packet type */
151#define IB_PACKET_TYPE 2ull
152#define QW_SHIFT 6ull
153/* QPN[7..1] */
154#define QPN_WIDTH 7ull
155
156/* LRH.BTH: QW 0, OFFSET 48 - for match */
157#define LRH_BTH_QW 0ull
158#define LRH_BTH_BIT_OFFSET 48ull
159#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
160#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161#define LRH_BTH_SELECT
162#define LRH_BTH_MASK 3ull
163#define LRH_BTH_VALUE 2ull
164
165/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166#define LRH_SC_QW 0ull
167#define LRH_SC_BIT_OFFSET 56ull
168#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
169#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170#define LRH_SC_MASK 128ull
171#define LRH_SC_VALUE 0ull
172
173/* SC[n..0] QW 0, OFFSET 60 - for select */
174#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176/* QPN[m+n:1] QW 1, OFFSET 1 */
177#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
178
2280740f
VN
179/* RSM fields for Vnic */
180/* L2_TYPE: QW 0, OFFSET 61 - for match */
181#define L2_TYPE_QW 0ull
182#define L2_TYPE_BIT_OFFSET 61ull
183#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
184#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185#define L2_TYPE_MASK 3ull
186#define L2_16B_VALUE 2ull
187
188/* L4_TYPE QW 1, OFFSET 0 - for match */
189#define L4_TYPE_QW 1ull
190#define L4_TYPE_BIT_OFFSET 0ull
191#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
192#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193#define L4_16B_TYPE_MASK 0xFFull
194#define L4_16B_ETH_VALUE 0x78ull
195
196/* 16B VESWID - for select */
197#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
198/* 16B ENTROPY - for select */
199#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
200
77241056
MM
201/* defines to build power on SC2VL table */
202#define SC2VL_VAL( \
203 num, \
204 sc0, sc0val, \
205 sc1, sc1val, \
206 sc2, sc2val, \
207 sc3, sc3val, \
208 sc4, sc4val, \
209 sc5, sc5val, \
210 sc6, sc6val, \
211 sc7, sc7val) \
212( \
213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
221)
222
223#define DC_SC_VL_VAL( \
224 range, \
225 e0, e0val, \
226 e1, e1val, \
227 e2, e2val, \
228 e3, e3val, \
229 e4, e4val, \
230 e5, e5val, \
231 e6, e6val, \
232 e7, e7val, \
233 e8, e8val, \
234 e9, e9val, \
235 e10, e10val, \
236 e11, e11val, \
237 e12, e12val, \
238 e13, e13val, \
239 e14, e14val, \
240 e15, e15val) \
241( \
242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258)
259
260/* all CceStatus sub-block freeze bits */
261#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 | CCE_STATUS_RXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265/* all CceStatus sub-block TXE pause bits */
266#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 | CCE_STATUS_TXE_PAUSED_SMASK \
268 | CCE_STATUS_SDMA_PAUSED_SMASK)
269/* all CceStatus sub-block RXE pause bits */
270#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
2b719046
JP
272#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
77241056
MM
275/*
276 * CCE Error flags.
277 */
278static struct flag_table cce_err_status_flags[] = {
279/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341/*31*/ FLAG_ENTRY0("LATriggered",
342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361/*41-63 reserved*/
362};
363
364/*
365 * Misc Error flags
366 */
367#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368static struct flag_table misc_err_status_flags[] = {
369/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382};
383
384/*
385 * TXE PIO Error flags and consequences
386 */
387static struct flag_table pio_err_status_flags[] = {
388/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
389 SEC_WRITE_DROPPED,
390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394/* 2*/ FLAG_ENTRY("PioCsrParity",
395 SEC_SPC_FREEZE,
396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403/* 5*/ FLAG_ENTRY("PioPccFifoParity",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406/* 6*/ FLAG_ENTRY("PioPecFifoParity",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418/*10*/ FLAG_ENTRY("PioSmPktResetParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
425 SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
428 0,
429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
431 0,
432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439/*17*/ FLAG_ENTRY("PioInitSmIn",
440 0,
441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
446 SEC_SPC_FREEZE,
447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
449 0,
450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451/*21*/ FLAG_ENTRY("PioWriteDataParity",
452 SEC_SPC_FREEZE,
453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454/*22*/ FLAG_ENTRY("PioStateMachine",
455 SEC_SPC_FREEZE,
456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
8638b77f 458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
8638b77f 461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
464 SEC_SPC_FREEZE,
465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466/*26*/ FLAG_ENTRY("PioVlfSopParity",
467 SEC_SPC_FREEZE,
468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469/*27*/ FLAG_ENTRY("PioVlFifoParity",
470 SEC_SPC_FREEZE,
471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
473 SEC_SPC_FREEZE,
474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475/*29*/ FLAG_ENTRY("PioPpmcSopLen",
476 SEC_SPC_FREEZE,
477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478/*30-31 reserved*/
479/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
480 SEC_SPC_FREEZE,
481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
483 SEC_SPC_FREEZE,
484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
486 SEC_SPC_FREEZE,
487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
489 SEC_SPC_FREEZE,
490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491/*36-63 reserved*/
492};
493
494/* TXE PIO errors that cause an SPC freeze */
495#define ALL_PIO_FREEZE_ERR \
496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526/*
527 * TXE SDMA Error flags
528 */
529static struct flag_table sdma_err_status_flags[] = {
530/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538/*04-63 reserved*/
539};
540
541/* TXE SDMA errors that cause an SPC freeze */
542#define ALL_SDMA_FREEZE_ERR \
543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
69a00b8e
MM
547/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548#define PORT_DISCARD_EGRESS_ERRS \
549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
77241056
MM
553/*
554 * TXE Egress Error flags
555 */
556#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557static struct flag_table egress_err_status_flags[] = {
558/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560/* 2 reserved */
561/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565/* 6 reserved */
566/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570/* 9-10 reserved */
571/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652};
653
654/*
655 * TXE Egress Error Info flags
656 */
657#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658static struct flag_table egress_err_info_flags[] = {
659/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
660/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
661/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
668/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681};
682
683/* TXE Egress errors that cause an SPC freeze */
684#define ALL_TXE_EGRESS_FREEZE_ERR \
685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 | SEES(TX_LAUNCH_CSR_PARITY) \
690 | SEES(TX_SBRD_CTL_CSR_PARITY) \
691 | SEES(TX_CONFIG_PARITY) \
692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 | SEES(TX_CREDIT_RETURN_PARITY))
702
703/*
704 * TXE Send error flags
705 */
706#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707static struct flag_table send_err_status_flags[] = {
2c5b521a 708/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
77241056
MM
709/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711};
712
713/*
714 * TXE Send Context Error flags and consequences
715 */
716static struct flag_table sc_err_status_flags[] = {
717/* 0*/ FLAG_ENTRY("InconsistentSop",
718 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720/* 1*/ FLAG_ENTRY("DisallowedPacket",
721 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
724 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726/* 3*/ FLAG_ENTRY("WriteOverflow",
727 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
730 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732/* 5-63 reserved*/
733};
734
735/*
736 * RXE Receive Error flags
737 */
738#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739static struct flag_table rxe_err_status_flags[] = {
740/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 RXES(RBUF_BLOCK_LIST_READ_COR)),
764/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 RXES(RBUF_FL_INITDONE_PARITY)),
785/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 RXES(LOOKUP_DES_PART1_UNC_COR)),
792/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 RXES(LOOKUP_DES_PART2_PARITY)),
794/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816};
817
818/* RXE errors that will trigger an SPC freeze */
819#define ALL_RXE_FREEZE_ERR \
820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865#define RXE_FREEZE_ABORT_MASK \
866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870/*
871 * DCC Error Flags
872 */
873#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874static struct flag_table dcc_err_flags[] = {
875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921};
922
923/*
924 * LCB error flags
925 */
926#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927static struct flag_table lcb_err_flags[] = {
928/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964};
965
966/*
967 * DC8051 Error Flags
968 */
969#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970static struct flag_table dc8051_err_flags[] = {
971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
17fb4f29 980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
77241056
MM
981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982};
983
984/*
985 * DC8051 Information Error flags
986 *
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988 */
989static struct flag_table dc8051_info_err_flags[] = {
990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
993 FLAG_ENTRY0("Serdes internal loopback failure",
17fb4f29 994 FAILED_SERDES_INTERNAL_LOOPBACK),
77241056
MM
995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
8fefef12 1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
50921be0
DL
1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1004 FLAG_ENTRY0("External Device Request Timeout",
1005 EXTERNAL_DEVICE_REQ_TIMEOUT),
77241056
MM
1006};
1007
1008/*
1009 * DC8051 Information Host Information flags
1010 *
1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012 */
1013static struct flag_table dc8051_info_host_msg_flags[] = {
1014 FLAG_ENTRY0("Host request done", 0x0001),
1015 FLAG_ENTRY0("BC SMA message", 0x0002),
1016 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 FLAG_ENTRY0("External device config request", 0x0020),
1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 FLAG_ENTRY0("Link going down", 0x0100),
1023};
1024
77241056
MM
1025static u32 encoded_size(u32 size);
1026static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 u8 *continuous);
1030static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 u8 *remote_tx_rate, u16 *link_widths);
1034static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1035 u8 *flag_bits, u16 *link_widths);
1036static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 u8 *device_rev);
1038static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1039static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 u8 *tx_polarity_inversion,
1042 u8 *rx_polarity_inversion, u8 *max_rate);
1043static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 unsigned int context, u64 err_status);
1045static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046static void handle_dcc_err(struct hfi1_devdata *dd,
1047 unsigned int context, u64 err_status);
1048static void handle_lcb_err(struct hfi1_devdata *dd,
1049 unsigned int context, u64 err_status);
1050static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058static void set_partition_keys(struct hfi1_pportdata *);
1059static const char *link_state_name(u32 state);
1060static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 u32 state);
1062static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 u64 *out_data);
1064static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065static int thermal_init(struct hfi1_devdata *dd);
1066
1067static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1068 int msecs);
1069static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
feb831dd 1070static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
77241056
MM
1071static void handle_temp_err(struct hfi1_devdata *);
1072static void dc_shutdown(struct hfi1_devdata *);
1073static void dc_start(struct hfi1_devdata *);
8f000f7f
DL
1074static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1075 unsigned int *np);
3ec5fa28 1076static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
ec8a1423 1077static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
2280740f 1078static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
77241056
MM
1079
1080/*
1081 * Error interrupt table entry. This is used as input to the interrupt
1082 * "clear down" routine used for all second tier error interrupt register.
1083 * Second tier interrupt registers have a single bit representing them
1084 * in the top-level CceIntStatus.
1085 */
1086struct err_reg_info {
1087 u32 status; /* status CSR offset */
1088 u32 clear; /* clear CSR offset */
1089 u32 mask; /* mask CSR offset */
1090 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1091 const char *desc;
1092};
1093
1094#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1095#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1096#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1097
1098/*
1099 * Helpers for building HFI and DC error interrupt table entries. Different
1100 * helpers are needed because of inconsistent register names.
1101 */
1102#define EE(reg, handler, desc) \
1103 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1104 handler, desc }
1105#define DC_EE1(reg, handler, desc) \
1106 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1107#define DC_EE2(reg, handler, desc) \
1108 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1109
1110/*
1111 * Table of the "misc" grouping of error interrupts. Each entry refers to
1112 * another register containing more information.
1113 */
1114static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1115/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1116/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1117/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1118/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1119/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1120/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1121/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1122/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1123 /* the rest are reserved */
1124};
1125
1126/*
1127 * Index into the Various section of the interrupt sources
1128 * corresponding to the Critical Temperature interrupt.
1129 */
1130#define TCRIT_INT_SOURCE 4
1131
1132/*
1133 * SDMA error interrupt entry - refers to another register containing more
1134 * information.
1135 */
1136static const struct err_reg_info sdma_eng_err =
1137 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1138
1139static const struct err_reg_info various_err[NUM_VARIOUS] = {
1140/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1141/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1142/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1143/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1144/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1145 /* rest are reserved */
1146};
1147
1148/*
1149 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1150 * register can not be derived from the MTU value because 10K is not
1151 * a power of 2. Therefore, we need a constant. Everything else can
1152 * be calculated.
1153 */
1154#define DCC_CFG_PORT_MTU_CAP_10240 7
1155
1156/*
1157 * Table of the DC grouping of error interrupts. Each entry refers to
1158 * another register containing more information.
1159 */
1160static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1161/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1162/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1163/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1164/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1165 /* the rest are reserved */
1166};
1167
1168struct cntr_entry {
1169 /*
1170 * counter name
1171 */
1172 char *name;
1173
1174 /*
1175 * csr to read for name (if applicable)
1176 */
1177 u64 csr;
1178
1179 /*
1180 * offset into dd or ppd to store the counter's value
1181 */
1182 int offset;
1183
1184 /*
1185 * flags
1186 */
1187 u8 flags;
1188
1189 /*
1190 * accessor for stat element, context either dd or ppd
1191 */
17fb4f29
JJ
1192 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1193 int mode, u64 data);
77241056
MM
1194};
1195
1196#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1197#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1198
1199#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1200{ \
1201 name, \
1202 csr, \
1203 offset, \
1204 flags, \
1205 accessor \
1206}
1207
1208/* 32bit RXE */
1209#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1210CNTR_ELEM(#name, \
1211 (counter * 8 + RCV_COUNTER_ARRAY32), \
1212 0, flags | CNTR_32BIT, \
1213 port_access_u32_csr)
1214
1215#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1216CNTR_ELEM(#name, \
1217 (counter * 8 + RCV_COUNTER_ARRAY32), \
1218 0, flags | CNTR_32BIT, \
1219 dev_access_u32_csr)
1220
1221/* 64bit RXE */
1222#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1223CNTR_ELEM(#name, \
1224 (counter * 8 + RCV_COUNTER_ARRAY64), \
1225 0, flags, \
1226 port_access_u64_csr)
1227
1228#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1229CNTR_ELEM(#name, \
1230 (counter * 8 + RCV_COUNTER_ARRAY64), \
1231 0, flags, \
1232 dev_access_u64_csr)
1233
1234#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1235#define OVR_ELM(ctx) \
1236CNTR_ELEM("RcvHdrOvr" #ctx, \
8638b77f 1237 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
77241056
MM
1238 0, CNTR_NORMAL, port_access_u64_csr)
1239
1240/* 32bit TXE */
1241#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1242CNTR_ELEM(#name, \
1243 (counter * 8 + SEND_COUNTER_ARRAY32), \
1244 0, flags | CNTR_32BIT, \
1245 port_access_u32_csr)
1246
1247/* 64bit TXE */
1248#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1249CNTR_ELEM(#name, \
1250 (counter * 8 + SEND_COUNTER_ARRAY64), \
1251 0, flags, \
1252 port_access_u64_csr)
1253
1254# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1255CNTR_ELEM(#name,\
1256 counter * 8 + SEND_COUNTER_ARRAY64, \
1257 0, \
1258 flags, \
1259 dev_access_u64_csr)
1260
1261/* CCE */
1262#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1263CNTR_ELEM(#name, \
1264 (counter * 8 + CCE_COUNTER_ARRAY32), \
1265 0, flags | CNTR_32BIT, \
1266 dev_access_u32_csr)
1267
1268#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1269CNTR_ELEM(#name, \
1270 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1271 0, flags | CNTR_32BIT, \
1272 dev_access_u32_csr)
1273
1274/* DC */
1275#define DC_PERF_CNTR(name, counter, flags) \
1276CNTR_ELEM(#name, \
1277 counter, \
1278 0, \
1279 flags, \
1280 dev_access_u64_csr)
1281
1282#define DC_PERF_CNTR_LCB(name, counter, flags) \
1283CNTR_ELEM(#name, \
1284 counter, \
1285 0, \
1286 flags, \
1287 dc_access_lcb_cntr)
1288
1289/* ibp counters */
1290#define SW_IBP_CNTR(name, cntr) \
1291CNTR_ELEM(#name, \
1292 0, \
1293 0, \
1294 CNTR_SYNTH, \
1295 access_ibp_##cntr)
1296
1297u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1298{
77241056 1299 if (dd->flags & HFI1_PRESENT) {
6d210eef 1300 return readq((void __iomem *)dd->kregbase + offset);
77241056
MM
1301 }
1302 return -1;
1303}
1304
1305void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1306{
1307 if (dd->flags & HFI1_PRESENT)
1308 writeq(value, (void __iomem *)dd->kregbase + offset);
1309}
1310
1311void __iomem *get_csr_addr(
1312 struct hfi1_devdata *dd,
1313 u32 offset)
1314{
1315 return (void __iomem *)dd->kregbase + offset;
1316}
1317
1318static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1319 int mode, u64 value)
1320{
1321 u64 ret;
1322
77241056
MM
1323 if (mode == CNTR_MODE_R) {
1324 ret = read_csr(dd, csr);
1325 } else if (mode == CNTR_MODE_W) {
1326 write_csr(dd, csr, value);
1327 ret = value;
1328 } else {
1329 dd_dev_err(dd, "Invalid cntr register access mode");
1330 return 0;
1331 }
1332
1333 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1334 return ret;
1335}
1336
1337/* Dev Access */
1338static u64 dev_access_u32_csr(const struct cntr_entry *entry,
17fb4f29 1339 void *context, int vl, int mode, u64 data)
77241056 1340{
a787bde8 1341 struct hfi1_devdata *dd = context;
a699c6c2 1342 u64 csr = entry->csr;
77241056 1343
a699c6c2
VM
1344 if (entry->flags & CNTR_SDMA) {
1345 if (vl == CNTR_INVALID_VL)
1346 return 0;
1347 csr += 0x100 * vl;
1348 } else {
1349 if (vl != CNTR_INVALID_VL)
1350 return 0;
1351 }
1352 return read_write_csr(dd, csr, mode, data);
1353}
1354
1355static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1356 void *context, int idx, int mode, u64 data)
1357{
1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359
1360 if (dd->per_sdma && idx < dd->num_sdma)
1361 return dd->per_sdma[idx].err_cnt;
1362 return 0;
1363}
1364
1365static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1366 void *context, int idx, int mode, u64 data)
1367{
1368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1369
1370 if (dd->per_sdma && idx < dd->num_sdma)
1371 return dd->per_sdma[idx].sdma_int_cnt;
1372 return 0;
1373}
1374
1375static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1376 void *context, int idx, int mode, u64 data)
1377{
1378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1379
1380 if (dd->per_sdma && idx < dd->num_sdma)
1381 return dd->per_sdma[idx].idle_int_cnt;
1382 return 0;
1383}
1384
1385static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1386 void *context, int idx, int mode,
1387 u64 data)
1388{
1389 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390
1391 if (dd->per_sdma && idx < dd->num_sdma)
1392 return dd->per_sdma[idx].progress_int_cnt;
1393 return 0;
77241056
MM
1394}
1395
1396static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1397 int vl, int mode, u64 data)
77241056 1398{
a787bde8 1399 struct hfi1_devdata *dd = context;
77241056
MM
1400
1401 u64 val = 0;
1402 u64 csr = entry->csr;
1403
1404 if (entry->flags & CNTR_VL) {
1405 if (vl == CNTR_INVALID_VL)
1406 return 0;
1407 csr += 8 * vl;
1408 } else {
1409 if (vl != CNTR_INVALID_VL)
1410 return 0;
1411 }
1412
1413 val = read_write_csr(dd, csr, mode, data);
1414 return val;
1415}
1416
1417static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
17fb4f29 1418 int vl, int mode, u64 data)
77241056 1419{
a787bde8 1420 struct hfi1_devdata *dd = context;
77241056
MM
1421 u32 csr = entry->csr;
1422 int ret = 0;
1423
1424 if (vl != CNTR_INVALID_VL)
1425 return 0;
1426 if (mode == CNTR_MODE_R)
1427 ret = read_lcb_csr(dd, csr, &data);
1428 else if (mode == CNTR_MODE_W)
1429 ret = write_lcb_csr(dd, csr, data);
1430
1431 if (ret) {
1432 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1433 return 0;
1434 }
1435
1436 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1437 return data;
1438}
1439
1440/* Port Access */
1441static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1442 int vl, int mode, u64 data)
77241056 1443{
a787bde8 1444 struct hfi1_pportdata *ppd = context;
77241056
MM
1445
1446 if (vl != CNTR_INVALID_VL)
1447 return 0;
1448 return read_write_csr(ppd->dd, entry->csr, mode, data);
1449}
1450
1451static u64 port_access_u64_csr(const struct cntr_entry *entry,
17fb4f29 1452 void *context, int vl, int mode, u64 data)
77241056 1453{
a787bde8 1454 struct hfi1_pportdata *ppd = context;
77241056
MM
1455 u64 val;
1456 u64 csr = entry->csr;
1457
1458 if (entry->flags & CNTR_VL) {
1459 if (vl == CNTR_INVALID_VL)
1460 return 0;
1461 csr += 8 * vl;
1462 } else {
1463 if (vl != CNTR_INVALID_VL)
1464 return 0;
1465 }
1466 val = read_write_csr(ppd->dd, csr, mode, data);
1467 return val;
1468}
1469
1470/* Software defined */
1471static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1472 u64 data)
1473{
1474 u64 ret;
1475
1476 if (mode == CNTR_MODE_R) {
1477 ret = *cntr;
1478 } else if (mode == CNTR_MODE_W) {
1479 *cntr = data;
1480 ret = data;
1481 } else {
1482 dd_dev_err(dd, "Invalid cntr sw access mode");
1483 return 0;
1484 }
1485
1486 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1487
1488 return ret;
1489}
1490
1491static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1492 int vl, int mode, u64 data)
77241056 1493{
a787bde8 1494 struct hfi1_pportdata *ppd = context;
77241056
MM
1495
1496 if (vl != CNTR_INVALID_VL)
1497 return 0;
1498 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1499}
1500
1501static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1502 int vl, int mode, u64 data)
77241056 1503{
a787bde8 1504 struct hfi1_pportdata *ppd = context;
77241056
MM
1505
1506 if (vl != CNTR_INVALID_VL)
1507 return 0;
1508 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1509}
1510
6d014530
DL
1511static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1512 void *context, int vl, int mode,
1513 u64 data)
1514{
1515 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1516
1517 if (vl != CNTR_INVALID_VL)
1518 return 0;
1519 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1520}
1521
77241056 1522static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
17fb4f29 1523 void *context, int vl, int mode, u64 data)
77241056 1524{
69a00b8e
MM
1525 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1526 u64 zero = 0;
1527 u64 *counter;
77241056 1528
69a00b8e
MM
1529 if (vl == CNTR_INVALID_VL)
1530 counter = &ppd->port_xmit_discards;
1531 else if (vl >= 0 && vl < C_VL_COUNT)
1532 counter = &ppd->port_xmit_discards_vl[vl];
1533 else
1534 counter = &zero;
77241056 1535
69a00b8e 1536 return read_write_sw(ppd->dd, counter, mode, data);
77241056
MM
1537}
1538
1539static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
17fb4f29
JJ
1540 void *context, int vl, int mode,
1541 u64 data)
77241056 1542{
a787bde8 1543 struct hfi1_pportdata *ppd = context;
77241056
MM
1544
1545 if (vl != CNTR_INVALID_VL)
1546 return 0;
1547
1548 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1549 mode, data);
1550}
1551
1552static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
17fb4f29 1553 void *context, int vl, int mode, u64 data)
77241056 1554{
a787bde8 1555 struct hfi1_pportdata *ppd = context;
77241056
MM
1556
1557 if (vl != CNTR_INVALID_VL)
1558 return 0;
1559
1560 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1561 mode, data);
1562}
1563
1564u64 get_all_cpu_total(u64 __percpu *cntr)
1565{
1566 int cpu;
1567 u64 counter = 0;
1568
1569 for_each_possible_cpu(cpu)
1570 counter += *per_cpu_ptr(cntr, cpu);
1571 return counter;
1572}
1573
1574static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1575 u64 __percpu *cntr,
1576 int vl, int mode, u64 data)
1577{
77241056
MM
1578 u64 ret = 0;
1579
1580 if (vl != CNTR_INVALID_VL)
1581 return 0;
1582
1583 if (mode == CNTR_MODE_R) {
1584 ret = get_all_cpu_total(cntr) - *z_val;
1585 } else if (mode == CNTR_MODE_W) {
1586 /* A write can only zero the counter */
1587 if (data == 0)
1588 *z_val = get_all_cpu_total(cntr);
1589 else
1590 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1591 } else {
1592 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1593 return 0;
1594 }
1595
1596 return ret;
1597}
1598
1599static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601{
a787bde8 1602 struct hfi1_devdata *dd = context;
77241056
MM
1603
1604 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1605 mode, data);
1606}
1607
1608static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
17fb4f29 1609 void *context, int vl, int mode, u64 data)
77241056 1610{
a787bde8 1611 struct hfi1_devdata *dd = context;
77241056
MM
1612
1613 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1614 mode, data);
1615}
1616
1617static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1618 void *context, int vl, int mode, u64 data)
1619{
a787bde8 1620 struct hfi1_devdata *dd = context;
77241056
MM
1621
1622 return dd->verbs_dev.n_piowait;
1623}
1624
14553ca1
MM
1625static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1626 void *context, int vl, int mode, u64 data)
1627{
1628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629
1630 return dd->verbs_dev.n_piodrain;
1631}
1632
77241056
MM
1633static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1634 void *context, int vl, int mode, u64 data)
1635{
a787bde8 1636 struct hfi1_devdata *dd = context;
77241056
MM
1637
1638 return dd->verbs_dev.n_txwait;
1639}
1640
1641static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1642 void *context, int vl, int mode, u64 data)
1643{
a787bde8 1644 struct hfi1_devdata *dd = context;
77241056
MM
1645
1646 return dd->verbs_dev.n_kmem_wait;
1647}
1648
b421922e 1649static u64 access_sw_send_schedule(const struct cntr_entry *entry,
17fb4f29 1650 void *context, int vl, int mode, u64 data)
b421922e
DL
1651{
1652 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1653
89abfc8d
VM
1654 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1655 mode, data);
b421922e
DL
1656}
1657
2c5b521a
JR
1658/* Software counters for the error status bits within MISC_ERR_STATUS */
1659static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1660 void *context, int vl, int mode,
1661 u64 data)
1662{
1663 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1664
1665 return dd->misc_err_status_cnt[12];
1666}
1667
1668static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1669 void *context, int vl, int mode,
1670 u64 data)
1671{
1672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1673
1674 return dd->misc_err_status_cnt[11];
1675}
1676
1677static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1678 void *context, int vl, int mode,
1679 u64 data)
1680{
1681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682
1683 return dd->misc_err_status_cnt[10];
1684}
1685
1686static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1687 void *context, int vl,
1688 int mode, u64 data)
1689{
1690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1691
1692 return dd->misc_err_status_cnt[9];
1693}
1694
1695static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1696 void *context, int vl, int mode,
1697 u64 data)
1698{
1699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1700
1701 return dd->misc_err_status_cnt[8];
1702}
1703
1704static u64 access_misc_efuse_read_bad_addr_err_cnt(
1705 const struct cntr_entry *entry,
1706 void *context, int vl, int mode, u64 data)
1707{
1708 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1709
1710 return dd->misc_err_status_cnt[7];
1711}
1712
1713static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1714 void *context, int vl,
1715 int mode, u64 data)
1716{
1717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718
1719 return dd->misc_err_status_cnt[6];
1720}
1721
1722static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1723 void *context, int vl, int mode,
1724 u64 data)
1725{
1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728 return dd->misc_err_status_cnt[5];
1729}
1730
1731static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1732 void *context, int vl, int mode,
1733 u64 data)
1734{
1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737 return dd->misc_err_status_cnt[4];
1738}
1739
1740static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1741 void *context, int vl,
1742 int mode, u64 data)
1743{
1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746 return dd->misc_err_status_cnt[3];
1747}
1748
1749static u64 access_misc_csr_write_bad_addr_err_cnt(
1750 const struct cntr_entry *entry,
1751 void *context, int vl, int mode, u64 data)
1752{
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755 return dd->misc_err_status_cnt[2];
1756}
1757
1758static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1759 void *context, int vl,
1760 int mode, u64 data)
1761{
1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764 return dd->misc_err_status_cnt[1];
1765}
1766
1767static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 void *context, int vl, int mode,
1769 u64 data)
1770{
1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773 return dd->misc_err_status_cnt[0];
1774}
1775
1776/*
1777 * Software counter for the aggregate of
1778 * individual CceErrStatus counters
1779 */
1780static u64 access_sw_cce_err_status_aggregated_cnt(
1781 const struct cntr_entry *entry,
1782 void *context, int vl, int mode, u64 data)
1783{
1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785
1786 return dd->sw_cce_err_status_aggregate;
1787}
1788
1789/*
1790 * Software counters corresponding to each of the
1791 * error status bits within CceErrStatus
1792 */
1793static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1794 void *context, int vl, int mode,
1795 u64 data)
1796{
1797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798
1799 return dd->cce_err_status_cnt[40];
1800}
1801
1802static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1803 void *context, int vl, int mode,
1804 u64 data)
1805{
1806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807
1808 return dd->cce_err_status_cnt[39];
1809}
1810
1811static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1812 void *context, int vl, int mode,
1813 u64 data)
1814{
1815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816
1817 return dd->cce_err_status_cnt[38];
1818}
1819
1820static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1821 void *context, int vl, int mode,
1822 u64 data)
1823{
1824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825
1826 return dd->cce_err_status_cnt[37];
1827}
1828
1829static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1830 void *context, int vl, int mode,
1831 u64 data)
1832{
1833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834
1835 return dd->cce_err_status_cnt[36];
1836}
1837
1838static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1839 const struct cntr_entry *entry,
1840 void *context, int vl, int mode, u64 data)
1841{
1842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843
1844 return dd->cce_err_status_cnt[35];
1845}
1846
1847static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1848 const struct cntr_entry *entry,
1849 void *context, int vl, int mode, u64 data)
1850{
1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853 return dd->cce_err_status_cnt[34];
1854}
1855
1856static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1857 void *context, int vl,
1858 int mode, u64 data)
1859{
1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862 return dd->cce_err_status_cnt[33];
1863}
1864
1865static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1866 void *context, int vl, int mode,
1867 u64 data)
1868{
1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871 return dd->cce_err_status_cnt[32];
1872}
1873
1874static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1875 void *context, int vl, int mode, u64 data)
1876{
1877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878
1879 return dd->cce_err_status_cnt[31];
1880}
1881
1882static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1883 void *context, int vl, int mode,
1884 u64 data)
1885{
1886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887
1888 return dd->cce_err_status_cnt[30];
1889}
1890
1891static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1892 void *context, int vl, int mode,
1893 u64 data)
1894{
1895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896
1897 return dd->cce_err_status_cnt[29];
1898}
1899
1900static u64 access_pcic_transmit_back_parity_err_cnt(
1901 const struct cntr_entry *entry,
1902 void *context, int vl, int mode, u64 data)
1903{
1904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905
1906 return dd->cce_err_status_cnt[28];
1907}
1908
1909static u64 access_pcic_transmit_front_parity_err_cnt(
1910 const struct cntr_entry *entry,
1911 void *context, int vl, int mode, u64 data)
1912{
1913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914
1915 return dd->cce_err_status_cnt[27];
1916}
1917
1918static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1919 void *context, int vl, int mode,
1920 u64 data)
1921{
1922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923
1924 return dd->cce_err_status_cnt[26];
1925}
1926
1927static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1928 void *context, int vl, int mode,
1929 u64 data)
1930{
1931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932
1933 return dd->cce_err_status_cnt[25];
1934}
1935
1936static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1937 void *context, int vl, int mode,
1938 u64 data)
1939{
1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942 return dd->cce_err_status_cnt[24];
1943}
1944
1945static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1946 void *context, int vl, int mode,
1947 u64 data)
1948{
1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951 return dd->cce_err_status_cnt[23];
1952}
1953
1954static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1955 void *context, int vl,
1956 int mode, u64 data)
1957{
1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960 return dd->cce_err_status_cnt[22];
1961}
1962
1963static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1964 void *context, int vl, int mode,
1965 u64 data)
1966{
1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969 return dd->cce_err_status_cnt[21];
1970}
1971
1972static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1973 const struct cntr_entry *entry,
1974 void *context, int vl, int mode, u64 data)
1975{
1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978 return dd->cce_err_status_cnt[20];
1979}
1980
1981static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1982 void *context, int vl,
1983 int mode, u64 data)
1984{
1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987 return dd->cce_err_status_cnt[19];
1988}
1989
1990static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1991 void *context, int vl, int mode,
1992 u64 data)
1993{
1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996 return dd->cce_err_status_cnt[18];
1997}
1998
1999static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2000 void *context, int vl, int mode,
2001 u64 data)
2002{
2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005 return dd->cce_err_status_cnt[17];
2006}
2007
2008static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2009 void *context, int vl, int mode,
2010 u64 data)
2011{
2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014 return dd->cce_err_status_cnt[16];
2015}
2016
2017static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2018 void *context, int vl, int mode,
2019 u64 data)
2020{
2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023 return dd->cce_err_status_cnt[15];
2024}
2025
2026static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2027 void *context, int vl,
2028 int mode, u64 data)
2029{
2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032 return dd->cce_err_status_cnt[14];
2033}
2034
2035static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2036 void *context, int vl, int mode,
2037 u64 data)
2038{
2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041 return dd->cce_err_status_cnt[13];
2042}
2043
2044static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2045 const struct cntr_entry *entry,
2046 void *context, int vl, int mode, u64 data)
2047{
2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050 return dd->cce_err_status_cnt[12];
2051}
2052
2053static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2054 const struct cntr_entry *entry,
2055 void *context, int vl, int mode, u64 data)
2056{
2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059 return dd->cce_err_status_cnt[11];
2060}
2061
2062static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2063 const struct cntr_entry *entry,
2064 void *context, int vl, int mode, u64 data)
2065{
2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068 return dd->cce_err_status_cnt[10];
2069}
2070
2071static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2072 const struct cntr_entry *entry,
2073 void *context, int vl, int mode, u64 data)
2074{
2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077 return dd->cce_err_status_cnt[9];
2078}
2079
2080static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2081 const struct cntr_entry *entry,
2082 void *context, int vl, int mode, u64 data)
2083{
2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086 return dd->cce_err_status_cnt[8];
2087}
2088
2089static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2090 void *context, int vl,
2091 int mode, u64 data)
2092{
2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095 return dd->cce_err_status_cnt[7];
2096}
2097
2098static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2099 const struct cntr_entry *entry,
2100 void *context, int vl, int mode, u64 data)
2101{
2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104 return dd->cce_err_status_cnt[6];
2105}
2106
2107static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2108 void *context, int vl, int mode,
2109 u64 data)
2110{
2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113 return dd->cce_err_status_cnt[5];
2114}
2115
2116static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2117 void *context, int vl, int mode,
2118 u64 data)
2119{
2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122 return dd->cce_err_status_cnt[4];
2123}
2124
2125static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2126 const struct cntr_entry *entry,
2127 void *context, int vl, int mode, u64 data)
2128{
2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131 return dd->cce_err_status_cnt[3];
2132}
2133
2134static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2135 void *context, int vl,
2136 int mode, u64 data)
2137{
2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140 return dd->cce_err_status_cnt[2];
2141}
2142
2143static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 void *context, int vl,
2145 int mode, u64 data)
2146{
2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149 return dd->cce_err_status_cnt[1];
2150}
2151
2152static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2153 void *context, int vl, int mode,
2154 u64 data)
2155{
2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158 return dd->cce_err_status_cnt[0];
2159}
2160
2161/*
2162 * Software counters corresponding to each of the
2163 * error status bits within RcvErrStatus
2164 */
2165static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2166 void *context, int vl, int mode,
2167 u64 data)
2168{
2169 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170
2171 return dd->rcv_err_status_cnt[63];
2172}
2173
2174static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175 void *context, int vl,
2176 int mode, u64 data)
2177{
2178 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179
2180 return dd->rcv_err_status_cnt[62];
2181}
2182
2183static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184 void *context, int vl, int mode,
2185 u64 data)
2186{
2187 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188
2189 return dd->rcv_err_status_cnt[61];
2190}
2191
2192static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2193 void *context, int vl, int mode,
2194 u64 data)
2195{
2196 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197
2198 return dd->rcv_err_status_cnt[60];
2199}
2200
2201static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2202 void *context, int vl,
2203 int mode, u64 data)
2204{
2205 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2206
2207 return dd->rcv_err_status_cnt[59];
2208}
2209
2210static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2211 void *context, int vl,
2212 int mode, u64 data)
2213{
2214 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2215
2216 return dd->rcv_err_status_cnt[58];
2217}
2218
2219static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 void *context, int vl, int mode,
2221 u64 data)
2222{
2223 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224
2225 return dd->rcv_err_status_cnt[57];
2226}
2227
2228static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2229 void *context, int vl, int mode,
2230 u64 data)
2231{
2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234 return dd->rcv_err_status_cnt[56];
2235}
2236
2237static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2238 void *context, int vl, int mode,
2239 u64 data)
2240{
2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243 return dd->rcv_err_status_cnt[55];
2244}
2245
2246static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2247 const struct cntr_entry *entry,
2248 void *context, int vl, int mode, u64 data)
2249{
2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252 return dd->rcv_err_status_cnt[54];
2253}
2254
2255static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2256 const struct cntr_entry *entry,
2257 void *context, int vl, int mode, u64 data)
2258{
2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261 return dd->rcv_err_status_cnt[53];
2262}
2263
2264static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2265 void *context, int vl,
2266 int mode, u64 data)
2267{
2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270 return dd->rcv_err_status_cnt[52];
2271}
2272
2273static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2274 void *context, int vl,
2275 int mode, u64 data)
2276{
2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279 return dd->rcv_err_status_cnt[51];
2280}
2281
2282static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2283 void *context, int vl,
2284 int mode, u64 data)
2285{
2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288 return dd->rcv_err_status_cnt[50];
2289}
2290
2291static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2292 void *context, int vl,
2293 int mode, u64 data)
2294{
2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297 return dd->rcv_err_status_cnt[49];
2298}
2299
2300static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2301 void *context, int vl,
2302 int mode, u64 data)
2303{
2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306 return dd->rcv_err_status_cnt[48];
2307}
2308
2309static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2310 void *context, int vl,
2311 int mode, u64 data)
2312{
2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315 return dd->rcv_err_status_cnt[47];
2316}
2317
2318static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2319 void *context, int vl, int mode,
2320 u64 data)
2321{
2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324 return dd->rcv_err_status_cnt[46];
2325}
2326
2327static u64 access_rx_hq_intr_csr_parity_err_cnt(
2328 const struct cntr_entry *entry,
2329 void *context, int vl, int mode, u64 data)
2330{
2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333 return dd->rcv_err_status_cnt[45];
2334}
2335
2336static u64 access_rx_lookup_csr_parity_err_cnt(
2337 const struct cntr_entry *entry,
2338 void *context, int vl, int mode, u64 data)
2339{
2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342 return dd->rcv_err_status_cnt[44];
2343}
2344
2345static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2346 const struct cntr_entry *entry,
2347 void *context, int vl, int mode, u64 data)
2348{
2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351 return dd->rcv_err_status_cnt[43];
2352}
2353
2354static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2355 const struct cntr_entry *entry,
2356 void *context, int vl, int mode, u64 data)
2357{
2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360 return dd->rcv_err_status_cnt[42];
2361}
2362
2363static u64 access_rx_lookup_des_part2_parity_err_cnt(
2364 const struct cntr_entry *entry,
2365 void *context, int vl, int mode, u64 data)
2366{
2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369 return dd->rcv_err_status_cnt[41];
2370}
2371
2372static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2373 const struct cntr_entry *entry,
2374 void *context, int vl, int mode, u64 data)
2375{
2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378 return dd->rcv_err_status_cnt[40];
2379}
2380
2381static u64 access_rx_lookup_des_part1_unc_err_cnt(
2382 const struct cntr_entry *entry,
2383 void *context, int vl, int mode, u64 data)
2384{
2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387 return dd->rcv_err_status_cnt[39];
2388}
2389
2390static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2391 const struct cntr_entry *entry,
2392 void *context, int vl, int mode, u64 data)
2393{
2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396 return dd->rcv_err_status_cnt[38];
2397}
2398
2399static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2400 const struct cntr_entry *entry,
2401 void *context, int vl, int mode, u64 data)
2402{
2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405 return dd->rcv_err_status_cnt[37];
2406}
2407
2408static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2409 const struct cntr_entry *entry,
2410 void *context, int vl, int mode, u64 data)
2411{
2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414 return dd->rcv_err_status_cnt[36];
2415}
2416
2417static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2418 const struct cntr_entry *entry,
2419 void *context, int vl, int mode, u64 data)
2420{
2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423 return dd->rcv_err_status_cnt[35];
2424}
2425
2426static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2427 const struct cntr_entry *entry,
2428 void *context, int vl, int mode, u64 data)
2429{
2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432 return dd->rcv_err_status_cnt[34];
2433}
2434
2435static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2436 const struct cntr_entry *entry,
2437 void *context, int vl, int mode, u64 data)
2438{
2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441 return dd->rcv_err_status_cnt[33];
2442}
2443
2444static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2445 void *context, int vl, int mode,
2446 u64 data)
2447{
2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450 return dd->rcv_err_status_cnt[32];
2451}
2452
2453static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2454 void *context, int vl, int mode,
2455 u64 data)
2456{
2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459 return dd->rcv_err_status_cnt[31];
2460}
2461
2462static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2463 void *context, int vl, int mode,
2464 u64 data)
2465{
2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468 return dd->rcv_err_status_cnt[30];
2469}
2470
2471static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2472 void *context, int vl, int mode,
2473 u64 data)
2474{
2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477 return dd->rcv_err_status_cnt[29];
2478}
2479
2480static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2481 void *context, int vl,
2482 int mode, u64 data)
2483{
2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486 return dd->rcv_err_status_cnt[28];
2487}
2488
2489static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2490 const struct cntr_entry *entry,
2491 void *context, int vl, int mode, u64 data)
2492{
2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495 return dd->rcv_err_status_cnt[27];
2496}
2497
2498static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2499 const struct cntr_entry *entry,
2500 void *context, int vl, int mode, u64 data)
2501{
2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504 return dd->rcv_err_status_cnt[26];
2505}
2506
2507static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2508 const struct cntr_entry *entry,
2509 void *context, int vl, int mode, u64 data)
2510{
2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513 return dd->rcv_err_status_cnt[25];
2514}
2515
2516static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2517 const struct cntr_entry *entry,
2518 void *context, int vl, int mode, u64 data)
2519{
2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522 return dd->rcv_err_status_cnt[24];
2523}
2524
2525static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2526 const struct cntr_entry *entry,
2527 void *context, int vl, int mode, u64 data)
2528{
2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531 return dd->rcv_err_status_cnt[23];
2532}
2533
2534static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2535 const struct cntr_entry *entry,
2536 void *context, int vl, int mode, u64 data)
2537{
2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540 return dd->rcv_err_status_cnt[22];
2541}
2542
2543static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2544 const struct cntr_entry *entry,
2545 void *context, int vl, int mode, u64 data)
2546{
2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549 return dd->rcv_err_status_cnt[21];
2550}
2551
2552static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2553 const struct cntr_entry *entry,
2554 void *context, int vl, int mode, u64 data)
2555{
2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558 return dd->rcv_err_status_cnt[20];
2559}
2560
2561static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2562 const struct cntr_entry *entry,
2563 void *context, int vl, int mode, u64 data)
2564{
2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567 return dd->rcv_err_status_cnt[19];
2568}
2569
2570static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2571 void *context, int vl,
2572 int mode, u64 data)
2573{
2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576 return dd->rcv_err_status_cnt[18];
2577}
2578
2579static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2580 void *context, int vl,
2581 int mode, u64 data)
2582{
2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585 return dd->rcv_err_status_cnt[17];
2586}
2587
2588static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2589 const struct cntr_entry *entry,
2590 void *context, int vl, int mode, u64 data)
2591{
2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594 return dd->rcv_err_status_cnt[16];
2595}
2596
2597static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2598 const struct cntr_entry *entry,
2599 void *context, int vl, int mode, u64 data)
2600{
2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603 return dd->rcv_err_status_cnt[15];
2604}
2605
2606static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2607 void *context, int vl,
2608 int mode, u64 data)
2609{
2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612 return dd->rcv_err_status_cnt[14];
2613}
2614
2615static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2616 void *context, int vl,
2617 int mode, u64 data)
2618{
2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621 return dd->rcv_err_status_cnt[13];
2622}
2623
2624static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2625 void *context, int vl, int mode,
2626 u64 data)
2627{
2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630 return dd->rcv_err_status_cnt[12];
2631}
2632
2633static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2634 void *context, int vl, int mode,
2635 u64 data)
2636{
2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639 return dd->rcv_err_status_cnt[11];
2640}
2641
2642static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2643 void *context, int vl, int mode,
2644 u64 data)
2645{
2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648 return dd->rcv_err_status_cnt[10];
2649}
2650
2651static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2652 void *context, int vl, int mode,
2653 u64 data)
2654{
2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657 return dd->rcv_err_status_cnt[9];
2658}
2659
2660static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2661 void *context, int vl, int mode,
2662 u64 data)
2663{
2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666 return dd->rcv_err_status_cnt[8];
2667}
2668
2669static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2670 const struct cntr_entry *entry,
2671 void *context, int vl, int mode, u64 data)
2672{
2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675 return dd->rcv_err_status_cnt[7];
2676}
2677
2678static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2679 const struct cntr_entry *entry,
2680 void *context, int vl, int mode, u64 data)
2681{
2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684 return dd->rcv_err_status_cnt[6];
2685}
2686
2687static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2688 void *context, int vl, int mode,
2689 u64 data)
2690{
2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693 return dd->rcv_err_status_cnt[5];
2694}
2695
2696static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2697 void *context, int vl, int mode,
2698 u64 data)
2699{
2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702 return dd->rcv_err_status_cnt[4];
2703}
2704
2705static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2706 void *context, int vl, int mode,
2707 u64 data)
2708{
2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711 return dd->rcv_err_status_cnt[3];
2712}
2713
2714static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2715 void *context, int vl, int mode,
2716 u64 data)
2717{
2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720 return dd->rcv_err_status_cnt[2];
2721}
2722
2723static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2724 void *context, int vl, int mode,
2725 u64 data)
2726{
2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729 return dd->rcv_err_status_cnt[1];
2730}
2731
2732static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2733 void *context, int vl, int mode,
2734 u64 data)
2735{
2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738 return dd->rcv_err_status_cnt[0];
2739}
2740
2741/*
2742 * Software counters corresponding to each of the
2743 * error status bits within SendPioErrStatus
2744 */
2745static u64 access_pio_pec_sop_head_parity_err_cnt(
2746 const struct cntr_entry *entry,
2747 void *context, int vl, int mode, u64 data)
2748{
2749 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750
2751 return dd->send_pio_err_status_cnt[35];
2752}
2753
2754static u64 access_pio_pcc_sop_head_parity_err_cnt(
2755 const struct cntr_entry *entry,
2756 void *context, int vl, int mode, u64 data)
2757{
2758 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759
2760 return dd->send_pio_err_status_cnt[34];
2761}
2762
2763static u64 access_pio_last_returned_cnt_parity_err_cnt(
2764 const struct cntr_entry *entry,
2765 void *context, int vl, int mode, u64 data)
2766{
2767 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768
2769 return dd->send_pio_err_status_cnt[33];
2770}
2771
2772static u64 access_pio_current_free_cnt_parity_err_cnt(
2773 const struct cntr_entry *entry,
2774 void *context, int vl, int mode, u64 data)
2775{
2776 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777
2778 return dd->send_pio_err_status_cnt[32];
2779}
2780
2781static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2782 void *context, int vl, int mode,
2783 u64 data)
2784{
2785 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2786
2787 return dd->send_pio_err_status_cnt[31];
2788}
2789
2790static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2791 void *context, int vl, int mode,
2792 u64 data)
2793{
2794 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2795
2796 return dd->send_pio_err_status_cnt[30];
2797}
2798
2799static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2800 void *context, int vl, int mode,
2801 u64 data)
2802{
2803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804
2805 return dd->send_pio_err_status_cnt[29];
2806}
2807
2808static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2809 const struct cntr_entry *entry,
2810 void *context, int vl, int mode, u64 data)
2811{
2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814 return dd->send_pio_err_status_cnt[28];
2815}
2816
2817static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2818 void *context, int vl, int mode,
2819 u64 data)
2820{
2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823 return dd->send_pio_err_status_cnt[27];
2824}
2825
2826static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2827 void *context, int vl, int mode,
2828 u64 data)
2829{
2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832 return dd->send_pio_err_status_cnt[26];
2833}
2834
2835static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2836 void *context, int vl,
2837 int mode, u64 data)
2838{
2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841 return dd->send_pio_err_status_cnt[25];
2842}
2843
2844static u64 access_pio_block_qw_count_parity_err_cnt(
2845 const struct cntr_entry *entry,
2846 void *context, int vl, int mode, u64 data)
2847{
2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850 return dd->send_pio_err_status_cnt[24];
2851}
2852
2853static u64 access_pio_write_qw_valid_parity_err_cnt(
2854 const struct cntr_entry *entry,
2855 void *context, int vl, int mode, u64 data)
2856{
2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859 return dd->send_pio_err_status_cnt[23];
2860}
2861
2862static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2863 void *context, int vl, int mode,
2864 u64 data)
2865{
2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868 return dd->send_pio_err_status_cnt[22];
2869}
2870
2871static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2872 void *context, int vl,
2873 int mode, u64 data)
2874{
2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877 return dd->send_pio_err_status_cnt[21];
2878}
2879
2880static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2881 void *context, int vl,
2882 int mode, u64 data)
2883{
2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886 return dd->send_pio_err_status_cnt[20];
2887}
2888
2889static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2890 void *context, int vl,
2891 int mode, u64 data)
2892{
2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895 return dd->send_pio_err_status_cnt[19];
2896}
2897
2898static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2899 const struct cntr_entry *entry,
2900 void *context, int vl, int mode, u64 data)
2901{
2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904 return dd->send_pio_err_status_cnt[18];
2905}
2906
2907static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2908 void *context, int vl, int mode,
2909 u64 data)
2910{
2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913 return dd->send_pio_err_status_cnt[17];
2914}
2915
2916static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2917 void *context, int vl, int mode,
2918 u64 data)
2919{
2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922 return dd->send_pio_err_status_cnt[16];
2923}
2924
2925static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2926 const struct cntr_entry *entry,
2927 void *context, int vl, int mode, u64 data)
2928{
2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931 return dd->send_pio_err_status_cnt[15];
2932}
2933
2934static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2935 const struct cntr_entry *entry,
2936 void *context, int vl, int mode, u64 data)
2937{
2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940 return dd->send_pio_err_status_cnt[14];
2941}
2942
2943static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2944 const struct cntr_entry *entry,
2945 void *context, int vl, int mode, u64 data)
2946{
2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949 return dd->send_pio_err_status_cnt[13];
2950}
2951
2952static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2953 const struct cntr_entry *entry,
2954 void *context, int vl, int mode, u64 data)
2955{
2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958 return dd->send_pio_err_status_cnt[12];
2959}
2960
2961static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2962 const struct cntr_entry *entry,
2963 void *context, int vl, int mode, u64 data)
2964{
2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967 return dd->send_pio_err_status_cnt[11];
2968}
2969
2970static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2971 const struct cntr_entry *entry,
2972 void *context, int vl, int mode, u64 data)
2973{
2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976 return dd->send_pio_err_status_cnt[10];
2977}
2978
2979static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2980 const struct cntr_entry *entry,
2981 void *context, int vl, int mode, u64 data)
2982{
2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985 return dd->send_pio_err_status_cnt[9];
2986}
2987
2988static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2989 const struct cntr_entry *entry,
2990 void *context, int vl, int mode, u64 data)
2991{
2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994 return dd->send_pio_err_status_cnt[8];
2995}
2996
2997static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2998 const struct cntr_entry *entry,
2999 void *context, int vl, int mode, u64 data)
3000{
3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003 return dd->send_pio_err_status_cnt[7];
3004}
3005
3006static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3007 void *context, int vl, int mode,
3008 u64 data)
3009{
3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012 return dd->send_pio_err_status_cnt[6];
3013}
3014
3015static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3016 void *context, int vl, int mode,
3017 u64 data)
3018{
3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021 return dd->send_pio_err_status_cnt[5];
3022}
3023
3024static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3025 void *context, int vl, int mode,
3026 u64 data)
3027{
3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030 return dd->send_pio_err_status_cnt[4];
3031}
3032
3033static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3034 void *context, int vl, int mode,
3035 u64 data)
3036{
3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039 return dd->send_pio_err_status_cnt[3];
3040}
3041
3042static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3043 void *context, int vl, int mode,
3044 u64 data)
3045{
3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048 return dd->send_pio_err_status_cnt[2];
3049}
3050
3051static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3052 void *context, int vl,
3053 int mode, u64 data)
3054{
3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057 return dd->send_pio_err_status_cnt[1];
3058}
3059
3060static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3061 void *context, int vl, int mode,
3062 u64 data)
3063{
3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066 return dd->send_pio_err_status_cnt[0];
3067}
3068
3069/*
3070 * Software counters corresponding to each of the
3071 * error status bits within SendDmaErrStatus
3072 */
3073static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3074 const struct cntr_entry *entry,
3075 void *context, int vl, int mode, u64 data)
3076{
3077 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078
3079 return dd->send_dma_err_status_cnt[3];
3080}
3081
3082static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3083 const struct cntr_entry *entry,
3084 void *context, int vl, int mode, u64 data)
3085{
3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087
3088 return dd->send_dma_err_status_cnt[2];
3089}
3090
3091static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3092 void *context, int vl, int mode,
3093 u64 data)
3094{
3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096
3097 return dd->send_dma_err_status_cnt[1];
3098}
3099
3100static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3101 void *context, int vl, int mode,
3102 u64 data)
3103{
3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105
3106 return dd->send_dma_err_status_cnt[0];
3107}
3108
3109/*
3110 * Software counters corresponding to each of the
3111 * error status bits within SendEgressErrStatus
3112 */
3113static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3114 const struct cntr_entry *entry,
3115 void *context, int vl, int mode, u64 data)
3116{
3117 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118
3119 return dd->send_egress_err_status_cnt[63];
3120}
3121
3122static u64 access_tx_read_sdma_memory_csr_err_cnt(
3123 const struct cntr_entry *entry,
3124 void *context, int vl, int mode, u64 data)
3125{
3126 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127
3128 return dd->send_egress_err_status_cnt[62];
3129}
3130
3131static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3132 void *context, int vl, int mode,
3133 u64 data)
3134{
3135 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136
3137 return dd->send_egress_err_status_cnt[61];
3138}
3139
3140static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3141 void *context, int vl,
3142 int mode, u64 data)
3143{
3144 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145
3146 return dd->send_egress_err_status_cnt[60];
3147}
3148
3149static u64 access_tx_read_sdma_memory_cor_err_cnt(
3150 const struct cntr_entry *entry,
3151 void *context, int vl, int mode, u64 data)
3152{
3153 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3154
3155 return dd->send_egress_err_status_cnt[59];
3156}
3157
3158static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3159 void *context, int vl, int mode,
3160 u64 data)
3161{
3162 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3163
3164 return dd->send_egress_err_status_cnt[58];
3165}
3166
3167static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3168 void *context, int vl, int mode,
3169 u64 data)
3170{
3171 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172
3173 return dd->send_egress_err_status_cnt[57];
3174}
3175
3176static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3177 void *context, int vl, int mode,
3178 u64 data)
3179{
3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182 return dd->send_egress_err_status_cnt[56];
3183}
3184
3185static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3186 void *context, int vl, int mode,
3187 u64 data)
3188{
3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191 return dd->send_egress_err_status_cnt[55];
3192}
3193
3194static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3195 void *context, int vl, int mode,
3196 u64 data)
3197{
3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200 return dd->send_egress_err_status_cnt[54];
3201}
3202
3203static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3204 void *context, int vl, int mode,
3205 u64 data)
3206{
3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209 return dd->send_egress_err_status_cnt[53];
3210}
3211
3212static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3213 void *context, int vl, int mode,
3214 u64 data)
3215{
3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218 return dd->send_egress_err_status_cnt[52];
3219}
3220
3221static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3222 void *context, int vl, int mode,
3223 u64 data)
3224{
3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227 return dd->send_egress_err_status_cnt[51];
3228}
3229
3230static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3231 void *context, int vl, int mode,
3232 u64 data)
3233{
3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236 return dd->send_egress_err_status_cnt[50];
3237}
3238
3239static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3240 void *context, int vl, int mode,
3241 u64 data)
3242{
3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245 return dd->send_egress_err_status_cnt[49];
3246}
3247
3248static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3249 void *context, int vl, int mode,
3250 u64 data)
3251{
3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254 return dd->send_egress_err_status_cnt[48];
3255}
3256
3257static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3258 void *context, int vl, int mode,
3259 u64 data)
3260{
3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263 return dd->send_egress_err_status_cnt[47];
3264}
3265
3266static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3267 void *context, int vl, int mode,
3268 u64 data)
3269{
3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272 return dd->send_egress_err_status_cnt[46];
3273}
3274
3275static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3276 void *context, int vl, int mode,
3277 u64 data)
3278{
3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281 return dd->send_egress_err_status_cnt[45];
3282}
3283
3284static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3285 void *context, int vl,
3286 int mode, u64 data)
3287{
3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290 return dd->send_egress_err_status_cnt[44];
3291}
3292
3293static u64 access_tx_read_sdma_memory_unc_err_cnt(
3294 const struct cntr_entry *entry,
3295 void *context, int vl, int mode, u64 data)
3296{
3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299 return dd->send_egress_err_status_cnt[43];
3300}
3301
3302static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3303 void *context, int vl, int mode,
3304 u64 data)
3305{
3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308 return dd->send_egress_err_status_cnt[42];
3309}
3310
3311static u64 access_tx_credit_return_partiy_err_cnt(
3312 const struct cntr_entry *entry,
3313 void *context, int vl, int mode, u64 data)
3314{
3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317 return dd->send_egress_err_status_cnt[41];
3318}
3319
3320static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3321 const struct cntr_entry *entry,
3322 void *context, int vl, int mode, u64 data)
3323{
3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326 return dd->send_egress_err_status_cnt[40];
3327}
3328
3329static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3330 const struct cntr_entry *entry,
3331 void *context, int vl, int mode, u64 data)
3332{
3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335 return dd->send_egress_err_status_cnt[39];
3336}
3337
3338static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3339 const struct cntr_entry *entry,
3340 void *context, int vl, int mode, u64 data)
3341{
3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344 return dd->send_egress_err_status_cnt[38];
3345}
3346
3347static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3348 const struct cntr_entry *entry,
3349 void *context, int vl, int mode, u64 data)
3350{
3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353 return dd->send_egress_err_status_cnt[37];
3354}
3355
3356static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3357 const struct cntr_entry *entry,
3358 void *context, int vl, int mode, u64 data)
3359{
3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362 return dd->send_egress_err_status_cnt[36];
3363}
3364
3365static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3366 const struct cntr_entry *entry,
3367 void *context, int vl, int mode, u64 data)
3368{
3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371 return dd->send_egress_err_status_cnt[35];
3372}
3373
3374static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3375 const struct cntr_entry *entry,
3376 void *context, int vl, int mode, u64 data)
3377{
3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380 return dd->send_egress_err_status_cnt[34];
3381}
3382
3383static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3384 const struct cntr_entry *entry,
3385 void *context, int vl, int mode, u64 data)
3386{
3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389 return dd->send_egress_err_status_cnt[33];
3390}
3391
3392static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3393 const struct cntr_entry *entry,
3394 void *context, int vl, int mode, u64 data)
3395{
3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398 return dd->send_egress_err_status_cnt[32];
3399}
3400
3401static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3402 const struct cntr_entry *entry,
3403 void *context, int vl, int mode, u64 data)
3404{
3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407 return dd->send_egress_err_status_cnt[31];
3408}
3409
3410static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3411 const struct cntr_entry *entry,
3412 void *context, int vl, int mode, u64 data)
3413{
3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416 return dd->send_egress_err_status_cnt[30];
3417}
3418
3419static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3420 const struct cntr_entry *entry,
3421 void *context, int vl, int mode, u64 data)
3422{
3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425 return dd->send_egress_err_status_cnt[29];
3426}
3427
3428static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3429 const struct cntr_entry *entry,
3430 void *context, int vl, int mode, u64 data)
3431{
3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434 return dd->send_egress_err_status_cnt[28];
3435}
3436
3437static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3438 const struct cntr_entry *entry,
3439 void *context, int vl, int mode, u64 data)
3440{
3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443 return dd->send_egress_err_status_cnt[27];
3444}
3445
3446static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3447 const struct cntr_entry *entry,
3448 void *context, int vl, int mode, u64 data)
3449{
3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452 return dd->send_egress_err_status_cnt[26];
3453}
3454
3455static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3456 const struct cntr_entry *entry,
3457 void *context, int vl, int mode, u64 data)
3458{
3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461 return dd->send_egress_err_status_cnt[25];
3462}
3463
3464static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3465 const struct cntr_entry *entry,
3466 void *context, int vl, int mode, u64 data)
3467{
3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470 return dd->send_egress_err_status_cnt[24];
3471}
3472
3473static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3474 const struct cntr_entry *entry,
3475 void *context, int vl, int mode, u64 data)
3476{
3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479 return dd->send_egress_err_status_cnt[23];
3480}
3481
3482static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3483 const struct cntr_entry *entry,
3484 void *context, int vl, int mode, u64 data)
3485{
3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488 return dd->send_egress_err_status_cnt[22];
3489}
3490
3491static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3492 const struct cntr_entry *entry,
3493 void *context, int vl, int mode, u64 data)
3494{
3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497 return dd->send_egress_err_status_cnt[21];
3498}
3499
3500static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3501 const struct cntr_entry *entry,
3502 void *context, int vl, int mode, u64 data)
3503{
3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506 return dd->send_egress_err_status_cnt[20];
3507}
3508
3509static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3510 const struct cntr_entry *entry,
3511 void *context, int vl, int mode, u64 data)
3512{
3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515 return dd->send_egress_err_status_cnt[19];
3516}
3517
3518static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3519 const struct cntr_entry *entry,
3520 void *context, int vl, int mode, u64 data)
3521{
3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524 return dd->send_egress_err_status_cnt[18];
3525}
3526
3527static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3528 const struct cntr_entry *entry,
3529 void *context, int vl, int mode, u64 data)
3530{
3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533 return dd->send_egress_err_status_cnt[17];
3534}
3535
3536static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3537 const struct cntr_entry *entry,
3538 void *context, int vl, int mode, u64 data)
3539{
3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542 return dd->send_egress_err_status_cnt[16];
3543}
3544
3545static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3546 void *context, int vl, int mode,
3547 u64 data)
3548{
3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551 return dd->send_egress_err_status_cnt[15];
3552}
3553
3554static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3555 void *context, int vl,
3556 int mode, u64 data)
3557{
3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560 return dd->send_egress_err_status_cnt[14];
3561}
3562
3563static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3564 void *context, int vl, int mode,
3565 u64 data)
3566{
3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569 return dd->send_egress_err_status_cnt[13];
3570}
3571
3572static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3573 void *context, int vl, int mode,
3574 u64 data)
3575{
3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578 return dd->send_egress_err_status_cnt[12];
3579}
3580
3581static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3582 const struct cntr_entry *entry,
3583 void *context, int vl, int mode, u64 data)
3584{
3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587 return dd->send_egress_err_status_cnt[11];
3588}
3589
3590static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3591 void *context, int vl, int mode,
3592 u64 data)
3593{
3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596 return dd->send_egress_err_status_cnt[10];
3597}
3598
3599static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3600 void *context, int vl, int mode,
3601 u64 data)
3602{
3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605 return dd->send_egress_err_status_cnt[9];
3606}
3607
3608static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3609 const struct cntr_entry *entry,
3610 void *context, int vl, int mode, u64 data)
3611{
3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614 return dd->send_egress_err_status_cnt[8];
3615}
3616
3617static u64 access_tx_pio_launch_intf_parity_err_cnt(
3618 const struct cntr_entry *entry,
3619 void *context, int vl, int mode, u64 data)
3620{
3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623 return dd->send_egress_err_status_cnt[7];
3624}
3625
3626static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3627 void *context, int vl, int mode,
3628 u64 data)
3629{
3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632 return dd->send_egress_err_status_cnt[6];
3633}
3634
3635static u64 access_tx_incorrect_link_state_err_cnt(
3636 const struct cntr_entry *entry,
3637 void *context, int vl, int mode, u64 data)
3638{
3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641 return dd->send_egress_err_status_cnt[5];
3642}
3643
3644static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3645 void *context, int vl, int mode,
3646 u64 data)
3647{
3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650 return dd->send_egress_err_status_cnt[4];
3651}
3652
3653static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3654 const struct cntr_entry *entry,
3655 void *context, int vl, int mode, u64 data)
3656{
3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659 return dd->send_egress_err_status_cnt[3];
3660}
3661
3662static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3663 void *context, int vl, int mode,
3664 u64 data)
3665{
3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668 return dd->send_egress_err_status_cnt[2];
3669}
3670
3671static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3672 const struct cntr_entry *entry,
3673 void *context, int vl, int mode, u64 data)
3674{
3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677 return dd->send_egress_err_status_cnt[1];
3678}
3679
3680static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3681 const struct cntr_entry *entry,
3682 void *context, int vl, int mode, u64 data)
3683{
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686 return dd->send_egress_err_status_cnt[0];
3687}
3688
3689/*
3690 * Software counters corresponding to each of the
3691 * error status bits within SendErrStatus
3692 */
3693static u64 access_send_csr_write_bad_addr_err_cnt(
3694 const struct cntr_entry *entry,
3695 void *context, int vl, int mode, u64 data)
3696{
3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698
3699 return dd->send_err_status_cnt[2];
3700}
3701
3702static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3703 void *context, int vl,
3704 int mode, u64 data)
3705{
3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707
3708 return dd->send_err_status_cnt[1];
3709}
3710
3711static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3712 void *context, int vl, int mode,
3713 u64 data)
3714{
3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716
3717 return dd->send_err_status_cnt[0];
3718}
3719
3720/*
3721 * Software counters corresponding to each of the
3722 * error status bits within SendCtxtErrStatus
3723 */
3724static u64 access_pio_write_out_of_bounds_err_cnt(
3725 const struct cntr_entry *entry,
3726 void *context, int vl, int mode, u64 data)
3727{
3728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729
3730 return dd->sw_ctxt_err_status_cnt[4];
3731}
3732
3733static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3734 void *context, int vl, int mode,
3735 u64 data)
3736{
3737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738
3739 return dd->sw_ctxt_err_status_cnt[3];
3740}
3741
3742static u64 access_pio_write_crosses_boundary_err_cnt(
3743 const struct cntr_entry *entry,
3744 void *context, int vl, int mode, u64 data)
3745{
3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747
3748 return dd->sw_ctxt_err_status_cnt[2];
3749}
3750
3751static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3752 void *context, int vl,
3753 int mode, u64 data)
3754{
3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756
3757 return dd->sw_ctxt_err_status_cnt[1];
3758}
3759
3760static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3761 void *context, int vl, int mode,
3762 u64 data)
3763{
3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765
3766 return dd->sw_ctxt_err_status_cnt[0];
3767}
3768
3769/*
3770 * Software counters corresponding to each of the
3771 * error status bits within SendDmaEngErrStatus
3772 */
3773static u64 access_sdma_header_request_fifo_cor_err_cnt(
3774 const struct cntr_entry *entry,
3775 void *context, int vl, int mode, u64 data)
3776{
3777 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778
3779 return dd->sw_send_dma_eng_err_status_cnt[23];
3780}
3781
3782static u64 access_sdma_header_storage_cor_err_cnt(
3783 const struct cntr_entry *entry,
3784 void *context, int vl, int mode, u64 data)
3785{
3786 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787
3788 return dd->sw_send_dma_eng_err_status_cnt[22];
3789}
3790
3791static u64 access_sdma_packet_tracking_cor_err_cnt(
3792 const struct cntr_entry *entry,
3793 void *context, int vl, int mode, u64 data)
3794{
3795 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796
3797 return dd->sw_send_dma_eng_err_status_cnt[21];
3798}
3799
3800static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3801 void *context, int vl, int mode,
3802 u64 data)
3803{
3804 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805
3806 return dd->sw_send_dma_eng_err_status_cnt[20];
3807}
3808
3809static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3810 void *context, int vl, int mode,
3811 u64 data)
3812{
3813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3814
3815 return dd->sw_send_dma_eng_err_status_cnt[19];
3816}
3817
3818static u64 access_sdma_header_request_fifo_unc_err_cnt(
3819 const struct cntr_entry *entry,
3820 void *context, int vl, int mode, u64 data)
3821{
3822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3823
3824 return dd->sw_send_dma_eng_err_status_cnt[18];
3825}
3826
3827static u64 access_sdma_header_storage_unc_err_cnt(
3828 const struct cntr_entry *entry,
3829 void *context, int vl, int mode, u64 data)
3830{
3831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832
3833 return dd->sw_send_dma_eng_err_status_cnt[17];
3834}
3835
3836static u64 access_sdma_packet_tracking_unc_err_cnt(
3837 const struct cntr_entry *entry,
3838 void *context, int vl, int mode, u64 data)
3839{
3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842 return dd->sw_send_dma_eng_err_status_cnt[16];
3843}
3844
3845static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3846 void *context, int vl, int mode,
3847 u64 data)
3848{
3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851 return dd->sw_send_dma_eng_err_status_cnt[15];
3852}
3853
3854static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3855 void *context, int vl, int mode,
3856 u64 data)
3857{
3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860 return dd->sw_send_dma_eng_err_status_cnt[14];
3861}
3862
3863static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3864 void *context, int vl, int mode,
3865 u64 data)
3866{
3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869 return dd->sw_send_dma_eng_err_status_cnt[13];
3870}
3871
3872static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3873 void *context, int vl, int mode,
3874 u64 data)
3875{
3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878 return dd->sw_send_dma_eng_err_status_cnt[12];
3879}
3880
3881static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3882 void *context, int vl, int mode,
3883 u64 data)
3884{
3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887 return dd->sw_send_dma_eng_err_status_cnt[11];
3888}
3889
3890static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3891 void *context, int vl, int mode,
3892 u64 data)
3893{
3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896 return dd->sw_send_dma_eng_err_status_cnt[10];
3897}
3898
3899static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3900 void *context, int vl, int mode,
3901 u64 data)
3902{
3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905 return dd->sw_send_dma_eng_err_status_cnt[9];
3906}
3907
3908static u64 access_sdma_packet_desc_overflow_err_cnt(
3909 const struct cntr_entry *entry,
3910 void *context, int vl, int mode, u64 data)
3911{
3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914 return dd->sw_send_dma_eng_err_status_cnt[8];
3915}
3916
3917static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3918 void *context, int vl,
3919 int mode, u64 data)
3920{
3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923 return dd->sw_send_dma_eng_err_status_cnt[7];
3924}
3925
3926static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3927 void *context, int vl, int mode, u64 data)
3928{
3929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930
3931 return dd->sw_send_dma_eng_err_status_cnt[6];
3932}
3933
3934static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3935 void *context, int vl, int mode,
3936 u64 data)
3937{
3938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939
3940 return dd->sw_send_dma_eng_err_status_cnt[5];
3941}
3942
3943static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3944 void *context, int vl, int mode,
3945 u64 data)
3946{
3947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948
3949 return dd->sw_send_dma_eng_err_status_cnt[4];
3950}
3951
3952static u64 access_sdma_tail_out_of_bounds_err_cnt(
3953 const struct cntr_entry *entry,
3954 void *context, int vl, int mode, u64 data)
3955{
3956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957
3958 return dd->sw_send_dma_eng_err_status_cnt[3];
3959}
3960
3961static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3962 void *context, int vl, int mode,
3963 u64 data)
3964{
3965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966
3967 return dd->sw_send_dma_eng_err_status_cnt[2];
3968}
3969
3970static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3971 void *context, int vl, int mode,
3972 u64 data)
3973{
3974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975
3976 return dd->sw_send_dma_eng_err_status_cnt[1];
3977}
3978
3979static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3980 void *context, int vl, int mode,
3981 u64 data)
3982{
3983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984
3985 return dd->sw_send_dma_eng_err_status_cnt[0];
3986}
3987
2b719046
JP
3988static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3989 void *context, int vl, int mode,
3990 u64 data)
3991{
3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994 u64 val = 0;
3995 u64 csr = entry->csr;
3996
3997 val = read_write_csr(dd, csr, mode, data);
3998 if (mode == CNTR_MODE_R) {
3999 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4000 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4001 } else if (mode == CNTR_MODE_W) {
4002 dd->sw_rcv_bypass_packet_errors = 0;
4003 } else {
4004 dd_dev_err(dd, "Invalid cntr register access mode");
4005 return 0;
4006 }
4007 return val;
4008}
4009
77241056
MM
4010#define def_access_sw_cpu(cntr) \
4011static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4012 void *context, int vl, int mode, u64 data) \
4013{ \
4014 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4eb06882
DD
4015 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4016 ppd->ibport_data.rvp.cntr, vl, \
77241056
MM
4017 mode, data); \
4018}
4019
4020def_access_sw_cpu(rc_acks);
4021def_access_sw_cpu(rc_qacks);
4022def_access_sw_cpu(rc_delayed_comp);
4023
4024#define def_access_ibp_counter(cntr) \
4025static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4026 void *context, int vl, int mode, u64 data) \
4027{ \
4028 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4029 \
4030 if (vl != CNTR_INVALID_VL) \
4031 return 0; \
4032 \
4eb06882 4033 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
77241056
MM
4034 mode, data); \
4035}
4036
4037def_access_ibp_counter(loop_pkts);
4038def_access_ibp_counter(rc_resends);
4039def_access_ibp_counter(rnr_naks);
4040def_access_ibp_counter(other_naks);
4041def_access_ibp_counter(rc_timeouts);
4042def_access_ibp_counter(pkt_drops);
4043def_access_ibp_counter(dmawait);
4044def_access_ibp_counter(rc_seqnak);
4045def_access_ibp_counter(rc_dupreq);
4046def_access_ibp_counter(rdma_seq);
4047def_access_ibp_counter(unaligned);
4048def_access_ibp_counter(seq_naks);
4049
4050static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4051[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4052[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4053 CNTR_NORMAL),
4054[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4055 CNTR_NORMAL),
4056[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4057 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4058 CNTR_NORMAL),
77241056
MM
4059[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4060 CNTR_NORMAL),
4061[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4062 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4063[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4064 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4065[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4066 CNTR_NORMAL),
4067[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4068 CNTR_NORMAL),
4069[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4070 CNTR_NORMAL),
4071[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4072 CNTR_NORMAL),
4073[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4074 CNTR_NORMAL),
4075[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4076 CNTR_NORMAL),
4077[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4078 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4079[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4080 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4081[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4082 CNTR_SYNTH),
2b719046
JP
4083[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4084 access_dc_rcv_err_cnt),
77241056
MM
4085[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4086 CNTR_SYNTH),
4087[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4088 CNTR_SYNTH),
4089[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4090 CNTR_SYNTH),
4091[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4092 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4093[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4094 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4095 CNTR_SYNTH),
4096[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4097 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4098[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4099 CNTR_SYNTH),
4100[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4101 CNTR_SYNTH),
4102[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4103 CNTR_SYNTH),
4104[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4105 CNTR_SYNTH),
4106[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4107 CNTR_SYNTH),
4108[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4109 CNTR_SYNTH),
4110[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4111 CNTR_SYNTH),
4112[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4113 CNTR_SYNTH | CNTR_VL),
4114[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4115 CNTR_SYNTH | CNTR_VL),
4116[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4117[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4118 CNTR_SYNTH | CNTR_VL),
4119[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4120[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4121 CNTR_SYNTH | CNTR_VL),
4122[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4123 CNTR_SYNTH),
4124[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4125 CNTR_SYNTH | CNTR_VL),
4126[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4127 CNTR_SYNTH),
4128[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4129 CNTR_SYNTH | CNTR_VL),
4130[C_DC_TOTAL_CRC] =
4131 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4132 CNTR_SYNTH),
4133[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4134 CNTR_SYNTH),
4135[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4136 CNTR_SYNTH),
4137[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4138 CNTR_SYNTH),
4139[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4140 CNTR_SYNTH),
4141[C_DC_CRC_MULT_LN] =
4142 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4143 CNTR_SYNTH),
4144[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4145 CNTR_SYNTH),
4146[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4147 CNTR_SYNTH),
4148[C_DC_SEQ_CRC_CNT] =
4149 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4150 CNTR_SYNTH),
4151[C_DC_ESC0_ONLY_CNT] =
4152 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4153 CNTR_SYNTH),
4154[C_DC_ESC0_PLUS1_CNT] =
4155 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4156 CNTR_SYNTH),
4157[C_DC_ESC0_PLUS2_CNT] =
4158 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4159 CNTR_SYNTH),
4160[C_DC_REINIT_FROM_PEER_CNT] =
4161 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4162 CNTR_SYNTH),
4163[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4164 CNTR_SYNTH),
4165[C_DC_MISC_FLG_CNT] =
4166 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4167 CNTR_SYNTH),
4168[C_DC_PRF_GOOD_LTP_CNT] =
4169 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4170[C_DC_PRF_ACCEPTED_LTP_CNT] =
4171 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4172 CNTR_SYNTH),
4173[C_DC_PRF_RX_FLIT_CNT] =
4174 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4175[C_DC_PRF_TX_FLIT_CNT] =
4176 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4177[C_DC_PRF_CLK_CNTR] =
4178 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4179[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4180 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4181[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4182 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4183 CNTR_SYNTH),
4184[C_DC_PG_STS_TX_SBE_CNT] =
4185 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4186[C_DC_PG_STS_TX_MBE_CNT] =
4187 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4188 CNTR_SYNTH),
4189[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4190 access_sw_cpu_intr),
4191[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4192 access_sw_cpu_rcv_limit),
4193[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4194 access_sw_vtx_wait),
4195[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4196 access_sw_pio_wait),
14553ca1
MM
4197[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4198 access_sw_pio_drain),
77241056
MM
4199[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4200 access_sw_kmem_wait),
b421922e
DL
4201[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4202 access_sw_send_schedule),
a699c6c2
VM
4203[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4204 SEND_DMA_DESC_FETCHED_CNT, 0,
4205 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4206 dev_access_u32_csr),
4207[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4208 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209 access_sde_int_cnt),
4210[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4211 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212 access_sde_err_cnt),
4213[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4214 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215 access_sde_idle_int_cnt),
4216[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4217 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218 access_sde_progress_int_cnt),
2c5b521a
JR
4219/* MISC_ERR_STATUS */
4220[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4221 CNTR_NORMAL,
4222 access_misc_pll_lock_fail_err_cnt),
4223[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4224 CNTR_NORMAL,
4225 access_misc_mbist_fail_err_cnt),
4226[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4227 CNTR_NORMAL,
4228 access_misc_invalid_eep_cmd_err_cnt),
4229[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4230 CNTR_NORMAL,
4231 access_misc_efuse_done_parity_err_cnt),
4232[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4233 CNTR_NORMAL,
4234 access_misc_efuse_write_err_cnt),
4235[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4236 0, CNTR_NORMAL,
4237 access_misc_efuse_read_bad_addr_err_cnt),
4238[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4239 CNTR_NORMAL,
4240 access_misc_efuse_csr_parity_err_cnt),
4241[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4242 CNTR_NORMAL,
4243 access_misc_fw_auth_failed_err_cnt),
4244[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4245 CNTR_NORMAL,
4246 access_misc_key_mismatch_err_cnt),
4247[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4248 CNTR_NORMAL,
4249 access_misc_sbus_write_failed_err_cnt),
4250[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4251 CNTR_NORMAL,
4252 access_misc_csr_write_bad_addr_err_cnt),
4253[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4254 CNTR_NORMAL,
4255 access_misc_csr_read_bad_addr_err_cnt),
4256[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4257 CNTR_NORMAL,
4258 access_misc_csr_parity_err_cnt),
4259/* CceErrStatus */
4260[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4261 CNTR_NORMAL,
4262 access_sw_cce_err_status_aggregated_cnt),
4263[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4264 CNTR_NORMAL,
4265 access_cce_msix_csr_parity_err_cnt),
4266[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4267 CNTR_NORMAL,
4268 access_cce_int_map_unc_err_cnt),
4269[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4270 CNTR_NORMAL,
4271 access_cce_int_map_cor_err_cnt),
4272[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4273 CNTR_NORMAL,
4274 access_cce_msix_table_unc_err_cnt),
4275[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4276 CNTR_NORMAL,
4277 access_cce_msix_table_cor_err_cnt),
4278[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4279 0, CNTR_NORMAL,
4280 access_cce_rxdma_conv_fifo_parity_err_cnt),
4281[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4282 0, CNTR_NORMAL,
4283 access_cce_rcpl_async_fifo_parity_err_cnt),
4284[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4285 CNTR_NORMAL,
4286 access_cce_seg_write_bad_addr_err_cnt),
4287[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4288 CNTR_NORMAL,
4289 access_cce_seg_read_bad_addr_err_cnt),
4290[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4291 CNTR_NORMAL,
4292 access_la_triggered_cnt),
4293[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4294 CNTR_NORMAL,
4295 access_cce_trgt_cpl_timeout_err_cnt),
4296[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4297 CNTR_NORMAL,
4298 access_pcic_receive_parity_err_cnt),
4299[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4300 CNTR_NORMAL,
4301 access_pcic_transmit_back_parity_err_cnt),
4302[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4303 0, CNTR_NORMAL,
4304 access_pcic_transmit_front_parity_err_cnt),
4305[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4306 CNTR_NORMAL,
4307 access_pcic_cpl_dat_q_unc_err_cnt),
4308[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4309 CNTR_NORMAL,
4310 access_pcic_cpl_hd_q_unc_err_cnt),
4311[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4312 CNTR_NORMAL,
4313 access_pcic_post_dat_q_unc_err_cnt),
4314[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4315 CNTR_NORMAL,
4316 access_pcic_post_hd_q_unc_err_cnt),
4317[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4318 CNTR_NORMAL,
4319 access_pcic_retry_sot_mem_unc_err_cnt),
4320[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4321 CNTR_NORMAL,
4322 access_pcic_retry_mem_unc_err),
4323[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4324 CNTR_NORMAL,
4325 access_pcic_n_post_dat_q_parity_err_cnt),
4326[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_pcic_n_post_h_q_parity_err_cnt),
4329[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_pcic_cpl_dat_q_cor_err_cnt),
4332[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_pcic_cpl_hd_q_cor_err_cnt),
4335[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_pcic_post_dat_q_cor_err_cnt),
4338[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_pcic_post_hd_q_cor_err_cnt),
4341[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_pcic_retry_sot_mem_cor_err_cnt),
4344[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_pcic_retry_mem_cor_err_cnt),
4347[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4348 "CceCli1AsyncFifoDbgParityError", 0, 0,
4349 CNTR_NORMAL,
4350 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4351[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4352 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4353 CNTR_NORMAL,
4354 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4355 ),
4356[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4357 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4358 CNTR_NORMAL,
4359 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4360[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4361 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4362 CNTR_NORMAL,
4363 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4364[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4365 0, CNTR_NORMAL,
4366 access_cce_cli2_async_fifo_parity_err_cnt),
4367[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4368 CNTR_NORMAL,
4369 access_cce_csr_cfg_bus_parity_err_cnt),
4370[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4371 0, CNTR_NORMAL,
4372 access_cce_cli0_async_fifo_parity_err_cnt),
4373[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4374 CNTR_NORMAL,
4375 access_cce_rspd_data_parity_err_cnt),
4376[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4377 CNTR_NORMAL,
4378 access_cce_trgt_access_err_cnt),
4379[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4380 0, CNTR_NORMAL,
4381 access_cce_trgt_async_fifo_parity_err_cnt),
4382[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4383 CNTR_NORMAL,
4384 access_cce_csr_write_bad_addr_err_cnt),
4385[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4386 CNTR_NORMAL,
4387 access_cce_csr_read_bad_addr_err_cnt),
4388[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4389 CNTR_NORMAL,
4390 access_ccs_csr_parity_err_cnt),
4391
4392/* RcvErrStatus */
4393[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_rx_csr_parity_err_cnt),
4396[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_rx_csr_write_bad_addr_err_cnt),
4399[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4400 CNTR_NORMAL,
4401 access_rx_csr_read_bad_addr_err_cnt),
4402[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4403 CNTR_NORMAL,
4404 access_rx_dma_csr_unc_err_cnt),
4405[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4406 CNTR_NORMAL,
4407 access_rx_dma_dq_fsm_encoding_err_cnt),
4408[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rx_dma_eq_fsm_encoding_err_cnt),
4411[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_rx_dma_csr_parity_err_cnt),
4414[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4415 CNTR_NORMAL,
4416 access_rx_rbuf_data_cor_err_cnt),
4417[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rbuf_data_unc_err_cnt),
4420[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_dma_data_fifo_rd_cor_err_cnt),
4423[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_dma_data_fifo_rd_unc_err_cnt),
4426[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4429[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4432[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rx_rbuf_desc_part2_cor_err_cnt),
4435[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4436 CNTR_NORMAL,
4437 access_rx_rbuf_desc_part2_unc_err_cnt),
4438[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_rbuf_desc_part1_cor_err_cnt),
4441[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4442 CNTR_NORMAL,
4443 access_rx_rbuf_desc_part1_unc_err_cnt),
4444[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4445 CNTR_NORMAL,
4446 access_rx_hq_intr_fsm_err_cnt),
4447[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4448 CNTR_NORMAL,
4449 access_rx_hq_intr_csr_parity_err_cnt),
4450[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4451 CNTR_NORMAL,
4452 access_rx_lookup_csr_parity_err_cnt),
4453[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4454 CNTR_NORMAL,
4455 access_rx_lookup_rcv_array_cor_err_cnt),
4456[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_lookup_rcv_array_unc_err_cnt),
4459[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_lookup_des_part2_parity_err_cnt),
4462[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4463 0, CNTR_NORMAL,
4464 access_rx_lookup_des_part1_unc_cor_err_cnt),
4465[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_lookup_des_part1_unc_err_cnt),
4468[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_next_free_buf_cor_err_cnt),
4471[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4472 CNTR_NORMAL,
4473 access_rx_rbuf_next_free_buf_unc_err_cnt),
4474[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4475 "RxRbufFlInitWrAddrParityErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4478[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4479 0, CNTR_NORMAL,
4480 access_rx_rbuf_fl_initdone_parity_err_cnt),
4481[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4482 0, CNTR_NORMAL,
4483 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4484[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4487[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_rbuf_empty_err_cnt),
4490[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_rbuf_full_err_cnt),
4493[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rbuf_bad_lookup_err_cnt),
4496[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rbuf_ctx_id_parity_err_cnt),
4499[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rbuf_csr_qeopdw_parity_err_cnt),
4502[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4503 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4504 CNTR_NORMAL,
4505 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4506[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4507 "RxRbufCsrQTlPtrParityErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4510[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4511 0, CNTR_NORMAL,
4512 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4513[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4514 0, CNTR_NORMAL,
4515 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4516[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4517 0, 0, CNTR_NORMAL,
4518 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4519[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4520 0, CNTR_NORMAL,
4521 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4522[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4523 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4524 CNTR_NORMAL,
4525 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4526[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4527 0, CNTR_NORMAL,
4528 access_rx_rbuf_block_list_read_cor_err_cnt),
4529[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4530 0, CNTR_NORMAL,
4531 access_rx_rbuf_block_list_read_unc_err_cnt),
4532[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4533 CNTR_NORMAL,
4534 access_rx_rbuf_lookup_des_cor_err_cnt),
4535[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4536 CNTR_NORMAL,
4537 access_rx_rbuf_lookup_des_unc_err_cnt),
4538[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4539 "RxRbufLookupDesRegUncCorErr", 0, 0,
4540 CNTR_NORMAL,
4541 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4542[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4545[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_rx_rbuf_free_list_cor_err_cnt),
4548[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_rx_rbuf_free_list_unc_err_cnt),
4551[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_rx_rcv_fsm_encoding_err_cnt),
4554[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_rx_dma_flag_cor_err_cnt),
4557[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_rx_dma_flag_unc_err_cnt),
4560[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4561 CNTR_NORMAL,
4562 access_rx_dc_sop_eop_parity_err_cnt),
4563[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4564 CNTR_NORMAL,
4565 access_rx_rcv_csr_parity_err_cnt),
4566[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4567 CNTR_NORMAL,
4568 access_rx_rcv_qp_map_table_cor_err_cnt),
4569[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_rx_rcv_qp_map_table_unc_err_cnt),
4572[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4573 CNTR_NORMAL,
4574 access_rx_rcv_data_cor_err_cnt),
4575[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_rx_rcv_data_unc_err_cnt),
4578[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_rx_rcv_hdr_cor_err_cnt),
4581[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4582 CNTR_NORMAL,
4583 access_rx_rcv_hdr_unc_err_cnt),
4584[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4585 CNTR_NORMAL,
4586 access_rx_dc_intf_parity_err_cnt),
4587[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_rx_dma_csr_cor_err_cnt),
4590/* SendPioErrStatus */
4591[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4592 CNTR_NORMAL,
4593 access_pio_pec_sop_head_parity_err_cnt),
4594[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4595 CNTR_NORMAL,
4596 access_pio_pcc_sop_head_parity_err_cnt),
4597[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4598 0, 0, CNTR_NORMAL,
4599 access_pio_last_returned_cnt_parity_err_cnt),
4600[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4601 0, CNTR_NORMAL,
4602 access_pio_current_free_cnt_parity_err_cnt),
4603[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4604 CNTR_NORMAL,
4605 access_pio_reserved_31_err_cnt),
4606[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_reserved_30_err_cnt),
4609[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_ppmc_sop_len_err_cnt),
4612[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_ppmc_bqc_mem_parity_err_cnt),
4615[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_vl_fifo_parity_err_cnt),
4618[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4619 CNTR_NORMAL,
4620 access_pio_vlf_sop_parity_err_cnt),
4621[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_vlf_v1_len_parity_err_cnt),
4624[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_block_qw_count_parity_err_cnt),
4627[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_write_qw_valid_parity_err_cnt),
4630[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_state_machine_err_cnt),
4633[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4634 CNTR_NORMAL,
4635 access_pio_write_data_parity_err_cnt),
4636[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4637 CNTR_NORMAL,
4638 access_pio_host_addr_mem_cor_err_cnt),
4639[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4640 CNTR_NORMAL,
4641 access_pio_host_addr_mem_unc_err_cnt),
4642[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4643 CNTR_NORMAL,
4644 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4645[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4646 CNTR_NORMAL,
4647 access_pio_init_sm_in_err_cnt),
4648[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4649 CNTR_NORMAL,
4650 access_pio_ppmc_pbl_fifo_err_cnt),
4651[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4652 0, CNTR_NORMAL,
4653 access_pio_credit_ret_fifo_parity_err_cnt),
4654[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4655 CNTR_NORMAL,
4656 access_pio_v1_len_mem_bank1_cor_err_cnt),
4657[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4658 CNTR_NORMAL,
4659 access_pio_v1_len_mem_bank0_cor_err_cnt),
4660[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4661 CNTR_NORMAL,
4662 access_pio_v1_len_mem_bank1_unc_err_cnt),
4663[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4664 CNTR_NORMAL,
4665 access_pio_v1_len_mem_bank0_unc_err_cnt),
4666[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4667 CNTR_NORMAL,
4668 access_pio_sm_pkt_reset_parity_err_cnt),
4669[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4670 CNTR_NORMAL,
4671 access_pio_pkt_evict_fifo_parity_err_cnt),
4672[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4673 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4674 CNTR_NORMAL,
4675 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4676[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4677 CNTR_NORMAL,
4678 access_pio_sbrdctl_crrel_parity_err_cnt),
4679[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4680 CNTR_NORMAL,
4681 access_pio_pec_fifo_parity_err_cnt),
4682[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4683 CNTR_NORMAL,
4684 access_pio_pcc_fifo_parity_err_cnt),
4685[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4686 CNTR_NORMAL,
4687 access_pio_sb_mem_fifo1_err_cnt),
4688[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4689 CNTR_NORMAL,
4690 access_pio_sb_mem_fifo0_err_cnt),
4691[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4692 CNTR_NORMAL,
4693 access_pio_csr_parity_err_cnt),
4694[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4695 CNTR_NORMAL,
4696 access_pio_write_addr_parity_err_cnt),
4697[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4698 CNTR_NORMAL,
4699 access_pio_write_bad_ctxt_err_cnt),
4700/* SendDmaErrStatus */
4701[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4702 0, CNTR_NORMAL,
4703 access_sdma_pcie_req_tracking_cor_err_cnt),
4704[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4705 0, CNTR_NORMAL,
4706 access_sdma_pcie_req_tracking_unc_err_cnt),
4707[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4708 CNTR_NORMAL,
4709 access_sdma_csr_parity_err_cnt),
4710[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4711 CNTR_NORMAL,
4712 access_sdma_rpy_tag_err_cnt),
4713/* SendEgressErrStatus */
4714[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_tx_read_pio_memory_csr_unc_err_cnt),
4717[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4718 0, CNTR_NORMAL,
4719 access_tx_read_sdma_memory_csr_err_cnt),
4720[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_tx_egress_fifo_cor_err_cnt),
4723[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4724 CNTR_NORMAL,
4725 access_tx_read_pio_memory_cor_err_cnt),
4726[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4727 CNTR_NORMAL,
4728 access_tx_read_sdma_memory_cor_err_cnt),
4729[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4730 CNTR_NORMAL,
4731 access_tx_sb_hdr_cor_err_cnt),
4732[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4733 CNTR_NORMAL,
4734 access_tx_credit_overrun_err_cnt),
4735[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4736 CNTR_NORMAL,
4737 access_tx_launch_fifo8_cor_err_cnt),
4738[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4739 CNTR_NORMAL,
4740 access_tx_launch_fifo7_cor_err_cnt),
4741[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4742 CNTR_NORMAL,
4743 access_tx_launch_fifo6_cor_err_cnt),
4744[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4745 CNTR_NORMAL,
4746 access_tx_launch_fifo5_cor_err_cnt),
4747[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4748 CNTR_NORMAL,
4749 access_tx_launch_fifo4_cor_err_cnt),
4750[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4751 CNTR_NORMAL,
4752 access_tx_launch_fifo3_cor_err_cnt),
4753[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4754 CNTR_NORMAL,
4755 access_tx_launch_fifo2_cor_err_cnt),
4756[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4757 CNTR_NORMAL,
4758 access_tx_launch_fifo1_cor_err_cnt),
4759[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4760 CNTR_NORMAL,
4761 access_tx_launch_fifo0_cor_err_cnt),
4762[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4763 CNTR_NORMAL,
4764 access_tx_credit_return_vl_err_cnt),
4765[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4766 CNTR_NORMAL,
4767 access_tx_hcrc_insertion_err_cnt),
4768[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4769 CNTR_NORMAL,
4770 access_tx_egress_fifo_unc_err_cnt),
4771[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4772 CNTR_NORMAL,
4773 access_tx_read_pio_memory_unc_err_cnt),
4774[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4775 CNTR_NORMAL,
4776 access_tx_read_sdma_memory_unc_err_cnt),
4777[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4778 CNTR_NORMAL,
4779 access_tx_sb_hdr_unc_err_cnt),
4780[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4781 CNTR_NORMAL,
4782 access_tx_credit_return_partiy_err_cnt),
4783[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4784 0, 0, CNTR_NORMAL,
4785 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4786[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4787 0, 0, CNTR_NORMAL,
4788 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4789[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4790 0, 0, CNTR_NORMAL,
4791 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4792[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4793 0, 0, CNTR_NORMAL,
4794 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4795[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4796 0, 0, CNTR_NORMAL,
4797 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4798[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4799 0, 0, CNTR_NORMAL,
4800 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4801[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4802 0, 0, CNTR_NORMAL,
4803 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4804[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4805 0, 0, CNTR_NORMAL,
4806 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4807[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4808 0, 0, CNTR_NORMAL,
4809 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4810[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4811 0, 0, CNTR_NORMAL,
4812 access_tx_sdma15_disallowed_packet_err_cnt),
4813[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma14_disallowed_packet_err_cnt),
4816[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4817 0, 0, CNTR_NORMAL,
4818 access_tx_sdma13_disallowed_packet_err_cnt),
4819[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4820 0, 0, CNTR_NORMAL,
4821 access_tx_sdma12_disallowed_packet_err_cnt),
4822[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4823 0, 0, CNTR_NORMAL,
4824 access_tx_sdma11_disallowed_packet_err_cnt),
4825[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4826 0, 0, CNTR_NORMAL,
4827 access_tx_sdma10_disallowed_packet_err_cnt),
4828[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4829 0, 0, CNTR_NORMAL,
4830 access_tx_sdma9_disallowed_packet_err_cnt),
4831[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4832 0, 0, CNTR_NORMAL,
4833 access_tx_sdma8_disallowed_packet_err_cnt),
4834[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4835 0, 0, CNTR_NORMAL,
4836 access_tx_sdma7_disallowed_packet_err_cnt),
4837[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4838 0, 0, CNTR_NORMAL,
4839 access_tx_sdma6_disallowed_packet_err_cnt),
4840[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4841 0, 0, CNTR_NORMAL,
4842 access_tx_sdma5_disallowed_packet_err_cnt),
4843[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4844 0, 0, CNTR_NORMAL,
4845 access_tx_sdma4_disallowed_packet_err_cnt),
4846[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4847 0, 0, CNTR_NORMAL,
4848 access_tx_sdma3_disallowed_packet_err_cnt),
4849[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4850 0, 0, CNTR_NORMAL,
4851 access_tx_sdma2_disallowed_packet_err_cnt),
4852[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4853 0, 0, CNTR_NORMAL,
4854 access_tx_sdma1_disallowed_packet_err_cnt),
4855[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4856 0, 0, CNTR_NORMAL,
4857 access_tx_sdma0_disallowed_packet_err_cnt),
4858[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4859 CNTR_NORMAL,
4860 access_tx_config_parity_err_cnt),
4861[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4862 CNTR_NORMAL,
4863 access_tx_sbrd_ctl_csr_parity_err_cnt),
4864[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4865 CNTR_NORMAL,
4866 access_tx_launch_csr_parity_err_cnt),
4867[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4868 CNTR_NORMAL,
4869 access_tx_illegal_vl_err_cnt),
4870[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4871 "TxSbrdCtlStateMachineParityErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4874[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4875 CNTR_NORMAL,
4876 access_egress_reserved_10_err_cnt),
4877[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4878 CNTR_NORMAL,
4879 access_egress_reserved_9_err_cnt),
4880[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4881 0, 0, CNTR_NORMAL,
4882 access_tx_sdma_launch_intf_parity_err_cnt),
4883[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4884 CNTR_NORMAL,
4885 access_tx_pio_launch_intf_parity_err_cnt),
4886[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4887 CNTR_NORMAL,
4888 access_egress_reserved_6_err_cnt),
4889[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_tx_incorrect_link_state_err_cnt),
4892[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4893 CNTR_NORMAL,
4894 access_tx_linkdown_err_cnt),
4895[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4896 "EgressFifoUnderrunOrParityErr", 0, 0,
4897 CNTR_NORMAL,
4898 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4899[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4900 CNTR_NORMAL,
4901 access_egress_reserved_2_err_cnt),
4902[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4903 CNTR_NORMAL,
4904 access_tx_pkt_integrity_mem_unc_err_cnt),
4905[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4906 CNTR_NORMAL,
4907 access_tx_pkt_integrity_mem_cor_err_cnt),
4908/* SendErrStatus */
4909[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4910 CNTR_NORMAL,
4911 access_send_csr_write_bad_addr_err_cnt),
4912[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4913 CNTR_NORMAL,
4914 access_send_csr_read_bad_addr_err_cnt),
4915[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4916 CNTR_NORMAL,
4917 access_send_csr_parity_cnt),
4918/* SendCtxtErrStatus */
4919[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_pio_write_out_of_bounds_err_cnt),
4922[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_pio_write_overflow_err_cnt),
4925[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4926 0, 0, CNTR_NORMAL,
4927 access_pio_write_crosses_boundary_err_cnt),
4928[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4929 CNTR_NORMAL,
4930 access_pio_disallowed_packet_err_cnt),
4931[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4932 CNTR_NORMAL,
4933 access_pio_inconsistent_sop_err_cnt),
4934/* SendDmaEngErrStatus */
4935[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4936 0, 0, CNTR_NORMAL,
4937 access_sdma_header_request_fifo_cor_err_cnt),
4938[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4939 CNTR_NORMAL,
4940 access_sdma_header_storage_cor_err_cnt),
4941[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4942 CNTR_NORMAL,
4943 access_sdma_packet_tracking_cor_err_cnt),
4944[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4945 CNTR_NORMAL,
4946 access_sdma_assembly_cor_err_cnt),
4947[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4948 CNTR_NORMAL,
4949 access_sdma_desc_table_cor_err_cnt),
4950[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4951 0, 0, CNTR_NORMAL,
4952 access_sdma_header_request_fifo_unc_err_cnt),
4953[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4954 CNTR_NORMAL,
4955 access_sdma_header_storage_unc_err_cnt),
4956[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4957 CNTR_NORMAL,
4958 access_sdma_packet_tracking_unc_err_cnt),
4959[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4960 CNTR_NORMAL,
4961 access_sdma_assembly_unc_err_cnt),
4962[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4963 CNTR_NORMAL,
4964 access_sdma_desc_table_unc_err_cnt),
4965[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4966 CNTR_NORMAL,
4967 access_sdma_timeout_err_cnt),
4968[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4969 CNTR_NORMAL,
4970 access_sdma_header_length_err_cnt),
4971[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4972 CNTR_NORMAL,
4973 access_sdma_header_address_err_cnt),
4974[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4975 CNTR_NORMAL,
4976 access_sdma_header_select_err_cnt),
4977[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4978 CNTR_NORMAL,
4979 access_sdma_reserved_9_err_cnt),
4980[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4981 CNTR_NORMAL,
4982 access_sdma_packet_desc_overflow_err_cnt),
4983[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4984 CNTR_NORMAL,
4985 access_sdma_length_mismatch_err_cnt),
4986[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4987 CNTR_NORMAL,
4988 access_sdma_halt_err_cnt),
4989[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4990 CNTR_NORMAL,
4991 access_sdma_mem_read_err_cnt),
4992[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4993 CNTR_NORMAL,
4994 access_sdma_first_desc_err_cnt),
4995[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4996 CNTR_NORMAL,
4997 access_sdma_tail_out_of_bounds_err_cnt),
4998[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4999 CNTR_NORMAL,
5000 access_sdma_too_long_err_cnt),
5001[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5002 CNTR_NORMAL,
5003 access_sdma_gen_mismatch_err_cnt),
5004[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5005 CNTR_NORMAL,
5006 access_sdma_wrong_dw_err_cnt),
77241056
MM
5007};
5008
5009static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5010[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5011 CNTR_NORMAL),
5012[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5013 CNTR_NORMAL),
5014[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5015 CNTR_NORMAL),
5016[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5017 CNTR_NORMAL),
5018[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5019 CNTR_NORMAL),
5020[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5021 CNTR_NORMAL),
5022[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5023 CNTR_NORMAL),
5024[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5025[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5026[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5027[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
17fb4f29 5028 CNTR_SYNTH | CNTR_VL),
77241056 5029[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
17fb4f29 5030 CNTR_SYNTH | CNTR_VL),
77241056 5031[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
17fb4f29 5032 CNTR_SYNTH | CNTR_VL),
77241056
MM
5033[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5034[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5035[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5036 access_sw_link_dn_cnt),
77241056 5037[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5038 access_sw_link_up_cnt),
6d014530
DL
5039[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5040 access_sw_unknown_frame_cnt),
77241056 5041[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5042 access_sw_xmit_discards),
77241056 5043[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
17fb4f29
JJ
5044 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5045 access_sw_xmit_discards),
77241056 5046[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 5047 access_xmit_constraint_errs),
77241056 5048[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 5049 access_rcv_constraint_errs),
77241056
MM
5050[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5051[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5052[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5053[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5054[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5055[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5056[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5057[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5058[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5059[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5060[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5061[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5062[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5063 access_sw_cpu_rc_acks),
5064[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
17fb4f29 5065 access_sw_cpu_rc_qacks),
77241056 5066[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
17fb4f29 5067 access_sw_cpu_rc_delayed_comp),
77241056
MM
5068[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5069[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5070[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5071[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5072[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5073[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5074[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5075[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5076[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5077[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5078[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5079[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5080[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5081[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5082[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5083[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5084[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5085[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5086[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5087[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5088[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5089[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5090[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5091[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5092[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5093[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5094[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5095[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5096[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5097[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5098[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5099[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5100[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5101[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5102[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5103[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5104[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5105[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5106[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5107[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5108[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5109[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5110[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5111[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5112[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5113[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5114[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5115[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5116[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5117[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5118[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5119[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5120[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5121[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5122[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5123[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5124[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5125[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5126[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5127[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5128[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5129[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5130[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5131[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5132[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5133[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5134[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5135[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5136[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5137[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5138[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5139[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5140[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5141[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5142[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5143[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5144[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5145[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5146[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5147[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5148};
5149
5150/* ======================================================================== */
5151
77241056
MM
5152/* return true if this is chip revision revision a */
5153int is_ax(struct hfi1_devdata *dd)
5154{
5155 u8 chip_rev_minor =
5156 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5157 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5158 return (chip_rev_minor & 0xf0) == 0;
5159}
5160
5161/* return true if this is chip revision revision b */
5162int is_bx(struct hfi1_devdata *dd)
5163{
5164 u8 chip_rev_minor =
5165 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5166 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 5167 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
5168}
5169
5170/*
5171 * Append string s to buffer buf. Arguments curp and len are the current
5172 * position and remaining length, respectively.
5173 *
5174 * return 0 on success, 1 on out of room
5175 */
5176static int append_str(char *buf, char **curp, int *lenp, const char *s)
5177{
5178 char *p = *curp;
5179 int len = *lenp;
5180 int result = 0; /* success */
5181 char c;
5182
5183 /* add a comma, if first in the buffer */
5184 if (p != buf) {
5185 if (len == 0) {
5186 result = 1; /* out of room */
5187 goto done;
5188 }
5189 *p++ = ',';
5190 len--;
5191 }
5192
5193 /* copy the string */
5194 while ((c = *s++) != 0) {
5195 if (len == 0) {
5196 result = 1; /* out of room */
5197 goto done;
5198 }
5199 *p++ = c;
5200 len--;
5201 }
5202
5203done:
5204 /* write return values */
5205 *curp = p;
5206 *lenp = len;
5207
5208 return result;
5209}
5210
5211/*
5212 * Using the given flag table, print a comma separated string into
5213 * the buffer. End in '*' if the buffer is too short.
5214 */
5215static char *flag_string(char *buf, int buf_len, u64 flags,
17fb4f29 5216 struct flag_table *table, int table_size)
77241056
MM
5217{
5218 char extra[32];
5219 char *p = buf;
5220 int len = buf_len;
5221 int no_room = 0;
5222 int i;
5223
5224 /* make sure there is at least 2 so we can form "*" */
5225 if (len < 2)
5226 return "";
5227
5228 len--; /* leave room for a nul */
5229 for (i = 0; i < table_size; i++) {
5230 if (flags & table[i].flag) {
5231 no_room = append_str(buf, &p, &len, table[i].str);
5232 if (no_room)
5233 break;
5234 flags &= ~table[i].flag;
5235 }
5236 }
5237
5238 /* any undocumented bits left? */
5239 if (!no_room && flags) {
5240 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5241 no_room = append_str(buf, &p, &len, extra);
5242 }
5243
5244 /* add * if ran out of room */
5245 if (no_room) {
5246 /* may need to back up to add space for a '*' */
5247 if (len == 0)
5248 --p;
5249 *p++ = '*';
5250 }
5251
5252 /* add final nul - space already allocated above */
5253 *p = 0;
5254 return buf;
5255}
5256
5257/* first 8 CCE error interrupt source names */
5258static const char * const cce_misc_names[] = {
5259 "CceErrInt", /* 0 */
5260 "RxeErrInt", /* 1 */
5261 "MiscErrInt", /* 2 */
5262 "Reserved3", /* 3 */
5263 "PioErrInt", /* 4 */
5264 "SDmaErrInt", /* 5 */
5265 "EgressErrInt", /* 6 */
5266 "TxeErrInt" /* 7 */
5267};
5268
5269/*
5270 * Return the miscellaneous error interrupt name.
5271 */
5272static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5273{
5274 if (source < ARRAY_SIZE(cce_misc_names))
5275 strncpy(buf, cce_misc_names[source], bsize);
5276 else
17fb4f29
JJ
5277 snprintf(buf, bsize, "Reserved%u",
5278 source + IS_GENERAL_ERR_START);
77241056
MM
5279
5280 return buf;
5281}
5282
5283/*
5284 * Return the SDMA engine error interrupt name.
5285 */
5286static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5287{
5288 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5289 return buf;
5290}
5291
5292/*
5293 * Return the send context error interrupt name.
5294 */
5295static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5296{
5297 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5298 return buf;
5299}
5300
5301static const char * const various_names[] = {
5302 "PbcInt",
5303 "GpioAssertInt",
5304 "Qsfp1Int",
5305 "Qsfp2Int",
5306 "TCritInt"
5307};
5308
5309/*
5310 * Return the various interrupt name.
5311 */
5312static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5313{
5314 if (source < ARRAY_SIZE(various_names))
5315 strncpy(buf, various_names[source], bsize);
5316 else
8638b77f 5317 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
77241056
MM
5318 return buf;
5319}
5320
5321/*
5322 * Return the DC interrupt name.
5323 */
5324static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5325{
5326 static const char * const dc_int_names[] = {
5327 "common",
5328 "lcb",
5329 "8051",
5330 "lbm" /* local block merge */
5331 };
5332
5333 if (source < ARRAY_SIZE(dc_int_names))
5334 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5335 else
5336 snprintf(buf, bsize, "DCInt%u", source);
5337 return buf;
5338}
5339
5340static const char * const sdma_int_names[] = {
5341 "SDmaInt",
5342 "SdmaIdleInt",
5343 "SdmaProgressInt",
5344};
5345
5346/*
5347 * Return the SDMA engine interrupt name.
5348 */
5349static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5350{
5351 /* what interrupt */
5352 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5353 /* which engine */
5354 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5355
5356 if (likely(what < 3))
5357 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5358 else
5359 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5360 return buf;
5361}
5362
5363/*
5364 * Return the receive available interrupt name.
5365 */
5366static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5367{
5368 snprintf(buf, bsize, "RcvAvailInt%u", source);
5369 return buf;
5370}
5371
5372/*
5373 * Return the receive urgent interrupt name.
5374 */
5375static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5376{
5377 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5378 return buf;
5379}
5380
5381/*
5382 * Return the send credit interrupt name.
5383 */
5384static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5385{
5386 snprintf(buf, bsize, "SendCreditInt%u", source);
5387 return buf;
5388}
5389
5390/*
5391 * Return the reserved interrupt name.
5392 */
5393static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5394{
5395 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5396 return buf;
5397}
5398
5399static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5400{
5401 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5402 cce_err_status_flags,
5403 ARRAY_SIZE(cce_err_status_flags));
77241056
MM
5404}
5405
5406static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5407{
5408 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5409 rxe_err_status_flags,
5410 ARRAY_SIZE(rxe_err_status_flags));
77241056
MM
5411}
5412
5413static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5414{
5415 return flag_string(buf, buf_len, flags, misc_err_status_flags,
17fb4f29 5416 ARRAY_SIZE(misc_err_status_flags));
77241056
MM
5417}
5418
5419static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5420{
5421 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5422 pio_err_status_flags,
5423 ARRAY_SIZE(pio_err_status_flags));
77241056
MM
5424}
5425
5426static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5427{
5428 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5429 sdma_err_status_flags,
5430 ARRAY_SIZE(sdma_err_status_flags));
77241056
MM
5431}
5432
5433static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5434{
5435 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5436 egress_err_status_flags,
5437 ARRAY_SIZE(egress_err_status_flags));
77241056
MM
5438}
5439
5440static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5441{
5442 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5443 egress_err_info_flags,
5444 ARRAY_SIZE(egress_err_info_flags));
77241056
MM
5445}
5446
5447static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5448{
5449 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5450 send_err_status_flags,
5451 ARRAY_SIZE(send_err_status_flags));
77241056
MM
5452}
5453
5454static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455{
5456 char buf[96];
2c5b521a 5457 int i = 0;
77241056
MM
5458
5459 /*
5460 * For most these errors, there is nothing that can be done except
5461 * report or record it.
5462 */
5463 dd_dev_info(dd, "CCE Error: %s\n",
17fb4f29 5464 cce_err_status_string(buf, sizeof(buf), reg));
77241056 5465
995deafa
MM
5466 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5467 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
5468 /* this error requires a manual drop into SPC freeze mode */
5469 /* then a fix up */
5470 start_freeze_handling(dd->pport, FREEZE_SELF);
5471 }
2c5b521a
JR
5472
5473 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5474 if (reg & (1ull << i)) {
5475 incr_cntr64(&dd->cce_err_status_cnt[i]);
5476 /* maintain a counter over all cce_err_status errors */
5477 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5478 }
5479 }
77241056
MM
5480}
5481
5482/*
5483 * Check counters for receive errors that do not have an interrupt
5484 * associated with them.
5485 */
5486#define RCVERR_CHECK_TIME 10
5487static void update_rcverr_timer(unsigned long opaque)
5488{
5489 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5490 struct hfi1_pportdata *ppd = dd->pport;
5491 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5492
5493 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
17fb4f29 5494 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
77241056 5495 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
17fb4f29
JJ
5496 set_link_down_reason(
5497 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5498 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
77241056
MM
5499 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5500 }
50e5dcbe 5501 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
77241056
MM
5502
5503 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5504}
5505
5506static int init_rcverr(struct hfi1_devdata *dd)
5507{
24523a94 5508 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
5509 /* Assume the hardware counter has been reset */
5510 dd->rcv_ovfl_cnt = 0;
5511 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5512}
5513
5514static void free_rcverr(struct hfi1_devdata *dd)
5515{
5516 if (dd->rcverr_timer.data)
5517 del_timer_sync(&dd->rcverr_timer);
5518 dd->rcverr_timer.data = 0;
5519}
5520
5521static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522{
5523 char buf[96];
2c5b521a 5524 int i = 0;
77241056
MM
5525
5526 dd_dev_info(dd, "Receive Error: %s\n",
17fb4f29 5527 rxe_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5528
5529 if (reg & ALL_RXE_FREEZE_ERR) {
5530 int flags = 0;
5531
5532 /*
5533 * Freeze mode recovery is disabled for the errors
5534 * in RXE_FREEZE_ABORT_MASK
5535 */
995deafa 5536 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
5537 flags = FREEZE_ABORT;
5538
5539 start_freeze_handling(dd->pport, flags);
5540 }
2c5b521a
JR
5541
5542 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5543 if (reg & (1ull << i))
5544 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5545 }
77241056
MM
5546}
5547
5548static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549{
5550 char buf[96];
2c5b521a 5551 int i = 0;
77241056
MM
5552
5553 dd_dev_info(dd, "Misc Error: %s",
17fb4f29 5554 misc_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5555 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5556 if (reg & (1ull << i))
5557 incr_cntr64(&dd->misc_err_status_cnt[i]);
5558 }
77241056
MM
5559}
5560
5561static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5562{
5563 char buf[96];
2c5b521a 5564 int i = 0;
77241056
MM
5565
5566 dd_dev_info(dd, "PIO Error: %s\n",
17fb4f29 5567 pio_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5568
5569 if (reg & ALL_PIO_FREEZE_ERR)
5570 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5571
5572 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5573 if (reg & (1ull << i))
5574 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5575 }
77241056
MM
5576}
5577
5578static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5579{
5580 char buf[96];
2c5b521a 5581 int i = 0;
77241056
MM
5582
5583 dd_dev_info(dd, "SDMA Error: %s\n",
17fb4f29 5584 sdma_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5585
5586 if (reg & ALL_SDMA_FREEZE_ERR)
5587 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5588
5589 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5590 if (reg & (1ull << i))
5591 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5592 }
77241056
MM
5593}
5594
69a00b8e 5595static inline void __count_port_discards(struct hfi1_pportdata *ppd)
77241056 5596{
69a00b8e
MM
5597 incr_cntr64(&ppd->port_xmit_discards);
5598}
77241056 5599
69a00b8e
MM
5600static void count_port_inactive(struct hfi1_devdata *dd)
5601{
5602 __count_port_discards(dd->pport);
77241056
MM
5603}
5604
5605/*
5606 * We have had a "disallowed packet" error during egress. Determine the
5607 * integrity check which failed, and update relevant error counter, etc.
5608 *
5609 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5610 * bit of state per integrity check, and so we can miss the reason for an
5611 * egress error if more than one packet fails the same integrity check
5612 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5613 */
69a00b8e
MM
5614static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5615 int vl)
77241056
MM
5616{
5617 struct hfi1_pportdata *ppd = dd->pport;
5618 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5619 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5620 char buf[96];
5621
5622 /* clear down all observed info as quickly as possible after read */
5623 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5624
5625 dd_dev_info(dd,
17fb4f29
JJ
5626 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5627 info, egress_err_info_string(buf, sizeof(buf), info), src);
77241056
MM
5628
5629 /* Eventually add other counters for each bit */
69a00b8e
MM
5630 if (info & PORT_DISCARD_EGRESS_ERRS) {
5631 int weight, i;
77241056 5632
69a00b8e 5633 /*
4c9e7aac
DL
5634 * Count all applicable bits as individual errors and
5635 * attribute them to the packet that triggered this handler.
5636 * This may not be completely accurate due to limitations
5637 * on the available hardware error information. There is
5638 * a single information register and any number of error
5639 * packets may have occurred and contributed to it before
5640 * this routine is called. This means that:
5641 * a) If multiple packets with the same error occur before
5642 * this routine is called, earlier packets are missed.
5643 * There is only a single bit for each error type.
5644 * b) Errors may not be attributed to the correct VL.
5645 * The driver is attributing all bits in the info register
5646 * to the packet that triggered this call, but bits
5647 * could be an accumulation of different packets with
5648 * different VLs.
5649 * c) A single error packet may have multiple counts attached
5650 * to it. There is no way for the driver to know if
5651 * multiple bits set in the info register are due to a
5652 * single packet or multiple packets. The driver assumes
5653 * multiple packets.
69a00b8e 5654 */
4c9e7aac 5655 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
69a00b8e
MM
5656 for (i = 0; i < weight; i++) {
5657 __count_port_discards(ppd);
5658 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5659 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5660 else if (vl == 15)
5661 incr_cntr64(&ppd->port_xmit_discards_vl
5662 [C_VL_15]);
5663 }
77241056
MM
5664 }
5665}
5666
5667/*
5668 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5669 * register. Does it represent a 'port inactive' error?
5670 */
5671static inline int port_inactive_err(u64 posn)
5672{
5673 return (posn >= SEES(TX_LINKDOWN) &&
5674 posn <= SEES(TX_INCORRECT_LINK_STATE));
5675}
5676
5677/*
5678 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5679 * register. Does it represent a 'disallowed packet' error?
5680 */
69a00b8e 5681static inline int disallowed_pkt_err(int posn)
77241056
MM
5682{
5683 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5684 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5685}
5686
69a00b8e
MM
5687/*
5688 * Input value is a bit position of one of the SDMA engine disallowed
5689 * packet errors. Return which engine. Use of this must be guarded by
5690 * disallowed_pkt_err().
5691 */
5692static inline int disallowed_pkt_engine(int posn)
5693{
5694 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5695}
5696
5697/*
5698 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5699 * be done.
5700 */
5701static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5702{
5703 struct sdma_vl_map *m;
5704 int vl;
5705
5706 /* range check */
5707 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5708 return -1;
5709
5710 rcu_read_lock();
5711 m = rcu_dereference(dd->sdma_map);
5712 vl = m->engine_to_vl[engine];
5713 rcu_read_unlock();
5714
5715 return vl;
5716}
5717
5718/*
5719 * Translate the send context (sofware index) into a VL. Return -1 if the
5720 * translation cannot be done.
5721 */
5722static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5723{
5724 struct send_context_info *sci;
5725 struct send_context *sc;
5726 int i;
5727
5728 sci = &dd->send_contexts[sw_index];
5729
5730 /* there is no information for user (PSM) and ack contexts */
44306f15 5731 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
69a00b8e
MM
5732 return -1;
5733
5734 sc = sci->sc;
5735 if (!sc)
5736 return -1;
5737 if (dd->vld[15].sc == sc)
5738 return 15;
5739 for (i = 0; i < num_vls; i++)
5740 if (dd->vld[i].sc == sc)
5741 return i;
5742
5743 return -1;
5744}
5745
77241056
MM
5746static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5747{
5748 u64 reg_copy = reg, handled = 0;
5749 char buf[96];
2c5b521a 5750 int i = 0;
77241056
MM
5751
5752 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5753 start_freeze_handling(dd->pport, 0);
69a00b8e
MM
5754 else if (is_ax(dd) &&
5755 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5756 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
77241056
MM
5757 start_freeze_handling(dd->pport, 0);
5758
5759 while (reg_copy) {
5760 int posn = fls64(reg_copy);
69a00b8e 5761 /* fls64() returns a 1-based offset, we want it zero based */
77241056 5762 int shift = posn - 1;
69a00b8e 5763 u64 mask = 1ULL << shift;
77241056
MM
5764
5765 if (port_inactive_err(shift)) {
5766 count_port_inactive(dd);
69a00b8e 5767 handled |= mask;
77241056 5768 } else if (disallowed_pkt_err(shift)) {
69a00b8e
MM
5769 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5770
5771 handle_send_egress_err_info(dd, vl);
5772 handled |= mask;
77241056 5773 }
69a00b8e 5774 reg_copy &= ~mask;
77241056
MM
5775 }
5776
5777 reg &= ~handled;
5778
5779 if (reg)
5780 dd_dev_info(dd, "Egress Error: %s\n",
17fb4f29 5781 egress_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5782
5783 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5784 if (reg & (1ull << i))
5785 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5786 }
77241056
MM
5787}
5788
5789static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5790{
5791 char buf[96];
2c5b521a 5792 int i = 0;
77241056
MM
5793
5794 dd_dev_info(dd, "Send Error: %s\n",
17fb4f29 5795 send_err_status_string(buf, sizeof(buf), reg));
77241056 5796
2c5b521a
JR
5797 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5798 if (reg & (1ull << i))
5799 incr_cntr64(&dd->send_err_status_cnt[i]);
5800 }
77241056
MM
5801}
5802
5803/*
5804 * The maximum number of times the error clear down will loop before
5805 * blocking a repeating error. This value is arbitrary.
5806 */
5807#define MAX_CLEAR_COUNT 20
5808
5809/*
5810 * Clear and handle an error register. All error interrupts are funneled
5811 * through here to have a central location to correctly handle single-
5812 * or multi-shot errors.
5813 *
5814 * For non per-context registers, call this routine with a context value
5815 * of 0 so the per-context offset is zero.
5816 *
5817 * If the handler loops too many times, assume that something is wrong
5818 * and can't be fixed, so mask the error bits.
5819 */
5820static void interrupt_clear_down(struct hfi1_devdata *dd,
5821 u32 context,
5822 const struct err_reg_info *eri)
5823{
5824 u64 reg;
5825 u32 count;
5826
5827 /* read in a loop until no more errors are seen */
5828 count = 0;
5829 while (1) {
5830 reg = read_kctxt_csr(dd, context, eri->status);
5831 if (reg == 0)
5832 break;
5833 write_kctxt_csr(dd, context, eri->clear, reg);
5834 if (likely(eri->handler))
5835 eri->handler(dd, context, reg);
5836 count++;
5837 if (count > MAX_CLEAR_COUNT) {
5838 u64 mask;
5839
5840 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
17fb4f29 5841 eri->desc, reg);
77241056
MM
5842 /*
5843 * Read-modify-write so any other masked bits
5844 * remain masked.
5845 */
5846 mask = read_kctxt_csr(dd, context, eri->mask);
5847 mask &= ~reg;
5848 write_kctxt_csr(dd, context, eri->mask, mask);
5849 break;
5850 }
5851 }
5852}
5853
5854/*
5855 * CCE block "misc" interrupt. Source is < 16.
5856 */
5857static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5858{
5859 const struct err_reg_info *eri = &misc_errs[source];
5860
5861 if (eri->handler) {
5862 interrupt_clear_down(dd, 0, eri);
5863 } else {
5864 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
17fb4f29 5865 source);
77241056
MM
5866 }
5867}
5868
5869static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5870{
5871 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5872 sc_err_status_flags,
5873 ARRAY_SIZE(sc_err_status_flags));
77241056
MM
5874}
5875
5876/*
5877 * Send context error interrupt. Source (hw_context) is < 160.
5878 *
5879 * All send context errors cause the send context to halt. The normal
5880 * clear-down mechanism cannot be used because we cannot clear the
5881 * error bits until several other long-running items are done first.
5882 * This is OK because with the context halted, nothing else is going
5883 * to happen on it anyway.
5884 */
5885static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5886 unsigned int hw_context)
5887{
5888 struct send_context_info *sci;
5889 struct send_context *sc;
5890 char flags[96];
5891 u64 status;
5892 u32 sw_index;
2c5b521a 5893 int i = 0;
77241056
MM
5894
5895 sw_index = dd->hw_to_sw[hw_context];
5896 if (sw_index >= dd->num_send_contexts) {
5897 dd_dev_err(dd,
17fb4f29
JJ
5898 "out of range sw index %u for send context %u\n",
5899 sw_index, hw_context);
77241056
MM
5900 return;
5901 }
5902 sci = &dd->send_contexts[sw_index];
5903 sc = sci->sc;
5904 if (!sc) {
5905 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
17fb4f29 5906 sw_index, hw_context);
77241056
MM
5907 return;
5908 }
5909
5910 /* tell the software that a halt has begun */
5911 sc_stop(sc, SCF_HALTED);
5912
5913 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5914
5915 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
17fb4f29
JJ
5916 send_context_err_status_string(flags, sizeof(flags),
5917 status));
77241056
MM
5918
5919 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
69a00b8e 5920 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
77241056
MM
5921
5922 /*
5923 * Automatically restart halted kernel contexts out of interrupt
5924 * context. User contexts must ask the driver to restart the context.
5925 */
5926 if (sc->type != SC_USER)
5927 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2c5b521a
JR
5928
5929 /*
5930 * Update the counters for the corresponding status bits.
5931 * Note that these particular counters are aggregated over all
5932 * 160 contexts.
5933 */
5934 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5935 if (status & (1ull << i))
5936 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5937 }
77241056
MM
5938}
5939
5940static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5941 unsigned int source, u64 status)
5942{
5943 struct sdma_engine *sde;
2c5b521a 5944 int i = 0;
77241056
MM
5945
5946 sde = &dd->per_sdma[source];
5947#ifdef CONFIG_SDMA_VERBOSITY
5948 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949 slashstrip(__FILE__), __LINE__, __func__);
5950 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5951 sde->this_idx, source, (unsigned long long)status);
5952#endif
a699c6c2 5953 sde->err_cnt++;
77241056 5954 sdma_engine_error(sde, status);
2c5b521a
JR
5955
5956 /*
5957 * Update the counters for the corresponding status bits.
5958 * Note that these particular counters are aggregated over
5959 * all 16 DMA engines.
5960 */
5961 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5962 if (status & (1ull << i))
5963 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5964 }
77241056
MM
5965}
5966
5967/*
5968 * CCE block SDMA error interrupt. Source is < 16.
5969 */
5970static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5971{
5972#ifdef CONFIG_SDMA_VERBOSITY
5973 struct sdma_engine *sde = &dd->per_sdma[source];
5974
5975 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5976 slashstrip(__FILE__), __LINE__, __func__);
5977 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5978 source);
5979 sdma_dumpstate(sde);
5980#endif
5981 interrupt_clear_down(dd, source, &sdma_eng_err);
5982}
5983
5984/*
5985 * CCE block "various" interrupt. Source is < 8.
5986 */
5987static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5988{
5989 const struct err_reg_info *eri = &various_err[source];
5990
5991 /*
5992 * TCritInt cannot go through interrupt_clear_down()
5993 * because it is not a second tier interrupt. The handler
5994 * should be called directly.
5995 */
5996 if (source == TCRIT_INT_SOURCE)
5997 handle_temp_err(dd);
5998 else if (eri->handler)
5999 interrupt_clear_down(dd, 0, eri);
6000 else
6001 dd_dev_info(dd,
17fb4f29
JJ
6002 "%s: Unimplemented/reserved interrupt %d\n",
6003 __func__, source);
77241056
MM
6004}
6005
6006static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6007{
8ebd4cf1 6008 /* src_ctx is always zero */
77241056
MM
6009 struct hfi1_pportdata *ppd = dd->pport;
6010 unsigned long flags;
6011 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6012
6013 if (reg & QSFP_HFI0_MODPRST_N) {
77241056 6014 if (!qsfp_mod_present(ppd)) {
e8aa284b
EH
6015 dd_dev_info(dd, "%s: QSFP module removed\n",
6016 __func__);
6017
77241056
MM
6018 ppd->driver_link_ready = 0;
6019 /*
6020 * Cable removed, reset all our information about the
6021 * cache and cable capabilities
6022 */
6023
6024 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6025 /*
6026 * We don't set cache_refresh_required here as we expect
6027 * an interrupt when a cable is inserted
6028 */
6029 ppd->qsfp_info.cache_valid = 0;
8ebd4cf1
EH
6030 ppd->qsfp_info.reset_needed = 0;
6031 ppd->qsfp_info.limiting_active = 0;
77241056 6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 6033 flags);
8ebd4cf1
EH
6034 /* Invert the ModPresent pin now to detect plug-in */
6035 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6036 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
a9c05e35
BM
6037
6038 if ((ppd->offline_disabled_reason >
6039 HFI1_ODR_MASK(
e1bf0d5e 6040 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
a9c05e35
BM
6041 (ppd->offline_disabled_reason ==
6042 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6043 ppd->offline_disabled_reason =
6044 HFI1_ODR_MASK(
e1bf0d5e 6045 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
a9c05e35 6046
77241056
MM
6047 if (ppd->host_link_state == HLS_DN_POLL) {
6048 /*
6049 * The link is still in POLL. This means
6050 * that the normal link down processing
6051 * will not happen. We have to do it here
6052 * before turning the DC off.
6053 */
6054 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6055 }
6056 } else {
e8aa284b
EH
6057 dd_dev_info(dd, "%s: QSFP module inserted\n",
6058 __func__);
6059
77241056
MM
6060 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6061 ppd->qsfp_info.cache_valid = 0;
6062 ppd->qsfp_info.cache_refresh_required = 1;
6063 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 6064 flags);
77241056 6065
8ebd4cf1
EH
6066 /*
6067 * Stop inversion of ModPresent pin to detect
6068 * removal of the cable
6069 */
77241056 6070 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
8ebd4cf1
EH
6071 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6072 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6073
6074 ppd->offline_disabled_reason =
6075 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
6076 }
6077 }
6078
6079 if (reg & QSFP_HFI0_INT_N) {
e8aa284b 6080 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
17fb4f29 6081 __func__);
77241056
MM
6082 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 ppd->qsfp_info.check_interrupt_flags = 1;
77241056
MM
6084 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6085 }
6086
6087 /* Schedule the QSFP work only if there is a cable attached. */
6088 if (qsfp_mod_present(ppd))
6089 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6090}
6091
6092static int request_host_lcb_access(struct hfi1_devdata *dd)
6093{
6094 int ret;
6095
6096 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6097 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6098 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6099 if (ret != HCMD_SUCCESS) {
6100 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6101 __func__, ret);
77241056
MM
6102 }
6103 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6104}
6105
6106static int request_8051_lcb_access(struct hfi1_devdata *dd)
6107{
6108 int ret;
6109
6110 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6111 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6112 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6113 if (ret != HCMD_SUCCESS) {
6114 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6115 __func__, ret);
77241056
MM
6116 }
6117 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6118}
6119
6120/*
6121 * Set the LCB selector - allow host access. The DCC selector always
6122 * points to the host.
6123 */
6124static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6125{
6126 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29
JJ
6127 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6128 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
77241056
MM
6129}
6130
6131/*
6132 * Clear the LCB selector - allow 8051 access. The DCC selector always
6133 * points to the host.
6134 */
6135static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6136{
6137 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29 6138 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
77241056
MM
6139}
6140
6141/*
6142 * Acquire LCB access from the 8051. If the host already has access,
6143 * just increment a counter. Otherwise, inform the 8051 that the
6144 * host is taking access.
6145 *
6146 * Returns:
6147 * 0 on success
6148 * -EBUSY if the 8051 has control and cannot be disturbed
6149 * -errno if unable to acquire access from the 8051
6150 */
6151int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6152{
6153 struct hfi1_pportdata *ppd = dd->pport;
6154 int ret = 0;
6155
6156 /*
6157 * Use the host link state lock so the operation of this routine
6158 * { link state check, selector change, count increment } can occur
6159 * as a unit against a link state change. Otherwise there is a
6160 * race between the state change and the count increment.
6161 */
6162 if (sleep_ok) {
6163 mutex_lock(&ppd->hls_lock);
6164 } else {
951842b0 6165 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
6166 udelay(1);
6167 }
6168
6169 /* this access is valid only when the link is up */
0c7f77af 6170 if (ppd->host_link_state & HLS_DOWN) {
77241056 6171 dd_dev_info(dd, "%s: link state %s not up\n",
17fb4f29 6172 __func__, link_state_name(ppd->host_link_state));
77241056
MM
6173 ret = -EBUSY;
6174 goto done;
6175 }
6176
6177 if (dd->lcb_access_count == 0) {
6178 ret = request_host_lcb_access(dd);
6179 if (ret) {
6180 dd_dev_err(dd,
17fb4f29
JJ
6181 "%s: unable to acquire LCB access, err %d\n",
6182 __func__, ret);
77241056
MM
6183 goto done;
6184 }
6185 set_host_lcb_access(dd);
6186 }
6187 dd->lcb_access_count++;
6188done:
6189 mutex_unlock(&ppd->hls_lock);
6190 return ret;
6191}
6192
6193/*
6194 * Release LCB access by decrementing the use count. If the count is moving
6195 * from 1 to 0, inform 8051 that it has control back.
6196 *
6197 * Returns:
6198 * 0 on success
6199 * -errno if unable to release access to the 8051
6200 */
6201int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6202{
6203 int ret = 0;
6204
6205 /*
6206 * Use the host link state lock because the acquire needed it.
6207 * Here, we only need to keep { selector change, count decrement }
6208 * as a unit.
6209 */
6210 if (sleep_ok) {
6211 mutex_lock(&dd->pport->hls_lock);
6212 } else {
951842b0 6213 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
6214 udelay(1);
6215 }
6216
6217 if (dd->lcb_access_count == 0) {
6218 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
17fb4f29 6219 __func__);
77241056
MM
6220 goto done;
6221 }
6222
6223 if (dd->lcb_access_count == 1) {
6224 set_8051_lcb_access(dd);
6225 ret = request_8051_lcb_access(dd);
6226 if (ret) {
6227 dd_dev_err(dd,
17fb4f29
JJ
6228 "%s: unable to release LCB access, err %d\n",
6229 __func__, ret);
77241056
MM
6230 /* restore host access if the grant didn't work */
6231 set_host_lcb_access(dd);
6232 goto done;
6233 }
6234 }
6235 dd->lcb_access_count--;
6236done:
6237 mutex_unlock(&dd->pport->hls_lock);
6238 return ret;
6239}
6240
6241/*
6242 * Initialize LCB access variables and state. Called during driver load,
6243 * after most of the initialization is finished.
6244 *
6245 * The DC default is LCB access on for the host. The driver defaults to
6246 * leaving access to the 8051. Assign access now - this constrains the call
6247 * to this routine to be after all LCB set-up is done. In particular, after
6248 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6249 */
6250static void init_lcb_access(struct hfi1_devdata *dd)
6251{
6252 dd->lcb_access_count = 0;
6253}
6254
6255/*
6256 * Write a response back to a 8051 request.
6257 */
6258static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6259{
6260 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
17fb4f29
JJ
6261 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6262 (u64)return_code <<
6263 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6264 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
77241056
MM
6265}
6266
6267/*
cbac386a 6268 * Handle host requests from the 8051.
77241056 6269 */
145dd2b3 6270static void handle_8051_request(struct hfi1_pportdata *ppd)
77241056 6271{
cbac386a 6272 struct hfi1_devdata *dd = ppd->dd;
77241056 6273 u64 reg;
cbac386a 6274 u16 data = 0;
145dd2b3 6275 u8 type;
77241056
MM
6276
6277 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6278 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6279 return; /* no request */
6280
6281 /* zero out COMPLETED so the response is seen */
6282 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6283
6284 /* extract request details */
6285 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6286 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6287 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6288 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6289
6290 switch (type) {
6291 case HREQ_LOAD_CONFIG:
6292 case HREQ_SAVE_CONFIG:
6293 case HREQ_READ_CONFIG:
6294 case HREQ_SET_TX_EQ_ABS:
6295 case HREQ_SET_TX_EQ_REL:
145dd2b3 6296 case HREQ_ENABLE:
77241056 6297 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
17fb4f29 6298 type);
77241056
MM
6299 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6300 break;
77241056
MM
6301 case HREQ_CONFIG_DONE:
6302 hreq_response(dd, HREQ_SUCCESS, 0);
6303 break;
6304
6305 case HREQ_INTERFACE_TEST:
6306 hreq_response(dd, HREQ_SUCCESS, data);
6307 break;
77241056
MM
6308 default:
6309 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6310 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6311 break;
6312 }
6313}
6314
6315static void write_global_credit(struct hfi1_devdata *dd,
6316 u8 vau, u16 total, u16 shared)
6317{
6318 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
17fb4f29
JJ
6319 ((u64)total <<
6320 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6321 ((u64)shared <<
6322 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6323 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
77241056
MM
6324}
6325
6326/*
6327 * Set up initial VL15 credits of the remote. Assumes the rest of
6328 * the CM credit registers are zero from a previous global or credit reset .
6329 */
6330void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6331{
6332 /* leave shared count at zero for both global and VL15 */
6333 write_global_credit(dd, vau, vl15buf, 0);
6334
eacc830f
DD
6335 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6336 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
77241056
MM
6337}
6338
6339/*
6340 * Zero all credit details from the previous connection and
6341 * reset the CM manager's internal counters.
6342 */
6343void reset_link_credits(struct hfi1_devdata *dd)
6344{
6345 int i;
6346
6347 /* remove all previous VL credit limits */
6348 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 6349 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056
MM
6350 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6351 write_global_credit(dd, 0, 0, 0);
6352 /* reset the CM block */
6353 pio_send_control(dd, PSC_CM_RESET);
6354}
6355
6356/* convert a vCU to a CU */
6357static u32 vcu_to_cu(u8 vcu)
6358{
6359 return 1 << vcu;
6360}
6361
6362/* convert a CU to a vCU */
6363static u8 cu_to_vcu(u32 cu)
6364{
6365 return ilog2(cu);
6366}
6367
6368/* convert a vAU to an AU */
6369static u32 vau_to_au(u8 vau)
6370{
6371 return 8 * (1 << vau);
6372}
6373
6374static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6375{
6376 ppd->sm_trap_qp = 0x0;
6377 ppd->sa_qp = 0x1;
6378}
6379
6380/*
6381 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6382 */
6383static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6384{
6385 u64 reg;
6386
6387 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6388 write_csr(dd, DC_LCB_CFG_RUN, 0);
6389 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6390 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
17fb4f29 6391 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
77241056
MM
6392 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6393 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6394 reg = read_csr(dd, DCC_CFG_RESET);
17fb4f29
JJ
6395 write_csr(dd, DCC_CFG_RESET, reg |
6396 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6397 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
50e5dcbe 6398 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
77241056
MM
6399 if (!abort) {
6400 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6401 write_csr(dd, DCC_CFG_RESET, reg);
6402 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6403 }
6404}
6405
6406/*
6407 * This routine should be called after the link has been transitioned to
6408 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6409 * reset).
6410 *
6411 * The expectation is that the caller of this routine would have taken
6412 * care of properly transitioning the link into the correct state.
22546b74
TS
6413 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6414 * before calling this function.
77241056 6415 */
22546b74 6416static void _dc_shutdown(struct hfi1_devdata *dd)
77241056 6417{
22546b74 6418 lockdep_assert_held(&dd->dc8051_lock);
77241056 6419
22546b74 6420 if (dd->dc_shutdown)
77241056 6421 return;
22546b74 6422
77241056 6423 dd->dc_shutdown = 1;
77241056
MM
6424 /* Shutdown the LCB */
6425 lcb_shutdown(dd, 1);
4d114fdd
JJ
6426 /*
6427 * Going to OFFLINE would have causes the 8051 to put the
77241056 6428 * SerDes into reset already. Just need to shut down the 8051,
4d114fdd
JJ
6429 * itself.
6430 */
77241056
MM
6431 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6432}
6433
22546b74
TS
6434static void dc_shutdown(struct hfi1_devdata *dd)
6435{
6436 mutex_lock(&dd->dc8051_lock);
6437 _dc_shutdown(dd);
6438 mutex_unlock(&dd->dc8051_lock);
6439}
6440
4d114fdd
JJ
6441/*
6442 * Calling this after the DC has been brought out of reset should not
6443 * do any damage.
22546b74
TS
6444 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6445 * before calling this function.
4d114fdd 6446 */
22546b74 6447static void _dc_start(struct hfi1_devdata *dd)
77241056 6448{
22546b74 6449 lockdep_assert_held(&dd->dc8051_lock);
77241056 6450
77241056 6451 if (!dd->dc_shutdown)
22546b74
TS
6452 return;
6453
77241056
MM
6454 /* Take the 8051 out of reset */
6455 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6456 /* Wait until 8051 is ready */
22546b74 6457 if (wait_fm_ready(dd, TIMEOUT_8051_START))
77241056 6458 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
17fb4f29 6459 __func__);
22546b74 6460
77241056
MM
6461 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6462 write_csr(dd, DCC_CFG_RESET, 0x10);
6463 /* lcb_shutdown() with abort=1 does not restore these */
6464 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
77241056 6465 dd->dc_shutdown = 0;
22546b74
TS
6466}
6467
6468static void dc_start(struct hfi1_devdata *dd)
6469{
6470 mutex_lock(&dd->dc8051_lock);
6471 _dc_start(dd);
6472 mutex_unlock(&dd->dc8051_lock);
77241056
MM
6473}
6474
6475/*
6476 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6477 */
6478static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6479{
6480 u64 rx_radr, tx_radr;
6481 u32 version;
6482
6483 if (dd->icode != ICODE_FPGA_EMULATION)
6484 return;
6485
6486 /*
6487 * These LCB defaults on emulator _s are good, nothing to do here:
6488 * LCB_CFG_TX_FIFOS_RADR
6489 * LCB_CFG_RX_FIFOS_RADR
6490 * LCB_CFG_LN_DCLK
6491 * LCB_CFG_IGNORE_LOST_RCLK
6492 */
6493 if (is_emulator_s(dd))
6494 return;
6495 /* else this is _p */
6496
6497 version = emulator_rev(dd);
995deafa 6498 if (!is_ax(dd))
77241056
MM
6499 version = 0x2d; /* all B0 use 0x2d or higher settings */
6500
6501 if (version <= 0x12) {
6502 /* release 0x12 and below */
6503
6504 /*
6505 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6506 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6507 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6508 */
6509 rx_radr =
6510 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6511 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6512 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6513 /*
6514 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6515 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6516 */
6517 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6518 } else if (version <= 0x18) {
6519 /* release 0x13 up to 0x18 */
6520 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6521 rx_radr =
6522 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6523 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6524 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6525 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6526 } else if (version == 0x19) {
6527 /* release 0x19 */
6528 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6529 rx_radr =
6530 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6531 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6532 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6533 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6534 } else if (version == 0x1a) {
6535 /* release 0x1a */
6536 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6537 rx_radr =
6538 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6539 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6540 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6541 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6542 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6543 } else {
6544 /* release 0x1b and higher */
6545 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6546 rx_radr =
6547 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6548 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6549 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6550 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6551 }
6552
6553 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6554 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6555 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
17fb4f29 6556 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
77241056
MM
6557 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6558}
6559
6560/*
6561 * Handle a SMA idle message
6562 *
6563 * This is a work-queue function outside of the interrupt.
6564 */
6565void handle_sma_message(struct work_struct *work)
6566{
6567 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6568 sma_message_work);
6569 struct hfi1_devdata *dd = ppd->dd;
6570 u64 msg;
6571 int ret;
6572
4d114fdd
JJ
6573 /*
6574 * msg is bytes 1-4 of the 40-bit idle message - the command code
6575 * is stripped off
6576 */
77241056
MM
6577 ret = read_idle_sma(dd, &msg);
6578 if (ret)
6579 return;
6580 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6581 /*
6582 * React to the SMA message. Byte[1] (0 for us) is the command.
6583 */
6584 switch (msg & 0xff) {
6585 case SMA_IDLE_ARM:
6586 /*
6587 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6588 * State Transitions
6589 *
6590 * Only expected in INIT or ARMED, discard otherwise.
6591 */
6592 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6593 ppd->neighbor_normal = 1;
6594 break;
6595 case SMA_IDLE_ACTIVE:
6596 /*
6597 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6598 * State Transitions
6599 *
6600 * Can activate the node. Discard otherwise.
6601 */
d0d236ea
JJ
6602 if (ppd->host_link_state == HLS_UP_ARMED &&
6603 ppd->is_active_optimize_enabled) {
77241056
MM
6604 ppd->neighbor_normal = 1;
6605 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6606 if (ret)
6607 dd_dev_err(
6608 dd,
6609 "%s: received Active SMA idle message, couldn't set link to Active\n",
6610 __func__);
6611 }
6612 break;
6613 default:
6614 dd_dev_err(dd,
17fb4f29
JJ
6615 "%s: received unexpected SMA idle message 0x%llx\n",
6616 __func__, msg);
77241056
MM
6617 break;
6618 }
6619}
6620
6621static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6622{
6623 u64 rcvctrl;
6624 unsigned long flags;
6625
6626 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6627 rcvctrl = read_csr(dd, RCV_CTRL);
6628 rcvctrl |= add;
6629 rcvctrl &= ~clear;
6630 write_csr(dd, RCV_CTRL, rcvctrl);
6631 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6632}
6633
6634static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6635{
6636 adjust_rcvctrl(dd, add, 0);
6637}
6638
6639static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6640{
6641 adjust_rcvctrl(dd, 0, clear);
6642}
6643
6644/*
6645 * Called from all interrupt handlers to start handling an SPC freeze.
6646 */
6647void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6648{
6649 struct hfi1_devdata *dd = ppd->dd;
6650 struct send_context *sc;
6651 int i;
6652
6653 if (flags & FREEZE_SELF)
6654 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6655
6656 /* enter frozen mode */
6657 dd->flags |= HFI1_FROZEN;
6658
6659 /* notify all SDMA engines that they are going into a freeze */
6660 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6661
6662 /* do halt pre-handling on all enabled send contexts */
6663 for (i = 0; i < dd->num_send_contexts; i++) {
6664 sc = dd->send_contexts[i].sc;
6665 if (sc && (sc->flags & SCF_ENABLED))
6666 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6667 }
6668
6669 /* Send context are frozen. Notify user space */
6670 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6671
6672 if (flags & FREEZE_ABORT) {
6673 dd_dev_err(dd,
6674 "Aborted freeze recovery. Please REBOOT system\n");
6675 return;
6676 }
6677 /* queue non-interrupt handler */
6678 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6679}
6680
6681/*
6682 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6683 * depending on the "freeze" parameter.
6684 *
6685 * No need to return an error if it times out, our only option
6686 * is to proceed anyway.
6687 */
6688static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6689{
6690 unsigned long timeout;
6691 u64 reg;
6692
6693 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6694 while (1) {
6695 reg = read_csr(dd, CCE_STATUS);
6696 if (freeze) {
6697 /* waiting until all indicators are set */
6698 if ((reg & ALL_FROZE) == ALL_FROZE)
6699 return; /* all done */
6700 } else {
6701 /* waiting until all indicators are clear */
6702 if ((reg & ALL_FROZE) == 0)
6703 return; /* all done */
6704 }
6705
6706 if (time_after(jiffies, timeout)) {
6707 dd_dev_err(dd,
17fb4f29
JJ
6708 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6709 freeze ? "" : "un", reg & ALL_FROZE,
6710 freeze ? ALL_FROZE : 0ull);
77241056
MM
6711 return;
6712 }
6713 usleep_range(80, 120);
6714 }
6715}
6716
6717/*
6718 * Do all freeze handling for the RXE block.
6719 */
6720static void rxe_freeze(struct hfi1_devdata *dd)
6721{
6722 int i;
6723
6724 /* disable port */
6725 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6726
6727 /* disable all receive contexts */
6728 for (i = 0; i < dd->num_rcv_contexts; i++)
6729 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6730}
6731
6732/*
6733 * Unfreeze handling for the RXE block - kernel contexts only.
6734 * This will also enable the port. User contexts will do unfreeze
6735 * handling on a per-context basis as they call into the driver.
6736 *
6737 */
6738static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6739{
566c157c 6740 u32 rcvmask;
77241056
MM
6741 int i;
6742
6743 /* enable all kernel contexts */
2280740f
VN
6744 for (i = 0; i < dd->num_rcv_contexts; i++) {
6745 struct hfi1_ctxtdata *rcd = dd->rcd[i];
6746
6747 /* Ensure all non-user contexts(including vnic) are enabled */
6748 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6749 continue;
6750
566c157c
MH
6751 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6752 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6753 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6754 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6755 hfi1_rcvctrl(dd, rcvmask, i);
6756 }
77241056
MM
6757
6758 /* enable port */
6759 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6760}
6761
6762/*
6763 * Non-interrupt SPC freeze handling.
6764 *
6765 * This is a work-queue function outside of the triggering interrupt.
6766 */
6767void handle_freeze(struct work_struct *work)
6768{
6769 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6770 freeze_work);
6771 struct hfi1_devdata *dd = ppd->dd;
6772
6773 /* wait for freeze indicators on all affected blocks */
77241056
MM
6774 wait_for_freeze_status(dd, 1);
6775
6776 /* SPC is now frozen */
6777
6778 /* do send PIO freeze steps */
6779 pio_freeze(dd);
6780
6781 /* do send DMA freeze steps */
6782 sdma_freeze(dd);
6783
6784 /* do send egress freeze steps - nothing to do */
6785
6786 /* do receive freeze steps */
6787 rxe_freeze(dd);
6788
6789 /*
6790 * Unfreeze the hardware - clear the freeze, wait for each
6791 * block's frozen bit to clear, then clear the frozen flag.
6792 */
6793 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6794 wait_for_freeze_status(dd, 0);
6795
995deafa 6796 if (is_ax(dd)) {
77241056
MM
6797 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6798 wait_for_freeze_status(dd, 1);
6799 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6800 wait_for_freeze_status(dd, 0);
6801 }
6802
6803 /* do send PIO unfreeze steps for kernel contexts */
6804 pio_kernel_unfreeze(dd);
6805
6806 /* do send DMA unfreeze steps */
6807 sdma_unfreeze(dd);
6808
6809 /* do send egress unfreeze steps - nothing to do */
6810
6811 /* do receive unfreeze steps for kernel contexts */
6812 rxe_kernel_unfreeze(dd);
6813
6814 /*
6815 * The unfreeze procedure touches global device registers when
6816 * it disables and re-enables RXE. Mark the device unfrozen
6817 * after all that is done so other parts of the driver waiting
6818 * for the device to unfreeze don't do things out of order.
6819 *
6820 * The above implies that the meaning of HFI1_FROZEN flag is
6821 * "Device has gone into freeze mode and freeze mode handling
6822 * is still in progress."
6823 *
6824 * The flag will be removed when freeze mode processing has
6825 * completed.
6826 */
6827 dd->flags &= ~HFI1_FROZEN;
6828 wake_up(&dd->event_queue);
6829
6830 /* no longer frozen */
77241056
MM
6831}
6832
6833/*
6834 * Handle a link up interrupt from the 8051.
6835 *
6836 * This is a work-queue function outside of the interrupt.
6837 */
6838void handle_link_up(struct work_struct *work)
6839{
6840 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
17fb4f29 6841 link_up_work);
77241056
MM
6842 set_link_state(ppd, HLS_UP_INIT);
6843
6844 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6845 read_ltp_rtt(ppd->dd);
6846 /*
6847 * OPA specifies that certain counters are cleared on a transition
6848 * to link up, so do that.
6849 */
6850 clear_linkup_counters(ppd->dd);
6851 /*
6852 * And (re)set link up default values.
6853 */
6854 set_linkup_defaults(ppd);
6855
6856 /* enforce link speed enabled */
6857 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6858 /* oops - current speed is not enabled, bounce */
6859 dd_dev_err(ppd->dd,
17fb4f29
JJ
6860 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6861 ppd->link_speed_active, ppd->link_speed_enabled);
77241056 6862 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
17fb4f29 6863 OPA_LINKDOWN_REASON_SPEED_POLICY);
77241056
MM
6864 set_link_state(ppd, HLS_DN_OFFLINE);
6865 start_link(ppd);
6866 }
6867}
6868
4d114fdd
JJ
6869/*
6870 * Several pieces of LNI information were cached for SMA in ppd.
6871 * Reset these on link down
6872 */
77241056
MM
6873static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6874{
6875 ppd->neighbor_guid = 0;
6876 ppd->neighbor_port_number = 0;
6877 ppd->neighbor_type = 0;
6878 ppd->neighbor_fm_security = 0;
6879}
6880
feb831dd
DL
6881static const char * const link_down_reason_strs[] = {
6882 [OPA_LINKDOWN_REASON_NONE] = "None",
6883 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6884 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6885 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6886 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6887 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6888 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6889 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6890 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6891 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6892 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6893 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6894 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6895 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6896 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6897 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6898 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6899 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6900 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6901 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6902 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6903 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6904 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6905 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6906 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6907 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6908 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6909 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6910 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6911 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6912 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6913 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6914 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6915 "Excessive buffer overrun",
6916 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6917 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6918 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6919 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6920 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6921 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6922 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6923 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6924 "Local media not installed",
6925 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6926 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6927 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6928 "End to end not installed",
6929 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6930 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6931 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6932 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6933 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6934 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6935};
6936
6937/* return the neighbor link down reason string */
6938static const char *link_down_reason_str(u8 reason)
6939{
6940 const char *str = NULL;
6941
6942 if (reason < ARRAY_SIZE(link_down_reason_strs))
6943 str = link_down_reason_strs[reason];
6944 if (!str)
6945 str = "(invalid)";
6946
6947 return str;
6948}
6949
77241056
MM
6950/*
6951 * Handle a link down interrupt from the 8051.
6952 *
6953 * This is a work-queue function outside of the interrupt.
6954 */
6955void handle_link_down(struct work_struct *work)
6956{
6957 u8 lcl_reason, neigh_reason = 0;
feb831dd 6958 u8 link_down_reason;
77241056 6959 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
feb831dd
DL
6960 link_down_work);
6961 int was_up;
6962 static const char ldr_str[] = "Link down reason: ";
77241056 6963
8ebd4cf1
EH
6964 if ((ppd->host_link_state &
6965 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6966 ppd->port_type == PORT_TYPE_FIXED)
6967 ppd->offline_disabled_reason =
6968 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6969
6970 /* Go offline first, then deal with reading/writing through 8051 */
feb831dd 6971 was_up = !!(ppd->host_link_state & HLS_UP);
77241056
MM
6972 set_link_state(ppd, HLS_DN_OFFLINE);
6973
feb831dd
DL
6974 if (was_up) {
6975 lcl_reason = 0;
6976 /* link down reason is only valid if the link was up */
6977 read_link_down_reason(ppd->dd, &link_down_reason);
6978 switch (link_down_reason) {
6979 case LDR_LINK_TRANSFER_ACTIVE_LOW:
6980 /* the link went down, no idle message reason */
6981 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6982 ldr_str);
6983 break;
6984 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6985 /*
6986 * The neighbor reason is only valid if an idle message
6987 * was received for it.
6988 */
6989 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6990 dd_dev_info(ppd->dd,
6991 "%sNeighbor link down message %d, %s\n",
6992 ldr_str, neigh_reason,
6993 link_down_reason_str(neigh_reason));
6994 break;
6995 case LDR_RECEIVED_HOST_OFFLINE_REQ:
6996 dd_dev_info(ppd->dd,
6997 "%sHost requested link to go offline\n",
6998 ldr_str);
6999 break;
7000 default:
7001 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7002 ldr_str, link_down_reason);
7003 break;
7004 }
77241056 7005
feb831dd
DL
7006 /*
7007 * If no reason, assume peer-initiated but missed
7008 * LinkGoingDown idle flits.
7009 */
7010 if (neigh_reason == 0)
7011 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7012 } else {
7013 /* went down while polling or going up */
7014 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7015 }
77241056
MM
7016
7017 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7018
015e91fb
DL
7019 /* inform the SMA when the link transitions from up to down */
7020 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7021 ppd->neigh_link_down_reason.sma == 0) {
7022 ppd->local_link_down_reason.sma =
7023 ppd->local_link_down_reason.latest;
7024 ppd->neigh_link_down_reason.sma =
7025 ppd->neigh_link_down_reason.latest;
7026 }
7027
77241056
MM
7028 reset_neighbor_info(ppd);
7029
7030 /* disable the port */
7031 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7032
4d114fdd
JJ
7033 /*
7034 * If there is no cable attached, turn the DC off. Otherwise,
7035 * start the link bring up.
7036 */
0db9dec2 7037 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
77241056 7038 dc_shutdown(ppd->dd);
0db9dec2 7039 else
77241056
MM
7040 start_link(ppd);
7041}
7042
7043void handle_link_bounce(struct work_struct *work)
7044{
7045 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7046 link_bounce_work);
7047
7048 /*
7049 * Only do something if the link is currently up.
7050 */
7051 if (ppd->host_link_state & HLS_UP) {
7052 set_link_state(ppd, HLS_DN_OFFLINE);
7053 start_link(ppd);
7054 } else {
7055 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
17fb4f29 7056 __func__, link_state_name(ppd->host_link_state));
77241056
MM
7057 }
7058}
7059
7060/*
7061 * Mask conversion: Capability exchange to Port LTP. The capability
7062 * exchange has an implicit 16b CRC that is mandatory.
7063 */
7064static int cap_to_port_ltp(int cap)
7065{
7066 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7067
7068 if (cap & CAP_CRC_14B)
7069 port_ltp |= PORT_LTP_CRC_MODE_14;
7070 if (cap & CAP_CRC_48B)
7071 port_ltp |= PORT_LTP_CRC_MODE_48;
7072 if (cap & CAP_CRC_12B_16B_PER_LANE)
7073 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7074
7075 return port_ltp;
7076}
7077
7078/*
7079 * Convert an OPA Port LTP mask to capability mask
7080 */
7081int port_ltp_to_cap(int port_ltp)
7082{
7083 int cap_mask = 0;
7084
7085 if (port_ltp & PORT_LTP_CRC_MODE_14)
7086 cap_mask |= CAP_CRC_14B;
7087 if (port_ltp & PORT_LTP_CRC_MODE_48)
7088 cap_mask |= CAP_CRC_48B;
7089 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7090 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7091
7092 return cap_mask;
7093}
7094
7095/*
7096 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7097 */
7098static int lcb_to_port_ltp(int lcb_crc)
7099{
7100 int port_ltp = 0;
7101
7102 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7103 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7104 else if (lcb_crc == LCB_CRC_48B)
7105 port_ltp = PORT_LTP_CRC_MODE_48;
7106 else if (lcb_crc == LCB_CRC_14B)
7107 port_ltp = PORT_LTP_CRC_MODE_14;
7108 else
7109 port_ltp = PORT_LTP_CRC_MODE_16;
7110
7111 return port_ltp;
7112}
7113
7114/*
7115 * Our neighbor has indicated that we are allowed to act as a fabric
7116 * manager, so place the full management partition key in the second
7117 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7118 * that we should already have the limited management partition key in
7119 * array element 1, and also that the port is not yet up when
7120 * add_full_mgmt_pkey() is invoked.
7121 */
7122static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7123{
7124 struct hfi1_devdata *dd = ppd->dd;
7125
a498fbcd 7126 /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
8764522e
DL
7127 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7128 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7129 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
77241056
MM
7130 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7131 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
34d351f8 7132 hfi1_event_pkey_change(ppd->dd, ppd->port);
77241056
MM
7133}
7134
3ec5fa28 7135static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
ce8b2fd0 7136{
3ec5fa28
SS
7137 if (ppd->pkeys[2] != 0) {
7138 ppd->pkeys[2] = 0;
7139 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
34d351f8 7140 hfi1_event_pkey_change(ppd->dd, ppd->port);
3ec5fa28 7141 }
ce8b2fd0
SS
7142}
7143
77241056
MM
7144/*
7145 * Convert the given link width to the OPA link width bitmask.
7146 */
7147static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7148{
7149 switch (width) {
7150 case 0:
7151 /*
7152 * Simulator and quick linkup do not set the width.
7153 * Just set it to 4x without complaint.
7154 */
7155 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7156 return OPA_LINK_WIDTH_4X;
7157 return 0; /* no lanes up */
7158 case 1: return OPA_LINK_WIDTH_1X;
7159 case 2: return OPA_LINK_WIDTH_2X;
7160 case 3: return OPA_LINK_WIDTH_3X;
7161 default:
7162 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
17fb4f29 7163 __func__, width);
77241056
MM
7164 /* fall through */
7165 case 4: return OPA_LINK_WIDTH_4X;
7166 }
7167}
7168
7169/*
7170 * Do a population count on the bottom nibble.
7171 */
7172static const u8 bit_counts[16] = {
7173 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7174};
f4d507cd 7175
77241056
MM
7176static inline u8 nibble_to_count(u8 nibble)
7177{
7178 return bit_counts[nibble & 0xf];
7179}
7180
7181/*
7182 * Read the active lane information from the 8051 registers and return
7183 * their widths.
7184 *
7185 * Active lane information is found in these 8051 registers:
7186 * enable_lane_tx
7187 * enable_lane_rx
7188 */
7189static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7190 u16 *rx_width)
7191{
7192 u16 tx, rx;
7193 u8 enable_lane_rx;
7194 u8 enable_lane_tx;
7195 u8 tx_polarity_inversion;
7196 u8 rx_polarity_inversion;
7197 u8 max_rate;
7198
7199 /* read the active lanes */
7200 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 7201 &rx_polarity_inversion, &max_rate);
77241056
MM
7202 read_local_lni(dd, &enable_lane_rx);
7203
7204 /* convert to counts */
7205 tx = nibble_to_count(enable_lane_tx);
7206 rx = nibble_to_count(enable_lane_rx);
7207
7208 /*
7209 * Set link_speed_active here, overriding what was set in
7210 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7211 * set the max_rate field in handle_verify_cap until v0.19.
7212 */
d0d236ea 7213 if ((dd->icode == ICODE_RTL_SILICON) &&
5e6e9424 7214 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
77241056
MM
7215 /* max_rate: 0 = 12.5G, 1 = 25G */
7216 switch (max_rate) {
7217 case 0:
7218 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7219 break;
7220 default:
7221 dd_dev_err(dd,
17fb4f29
JJ
7222 "%s: unexpected max rate %d, using 25Gb\n",
7223 __func__, (int)max_rate);
77241056
MM
7224 /* fall through */
7225 case 1:
7226 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7227 break;
7228 }
7229 }
7230
7231 dd_dev_info(dd,
17fb4f29
JJ
7232 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7233 enable_lane_tx, tx, enable_lane_rx, rx);
77241056
MM
7234 *tx_width = link_width_to_bits(dd, tx);
7235 *rx_width = link_width_to_bits(dd, rx);
7236}
7237
7238/*
7239 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7240 * Valid after the end of VerifyCap and during LinkUp. Does not change
7241 * after link up. I.e. look elsewhere for downgrade information.
7242 *
7243 * Bits are:
7244 * + bits [7:4] contain the number of active transmitters
7245 * + bits [3:0] contain the number of active receivers
7246 * These are numbers 1 through 4 and can be different values if the
7247 * link is asymmetric.
7248 *
7249 * verify_cap_local_fm_link_width[0] retains its original value.
7250 */
7251static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7252 u16 *rx_width)
7253{
7254 u16 widths, tx, rx;
7255 u8 misc_bits, local_flags;
7256 u16 active_tx, active_rx;
7257
7258 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7259 tx = widths >> 12;
7260 rx = (widths >> 8) & 0xf;
7261
7262 *tx_width = link_width_to_bits(dd, tx);
7263 *rx_width = link_width_to_bits(dd, rx);
7264
7265 /* print the active widths */
7266 get_link_widths(dd, &active_tx, &active_rx);
7267}
7268
7269/*
7270 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7271 * hardware information when the link first comes up.
7272 *
7273 * The link width is not available until after VerifyCap.AllFramesReceived
7274 * (the trigger for handle_verify_cap), so this is outside that routine
7275 * and should be called when the 8051 signals linkup.
7276 */
7277void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7278{
7279 u16 tx_width, rx_width;
7280
7281 /* get end-of-LNI link widths */
7282 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7283
7284 /* use tx_width as the link is supposed to be symmetric on link up */
7285 ppd->link_width_active = tx_width;
7286 /* link width downgrade active (LWD.A) starts out matching LW.A */
7287 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7288 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7289 /* per OPA spec, on link up LWD.E resets to LWD.S */
7290 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7291 /* cache the active egress rate (units {10^6 bits/sec]) */
7292 ppd->current_egress_rate = active_egress_rate(ppd);
7293}
7294
7295/*
7296 * Handle a verify capabilities interrupt from the 8051.
7297 *
7298 * This is a work-queue function outside of the interrupt.
7299 */
7300void handle_verify_cap(struct work_struct *work)
7301{
7302 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7303 link_vc_work);
7304 struct hfi1_devdata *dd = ppd->dd;
7305 u64 reg;
7306 u8 power_management;
7307 u8 continious;
7308 u8 vcu;
7309 u8 vau;
7310 u8 z;
7311 u16 vl15buf;
7312 u16 link_widths;
7313 u16 crc_mask;
7314 u16 crc_val;
7315 u16 device_id;
7316 u16 active_tx, active_rx;
7317 u8 partner_supported_crc;
7318 u8 remote_tx_rate;
7319 u8 device_rev;
7320
7321 set_link_state(ppd, HLS_VERIFY_CAP);
7322
7323 lcb_shutdown(dd, 0);
7324 adjust_lcb_for_fpga_serdes(dd);
7325
77241056 7326 read_vc_remote_phy(dd, &power_management, &continious);
17fb4f29
JJ
7327 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7328 &partner_supported_crc);
77241056
MM
7329 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7330 read_remote_device_id(dd, &device_id, &device_rev);
7331 /*
7332 * And the 'MgmtAllowed' information, which is exchanged during
7333 * LNI, is also be available at this point.
7334 */
7335 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7336 /* print the active widths */
7337 get_link_widths(dd, &active_tx, &active_rx);
7338 dd_dev_info(dd,
17fb4f29
JJ
7339 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7340 (int)power_management, (int)continious);
77241056 7341 dd_dev_info(dd,
17fb4f29
JJ
7342 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7343 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7344 (int)partner_supported_crc);
77241056 7345 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
17fb4f29 7346 (u32)remote_tx_rate, (u32)link_widths);
77241056 7347 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
17fb4f29 7348 (u32)device_id, (u32)device_rev);
77241056
MM
7349 /*
7350 * The peer vAU value just read is the peer receiver value. HFI does
7351 * not support a transmit vAU of 0 (AU == 8). We advertised that
7352 * with Z=1 in the fabric capabilities sent to the peer. The peer
7353 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7354 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7355 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7356 * subject to the Z value exception.
7357 */
7358 if (vau == 0)
7359 vau = 1;
7360 set_up_vl15(dd, vau, vl15buf);
7361
7362 /* set up the LCB CRC mode */
7363 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7364
7365 /* order is important: use the lowest bit in common */
7366 if (crc_mask & CAP_CRC_14B)
7367 crc_val = LCB_CRC_14B;
7368 else if (crc_mask & CAP_CRC_48B)
7369 crc_val = LCB_CRC_48B;
7370 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7371 crc_val = LCB_CRC_12B_16B_PER_LANE;
7372 else
7373 crc_val = LCB_CRC_16B;
7374
7375 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7376 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7377 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7378
7379 /* set (14b only) or clear sideband credit */
7380 reg = read_csr(dd, SEND_CM_CTRL);
7381 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7382 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7383 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7384 } else {
7385 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7386 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7387 }
7388
7389 ppd->link_speed_active = 0; /* invalid value */
5e6e9424 7390 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
77241056
MM
7391 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7392 switch (remote_tx_rate) {
7393 case 0:
7394 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7395 break;
7396 case 1:
7397 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7398 break;
7399 }
7400 } else {
7401 /* actual rate is highest bit of the ANDed rates */
7402 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7403
7404 if (rate & 2)
7405 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7406 else if (rate & 1)
7407 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7408 }
7409 if (ppd->link_speed_active == 0) {
7410 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
17fb4f29 7411 __func__, (int)remote_tx_rate);
77241056
MM
7412 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7413 }
7414
7415 /*
7416 * Cache the values of the supported, enabled, and active
7417 * LTP CRC modes to return in 'portinfo' queries. But the bit
7418 * flags that are returned in the portinfo query differ from
7419 * what's in the link_crc_mask, crc_sizes, and crc_val
7420 * variables. Convert these here.
7421 */
7422 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7423 /* supported crc modes */
7424 ppd->port_ltp_crc_mode |=
7425 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7426 /* enabled crc modes */
7427 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7428 /* active crc mode */
7429
7430 /* set up the remote credit return table */
7431 assign_remote_cm_au_table(dd, vcu);
7432
7433 /*
7434 * The LCB is reset on entry to handle_verify_cap(), so this must
7435 * be applied on every link up.
7436 *
7437 * Adjust LCB error kill enable to kill the link if
7438 * these RBUF errors are seen:
7439 * REPLAY_BUF_MBE_SMASK
7440 * FLIT_INPUT_BUF_MBE_SMASK
7441 */
995deafa 7442 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
7443 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7444 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7445 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7446 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7447 }
7448
7449 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7450 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7451
7452 /* give 8051 access to the LCB CSRs */
7453 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7454 set_8051_lcb_access(dd);
7455
77241056
MM
7456 if (ppd->mgmt_allowed)
7457 add_full_mgmt_pkey(ppd);
7458
7459 /* tell the 8051 to go to LinkUp */
7460 set_link_state(ppd, HLS_GOING_UP);
7461}
7462
7463/*
7464 * Apply the link width downgrade enabled policy against the current active
7465 * link widths.
7466 *
7467 * Called when the enabled policy changes or the active link widths change.
7468 */
7469void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7470{
77241056 7471 int do_bounce = 0;
323fd785
DL
7472 int tries;
7473 u16 lwde;
77241056
MM
7474 u16 tx, rx;
7475
323fd785
DL
7476 /* use the hls lock to avoid a race with actual link up */
7477 tries = 0;
7478retry:
77241056
MM
7479 mutex_lock(&ppd->hls_lock);
7480 /* only apply if the link is up */
0c7f77af 7481 if (ppd->host_link_state & HLS_DOWN) {
323fd785
DL
7482 /* still going up..wait and retry */
7483 if (ppd->host_link_state & HLS_GOING_UP) {
7484 if (++tries < 1000) {
7485 mutex_unlock(&ppd->hls_lock);
7486 usleep_range(100, 120); /* arbitrary */
7487 goto retry;
7488 }
7489 dd_dev_err(ppd->dd,
7490 "%s: giving up waiting for link state change\n",
7491 __func__);
7492 }
7493 goto done;
7494 }
7495
7496 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
7497
7498 if (refresh_widths) {
7499 get_link_widths(ppd->dd, &tx, &rx);
7500 ppd->link_width_downgrade_tx_active = tx;
7501 ppd->link_width_downgrade_rx_active = rx;
7502 }
7503
f9b5635c
DL
7504 if (ppd->link_width_downgrade_tx_active == 0 ||
7505 ppd->link_width_downgrade_rx_active == 0) {
7506 /* the 8051 reported a dead link as a downgrade */
7507 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7508 } else if (lwde == 0) {
77241056
MM
7509 /* downgrade is disabled */
7510
7511 /* bounce if not at starting active width */
7512 if ((ppd->link_width_active !=
17fb4f29
JJ
7513 ppd->link_width_downgrade_tx_active) ||
7514 (ppd->link_width_active !=
7515 ppd->link_width_downgrade_rx_active)) {
77241056 7516 dd_dev_err(ppd->dd,
17fb4f29 7517 "Link downgrade is disabled and link has downgraded, downing link\n");
77241056 7518 dd_dev_err(ppd->dd,
17fb4f29
JJ
7519 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7520 ppd->link_width_active,
7521 ppd->link_width_downgrade_tx_active,
7522 ppd->link_width_downgrade_rx_active);
77241056
MM
7523 do_bounce = 1;
7524 }
d0d236ea
JJ
7525 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7526 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
77241056
MM
7527 /* Tx or Rx is outside the enabled policy */
7528 dd_dev_err(ppd->dd,
17fb4f29 7529 "Link is outside of downgrade allowed, downing link\n");
77241056 7530 dd_dev_err(ppd->dd,
17fb4f29
JJ
7531 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7532 lwde, ppd->link_width_downgrade_tx_active,
7533 ppd->link_width_downgrade_rx_active);
77241056
MM
7534 do_bounce = 1;
7535 }
7536
323fd785
DL
7537done:
7538 mutex_unlock(&ppd->hls_lock);
7539
77241056
MM
7540 if (do_bounce) {
7541 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
17fb4f29 7542 OPA_LINKDOWN_REASON_WIDTH_POLICY);
77241056
MM
7543 set_link_state(ppd, HLS_DN_OFFLINE);
7544 start_link(ppd);
7545 }
7546}
7547
7548/*
7549 * Handle a link downgrade interrupt from the 8051.
7550 *
7551 * This is a work-queue function outside of the interrupt.
7552 */
7553void handle_link_downgrade(struct work_struct *work)
7554{
7555 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7556 link_downgrade_work);
7557
7558 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7559 apply_link_downgrade_policy(ppd, 1);
7560}
7561
7562static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7563{
7564 return flag_string(buf, buf_len, flags, dcc_err_flags,
7565 ARRAY_SIZE(dcc_err_flags));
7566}
7567
7568static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7569{
7570 return flag_string(buf, buf_len, flags, lcb_err_flags,
7571 ARRAY_SIZE(lcb_err_flags));
7572}
7573
7574static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7575{
7576 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7577 ARRAY_SIZE(dc8051_err_flags));
7578}
7579
7580static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7581{
7582 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7583 ARRAY_SIZE(dc8051_info_err_flags));
7584}
7585
7586static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7587{
7588 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7589 ARRAY_SIZE(dc8051_info_host_msg_flags));
7590}
7591
7592static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7593{
7594 struct hfi1_pportdata *ppd = dd->pport;
7595 u64 info, err, host_msg;
7596 int queue_link_down = 0;
7597 char buf[96];
7598
7599 /* look at the flags */
7600 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7601 /* 8051 information set by firmware */
7602 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7603 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7604 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7605 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7606 host_msg = (info >>
7607 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7608 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7609
7610 /*
7611 * Handle error flags.
7612 */
7613 if (err & FAILED_LNI) {
7614 /*
7615 * LNI error indications are cleared by the 8051
7616 * only when starting polling. Only pay attention
7617 * to them when in the states that occur during
7618 * LNI.
7619 */
7620 if (ppd->host_link_state
7621 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7622 queue_link_down = 1;
7623 dd_dev_info(dd, "Link error: %s\n",
17fb4f29
JJ
7624 dc8051_info_err_string(buf,
7625 sizeof(buf),
7626 err &
7627 FAILED_LNI));
77241056
MM
7628 }
7629 err &= ~(u64)FAILED_LNI;
7630 }
6d014530
DL
7631 /* unknown frames can happen durning LNI, just count */
7632 if (err & UNKNOWN_FRAME) {
7633 ppd->unknown_frame_count++;
7634 err &= ~(u64)UNKNOWN_FRAME;
7635 }
77241056
MM
7636 if (err) {
7637 /* report remaining errors, but do not do anything */
7638 dd_dev_err(dd, "8051 info error: %s\n",
17fb4f29
JJ
7639 dc8051_info_err_string(buf, sizeof(buf),
7640 err));
77241056
MM
7641 }
7642
7643 /*
7644 * Handle host message flags.
7645 */
7646 if (host_msg & HOST_REQ_DONE) {
7647 /*
7648 * Presently, the driver does a busy wait for
7649 * host requests to complete. This is only an
7650 * informational message.
7651 * NOTE: The 8051 clears the host message
7652 * information *on the next 8051 command*.
7653 * Therefore, when linkup is achieved,
7654 * this flag will still be set.
7655 */
7656 host_msg &= ~(u64)HOST_REQ_DONE;
7657 }
7658 if (host_msg & BC_SMA_MSG) {
7659 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7660 host_msg &= ~(u64)BC_SMA_MSG;
7661 }
7662 if (host_msg & LINKUP_ACHIEVED) {
7663 dd_dev_info(dd, "8051: Link up\n");
7664 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7665 host_msg &= ~(u64)LINKUP_ACHIEVED;
7666 }
7667 if (host_msg & EXT_DEVICE_CFG_REQ) {
145dd2b3 7668 handle_8051_request(ppd);
77241056
MM
7669 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7670 }
7671 if (host_msg & VERIFY_CAP_FRAME) {
7672 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7673 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7674 }
7675 if (host_msg & LINK_GOING_DOWN) {
7676 const char *extra = "";
7677 /* no downgrade action needed if going down */
7678 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7679 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7680 extra = " (ignoring downgrade)";
7681 }
7682 dd_dev_info(dd, "8051: Link down%s\n", extra);
7683 queue_link_down = 1;
7684 host_msg &= ~(u64)LINK_GOING_DOWN;
7685 }
7686 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7687 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7688 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7689 }
7690 if (host_msg) {
7691 /* report remaining messages, but do not do anything */
7692 dd_dev_info(dd, "8051 info host message: %s\n",
17fb4f29
JJ
7693 dc8051_info_host_msg_string(buf,
7694 sizeof(buf),
7695 host_msg));
77241056
MM
7696 }
7697
7698 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7699 }
7700 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7701 /*
7702 * Lost the 8051 heartbeat. If this happens, we
7703 * receive constant interrupts about it. Disable
7704 * the interrupt after the first.
7705 */
7706 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7707 write_csr(dd, DC_DC8051_ERR_EN,
17fb4f29
JJ
7708 read_csr(dd, DC_DC8051_ERR_EN) &
7709 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
77241056
MM
7710
7711 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7712 }
7713 if (reg) {
7714 /* report the error, but do not do anything */
7715 dd_dev_err(dd, "8051 error: %s\n",
17fb4f29 7716 dc8051_err_string(buf, sizeof(buf), reg));
77241056
MM
7717 }
7718
7719 if (queue_link_down) {
4d114fdd
JJ
7720 /*
7721 * if the link is already going down or disabled, do not
7722 * queue another
7723 */
d0d236ea
JJ
7724 if ((ppd->host_link_state &
7725 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7726 ppd->link_enabled == 0) {
77241056 7727 dd_dev_info(dd, "%s: not queuing link down\n",
17fb4f29 7728 __func__);
77241056
MM
7729 } else {
7730 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7731 }
7732 }
7733}
7734
7735static const char * const fm_config_txt[] = {
7736[0] =
7737 "BadHeadDist: Distance violation between two head flits",
7738[1] =
7739 "BadTailDist: Distance violation between two tail flits",
7740[2] =
7741 "BadCtrlDist: Distance violation between two credit control flits",
7742[3] =
7743 "BadCrdAck: Credits return for unsupported VL",
7744[4] =
7745 "UnsupportedVLMarker: Received VL Marker",
7746[5] =
7747 "BadPreempt: Exceeded the preemption nesting level",
7748[6] =
7749 "BadControlFlit: Received unsupported control flit",
7750/* no 7 */
7751[8] =
7752 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7753};
7754
7755static const char * const port_rcv_txt[] = {
7756[1] =
7757 "BadPktLen: Illegal PktLen",
7758[2] =
7759 "PktLenTooLong: Packet longer than PktLen",
7760[3] =
7761 "PktLenTooShort: Packet shorter than PktLen",
7762[4] =
7763 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7764[5] =
7765 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7766[6] =
7767 "BadL2: Illegal L2 opcode",
7768[7] =
7769 "BadSC: Unsupported SC",
7770[9] =
7771 "BadRC: Illegal RC",
7772[11] =
7773 "PreemptError: Preempting with same VL",
7774[12] =
7775 "PreemptVL15: Preempting a VL15 packet",
7776};
7777
7778#define OPA_LDR_FMCONFIG_OFFSET 16
7779#define OPA_LDR_PORTRCV_OFFSET 0
7780static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7781{
7782 u64 info, hdr0, hdr1;
7783 const char *extra;
7784 char buf[96];
7785 struct hfi1_pportdata *ppd = dd->pport;
7786 u8 lcl_reason = 0;
7787 int do_bounce = 0;
7788
7789 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7790 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7791 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7792 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7793 /* set status bit */
7794 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7795 }
7796 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7797 }
7798
7799 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7800 struct hfi1_pportdata *ppd = dd->pport;
7801 /* this counter saturates at (2^32) - 1 */
7802 if (ppd->link_downed < (u32)UINT_MAX)
7803 ppd->link_downed++;
7804 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7805 }
7806
7807 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7808 u8 reason_valid = 1;
7809
7810 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7811 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7812 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7813 /* set status bit */
7814 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7815 }
7816 switch (info) {
7817 case 0:
7818 case 1:
7819 case 2:
7820 case 3:
7821 case 4:
7822 case 5:
7823 case 6:
7824 extra = fm_config_txt[info];
7825 break;
7826 case 8:
7827 extra = fm_config_txt[info];
7828 if (ppd->port_error_action &
7829 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7830 do_bounce = 1;
7831 /*
7832 * lcl_reason cannot be derived from info
7833 * for this error
7834 */
7835 lcl_reason =
7836 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7837 }
7838 break;
7839 default:
7840 reason_valid = 0;
7841 snprintf(buf, sizeof(buf), "reserved%lld", info);
7842 extra = buf;
7843 break;
7844 }
7845
7846 if (reason_valid && !do_bounce) {
7847 do_bounce = ppd->port_error_action &
7848 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7849 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7850 }
7851
7852 /* just report this */
c27aad00
JB
7853 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7854 extra);
77241056
MM
7855 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7856 }
7857
7858 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7859 u8 reason_valid = 1;
7860
7861 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7862 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7863 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7864 if (!(dd->err_info_rcvport.status_and_code &
7865 OPA_EI_STATUS_SMASK)) {
7866 dd->err_info_rcvport.status_and_code =
7867 info & OPA_EI_CODE_SMASK;
7868 /* set status bit */
7869 dd->err_info_rcvport.status_and_code |=
7870 OPA_EI_STATUS_SMASK;
4d114fdd
JJ
7871 /*
7872 * save first 2 flits in the packet that caused
7873 * the error
7874 */
48a0cc13
BVA
7875 dd->err_info_rcvport.packet_flit1 = hdr0;
7876 dd->err_info_rcvport.packet_flit2 = hdr1;
77241056
MM
7877 }
7878 switch (info) {
7879 case 1:
7880 case 2:
7881 case 3:
7882 case 4:
7883 case 5:
7884 case 6:
7885 case 7:
7886 case 9:
7887 case 11:
7888 case 12:
7889 extra = port_rcv_txt[info];
7890 break;
7891 default:
7892 reason_valid = 0;
7893 snprintf(buf, sizeof(buf), "reserved%lld", info);
7894 extra = buf;
7895 break;
7896 }
7897
7898 if (reason_valid && !do_bounce) {
7899 do_bounce = ppd->port_error_action &
7900 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7901 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7902 }
7903
7904 /* just report this */
c27aad00
JB
7905 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7906 " hdr0 0x%llx, hdr1 0x%llx\n",
7907 extra, hdr0, hdr1);
77241056
MM
7908
7909 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7910 }
7911
7912 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7913 /* informative only */
c27aad00 7914 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
77241056
MM
7915 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7916 }
7917 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7918 /* informative only */
c27aad00 7919 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
77241056
MM
7920 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7921 }
7922
243d9f43
DH
7923 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7924 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7925
77241056
MM
7926 /* report any remaining errors */
7927 if (reg)
c27aad00
JB
7928 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7929 dcc_err_string(buf, sizeof(buf), reg));
77241056
MM
7930
7931 if (lcl_reason == 0)
7932 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7933
7934 if (do_bounce) {
c27aad00
JB
7935 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7936 __func__);
77241056
MM
7937 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7938 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7939 }
7940}
7941
7942static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7943{
7944 char buf[96];
7945
7946 dd_dev_info(dd, "LCB Error: %s\n",
17fb4f29 7947 lcb_err_string(buf, sizeof(buf), reg));
77241056
MM
7948}
7949
7950/*
7951 * CCE block DC interrupt. Source is < 8.
7952 */
7953static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7954{
7955 const struct err_reg_info *eri = &dc_errs[source];
7956
7957 if (eri->handler) {
7958 interrupt_clear_down(dd, 0, eri);
7959 } else if (source == 3 /* dc_lbm_int */) {
7960 /*
7961 * This indicates that a parity error has occurred on the
7962 * address/control lines presented to the LBM. The error
7963 * is a single pulse, there is no associated error flag,
7964 * and it is non-maskable. This is because if a parity
7965 * error occurs on the request the request is dropped.
7966 * This should never occur, but it is nice to know if it
7967 * ever does.
7968 */
7969 dd_dev_err(dd, "Parity error in DC LBM block\n");
7970 } else {
7971 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7972 }
7973}
7974
7975/*
7976 * TX block send credit interrupt. Source is < 160.
7977 */
7978static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7979{
7980 sc_group_release_update(dd, source);
7981}
7982
7983/*
7984 * TX block SDMA interrupt. Source is < 48.
7985 *
7986 * SDMA interrupts are grouped by type:
7987 *
7988 * 0 - N-1 = SDma
7989 * N - 2N-1 = SDmaProgress
7990 * 2N - 3N-1 = SDmaIdle
7991 */
7992static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7993{
7994 /* what interrupt */
7995 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7996 /* which engine */
7997 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7998
7999#ifdef CONFIG_SDMA_VERBOSITY
8000 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8001 slashstrip(__FILE__), __LINE__, __func__);
8002 sdma_dumpstate(&dd->per_sdma[which]);
8003#endif
8004
8005 if (likely(what < 3 && which < dd->num_sdma)) {
8006 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8007 } else {
8008 /* should not happen */
8009 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8010 }
8011}
8012
8013/*
8014 * RX block receive available interrupt. Source is < 160.
8015 */
8016static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8017{
8018 struct hfi1_ctxtdata *rcd;
8019 char *err_detail;
8020
8021 if (likely(source < dd->num_rcv_contexts)) {
8022 rcd = dd->rcd[source];
8023 if (rcd) {
2280740f
VN
8024 /* Check for non-user contexts, including vnic */
8025 if ((source < dd->first_dyn_alloc_ctxt) ||
8026 (rcd->sc && (rcd->sc->type == SC_KERNEL)))
f4f30031 8027 rcd->do_interrupt(rcd, 0);
77241056
MM
8028 else
8029 handle_user_interrupt(rcd);
8030 return; /* OK */
8031 }
8032 /* received an interrupt, but no rcd */
8033 err_detail = "dataless";
8034 } else {
8035 /* received an interrupt, but are not using that context */
8036 err_detail = "out of range";
8037 }
8038 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
17fb4f29 8039 err_detail, source);
77241056
MM
8040}
8041
8042/*
8043 * RX block receive urgent interrupt. Source is < 160.
8044 */
8045static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8046{
8047 struct hfi1_ctxtdata *rcd;
8048 char *err_detail;
8049
8050 if (likely(source < dd->num_rcv_contexts)) {
8051 rcd = dd->rcd[source];
8052 if (rcd) {
8053 /* only pay attention to user urgent interrupts */
2280740f
VN
8054 if ((source >= dd->first_dyn_alloc_ctxt) &&
8055 (!rcd->sc || (rcd->sc->type == SC_USER)))
77241056
MM
8056 handle_user_interrupt(rcd);
8057 return; /* OK */
8058 }
8059 /* received an interrupt, but no rcd */
8060 err_detail = "dataless";
8061 } else {
8062 /* received an interrupt, but are not using that context */
8063 err_detail = "out of range";
8064 }
8065 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
17fb4f29 8066 err_detail, source);
77241056
MM
8067}
8068
8069/*
8070 * Reserved range interrupt. Should not be called in normal operation.
8071 */
8072static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8073{
8074 char name[64];
8075
8076 dd_dev_err(dd, "unexpected %s interrupt\n",
17fb4f29 8077 is_reserved_name(name, sizeof(name), source));
77241056
MM
8078}
8079
8080static const struct is_table is_table[] = {
4d114fdd
JJ
8081/*
8082 * start end
8083 * name func interrupt func
8084 */
77241056
MM
8085{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8086 is_misc_err_name, is_misc_err_int },
8087{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8088 is_sdma_eng_err_name, is_sdma_eng_err_int },
8089{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8090 is_sendctxt_err_name, is_sendctxt_err_int },
8091{ IS_SDMA_START, IS_SDMA_END,
8092 is_sdma_eng_name, is_sdma_eng_int },
8093{ IS_VARIOUS_START, IS_VARIOUS_END,
8094 is_various_name, is_various_int },
8095{ IS_DC_START, IS_DC_END,
8096 is_dc_name, is_dc_int },
8097{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8098 is_rcv_avail_name, is_rcv_avail_int },
8099{ IS_RCVURGENT_START, IS_RCVURGENT_END,
8100 is_rcv_urgent_name, is_rcv_urgent_int },
8101{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8102 is_send_credit_name, is_send_credit_int},
8103{ IS_RESERVED_START, IS_RESERVED_END,
8104 is_reserved_name, is_reserved_int},
8105};
8106
8107/*
8108 * Interrupt source interrupt - called when the given source has an interrupt.
8109 * Source is a bit index into an array of 64-bit integers.
8110 */
8111static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8112{
8113 const struct is_table *entry;
8114
8115 /* avoids a double compare by walking the table in-order */
8116 for (entry = &is_table[0]; entry->is_name; entry++) {
8117 if (source < entry->end) {
8118 trace_hfi1_interrupt(dd, entry, source);
8119 entry->is_int(dd, source - entry->start);
8120 return;
8121 }
8122 }
8123 /* fell off the end */
8124 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8125}
8126
8127/*
8128 * General interrupt handler. This is able to correctly handle
8129 * all interrupts in case INTx is used.
8130 */
8131static irqreturn_t general_interrupt(int irq, void *data)
8132{
8133 struct hfi1_devdata *dd = data;
8134 u64 regs[CCE_NUM_INT_CSRS];
8135 u32 bit;
8136 int i;
8137
8138 this_cpu_inc(*dd->int_counter);
8139
8140 /* phase 1: scan and clear all handled interrupts */
8141 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8142 if (dd->gi_mask[i] == 0) {
8143 regs[i] = 0; /* used later */
8144 continue;
8145 }
8146 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8147 dd->gi_mask[i];
8148 /* only clear if anything is set */
8149 if (regs[i])
8150 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8151 }
8152
8153 /* phase 2: call the appropriate handler */
8154 for_each_set_bit(bit, (unsigned long *)&regs[0],
17fb4f29 8155 CCE_NUM_INT_CSRS * 64) {
77241056
MM
8156 is_interrupt(dd, bit);
8157 }
8158
8159 return IRQ_HANDLED;
8160}
8161
8162static irqreturn_t sdma_interrupt(int irq, void *data)
8163{
8164 struct sdma_engine *sde = data;
8165 struct hfi1_devdata *dd = sde->dd;
8166 u64 status;
8167
8168#ifdef CONFIG_SDMA_VERBOSITY
8169 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8170 slashstrip(__FILE__), __LINE__, __func__);
8171 sdma_dumpstate(sde);
8172#endif
8173
8174 this_cpu_inc(*dd->int_counter);
8175
8176 /* This read_csr is really bad in the hot path */
8177 status = read_csr(dd,
17fb4f29
JJ
8178 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8179 & sde->imask;
77241056
MM
8180 if (likely(status)) {
8181 /* clear the interrupt(s) */
8182 write_csr(dd,
17fb4f29
JJ
8183 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8184 status);
77241056
MM
8185
8186 /* handle the interrupt(s) */
8187 sdma_engine_interrupt(sde, status);
ee495ada 8188 } else {
77241056 8189 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
17fb4f29 8190 sde->this_idx);
ee495ada 8191 }
77241056
MM
8192 return IRQ_HANDLED;
8193}
8194
8195/*
ecd42f8d
DL
8196 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8197 * to insure that the write completed. This does NOT guarantee that
8198 * queued DMA writes to memory from the chip are pushed.
f4f30031
DL
8199 */
8200static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8201{
8202 struct hfi1_devdata *dd = rcd->dd;
8203 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8204
8205 mmiowb(); /* make sure everything before is written */
8206 write_csr(dd, addr, rcd->imask);
8207 /* force the above write on the chip and get a value back */
8208 (void)read_csr(dd, addr);
8209}
8210
8211/* force the receive interrupt */
fb9036dd 8212void force_recv_intr(struct hfi1_ctxtdata *rcd)
f4f30031
DL
8213{
8214 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8215}
8216
ecd42f8d
DL
8217/*
8218 * Return non-zero if a packet is present.
8219 *
8220 * This routine is called when rechecking for packets after the RcvAvail
8221 * interrupt has been cleared down. First, do a quick check of memory for
8222 * a packet present. If not found, use an expensive CSR read of the context
8223 * tail to determine the actual tail. The CSR read is necessary because there
8224 * is no method to push pending DMAs to memory other than an interrupt and we
8225 * are trying to determine if we need to force an interrupt.
8226 */
f4f30031
DL
8227static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8228{
ecd42f8d
DL
8229 u32 tail;
8230 int present;
8231
f4f30031 8232 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
ecd42f8d 8233 present = (rcd->seq_cnt ==
f4f30031 8234 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
ecd42f8d
DL
8235 else /* is RDMA rtail */
8236 present = (rcd->head != get_rcvhdrtail(rcd));
8237
8238 if (present)
8239 return 1;
f4f30031 8240
ecd42f8d
DL
8241 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8242 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8243 return rcd->head != tail;
f4f30031
DL
8244}
8245
8246/*
8247 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8248 * This routine will try to handle packets immediately (latency), but if
8249 * it finds too many, it will invoke the thread handler (bandwitdh). The
16733b88 8250 * chip receive interrupt is *not* cleared down until this or the thread (if
f4f30031
DL
8251 * invoked) is finished. The intent is to avoid extra interrupts while we
8252 * are processing packets anyway.
77241056
MM
8253 */
8254static irqreturn_t receive_context_interrupt(int irq, void *data)
8255{
8256 struct hfi1_ctxtdata *rcd = data;
8257 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
8258 int disposition;
8259 int present;
77241056
MM
8260
8261 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8262 this_cpu_inc(*dd->int_counter);
affa48de 8263 aspm_ctx_disable(rcd);
77241056 8264
f4f30031
DL
8265 /* receive interrupt remains blocked while processing packets */
8266 disposition = rcd->do_interrupt(rcd, 0);
77241056 8267
f4f30031
DL
8268 /*
8269 * Too many packets were seen while processing packets in this
8270 * IRQ handler. Invoke the handler thread. The receive interrupt
8271 * remains blocked.
8272 */
8273 if (disposition == RCV_PKT_LIMIT)
8274 return IRQ_WAKE_THREAD;
8275
8276 /*
8277 * The packet processor detected no more packets. Clear the receive
8278 * interrupt and recheck for a packet packet that may have arrived
8279 * after the previous check and interrupt clear. If a packet arrived,
8280 * force another interrupt.
8281 */
8282 clear_recv_intr(rcd);
8283 present = check_packet_present(rcd);
8284 if (present)
8285 force_recv_intr(rcd);
8286
8287 return IRQ_HANDLED;
8288}
8289
8290/*
8291 * Receive packet thread handler. This expects to be invoked with the
8292 * receive interrupt still blocked.
8293 */
8294static irqreturn_t receive_context_thread(int irq, void *data)
8295{
8296 struct hfi1_ctxtdata *rcd = data;
8297 int present;
8298
8299 /* receive interrupt is still blocked from the IRQ handler */
8300 (void)rcd->do_interrupt(rcd, 1);
8301
8302 /*
8303 * The packet processor will only return if it detected no more
8304 * packets. Hold IRQs here so we can safely clear the interrupt and
8305 * recheck for a packet that may have arrived after the previous
8306 * check and the interrupt clear. If a packet arrived, force another
8307 * interrupt.
8308 */
8309 local_irq_disable();
8310 clear_recv_intr(rcd);
8311 present = check_packet_present(rcd);
8312 if (present)
8313 force_recv_intr(rcd);
8314 local_irq_enable();
77241056
MM
8315
8316 return IRQ_HANDLED;
8317}
8318
8319/* ========================================================================= */
8320
8321u32 read_physical_state(struct hfi1_devdata *dd)
8322{
8323 u64 reg;
8324
8325 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8326 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8327 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8328}
8329
fb9036dd 8330u32 read_logical_state(struct hfi1_devdata *dd)
77241056
MM
8331{
8332 u64 reg;
8333
8334 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8335 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8336 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8337}
8338
8339static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8340{
8341 u64 reg;
8342
8343 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8344 /* clear current state, set new state */
8345 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8346 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8347 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8348}
8349
8350/*
8351 * Use the 8051 to read a LCB CSR.
8352 */
8353static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8354{
8355 u32 regno;
8356 int ret;
8357
8358 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8359 if (acquire_lcb_access(dd, 0) == 0) {
8360 *data = read_csr(dd, addr);
8361 release_lcb_access(dd, 0);
8362 return 0;
8363 }
8364 return -EBUSY;
8365 }
8366
8367 /* register is an index of LCB registers: (offset - base) / 8 */
8368 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8369 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8370 if (ret != HCMD_SUCCESS)
8371 return -EBUSY;
8372 return 0;
8373}
8374
8688426b
MR
8375/*
8376 * Provide a cache for some of the LCB registers in case the LCB is
8377 * unavailable.
8378 * (The LCB is unavailable in certain link states, for example.)
8379 */
8380struct lcb_datum {
8381 u32 off;
8382 u64 val;
8383};
8384
8385static struct lcb_datum lcb_cache[] = {
8386 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8387 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8388 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8389};
8390
8391static void update_lcb_cache(struct hfi1_devdata *dd)
8392{
8393 int i;
8394 int ret;
8395 u64 val;
8396
8397 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8398 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8399
8400 /* Update if we get good data */
8401 if (likely(ret != -EBUSY))
8402 lcb_cache[i].val = val;
8403 }
8404}
8405
8406static int read_lcb_cache(u32 off, u64 *val)
8407{
8408 int i;
8409
8410 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8411 if (lcb_cache[i].off == off) {
8412 *val = lcb_cache[i].val;
8413 return 0;
8414 }
8415 }
8416
8417 pr_warn("%s bad offset 0x%x\n", __func__, off);
8418 return -1;
8419}
8420
77241056
MM
8421/*
8422 * Read an LCB CSR. Access may not be in host control, so check.
8423 * Return 0 on success, -EBUSY on failure.
8424 */
8425int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8426{
8427 struct hfi1_pportdata *ppd = dd->pport;
8428
8429 /* if up, go through the 8051 for the value */
8430 if (ppd->host_link_state & HLS_UP)
8431 return read_lcb_via_8051(dd, addr, data);
8688426b
MR
8432 /* if going up or down, check the cache, otherwise, no access */
8433 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8434 if (read_lcb_cache(addr, data))
8435 return -EBUSY;
8436 return 0;
8437 }
8438
77241056
MM
8439 /* otherwise, host has access */
8440 *data = read_csr(dd, addr);
8441 return 0;
8442}
8443
8444/*
8445 * Use the 8051 to write a LCB CSR.
8446 */
8447static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8448{
3bf40d65
DL
8449 u32 regno;
8450 int ret;
77241056 8451
3bf40d65 8452 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
5e6e9424 8453 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
3bf40d65
DL
8454 if (acquire_lcb_access(dd, 0) == 0) {
8455 write_csr(dd, addr, data);
8456 release_lcb_access(dd, 0);
8457 return 0;
8458 }
8459 return -EBUSY;
77241056 8460 }
3bf40d65
DL
8461
8462 /* register is an index of LCB registers: (offset - base) / 8 */
8463 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8464 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8465 if (ret != HCMD_SUCCESS)
8466 return -EBUSY;
8467 return 0;
77241056
MM
8468}
8469
8470/*
8471 * Write an LCB CSR. Access may not be in host control, so check.
8472 * Return 0 on success, -EBUSY on failure.
8473 */
8474int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8475{
8476 struct hfi1_pportdata *ppd = dd->pport;
8477
8478 /* if up, go through the 8051 for the value */
8479 if (ppd->host_link_state & HLS_UP)
8480 return write_lcb_via_8051(dd, addr, data);
8481 /* if going up or down, no access */
8482 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8483 return -EBUSY;
8484 /* otherwise, host has access */
8485 write_csr(dd, addr, data);
8486 return 0;
8487}
8488
8489/*
8490 * Returns:
8491 * < 0 = Linux error, not able to get access
8492 * > 0 = 8051 command RETURN_CODE
8493 */
8494static int do_8051_command(
8495 struct hfi1_devdata *dd,
8496 u32 type,
8497 u64 in_data,
8498 u64 *out_data)
8499{
8500 u64 reg, completed;
8501 int return_code;
77241056
MM
8502 unsigned long timeout;
8503
8504 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8505
22546b74 8506 mutex_lock(&dd->dc8051_lock);
77241056
MM
8507
8508 /* We can't send any commands to the 8051 if it's in reset */
8509 if (dd->dc_shutdown) {
8510 return_code = -ENODEV;
8511 goto fail;
8512 }
8513
8514 /*
8515 * If an 8051 host command timed out previously, then the 8051 is
8516 * stuck.
8517 *
8518 * On first timeout, attempt to reset and restart the entire DC
8519 * block (including 8051). (Is this too big of a hammer?)
8520 *
8521 * If the 8051 times out a second time, the reset did not bring it
8522 * back to healthy life. In that case, fail any subsequent commands.
8523 */
8524 if (dd->dc8051_timed_out) {
8525 if (dd->dc8051_timed_out > 1) {
8526 dd_dev_err(dd,
8527 "Previous 8051 host command timed out, skipping command %u\n",
8528 type);
8529 return_code = -ENXIO;
8530 goto fail;
8531 }
22546b74
TS
8532 _dc_shutdown(dd);
8533 _dc_start(dd);
77241056
MM
8534 }
8535
8536 /*
8537 * If there is no timeout, then the 8051 command interface is
8538 * waiting for a command.
8539 */
8540
3bf40d65
DL
8541 /*
8542 * When writing a LCB CSR, out_data contains the full value to
8543 * to be written, while in_data contains the relative LCB
8544 * address in 7:0. Do the work here, rather than the caller,
8545 * of distrubting the write data to where it needs to go:
8546 *
8547 * Write data
8548 * 39:00 -> in_data[47:8]
8549 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8550 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8551 */
8552 if (type == HCMD_WRITE_LCB_CSR) {
8553 in_data |= ((*out_data) & 0xffffffffffull) << 8;
00801674
DL
8554 /* must preserve COMPLETED - it is tied to hardware */
8555 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8556 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8557 reg |= ((((*out_data) >> 40) & 0xff) <<
3bf40d65
DL
8558 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8559 | ((((*out_data) >> 48) & 0xffff) <<
8560 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8561 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8562 }
8563
77241056
MM
8564 /*
8565 * Do two writes: the first to stabilize the type and req_data, the
8566 * second to activate.
8567 */
8568 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8569 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8570 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8571 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8572 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8573 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8574 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8575
8576 /* wait for completion, alternate: interrupt */
8577 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8578 while (1) {
8579 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8580 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8581 if (completed)
8582 break;
8583 if (time_after(jiffies, timeout)) {
8584 dd->dc8051_timed_out++;
8585 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8586 if (out_data)
8587 *out_data = 0;
8588 return_code = -ETIMEDOUT;
8589 goto fail;
8590 }
8591 udelay(2);
8592 }
8593
8594 if (out_data) {
8595 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8596 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8597 if (type == HCMD_READ_LCB_CSR) {
8598 /* top 16 bits are in a different register */
8599 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8600 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8601 << (48
8602 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8603 }
8604 }
8605 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8606 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8607 dd->dc8051_timed_out = 0;
8608 /*
8609 * Clear command for next user.
8610 */
8611 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8612
8613fail:
22546b74 8614 mutex_unlock(&dd->dc8051_lock);
77241056
MM
8615 return return_code;
8616}
8617
8618static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8619{
8620 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8621}
8622
8ebd4cf1
EH
8623int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8624 u8 lane_id, u32 config_data)
77241056
MM
8625{
8626 u64 data;
8627 int ret;
8628
8629 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8630 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8631 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8632 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8633 if (ret != HCMD_SUCCESS) {
8634 dd_dev_err(dd,
17fb4f29
JJ
8635 "load 8051 config: field id %d, lane %d, err %d\n",
8636 (int)field_id, (int)lane_id, ret);
77241056
MM
8637 }
8638 return ret;
8639}
8640
8641/*
8642 * Read the 8051 firmware "registers". Use the RAM directly. Always
8643 * set the result, even on error.
8644 * Return 0 on success, -errno on failure
8645 */
8ebd4cf1
EH
8646int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8647 u32 *result)
77241056
MM
8648{
8649 u64 big_data;
8650 u32 addr;
8651 int ret;
8652
8653 /* address start depends on the lane_id */
8654 if (lane_id < 4)
8655 addr = (4 * NUM_GENERAL_FIELDS)
8656 + (lane_id * 4 * NUM_LANE_FIELDS);
8657 else
8658 addr = 0;
8659 addr += field_id * 4;
8660
8661 /* read is in 8-byte chunks, hardware will truncate the address down */
8662 ret = read_8051_data(dd, addr, 8, &big_data);
8663
8664 if (ret == 0) {
8665 /* extract the 4 bytes we want */
8666 if (addr & 0x4)
8667 *result = (u32)(big_data >> 32);
8668 else
8669 *result = (u32)big_data;
8670 } else {
8671 *result = 0;
8672 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
17fb4f29 8673 __func__, lane_id, field_id);
77241056
MM
8674 }
8675
8676 return ret;
8677}
8678
8679static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8680 u8 continuous)
8681{
8682 u32 frame;
8683
8684 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8685 | power_management << POWER_MANAGEMENT_SHIFT;
8686 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8687 GENERAL_CONFIG, frame);
8688}
8689
8690static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8691 u16 vl15buf, u8 crc_sizes)
8692{
8693 u32 frame;
8694
8695 frame = (u32)vau << VAU_SHIFT
8696 | (u32)z << Z_SHIFT
8697 | (u32)vcu << VCU_SHIFT
8698 | (u32)vl15buf << VL15BUF_SHIFT
8699 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8700 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8701 GENERAL_CONFIG, frame);
8702}
8703
8704static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8705 u8 *flag_bits, u16 *link_widths)
8706{
8707 u32 frame;
8708
8709 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8710 &frame);
77241056
MM
8711 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8712 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8713 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8714}
8715
8716static int write_vc_local_link_width(struct hfi1_devdata *dd,
8717 u8 misc_bits,
8718 u8 flag_bits,
8719 u16 link_widths)
8720{
8721 u32 frame;
8722
8723 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8724 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8725 | (u32)link_widths << LINK_WIDTH_SHIFT;
8726 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8727 frame);
8728}
8729
8730static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8731 u8 device_rev)
8732{
8733 u32 frame;
8734
8735 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8736 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8737 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8738}
8739
8740static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8741 u8 *device_rev)
8742{
8743 u32 frame;
8744
8745 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8746 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8747 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8748 & REMOTE_DEVICE_REV_MASK;
8749}
8750
5e6e9424
MR
8751void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8752 u8 *ver_patch)
77241056
MM
8753{
8754 u32 frame;
8755
8756 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
5e6e9424
MR
8757 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8758 STS_FM_VERSION_MAJOR_MASK;
8759 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8760 STS_FM_VERSION_MINOR_MASK;
8761
8762 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8763 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8764 STS_FM_VERSION_PATCH_MASK;
77241056
MM
8765}
8766
8767static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8768 u8 *continuous)
8769{
8770 u32 frame;
8771
8772 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8773 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8774 & POWER_MANAGEMENT_MASK;
8775 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8776 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8777}
8778
8779static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8780 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8781{
8782 u32 frame;
8783
8784 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8785 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8786 *z = (frame >> Z_SHIFT) & Z_MASK;
8787 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8788 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8789 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8790}
8791
8792static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8793 u8 *remote_tx_rate,
8794 u16 *link_widths)
8795{
8796 u32 frame;
8797
8798 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8799 &frame);
77241056
MM
8800 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8801 & REMOTE_TX_RATE_MASK;
8802 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8803}
8804
8805static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8806{
8807 u32 frame;
8808
8809 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8810 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8811}
8812
8813static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8814{
8815 u32 frame;
8816
8817 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8818 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8819}
8820
8821static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8822{
8823 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8824}
8825
8826static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8827{
8828 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8829}
8830
8831void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8832{
8833 u32 frame;
8834 int ret;
8835
8836 *link_quality = 0;
8837 if (dd->pport->host_link_state & HLS_UP) {
8838 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
17fb4f29 8839 &frame);
77241056
MM
8840 if (ret == 0)
8841 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8842 & LINK_QUALITY_MASK;
8843 }
8844}
8845
8846static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8847{
8848 u32 frame;
8849
8850 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8851 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8852}
8853
feb831dd
DL
8854static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8855{
8856 u32 frame;
8857
8858 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8859 *ldr = (frame & 0xff);
8860}
8861
77241056
MM
8862static int read_tx_settings(struct hfi1_devdata *dd,
8863 u8 *enable_lane_tx,
8864 u8 *tx_polarity_inversion,
8865 u8 *rx_polarity_inversion,
8866 u8 *max_rate)
8867{
8868 u32 frame;
8869 int ret;
8870
8871 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8872 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8873 & ENABLE_LANE_TX_MASK;
8874 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8875 & TX_POLARITY_INVERSION_MASK;
8876 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8877 & RX_POLARITY_INVERSION_MASK;
8878 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8879 return ret;
8880}
8881
8882static int write_tx_settings(struct hfi1_devdata *dd,
8883 u8 enable_lane_tx,
8884 u8 tx_polarity_inversion,
8885 u8 rx_polarity_inversion,
8886 u8 max_rate)
8887{
8888 u32 frame;
8889
8890 /* no need to mask, all variable sizes match field widths */
8891 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8892 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8893 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8894 | max_rate << MAX_RATE_SHIFT;
8895 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8896}
8897
77241056
MM
8898/*
8899 * Read an idle LCB message.
8900 *
8901 * Returns 0 on success, -EINVAL on error
8902 */
8903static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8904{
8905 int ret;
8906
17fb4f29 8907 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
77241056
MM
8908 if (ret != HCMD_SUCCESS) {
8909 dd_dev_err(dd, "read idle message: type %d, err %d\n",
17fb4f29 8910 (u32)type, ret);
77241056
MM
8911 return -EINVAL;
8912 }
8913 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8914 /* return only the payload as we already know the type */
8915 *data_out >>= IDLE_PAYLOAD_SHIFT;
8916 return 0;
8917}
8918
8919/*
8920 * Read an idle SMA message. To be done in response to a notification from
8921 * the 8051.
8922 *
8923 * Returns 0 on success, -EINVAL on error
8924 */
8925static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8926{
17fb4f29
JJ
8927 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8928 data);
77241056
MM
8929}
8930
8931/*
8932 * Send an idle LCB message.
8933 *
8934 * Returns 0 on success, -EINVAL on error
8935 */
8936static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8937{
8938 int ret;
8939
8940 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8941 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8942 if (ret != HCMD_SUCCESS) {
8943 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
17fb4f29 8944 data, ret);
77241056
MM
8945 return -EINVAL;
8946 }
8947 return 0;
8948}
8949
8950/*
8951 * Send an idle SMA message.
8952 *
8953 * Returns 0 on success, -EINVAL on error
8954 */
8955int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8956{
8957 u64 data;
8958
17fb4f29
JJ
8959 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8960 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
77241056
MM
8961 return send_idle_message(dd, data);
8962}
8963
8964/*
8965 * Initialize the LCB then do a quick link up. This may or may not be
8966 * in loopback.
8967 *
8968 * return 0 on success, -errno on error
8969 */
8970static int do_quick_linkup(struct hfi1_devdata *dd)
8971{
77241056
MM
8972 int ret;
8973
8974 lcb_shutdown(dd, 0);
8975
8976 if (loopback) {
8977 /* LCB_CFG_LOOPBACK.VAL = 2 */
8978 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8979 write_csr(dd, DC_LCB_CFG_LOOPBACK,
17fb4f29 8980 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
77241056
MM
8981 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8982 }
8983
8984 /* start the LCBs */
8985 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8986 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8987
8988 /* simulator only loopback steps */
8989 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8990 /* LCB_CFG_RUN.EN = 1 */
8991 write_csr(dd, DC_LCB_CFG_RUN,
17fb4f29 8992 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
77241056 8993
ec8a1423
DL
8994 ret = wait_link_transfer_active(dd, 10);
8995 if (ret)
8996 return ret;
77241056
MM
8997
8998 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
17fb4f29 8999 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
77241056
MM
9000 }
9001
9002 if (!loopback) {
9003 /*
9004 * When doing quick linkup and not in loopback, both
9005 * sides must be done with LCB set-up before either
9006 * starts the quick linkup. Put a delay here so that
9007 * both sides can be started and have a chance to be
9008 * done with LCB set up before resuming.
9009 */
9010 dd_dev_err(dd,
17fb4f29 9011 "Pausing for peer to be finished with LCB set up\n");
77241056 9012 msleep(5000);
17fb4f29 9013 dd_dev_err(dd, "Continuing with quick linkup\n");
77241056
MM
9014 }
9015
9016 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9017 set_8051_lcb_access(dd);
9018
9019 /*
9020 * State "quick" LinkUp request sets the physical link state to
9021 * LinkUp without a verify capability sequence.
9022 * This state is in simulator v37 and later.
9023 */
9024 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9025 if (ret != HCMD_SUCCESS) {
9026 dd_dev_err(dd,
17fb4f29
JJ
9027 "%s: set physical link state to quick LinkUp failed with return %d\n",
9028 __func__, ret);
77241056
MM
9029
9030 set_host_lcb_access(dd);
9031 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9032
9033 if (ret >= 0)
9034 ret = -EINVAL;
9035 return ret;
9036 }
9037
9038 return 0; /* success */
9039}
9040
9041/*
9042 * Set the SerDes to internal loopback mode.
9043 * Returns 0 on success, -errno on error.
9044 */
9045static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9046{
9047 int ret;
9048
9049 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9050 if (ret == HCMD_SUCCESS)
9051 return 0;
9052 dd_dev_err(dd,
17fb4f29
JJ
9053 "Set physical link state to SerDes Loopback failed with return %d\n",
9054 ret);
77241056
MM
9055 if (ret >= 0)
9056 ret = -EINVAL;
9057 return ret;
9058}
9059
9060/*
9061 * Do all special steps to set up loopback.
9062 */
9063static int init_loopback(struct hfi1_devdata *dd)
9064{
9065 dd_dev_info(dd, "Entering loopback mode\n");
9066
9067 /* all loopbacks should disable self GUID check */
9068 write_csr(dd, DC_DC8051_CFG_MODE,
17fb4f29 9069 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
77241056
MM
9070
9071 /*
9072 * The simulator has only one loopback option - LCB. Switch
9073 * to that option, which includes quick link up.
9074 *
9075 * Accept all valid loopback values.
9076 */
d0d236ea
JJ
9077 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9078 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9079 loopback == LOOPBACK_CABLE)) {
77241056
MM
9080 loopback = LOOPBACK_LCB;
9081 quick_linkup = 1;
9082 return 0;
9083 }
9084
9085 /* handle serdes loopback */
9086 if (loopback == LOOPBACK_SERDES) {
9087 /* internal serdes loopack needs quick linkup on RTL */
9088 if (dd->icode == ICODE_RTL_SILICON)
9089 quick_linkup = 1;
9090 return set_serdes_loopback_mode(dd);
9091 }
9092
9093 /* LCB loopback - handled at poll time */
9094 if (loopback == LOOPBACK_LCB) {
9095 quick_linkup = 1; /* LCB is always quick linkup */
9096
9097 /* not supported in emulation due to emulation RTL changes */
9098 if (dd->icode == ICODE_FPGA_EMULATION) {
9099 dd_dev_err(dd,
17fb4f29 9100 "LCB loopback not supported in emulation\n");
77241056
MM
9101 return -EINVAL;
9102 }
9103 return 0;
9104 }
9105
9106 /* external cable loopback requires no extra steps */
9107 if (loopback == LOOPBACK_CABLE)
9108 return 0;
9109
9110 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9111 return -EINVAL;
9112}
9113
9114/*
9115 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9116 * used in the Verify Capability link width attribute.
9117 */
9118static u16 opa_to_vc_link_widths(u16 opa_widths)
9119{
9120 int i;
9121 u16 result = 0;
9122
9123 static const struct link_bits {
9124 u16 from;
9125 u16 to;
9126 } opa_link_xlate[] = {
8638b77f
JJ
9127 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9128 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9129 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9130 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
77241056
MM
9131 };
9132
9133 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9134 if (opa_widths & opa_link_xlate[i].from)
9135 result |= opa_link_xlate[i].to;
9136 }
9137 return result;
9138}
9139
9140/*
9141 * Set link attributes before moving to polling.
9142 */
9143static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9144{
9145 struct hfi1_devdata *dd = ppd->dd;
9146 u8 enable_lane_tx;
9147 u8 tx_polarity_inversion;
9148 u8 rx_polarity_inversion;
9149 int ret;
9150
9151 /* reset our fabric serdes to clear any lingering problems */
9152 fabric_serdes_reset(dd);
9153
9154 /* set the local tx rate - need to read-modify-write */
9155 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 9156 &rx_polarity_inversion, &ppd->local_tx_rate);
77241056
MM
9157 if (ret)
9158 goto set_local_link_attributes_fail;
9159
5e6e9424 9160 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
77241056
MM
9161 /* set the tx rate to the fastest enabled */
9162 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9163 ppd->local_tx_rate = 1;
9164 else
9165 ppd->local_tx_rate = 0;
9166 } else {
9167 /* set the tx rate to all enabled */
9168 ppd->local_tx_rate = 0;
9169 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9170 ppd->local_tx_rate |= 2;
9171 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9172 ppd->local_tx_rate |= 1;
9173 }
febffe2c
EH
9174
9175 enable_lane_tx = 0xF; /* enable all four lanes */
77241056 9176 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
17fb4f29 9177 rx_polarity_inversion, ppd->local_tx_rate);
77241056
MM
9178 if (ret != HCMD_SUCCESS)
9179 goto set_local_link_attributes_fail;
9180
9181 /*
9182 * DC supports continuous updates.
9183 */
17fb4f29
JJ
9184 ret = write_vc_local_phy(dd,
9185 0 /* no power management */,
9186 1 /* continuous updates */);
77241056
MM
9187 if (ret != HCMD_SUCCESS)
9188 goto set_local_link_attributes_fail;
9189
9190 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9191 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9192 ppd->port_crc_mode_enabled);
9193 if (ret != HCMD_SUCCESS)
9194 goto set_local_link_attributes_fail;
9195
9196 ret = write_vc_local_link_width(dd, 0, 0,
17fb4f29
JJ
9197 opa_to_vc_link_widths(
9198 ppd->link_width_enabled));
77241056
MM
9199 if (ret != HCMD_SUCCESS)
9200 goto set_local_link_attributes_fail;
9201
9202 /* let peer know who we are */
9203 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9204 if (ret == HCMD_SUCCESS)
9205 return 0;
9206
9207set_local_link_attributes_fail:
9208 dd_dev_err(dd,
17fb4f29
JJ
9209 "Failed to set local link attributes, return 0x%x\n",
9210 ret);
77241056
MM
9211 return ret;
9212}
9213
9214/*
623bba2d
EH
9215 * Call this to start the link.
9216 * Do not do anything if the link is disabled.
9217 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
77241056
MM
9218 */
9219int start_link(struct hfi1_pportdata *ppd)
9220{
0db9dec2
DL
9221 /*
9222 * Tune the SerDes to a ballpark setting for optimal signal and bit
9223 * error rate. Needs to be done before starting the link.
9224 */
9225 tune_serdes(ppd);
9226
77241056
MM
9227 if (!ppd->link_enabled) {
9228 dd_dev_info(ppd->dd,
17fb4f29
JJ
9229 "%s: stopping link start because link is disabled\n",
9230 __func__);
77241056
MM
9231 return 0;
9232 }
9233 if (!ppd->driver_link_ready) {
9234 dd_dev_info(ppd->dd,
17fb4f29
JJ
9235 "%s: stopping link start because driver is not ready\n",
9236 __func__);
77241056
MM
9237 return 0;
9238 }
9239
3ec5fa28
SS
9240 /*
9241 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9242 * pkey table can be configured properly if the HFI unit is connected
9243 * to switch port with MgmtAllowed=NO
9244 */
9245 clear_full_mgmt_pkey(ppd);
9246
623bba2d 9247 return set_link_state(ppd, HLS_DN_POLL);
77241056
MM
9248}
9249
8ebd4cf1
EH
9250static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9251{
9252 struct hfi1_devdata *dd = ppd->dd;
9253 u64 mask;
9254 unsigned long timeout;
9255
9256 /*
5fbd98dd
EH
9257 * Some QSFP cables have a quirk that asserts the IntN line as a side
9258 * effect of power up on plug-in. We ignore this false positive
9259 * interrupt until the module has finished powering up by waiting for
9260 * a minimum timeout of the module inrush initialization time of
9261 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9262 * module have stabilized.
9263 */
9264 msleep(500);
9265
9266 /*
9267 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
8ebd4cf1
EH
9268 */
9269 timeout = jiffies + msecs_to_jiffies(2000);
9270 while (1) {
9271 mask = read_csr(dd, dd->hfi1_id ?
9272 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
5fbd98dd 9273 if (!(mask & QSFP_HFI0_INT_N))
8ebd4cf1 9274 break;
8ebd4cf1
EH
9275 if (time_after(jiffies, timeout)) {
9276 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9277 __func__);
9278 break;
9279 }
9280 udelay(2);
9281 }
9282}
9283
9284static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9285{
9286 struct hfi1_devdata *dd = ppd->dd;
9287 u64 mask;
9288
9289 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
5fbd98dd
EH
9290 if (enable) {
9291 /*
9292 * Clear the status register to avoid an immediate interrupt
9293 * when we re-enable the IntN pin
9294 */
9295 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9296 QSFP_HFI0_INT_N);
8ebd4cf1 9297 mask |= (u64)QSFP_HFI0_INT_N;
5fbd98dd 9298 } else {
8ebd4cf1 9299 mask &= ~(u64)QSFP_HFI0_INT_N;
5fbd98dd 9300 }
8ebd4cf1
EH
9301 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9302}
9303
9304void reset_qsfp(struct hfi1_pportdata *ppd)
77241056
MM
9305{
9306 struct hfi1_devdata *dd = ppd->dd;
9307 u64 mask, qsfp_mask;
9308
8ebd4cf1
EH
9309 /* Disable INT_N from triggering QSFP interrupts */
9310 set_qsfp_int_n(ppd, 0);
9311
9312 /* Reset the QSFP */
77241056 9313 mask = (u64)QSFP_HFI0_RESET_N;
77241056
MM
9314
9315 qsfp_mask = read_csr(dd,
17fb4f29 9316 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
77241056
MM
9317 qsfp_mask &= ~mask;
9318 write_csr(dd,
17fb4f29 9319 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
77241056
MM
9320
9321 udelay(10);
9322
9323 qsfp_mask |= mask;
9324 write_csr(dd,
17fb4f29 9325 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
8ebd4cf1
EH
9326
9327 wait_for_qsfp_init(ppd);
9328
9329 /*
9330 * Allow INT_N to trigger the QSFP interrupt to watch
9331 * for alarms and warnings
9332 */
9333 set_qsfp_int_n(ppd, 1);
77241056
MM
9334}
9335
9336static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9337 u8 *qsfp_interrupt_status)
9338{
9339 struct hfi1_devdata *dd = ppd->dd;
9340
9341 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
17fb4f29 9342 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
03e80e9a 9343 dd_dev_info(dd, "%s: QSFP cable temperature too high\n",
17fb4f29 9344 __func__);
77241056
MM
9345
9346 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
17fb4f29
JJ
9347 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9348 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9349 __func__);
77241056 9350
0c7f77af
EH
9351 /*
9352 * The remaining alarms/warnings don't matter if the link is down.
9353 */
9354 if (ppd->host_link_state & HLS_DOWN)
9355 return 0;
9356
77241056 9357 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
17fb4f29
JJ
9358 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9359 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9360 __func__);
77241056
MM
9361
9362 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
17fb4f29
JJ
9363 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9364 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9365 __func__);
77241056
MM
9366
9367 /* Byte 2 is vendor specific */
9368
9369 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9370 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9371 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9372 __func__);
77241056
MM
9373
9374 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9375 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9376 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9377 __func__);
77241056
MM
9378
9379 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9380 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9381 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9382 __func__);
77241056
MM
9383
9384 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9385 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9386 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9387 __func__);
77241056
MM
9388
9389 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29
JJ
9390 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9391 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9392 __func__);
77241056
MM
9393
9394 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29
JJ
9395 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9396 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9397 __func__);
77241056
MM
9398
9399 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29
JJ
9400 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9401 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9402 __func__);
77241056
MM
9403
9404 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29
JJ
9405 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9406 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9407 __func__);
77241056
MM
9408
9409 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9410 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9411 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9412 __func__);
77241056
MM
9413
9414 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9415 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9416 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9417 __func__);
77241056
MM
9418
9419 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9420 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9421 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9422 __func__);
77241056
MM
9423
9424 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9425 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9426 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9427 __func__);
77241056
MM
9428
9429 /* Bytes 9-10 and 11-12 are reserved */
9430 /* Bytes 13-15 are vendor specific */
9431
9432 return 0;
9433}
9434
623bba2d 9435/* This routine will only be scheduled if the QSFP module present is asserted */
8ebd4cf1 9436void qsfp_event(struct work_struct *work)
77241056
MM
9437{
9438 struct qsfp_data *qd;
9439 struct hfi1_pportdata *ppd;
9440 struct hfi1_devdata *dd;
9441
9442 qd = container_of(work, struct qsfp_data, qsfp_work);
9443 ppd = qd->ppd;
9444 dd = ppd->dd;
9445
9446 /* Sanity check */
9447 if (!qsfp_mod_present(ppd))
9448 return;
9449
9450 /*
0c7f77af
EH
9451 * Turn DC back on after cable has been re-inserted. Up until
9452 * now, the DC has been in reset to save power.
77241056
MM
9453 */
9454 dc_start(dd);
9455
9456 if (qd->cache_refresh_required) {
8ebd4cf1 9457 set_qsfp_int_n(ppd, 0);
77241056 9458
8ebd4cf1
EH
9459 wait_for_qsfp_init(ppd);
9460
9461 /*
9462 * Allow INT_N to trigger the QSFP interrupt to watch
9463 * for alarms and warnings
77241056 9464 */
8ebd4cf1
EH
9465 set_qsfp_int_n(ppd, 1);
9466
8ebd4cf1 9467 start_link(ppd);
77241056
MM
9468 }
9469
9470 if (qd->check_interrupt_flags) {
9471 u8 qsfp_interrupt_status[16] = {0,};
9472
765a6fac
DL
9473 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9474 &qsfp_interrupt_status[0], 16) != 16) {
77241056 9475 dd_dev_info(dd,
17fb4f29
JJ
9476 "%s: Failed to read status of QSFP module\n",
9477 __func__);
77241056
MM
9478 } else {
9479 unsigned long flags;
77241056 9480
8ebd4cf1
EH
9481 handle_qsfp_error_conditions(
9482 ppd, qsfp_interrupt_status);
77241056
MM
9483 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9484 ppd->qsfp_info.check_interrupt_flags = 0;
9485 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 9486 flags);
77241056
MM
9487 }
9488 }
9489}
9490
8ebd4cf1 9491static void init_qsfp_int(struct hfi1_devdata *dd)
77241056 9492{
8ebd4cf1
EH
9493 struct hfi1_pportdata *ppd = dd->pport;
9494 u64 qsfp_mask, cce_int_mask;
9495 const int qsfp1_int_smask = QSFP1_INT % 64;
9496 const int qsfp2_int_smask = QSFP2_INT % 64;
77241056 9497
8ebd4cf1
EH
9498 /*
9499 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9500 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9501 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9502 * the index of the appropriate CSR in the CCEIntMask CSR array
9503 */
9504 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9505 (8 * (QSFP1_INT / 64)));
9506 if (dd->hfi1_id) {
9507 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9508 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9509 cce_int_mask);
9510 } else {
9511 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9512 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9513 cce_int_mask);
77241056
MM
9514 }
9515
77241056
MM
9516 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9517 /* Clear current status to avoid spurious interrupts */
8ebd4cf1
EH
9518 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9519 qsfp_mask);
9520 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9521 qsfp_mask);
9522
9523 set_qsfp_int_n(ppd, 0);
77241056
MM
9524
9525 /* Handle active low nature of INT_N and MODPRST_N pins */
9526 if (qsfp_mod_present(ppd))
9527 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9528 write_csr(dd,
9529 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9530 qsfp_mask);
77241056
MM
9531}
9532
bbdeb33d
DL
9533/*
9534 * Do a one-time initialize of the LCB block.
9535 */
9536static void init_lcb(struct hfi1_devdata *dd)
9537{
a59329d5
DL
9538 /* simulator does not correctly handle LCB cclk loopback, skip */
9539 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9540 return;
9541
bbdeb33d
DL
9542 /* the DC has been reset earlier in the driver load */
9543
9544 /* set LCB for cclk loopback on the port */
9545 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9546 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9547 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9548 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9549 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9550 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9551 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9552}
9553
673b975f
DL
9554/*
9555 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9556 * on error.
9557 */
9558static int test_qsfp_read(struct hfi1_pportdata *ppd)
9559{
9560 int ret;
9561 u8 status;
9562
fb897ad3
EH
9563 /*
9564 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9565 * not present
9566 */
9567 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
673b975f
DL
9568 return 0;
9569
9570 /* read byte 2, the status byte */
9571 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9572 if (ret < 0)
9573 return ret;
9574 if (ret != 1)
9575 return -EIO;
9576
9577 return 0; /* success */
9578}
9579
9580/*
9581 * Values for QSFP retry.
9582 *
9583 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9584 * arrived at from experience on a large cluster.
9585 */
9586#define MAX_QSFP_RETRIES 20
9587#define QSFP_RETRY_WAIT 500 /* msec */
9588
9589/*
9590 * Try a QSFP read. If it fails, schedule a retry for later.
9591 * Called on first link activation after driver load.
9592 */
9593static void try_start_link(struct hfi1_pportdata *ppd)
9594{
9595 if (test_qsfp_read(ppd)) {
9596 /* read failed */
9597 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9598 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9599 return;
9600 }
9601 dd_dev_info(ppd->dd,
9602 "QSFP not responding, waiting and retrying %d\n",
9603 (int)ppd->qsfp_retry_count);
9604 ppd->qsfp_retry_count++;
9605 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9606 msecs_to_jiffies(QSFP_RETRY_WAIT));
9607 return;
9608 }
9609 ppd->qsfp_retry_count = 0;
9610
673b975f
DL
9611 start_link(ppd);
9612}
9613
9614/*
9615 * Workqueue function to start the link after a delay.
9616 */
9617void handle_start_link(struct work_struct *work)
9618{
9619 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9620 start_link_work.work);
9621 try_start_link(ppd);
9622}
9623
77241056
MM
9624int bringup_serdes(struct hfi1_pportdata *ppd)
9625{
9626 struct hfi1_devdata *dd = ppd->dd;
9627 u64 guid;
9628 int ret;
9629
9630 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9631 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9632
a6cd5f08 9633 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
77241056
MM
9634 if (!guid) {
9635 if (dd->base_guid)
9636 guid = dd->base_guid + ppd->port - 1;
a6cd5f08 9637 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
77241056
MM
9638 }
9639
77241056
MM
9640 /* Set linkinit_reason on power up per OPA spec */
9641 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9642
bbdeb33d
DL
9643 /* one-time init of the LCB */
9644 init_lcb(dd);
9645
77241056
MM
9646 if (loopback) {
9647 ret = init_loopback(dd);
9648 if (ret < 0)
9649 return ret;
9650 }
9651
9775a991
EH
9652 get_port_type(ppd);
9653 if (ppd->port_type == PORT_TYPE_QSFP) {
9654 set_qsfp_int_n(ppd, 0);
9655 wait_for_qsfp_init(ppd);
9656 set_qsfp_int_n(ppd, 1);
9657 }
9658
673b975f
DL
9659 try_start_link(ppd);
9660 return 0;
77241056
MM
9661}
9662
9663void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9664{
9665 struct hfi1_devdata *dd = ppd->dd;
9666
9667 /*
9668 * Shut down the link and keep it down. First turn off that the
9669 * driver wants to allow the link to be up (driver_link_ready).
9670 * Then make sure the link is not automatically restarted
9671 * (link_enabled). Cancel any pending restart. And finally
9672 * go offline.
9673 */
9674 ppd->driver_link_ready = 0;
9675 ppd->link_enabled = 0;
9676
673b975f
DL
9677 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9678 flush_delayed_work(&ppd->start_link_work);
9679 cancel_delayed_work_sync(&ppd->start_link_work);
9680
8ebd4cf1
EH
9681 ppd->offline_disabled_reason =
9682 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056 9683 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
17fb4f29 9684 OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056
MM
9685 set_link_state(ppd, HLS_DN_OFFLINE);
9686
9687 /* disable the port */
9688 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9689}
9690
9691static inline int init_cpu_counters(struct hfi1_devdata *dd)
9692{
9693 struct hfi1_pportdata *ppd;
9694 int i;
9695
9696 ppd = (struct hfi1_pportdata *)(dd + 1);
9697 for (i = 0; i < dd->num_pports; i++, ppd++) {
4eb06882
DD
9698 ppd->ibport_data.rvp.rc_acks = NULL;
9699 ppd->ibport_data.rvp.rc_qacks = NULL;
9700 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9701 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9702 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9703 if (!ppd->ibport_data.rvp.rc_acks ||
9704 !ppd->ibport_data.rvp.rc_delayed_comp ||
9705 !ppd->ibport_data.rvp.rc_qacks)
77241056
MM
9706 return -ENOMEM;
9707 }
9708
9709 return 0;
9710}
9711
9712static const char * const pt_names[] = {
9713 "expected",
9714 "eager",
9715 "invalid"
9716};
9717
9718static const char *pt_name(u32 type)
9719{
9720 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9721}
9722
9723/*
9724 * index is the index into the receive array
9725 */
9726void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9727 u32 type, unsigned long pa, u16 order)
9728{
9729 u64 reg;
9730 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9731 (dd->kregbase + RCV_ARRAY));
9732
9733 if (!(dd->flags & HFI1_PRESENT))
9734 goto done;
9735
9736 if (type == PT_INVALID) {
9737 pa = 0;
9738 } else if (type > PT_INVALID) {
9739 dd_dev_err(dd,
17fb4f29
JJ
9740 "unexpected receive array type %u for index %u, not handled\n",
9741 type, index);
77241056
MM
9742 goto done;
9743 }
9744
9745 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9746 pt_name(type), index, pa, (unsigned long)order);
9747
9748#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9749 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9750 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9751 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9752 << RCV_ARRAY_RT_ADDR_SHIFT;
9753 writeq(reg, base + (index * 8));
9754
9755 if (type == PT_EAGER)
9756 /*
9757 * Eager entries are written one-by-one so we have to push them
9758 * after we write the entry.
9759 */
9760 flush_wc();
9761done:
9762 return;
9763}
9764
9765void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9766{
9767 struct hfi1_devdata *dd = rcd->dd;
9768 u32 i;
9769
9770 /* this could be optimized */
9771 for (i = rcd->eager_base; i < rcd->eager_base +
9772 rcd->egrbufs.alloced; i++)
9773 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9774
9775 for (i = rcd->expected_base;
9776 i < rcd->expected_base + rcd->expected_count; i++)
9777 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9778}
9779
261a4351
MM
9780struct ib_header *hfi1_get_msgheader(
9781 struct hfi1_devdata *dd, __le32 *rhf_addr)
77241056
MM
9782{
9783 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9784
261a4351 9785 return (struct ib_header *)
77241056
MM
9786 (rhf_addr - dd->rhf_offset + offset);
9787}
9788
9789static const char * const ib_cfg_name_strings[] = {
9790 "HFI1_IB_CFG_LIDLMC",
9791 "HFI1_IB_CFG_LWID_DG_ENB",
9792 "HFI1_IB_CFG_LWID_ENB",
9793 "HFI1_IB_CFG_LWID",
9794 "HFI1_IB_CFG_SPD_ENB",
9795 "HFI1_IB_CFG_SPD",
9796 "HFI1_IB_CFG_RXPOL_ENB",
9797 "HFI1_IB_CFG_LREV_ENB",
9798 "HFI1_IB_CFG_LINKLATENCY",
9799 "HFI1_IB_CFG_HRTBT",
9800 "HFI1_IB_CFG_OP_VLS",
9801 "HFI1_IB_CFG_VL_HIGH_CAP",
9802 "HFI1_IB_CFG_VL_LOW_CAP",
9803 "HFI1_IB_CFG_OVERRUN_THRESH",
9804 "HFI1_IB_CFG_PHYERR_THRESH",
9805 "HFI1_IB_CFG_LINKDEFAULT",
9806 "HFI1_IB_CFG_PKEYS",
9807 "HFI1_IB_CFG_MTU",
9808 "HFI1_IB_CFG_LSTATE",
9809 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9810 "HFI1_IB_CFG_PMA_TICKS",
9811 "HFI1_IB_CFG_PORT"
9812};
9813
9814static const char *ib_cfg_name(int which)
9815{
9816 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9817 return "invalid";
9818 return ib_cfg_name_strings[which];
9819}
9820
9821int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9822{
9823 struct hfi1_devdata *dd = ppd->dd;
9824 int val = 0;
9825
9826 switch (which) {
9827 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9828 val = ppd->link_width_enabled;
9829 break;
9830 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9831 val = ppd->link_width_active;
9832 break;
9833 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9834 val = ppd->link_speed_enabled;
9835 break;
9836 case HFI1_IB_CFG_SPD: /* current Link speed */
9837 val = ppd->link_speed_active;
9838 break;
9839
9840 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9841 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9842 case HFI1_IB_CFG_LINKLATENCY:
9843 goto unimplemented;
9844
9845 case HFI1_IB_CFG_OP_VLS:
9846 val = ppd->vls_operational;
9847 break;
9848 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9849 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9850 break;
9851 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9852 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9853 break;
9854 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9855 val = ppd->overrun_threshold;
9856 break;
9857 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9858 val = ppd->phy_error_threshold;
9859 break;
9860 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9861 val = dd->link_default;
9862 break;
9863
9864 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9865 case HFI1_IB_CFG_PMA_TICKS:
9866 default:
9867unimplemented:
9868 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9869 dd_dev_info(
9870 dd,
9871 "%s: which %s: not implemented\n",
9872 __func__,
9873 ib_cfg_name(which));
9874 break;
9875 }
9876
9877 return val;
9878}
9879
9880/*
9881 * The largest MAD packet size.
9882 */
9883#define MAX_MAD_PACKET 2048
9884
9885/*
9886 * Return the maximum header bytes that can go on the _wire_
9887 * for this device. This count includes the ICRC which is
9888 * not part of the packet held in memory but it is appended
9889 * by the HW.
9890 * This is dependent on the device's receive header entry size.
9891 * HFI allows this to be set per-receive context, but the
9892 * driver presently enforces a global value.
9893 */
9894u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9895{
9896 /*
9897 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9898 * the Receive Header Entry Size minus the PBC (or RHF) size
9899 * plus one DW for the ICRC appended by HW.
9900 *
9901 * dd->rcd[0].rcvhdrqentsize is in DW.
9902 * We use rcd[0] as all context will have the same value. Also,
9903 * the first kernel context would have been allocated by now so
9904 * we are guaranteed a valid value.
9905 */
9906 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9907}
9908
9909/*
9910 * Set Send Length
9911 * @ppd - per port data
9912 *
9913 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9914 * registers compare against LRH.PktLen, so use the max bytes included
9915 * in the LRH.
9916 *
9917 * This routine changes all VL values except VL15, which it maintains at
9918 * the same value.
9919 */
9920static void set_send_length(struct hfi1_pportdata *ppd)
9921{
9922 struct hfi1_devdata *dd = ppd->dd;
6cc6ad2e
HC
9923 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9924 u32 maxvlmtu = dd->vld[15].mtu;
77241056
MM
9925 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9926 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9927 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
b4ba6633 9928 int i, j;
44306f15 9929 u32 thres;
77241056
MM
9930
9931 for (i = 0; i < ppd->vls_supported; i++) {
9932 if (dd->vld[i].mtu > maxvlmtu)
9933 maxvlmtu = dd->vld[i].mtu;
9934 if (i <= 3)
9935 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9936 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9937 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9938 else
9939 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9940 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9941 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9942 }
9943 write_csr(dd, SEND_LEN_CHECK0, len1);
9944 write_csr(dd, SEND_LEN_CHECK1, len2);
9945 /* adjust kernel credit return thresholds based on new MTUs */
9946 /* all kernel receive contexts have the same hdrqentsize */
9947 for (i = 0; i < ppd->vls_supported; i++) {
44306f15
JX
9948 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9949 sc_mtu_to_threshold(dd->vld[i].sc,
9950 dd->vld[i].mtu,
17fb4f29 9951 dd->rcd[0]->rcvhdrqentsize));
b4ba6633
JJ
9952 for (j = 0; j < INIT_SC_PER_VL; j++)
9953 sc_set_cr_threshold(
9954 pio_select_send_context_vl(dd, j, i),
9955 thres);
44306f15
JX
9956 }
9957 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9958 sc_mtu_to_threshold(dd->vld[15].sc,
9959 dd->vld[15].mtu,
9960 dd->rcd[0]->rcvhdrqentsize));
9961 sc_set_cr_threshold(dd->vld[15].sc, thres);
77241056
MM
9962
9963 /* Adjust maximum MTU for the port in DC */
9964 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9965 (ilog2(maxvlmtu >> 8) + 1);
9966 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9967 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9968 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9969 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9970 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9971}
9972
9973static void set_lidlmc(struct hfi1_pportdata *ppd)
9974{
9975 int i;
9976 u64 sreg = 0;
9977 struct hfi1_devdata *dd = ppd->dd;
9978 u32 mask = ~((1U << ppd->lmc) - 1);
9979 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9980
77241056
MM
9981 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9982 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9983 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
8638b77f 9984 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
77241056
MM
9985 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9986 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9987 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9988
9989 /*
9990 * Iterate over all the send contexts and set their SLID check
9991 */
9992 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9993 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9994 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9995 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9996
9997 for (i = 0; i < dd->chip_send_contexts; i++) {
9998 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9999 i, (u32)sreg);
10000 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10001 }
10002
10003 /* Now we have to do the same thing for the sdma engines */
10004 sdma_update_lmc(dd, mask, ppd->lid);
10005}
10006
10007static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
10008{
10009 unsigned long timeout;
10010 u32 curr_state;
10011
10012 timeout = jiffies + msecs_to_jiffies(msecs);
10013 while (1) {
10014 curr_state = read_physical_state(dd);
10015 if (curr_state == state)
10016 break;
10017 if (time_after(jiffies, timeout)) {
10018 dd_dev_err(dd,
17fb4f29
JJ
10019 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
10020 state, curr_state);
77241056
MM
10021 return -ETIMEDOUT;
10022 }
10023 usleep_range(1950, 2050); /* sleep 2ms-ish */
10024 }
10025
10026 return 0;
10027}
10028
6854c692
DL
10029static const char *state_completed_string(u32 completed)
10030{
10031 static const char * const state_completed[] = {
10032 "EstablishComm",
10033 "OptimizeEQ",
10034 "VerifyCap"
10035 };
10036
10037 if (completed < ARRAY_SIZE(state_completed))
10038 return state_completed[completed];
10039
10040 return "unknown";
10041}
10042
10043static const char all_lanes_dead_timeout_expired[] =
10044 "All lanes were inactive – was the interconnect media removed?";
10045static const char tx_out_of_policy[] =
10046 "Passing lanes on local port do not meet the local link width policy";
10047static const char no_state_complete[] =
10048 "State timeout occurred before link partner completed the state";
10049static const char * const state_complete_reasons[] = {
10050 [0x00] = "Reason unknown",
10051 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10052 [0x02] = "Link partner reported failure",
10053 [0x10] = "Unable to achieve frame sync on any lane",
10054 [0x11] =
10055 "Unable to find a common bit rate with the link partner",
10056 [0x12] =
10057 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10058 [0x13] =
10059 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10060 [0x14] = no_state_complete,
10061 [0x15] =
10062 "State timeout occurred before link partner identified equalization presets",
10063 [0x16] =
10064 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10065 [0x17] = tx_out_of_policy,
10066 [0x20] = all_lanes_dead_timeout_expired,
10067 [0x21] =
10068 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10069 [0x22] = no_state_complete,
10070 [0x23] =
10071 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10072 [0x24] = tx_out_of_policy,
10073 [0x30] = all_lanes_dead_timeout_expired,
10074 [0x31] =
10075 "State timeout occurred waiting for host to process received frames",
10076 [0x32] = no_state_complete,
10077 [0x33] =
10078 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10079 [0x34] = tx_out_of_policy,
10080};
10081
10082static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10083 u32 code)
10084{
10085 const char *str = NULL;
10086
10087 if (code < ARRAY_SIZE(state_complete_reasons))
10088 str = state_complete_reasons[code];
10089
10090 if (str)
10091 return str;
10092 return "Reserved";
10093}
10094
10095/* describe the given last state complete frame */
10096static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10097 const char *prefix)
10098{
10099 struct hfi1_devdata *dd = ppd->dd;
10100 u32 success;
10101 u32 state;
10102 u32 reason;
10103 u32 lanes;
10104
10105 /*
10106 * Decode frame:
10107 * [ 0: 0] - success
10108 * [ 3: 1] - state
10109 * [ 7: 4] - next state timeout
10110 * [15: 8] - reason code
10111 * [31:16] - lanes
10112 */
10113 success = frame & 0x1;
10114 state = (frame >> 1) & 0x7;
10115 reason = (frame >> 8) & 0xff;
10116 lanes = (frame >> 16) & 0xffff;
10117
10118 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10119 prefix, frame);
10120 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10121 state_completed_string(state), state);
10122 dd_dev_err(dd, " state successfully completed: %s\n",
10123 success ? "yes" : "no");
10124 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10125 reason, state_complete_reason_code_string(ppd, reason));
10126 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10127}
10128
10129/*
10130 * Read the last state complete frames and explain them. This routine
10131 * expects to be called if the link went down during link negotiation
10132 * and initialization (LNI). That is, anywhere between polling and link up.
10133 */
10134static void check_lni_states(struct hfi1_pportdata *ppd)
10135{
10136 u32 last_local_state;
10137 u32 last_remote_state;
10138
10139 read_last_local_state(ppd->dd, &last_local_state);
10140 read_last_remote_state(ppd->dd, &last_remote_state);
10141
10142 /*
10143 * Don't report anything if there is nothing to report. A value of
10144 * 0 means the link was taken down while polling and there was no
10145 * training in-process.
10146 */
10147 if (last_local_state == 0 && last_remote_state == 0)
10148 return;
10149
10150 decode_state_complete(ppd, last_local_state, "transmitted");
10151 decode_state_complete(ppd, last_remote_state, "received");
10152}
10153
ec8a1423
DL
10154/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10155static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10156{
10157 u64 reg;
10158 unsigned long timeout;
10159
10160 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10161 timeout = jiffies + msecs_to_jiffies(wait_ms);
10162 while (1) {
10163 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10164 if (reg)
10165 break;
10166 if (time_after(jiffies, timeout)) {
10167 dd_dev_err(dd,
10168 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10169 return -ETIMEDOUT;
10170 }
10171 udelay(2);
10172 }
10173 return 0;
10174}
10175
10176/* called when the logical link state is not down as it should be */
10177static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10178{
10179 struct hfi1_devdata *dd = ppd->dd;
10180
10181 /*
10182 * Bring link up in LCB loopback
10183 */
10184 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10185 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10186 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10187
10188 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10189 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10190 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10191 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10192
10193 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10194 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10195 udelay(3);
10196 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10197 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10198
10199 wait_link_transfer_active(dd, 100);
10200
10201 /*
10202 * Bring the link down again.
10203 */
10204 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10205 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10206 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10207
10208 /* call again to adjust ppd->statusp, if needed */
10209 get_logical_state(ppd);
10210}
10211
77241056
MM
10212/*
10213 * Helper for set_link_state(). Do not call except from that routine.
10214 * Expects ppd->hls_mutex to be held.
10215 *
10216 * @rem_reason value to be sent to the neighbor
10217 *
10218 * LinkDownReasons only set if transition succeeds.
10219 */
10220static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10221{
10222 struct hfi1_devdata *dd = ppd->dd;
10223 u32 pstate, previous_state;
77241056
MM
10224 int ret;
10225 int do_transition;
10226 int do_wait;
10227
8688426b
MR
10228 update_lcb_cache(dd);
10229
77241056
MM
10230 previous_state = ppd->host_link_state;
10231 ppd->host_link_state = HLS_GOING_OFFLINE;
10232 pstate = read_physical_state(dd);
10233 if (pstate == PLS_OFFLINE) {
10234 do_transition = 0; /* in right state */
10235 do_wait = 0; /* ...no need to wait */
02d1008b 10236 } else if ((pstate & 0xf0) == PLS_OFFLINE) {
77241056
MM
10237 do_transition = 0; /* in an offline transient state */
10238 do_wait = 1; /* ...wait for it to settle */
10239 } else {
10240 do_transition = 1; /* need to move to offline */
10241 do_wait = 1; /* ...will need to wait */
10242 }
10243
10244 if (do_transition) {
10245 ret = set_physical_link_state(dd,
bf640096 10246 (rem_reason << 8) | PLS_OFFLINE);
77241056
MM
10247
10248 if (ret != HCMD_SUCCESS) {
10249 dd_dev_err(dd,
17fb4f29
JJ
10250 "Failed to transition to Offline link state, return %d\n",
10251 ret);
77241056
MM
10252 return -EINVAL;
10253 }
a9c05e35
BM
10254 if (ppd->offline_disabled_reason ==
10255 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
77241056 10256 ppd->offline_disabled_reason =
a9c05e35 10257 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
10258 }
10259
10260 if (do_wait) {
10261 /* it can take a while for the link to go down */
dc060245 10262 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
77241056
MM
10263 if (ret < 0)
10264 return ret;
10265 }
10266
77241056
MM
10267 /*
10268 * Now in charge of LCB - must be after the physical state is
10269 * offline.quiet and before host_link_state is changed.
10270 */
10271 set_host_lcb_access(dd);
10272 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
ec8a1423
DL
10273
10274 /* make sure the logical state is also down */
10275 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10276 if (ret)
10277 force_logical_link_state_down(ppd);
10278
77241056
MM
10279 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10280
8ebd4cf1
EH
10281 if (ppd->port_type == PORT_TYPE_QSFP &&
10282 ppd->qsfp_info.limiting_active &&
10283 qsfp_mod_present(ppd)) {
765a6fac
DL
10284 int ret;
10285
10286 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10287 if (ret == 0) {
10288 set_qsfp_tx(ppd, 0);
10289 release_chip_resource(dd, qsfp_resource(dd));
10290 } else {
10291 /* not fatal, but should warn */
10292 dd_dev_err(dd,
10293 "Unable to acquire lock to turn off QSFP TX\n");
10294 }
8ebd4cf1
EH
10295 }
10296
77241056
MM
10297 /*
10298 * The LNI has a mandatory wait time after the physical state
10299 * moves to Offline.Quiet. The wait time may be different
10300 * depending on how the link went down. The 8051 firmware
10301 * will observe the needed wait time and only move to ready
10302 * when that is completed. The largest of the quiet timeouts
05087f3b
DL
10303 * is 6s, so wait that long and then at least 0.5s more for
10304 * other transitions, and another 0.5s for a buffer.
77241056 10305 */
05087f3b 10306 ret = wait_fm_ready(dd, 7000);
77241056
MM
10307 if (ret) {
10308 dd_dev_err(dd,
17fb4f29 10309 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
77241056
MM
10310 /* state is really offline, so make it so */
10311 ppd->host_link_state = HLS_DN_OFFLINE;
10312 return ret;
10313 }
10314
10315 /*
10316 * The state is now offline and the 8051 is ready to accept host
10317 * requests.
10318 * - change our state
10319 * - notify others if we were previously in a linkup state
10320 */
10321 ppd->host_link_state = HLS_DN_OFFLINE;
10322 if (previous_state & HLS_UP) {
10323 /* went down while link was up */
10324 handle_linkup_change(dd, 0);
10325 } else if (previous_state
10326 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10327 /* went down while attempting link up */
6854c692 10328 check_lni_states(ppd);
77241056
MM
10329 }
10330
10331 /* the active link width (downgrade) is 0 on link down */
10332 ppd->link_width_active = 0;
10333 ppd->link_width_downgrade_tx_active = 0;
10334 ppd->link_width_downgrade_rx_active = 0;
10335 ppd->current_egress_rate = 0;
10336 return 0;
10337}
10338
10339/* return the link state name */
10340static const char *link_state_name(u32 state)
10341{
10342 const char *name;
10343 int n = ilog2(state);
10344 static const char * const names[] = {
10345 [__HLS_UP_INIT_BP] = "INIT",
10346 [__HLS_UP_ARMED_BP] = "ARMED",
10347 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10348 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10349 [__HLS_DN_POLL_BP] = "POLL",
10350 [__HLS_DN_DISABLE_BP] = "DISABLE",
10351 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10352 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10353 [__HLS_GOING_UP_BP] = "GOING_UP",
10354 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10355 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10356 };
10357
10358 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10359 return name ? name : "unknown";
10360}
10361
10362/* return the link state reason name */
10363static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10364{
10365 if (state == HLS_UP_INIT) {
10366 switch (ppd->linkinit_reason) {
10367 case OPA_LINKINIT_REASON_LINKUP:
10368 return "(LINKUP)";
10369 case OPA_LINKINIT_REASON_FLAPPING:
10370 return "(FLAPPING)";
10371 case OPA_LINKINIT_OUTSIDE_POLICY:
10372 return "(OUTSIDE_POLICY)";
10373 case OPA_LINKINIT_QUARANTINED:
10374 return "(QUARANTINED)";
10375 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10376 return "(INSUFIC_CAPABILITY)";
10377 default:
10378 break;
10379 }
10380 }
10381 return "";
10382}
10383
10384/*
10385 * driver_physical_state - convert the driver's notion of a port's
10386 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10387 * Return -1 (converted to a u32) to indicate error.
10388 */
10389u32 driver_physical_state(struct hfi1_pportdata *ppd)
10390{
10391 switch (ppd->host_link_state) {
10392 case HLS_UP_INIT:
10393 case HLS_UP_ARMED:
10394 case HLS_UP_ACTIVE:
10395 return IB_PORTPHYSSTATE_LINKUP;
10396 case HLS_DN_POLL:
10397 return IB_PORTPHYSSTATE_POLLING;
10398 case HLS_DN_DISABLE:
10399 return IB_PORTPHYSSTATE_DISABLED;
10400 case HLS_DN_OFFLINE:
10401 return OPA_PORTPHYSSTATE_OFFLINE;
10402 case HLS_VERIFY_CAP:
10403 return IB_PORTPHYSSTATE_POLLING;
10404 case HLS_GOING_UP:
10405 return IB_PORTPHYSSTATE_POLLING;
10406 case HLS_GOING_OFFLINE:
10407 return OPA_PORTPHYSSTATE_OFFLINE;
10408 case HLS_LINK_COOLDOWN:
10409 return OPA_PORTPHYSSTATE_OFFLINE;
10410 case HLS_DN_DOWNDEF:
10411 default:
10412 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10413 ppd->host_link_state);
10414 return -1;
10415 }
10416}
10417
10418/*
10419 * driver_logical_state - convert the driver's notion of a port's
10420 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10421 * (converted to a u32) to indicate error.
10422 */
10423u32 driver_logical_state(struct hfi1_pportdata *ppd)
10424{
0c7f77af 10425 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
77241056
MM
10426 return IB_PORT_DOWN;
10427
10428 switch (ppd->host_link_state & HLS_UP) {
10429 case HLS_UP_INIT:
10430 return IB_PORT_INIT;
10431 case HLS_UP_ARMED:
10432 return IB_PORT_ARMED;
10433 case HLS_UP_ACTIVE:
10434 return IB_PORT_ACTIVE;
10435 default:
10436 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10437 ppd->host_link_state);
10438 return -1;
10439 }
10440}
10441
10442void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10443 u8 neigh_reason, u8 rem_reason)
10444{
10445 if (ppd->local_link_down_reason.latest == 0 &&
10446 ppd->neigh_link_down_reason.latest == 0) {
10447 ppd->local_link_down_reason.latest = lcl_reason;
10448 ppd->neigh_link_down_reason.latest = neigh_reason;
10449 ppd->remote_link_down_reason = rem_reason;
10450 }
10451}
10452
10453/*
10454 * Change the physical and/or logical link state.
10455 *
10456 * Do not call this routine while inside an interrupt. It contains
10457 * calls to routines that can take multiple seconds to finish.
10458 *
10459 * Returns 0 on success, -errno on failure.
10460 */
10461int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10462{
10463 struct hfi1_devdata *dd = ppd->dd;
10464 struct ib_event event = {.device = NULL};
10465 int ret1, ret = 0;
77241056
MM
10466 int orig_new_state, poll_bounce;
10467
10468 mutex_lock(&ppd->hls_lock);
10469
10470 orig_new_state = state;
10471 if (state == HLS_DN_DOWNDEF)
10472 state = dd->link_default;
10473
10474 /* interpret poll -> poll as a link bounce */
d0d236ea
JJ
10475 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10476 state == HLS_DN_POLL;
77241056
MM
10477
10478 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
17fb4f29
JJ
10479 link_state_name(ppd->host_link_state),
10480 link_state_name(orig_new_state),
10481 poll_bounce ? "(bounce) " : "",
10482 link_state_reason_name(ppd, state));
77241056 10483
77241056
MM
10484 /*
10485 * If we're going to a (HLS_*) link state that implies the logical
10486 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10487 * reset is_sm_config_started to 0.
10488 */
10489 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10490 ppd->is_sm_config_started = 0;
10491
10492 /*
10493 * Do nothing if the states match. Let a poll to poll link bounce
10494 * go through.
10495 */
10496 if (ppd->host_link_state == state && !poll_bounce)
10497 goto done;
10498
10499 switch (state) {
10500 case HLS_UP_INIT:
d0d236ea
JJ
10501 if (ppd->host_link_state == HLS_DN_POLL &&
10502 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
10503 /*
10504 * Quick link up jumps from polling to here.
10505 *
10506 * Whether in normal or loopback mode, the
10507 * simulator jumps from polling to link up.
10508 * Accept that here.
10509 */
17fb4f29 10510 /* OK */
77241056
MM
10511 } else if (ppd->host_link_state != HLS_GOING_UP) {
10512 goto unexpected;
10513 }
10514
77241056
MM
10515 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10516 if (ret) {
77241056 10517 dd_dev_err(dd,
17fb4f29
JJ
10518 "%s: logical state did not change to INIT\n",
10519 __func__);
77241056
MM
10520 } else {
10521 /* clear old transient LINKINIT_REASON code */
10522 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10523 ppd->linkinit_reason =
10524 OPA_LINKINIT_REASON_LINKUP;
10525
10526 /* enable the port */
10527 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10528
10529 handle_linkup_change(dd, 1);
98b9ee20 10530 ppd->host_link_state = HLS_UP_INIT;
77241056
MM
10531 }
10532 break;
10533 case HLS_UP_ARMED:
10534 if (ppd->host_link_state != HLS_UP_INIT)
10535 goto unexpected;
10536
10537 ppd->host_link_state = HLS_UP_ARMED;
10538 set_logical_state(dd, LSTATE_ARMED);
10539 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10540 if (ret) {
10541 /* logical state didn't change, stay at init */
10542 ppd->host_link_state = HLS_UP_INIT;
10543 dd_dev_err(dd,
17fb4f29
JJ
10544 "%s: logical state did not change to ARMED\n",
10545 __func__);
77241056
MM
10546 }
10547 /*
10548 * The simulator does not currently implement SMA messages,
10549 * so neighbor_normal is not set. Set it here when we first
10550 * move to Armed.
10551 */
10552 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10553 ppd->neighbor_normal = 1;
10554 break;
10555 case HLS_UP_ACTIVE:
10556 if (ppd->host_link_state != HLS_UP_ARMED)
10557 goto unexpected;
10558
10559 ppd->host_link_state = HLS_UP_ACTIVE;
10560 set_logical_state(dd, LSTATE_ACTIVE);
10561 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10562 if (ret) {
10563 /* logical state didn't change, stay at armed */
10564 ppd->host_link_state = HLS_UP_ARMED;
10565 dd_dev_err(dd,
17fb4f29
JJ
10566 "%s: logical state did not change to ACTIVE\n",
10567 __func__);
77241056 10568 } else {
77241056
MM
10569 /* tell all engines to go running */
10570 sdma_all_running(dd);
10571
10572 /* Signal the IB layer that the port has went active */
ec3f2c12 10573 event.device = &dd->verbs_dev.rdi.ibdev;
77241056
MM
10574 event.element.port_num = ppd->port;
10575 event.event = IB_EVENT_PORT_ACTIVE;
10576 }
10577 break;
10578 case HLS_DN_POLL:
10579 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10580 ppd->host_link_state == HLS_DN_OFFLINE) &&
10581 dd->dc_shutdown)
10582 dc_start(dd);
10583 /* Hand LED control to the DC */
10584 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10585
10586 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10587 u8 tmp = ppd->link_enabled;
10588
10589 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10590 if (ret) {
10591 ppd->link_enabled = tmp;
10592 break;
10593 }
10594 ppd->remote_link_down_reason = 0;
10595
10596 if (ppd->driver_link_ready)
10597 ppd->link_enabled = 1;
10598 }
10599
fb9036dd 10600 set_all_slowpath(ppd->dd);
77241056
MM
10601 ret = set_local_link_attributes(ppd);
10602 if (ret)
10603 break;
10604
10605 ppd->port_error_action = 0;
10606 ppd->host_link_state = HLS_DN_POLL;
10607
10608 if (quick_linkup) {
10609 /* quick linkup does not go into polling */
10610 ret = do_quick_linkup(dd);
10611 } else {
10612 ret1 = set_physical_link_state(dd, PLS_POLLING);
10613 if (ret1 != HCMD_SUCCESS) {
10614 dd_dev_err(dd,
17fb4f29
JJ
10615 "Failed to transition to Polling link state, return 0x%x\n",
10616 ret1);
77241056
MM
10617 ret = -EINVAL;
10618 }
10619 }
a9c05e35
BM
10620 ppd->offline_disabled_reason =
10621 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
77241056
MM
10622 /*
10623 * If an error occurred above, go back to offline. The
10624 * caller may reschedule another attempt.
10625 */
10626 if (ret)
10627 goto_offline(ppd, 0);
10628 break;
10629 case HLS_DN_DISABLE:
10630 /* link is disabled */
10631 ppd->link_enabled = 0;
10632
10633 /* allow any state to transition to disabled */
10634
10635 /* must transition to offline first */
10636 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10637 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10638 if (ret)
10639 break;
10640 ppd->remote_link_down_reason = 0;
10641 }
10642
db069ecb
MR
10643 if (!dd->dc_shutdown) {
10644 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10645 if (ret1 != HCMD_SUCCESS) {
10646 dd_dev_err(dd,
10647 "Failed to transition to Disabled link state, return 0x%x\n",
10648 ret1);
10649 ret = -EINVAL;
10650 break;
10651 }
10652 dc_shutdown(dd);
77241056
MM
10653 }
10654 ppd->host_link_state = HLS_DN_DISABLE;
77241056
MM
10655 break;
10656 case HLS_DN_OFFLINE:
10657 if (ppd->host_link_state == HLS_DN_DISABLE)
10658 dc_start(dd);
10659
10660 /* allow any state to transition to offline */
10661 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10662 if (!ret)
10663 ppd->remote_link_down_reason = 0;
10664 break;
10665 case HLS_VERIFY_CAP:
10666 if (ppd->host_link_state != HLS_DN_POLL)
10667 goto unexpected;
10668 ppd->host_link_state = HLS_VERIFY_CAP;
10669 break;
10670 case HLS_GOING_UP:
10671 if (ppd->host_link_state != HLS_VERIFY_CAP)
10672 goto unexpected;
10673
10674 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10675 if (ret1 != HCMD_SUCCESS) {
10676 dd_dev_err(dd,
17fb4f29
JJ
10677 "Failed to transition to link up state, return 0x%x\n",
10678 ret1);
77241056
MM
10679 ret = -EINVAL;
10680 break;
10681 }
10682 ppd->host_link_state = HLS_GOING_UP;
10683 break;
10684
10685 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10686 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10687 default:
10688 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
17fb4f29 10689 __func__, state);
77241056
MM
10690 ret = -EINVAL;
10691 break;
10692 }
10693
77241056
MM
10694 goto done;
10695
10696unexpected:
10697 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
17fb4f29
JJ
10698 __func__, link_state_name(ppd->host_link_state),
10699 link_state_name(state));
77241056
MM
10700 ret = -EINVAL;
10701
10702done:
10703 mutex_unlock(&ppd->hls_lock);
10704
10705 if (event.device)
10706 ib_dispatch_event(&event);
10707
10708 return ret;
10709}
10710
10711int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10712{
10713 u64 reg;
10714 int ret = 0;
10715
10716 switch (which) {
10717 case HFI1_IB_CFG_LIDLMC:
10718 set_lidlmc(ppd);
10719 break;
10720 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10721 /*
10722 * The VL Arbitrator high limit is sent in units of 4k
10723 * bytes, while HFI stores it in units of 64 bytes.
10724 */
8638b77f 10725 val *= 4096 / 64;
77241056
MM
10726 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10727 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10728 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10729 break;
10730 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10731 /* HFI only supports POLL as the default link down state */
10732 if (val != HLS_DN_POLL)
10733 ret = -EINVAL;
10734 break;
10735 case HFI1_IB_CFG_OP_VLS:
10736 if (ppd->vls_operational != val) {
10737 ppd->vls_operational = val;
10738 if (!ppd->port)
10739 ret = -EINVAL;
77241056
MM
10740 }
10741 break;
10742 /*
10743 * For link width, link width downgrade, and speed enable, always AND
10744 * the setting with what is actually supported. This has two benefits.
10745 * First, enabled can't have unsupported values, no matter what the
10746 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10747 * "fill in with your supported value" have all the bits in the
10748 * field set, so simply ANDing with supported has the desired result.
10749 */
10750 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10751 ppd->link_width_enabled = val & ppd->link_width_supported;
10752 break;
10753 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10754 ppd->link_width_downgrade_enabled =
10755 val & ppd->link_width_downgrade_supported;
10756 break;
10757 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10758 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10759 break;
10760 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10761 /*
10762 * HFI does not follow IB specs, save this value
10763 * so we can report it, if asked.
10764 */
10765 ppd->overrun_threshold = val;
10766 break;
10767 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10768 /*
10769 * HFI does not follow IB specs, save this value
10770 * so we can report it, if asked.
10771 */
10772 ppd->phy_error_threshold = val;
10773 break;
10774
10775 case HFI1_IB_CFG_MTU:
10776 set_send_length(ppd);
10777 break;
10778
10779 case HFI1_IB_CFG_PKEYS:
10780 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10781 set_partition_keys(ppd);
10782 break;
10783
10784 default:
10785 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10786 dd_dev_info(ppd->dd,
17fb4f29
JJ
10787 "%s: which %s, val 0x%x: not implemented\n",
10788 __func__, ib_cfg_name(which), val);
77241056
MM
10789 break;
10790 }
10791 return ret;
10792}
10793
10794/* begin functions related to vl arbitration table caching */
10795static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10796{
10797 int i;
10798
10799 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10800 VL_ARB_LOW_PRIO_TABLE_SIZE);
10801 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10802 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10803
10804 /*
10805 * Note that we always return values directly from the
10806 * 'vl_arb_cache' (and do no CSR reads) in response to a
10807 * 'Get(VLArbTable)'. This is obviously correct after a
10808 * 'Set(VLArbTable)', since the cache will then be up to
10809 * date. But it's also correct prior to any 'Set(VLArbTable)'
10810 * since then both the cache, and the relevant h/w registers
10811 * will be zeroed.
10812 */
10813
10814 for (i = 0; i < MAX_PRIO_TABLE; i++)
10815 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10816}
10817
10818/*
10819 * vl_arb_lock_cache
10820 *
10821 * All other vl_arb_* functions should be called only after locking
10822 * the cache.
10823 */
10824static inline struct vl_arb_cache *
10825vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10826{
10827 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10828 return NULL;
10829 spin_lock(&ppd->vl_arb_cache[idx].lock);
10830 return &ppd->vl_arb_cache[idx];
10831}
10832
10833static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10834{
10835 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10836}
10837
10838static void vl_arb_get_cache(struct vl_arb_cache *cache,
10839 struct ib_vl_weight_elem *vl)
10840{
10841 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10842}
10843
10844static void vl_arb_set_cache(struct vl_arb_cache *cache,
10845 struct ib_vl_weight_elem *vl)
10846{
10847 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10848}
10849
10850static int vl_arb_match_cache(struct vl_arb_cache *cache,
10851 struct ib_vl_weight_elem *vl)
10852{
10853 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10854}
f4d507cd 10855
77241056
MM
10856/* end functions related to vl arbitration table caching */
10857
10858static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10859 u32 size, struct ib_vl_weight_elem *vl)
10860{
10861 struct hfi1_devdata *dd = ppd->dd;
10862 u64 reg;
10863 unsigned int i, is_up = 0;
10864 int drain, ret = 0;
10865
10866 mutex_lock(&ppd->hls_lock);
10867
10868 if (ppd->host_link_state & HLS_UP)
10869 is_up = 1;
10870
10871 drain = !is_ax(dd) && is_up;
10872
10873 if (drain)
10874 /*
10875 * Before adjusting VL arbitration weights, empty per-VL
10876 * FIFOs, otherwise a packet whose VL weight is being
10877 * set to 0 could get stuck in a FIFO with no chance to
10878 * egress.
10879 */
10880 ret = stop_drain_data_vls(dd);
10881
10882 if (ret) {
10883 dd_dev_err(
10884 dd,
10885 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10886 __func__);
10887 goto err;
10888 }
10889
10890 for (i = 0; i < size; i++, vl++) {
10891 /*
10892 * NOTE: The low priority shift and mask are used here, but
10893 * they are the same for both the low and high registers.
10894 */
10895 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10896 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10897 | (((u64)vl->weight
10898 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10899 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10900 write_csr(dd, target + (i * 8), reg);
10901 }
10902 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10903
10904 if (drain)
10905 open_fill_data_vls(dd); /* reopen all VLs */
10906
10907err:
10908 mutex_unlock(&ppd->hls_lock);
10909
10910 return ret;
10911}
10912
10913/*
10914 * Read one credit merge VL register.
10915 */
10916static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10917 struct vl_limit *vll)
10918{
10919 u64 reg = read_csr(dd, csr);
10920
10921 vll->dedicated = cpu_to_be16(
10922 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10923 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10924 vll->shared = cpu_to_be16(
10925 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10926 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10927}
10928
10929/*
10930 * Read the current credit merge limits.
10931 */
10932static int get_buffer_control(struct hfi1_devdata *dd,
10933 struct buffer_control *bc, u16 *overall_limit)
10934{
10935 u64 reg;
10936 int i;
10937
10938 /* not all entries are filled in */
10939 memset(bc, 0, sizeof(*bc));
10940
10941 /* OPA and HFI have a 1-1 mapping */
10942 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 10943 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
77241056
MM
10944
10945 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10946 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10947
10948 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10949 bc->overall_shared_limit = cpu_to_be16(
10950 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10951 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10952 if (overall_limit)
10953 *overall_limit = (reg
10954 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10955 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10956 return sizeof(struct buffer_control);
10957}
10958
10959static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10960{
10961 u64 reg;
10962 int i;
10963
10964 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10965 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10966 for (i = 0; i < sizeof(u64); i++) {
10967 u8 byte = *(((u8 *)&reg) + i);
10968
10969 dp->vlnt[2 * i] = byte & 0xf;
10970 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10971 }
10972
10973 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10974 for (i = 0; i < sizeof(u64); i++) {
10975 u8 byte = *(((u8 *)&reg) + i);
10976
10977 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10978 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10979 }
10980 return sizeof(struct sc2vlnt);
10981}
10982
10983static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10984 struct ib_vl_weight_elem *vl)
10985{
10986 unsigned int i;
10987
10988 for (i = 0; i < nelems; i++, vl++) {
10989 vl->vl = 0xf;
10990 vl->weight = 0;
10991 }
10992}
10993
10994static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10995{
10996 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
17fb4f29
JJ
10997 DC_SC_VL_VAL(15_0,
10998 0, dp->vlnt[0] & 0xf,
10999 1, dp->vlnt[1] & 0xf,
11000 2, dp->vlnt[2] & 0xf,
11001 3, dp->vlnt[3] & 0xf,
11002 4, dp->vlnt[4] & 0xf,
11003 5, dp->vlnt[5] & 0xf,
11004 6, dp->vlnt[6] & 0xf,
11005 7, dp->vlnt[7] & 0xf,
11006 8, dp->vlnt[8] & 0xf,
11007 9, dp->vlnt[9] & 0xf,
11008 10, dp->vlnt[10] & 0xf,
11009 11, dp->vlnt[11] & 0xf,
11010 12, dp->vlnt[12] & 0xf,
11011 13, dp->vlnt[13] & 0xf,
11012 14, dp->vlnt[14] & 0xf,
11013 15, dp->vlnt[15] & 0xf));
77241056 11014 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
17fb4f29
JJ
11015 DC_SC_VL_VAL(31_16,
11016 16, dp->vlnt[16] & 0xf,
11017 17, dp->vlnt[17] & 0xf,
11018 18, dp->vlnt[18] & 0xf,
11019 19, dp->vlnt[19] & 0xf,
11020 20, dp->vlnt[20] & 0xf,
11021 21, dp->vlnt[21] & 0xf,
11022 22, dp->vlnt[22] & 0xf,
11023 23, dp->vlnt[23] & 0xf,
11024 24, dp->vlnt[24] & 0xf,
11025 25, dp->vlnt[25] & 0xf,
11026 26, dp->vlnt[26] & 0xf,
11027 27, dp->vlnt[27] & 0xf,
11028 28, dp->vlnt[28] & 0xf,
11029 29, dp->vlnt[29] & 0xf,
11030 30, dp->vlnt[30] & 0xf,
11031 31, dp->vlnt[31] & 0xf));
77241056
MM
11032}
11033
11034static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11035 u16 limit)
11036{
11037 if (limit != 0)
11038 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
17fb4f29 11039 what, (int)limit, idx);
77241056
MM
11040}
11041
11042/* change only the shared limit portion of SendCmGLobalCredit */
11043static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11044{
11045 u64 reg;
11046
11047 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11048 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11049 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11050 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11051}
11052
11053/* change only the total credit limit portion of SendCmGLobalCredit */
11054static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11055{
11056 u64 reg;
11057
11058 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11059 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11060 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11061 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11062}
11063
11064/* set the given per-VL shared limit */
11065static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11066{
11067 u64 reg;
11068 u32 addr;
11069
11070 if (vl < TXE_NUM_DATA_VL)
11071 addr = SEND_CM_CREDIT_VL + (8 * vl);
11072 else
11073 addr = SEND_CM_CREDIT_VL15;
11074
11075 reg = read_csr(dd, addr);
11076 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11077 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11078 write_csr(dd, addr, reg);
11079}
11080
11081/* set the given per-VL dedicated limit */
11082static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11083{
11084 u64 reg;
11085 u32 addr;
11086
11087 if (vl < TXE_NUM_DATA_VL)
11088 addr = SEND_CM_CREDIT_VL + (8 * vl);
11089 else
11090 addr = SEND_CM_CREDIT_VL15;
11091
11092 reg = read_csr(dd, addr);
11093 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11094 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11095 write_csr(dd, addr, reg);
11096}
11097
11098/* spin until the given per-VL status mask bits clear */
11099static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11100 const char *which)
11101{
11102 unsigned long timeout;
11103 u64 reg;
11104
11105 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11106 while (1) {
11107 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11108
11109 if (reg == 0)
11110 return; /* success */
11111 if (time_after(jiffies, timeout))
11112 break; /* timed out */
11113 udelay(1);
11114 }
11115
11116 dd_dev_err(dd,
17fb4f29
JJ
11117 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11118 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
77241056
MM
11119 /*
11120 * If this occurs, it is likely there was a credit loss on the link.
11121 * The only recovery from that is a link bounce.
11122 */
11123 dd_dev_err(dd,
17fb4f29 11124 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
77241056
MM
11125}
11126
11127/*
11128 * The number of credits on the VLs may be changed while everything
11129 * is "live", but the following algorithm must be followed due to
11130 * how the hardware is actually implemented. In particular,
11131 * Return_Credit_Status[] is the only correct status check.
11132 *
11133 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11134 * set Global_Shared_Credit_Limit = 0
11135 * use_all_vl = 1
11136 * mask0 = all VLs that are changing either dedicated or shared limits
11137 * set Shared_Limit[mask0] = 0
11138 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11139 * if (changing any dedicated limit)
11140 * mask1 = all VLs that are lowering dedicated limits
11141 * lower Dedicated_Limit[mask1]
11142 * spin until Return_Credit_Status[mask1] == 0
11143 * raise Dedicated_Limits
11144 * raise Shared_Limits
11145 * raise Global_Shared_Credit_Limit
11146 *
11147 * lower = if the new limit is lower, set the limit to the new value
11148 * raise = if the new limit is higher than the current value (may be changed
11149 * earlier in the algorithm), set the new limit to the new value
11150 */
8a4d3444
MM
11151int set_buffer_control(struct hfi1_pportdata *ppd,
11152 struct buffer_control *new_bc)
77241056 11153{
8a4d3444 11154 struct hfi1_devdata *dd = ppd->dd;
77241056
MM
11155 u64 changing_mask, ld_mask, stat_mask;
11156 int change_count;
11157 int i, use_all_mask;
11158 int this_shared_changing;
8a4d3444 11159 int vl_count = 0, ret;
77241056
MM
11160 /*
11161 * A0: add the variable any_shared_limit_changing below and in the
11162 * algorithm above. If removing A0 support, it can be removed.
11163 */
11164 int any_shared_limit_changing;
11165 struct buffer_control cur_bc;
11166 u8 changing[OPA_MAX_VLS];
11167 u8 lowering_dedicated[OPA_MAX_VLS];
11168 u16 cur_total;
11169 u32 new_total = 0;
11170 const u64 all_mask =
11171 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11172 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11173 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11174 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11175 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11176 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11177 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11178 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11179 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11180
11181#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11182#define NUM_USABLE_VLS 16 /* look at VL15 and less */
11183
77241056
MM
11184 /* find the new total credits, do sanity check on unused VLs */
11185 for (i = 0; i < OPA_MAX_VLS; i++) {
11186 if (valid_vl(i)) {
11187 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11188 continue;
11189 }
11190 nonzero_msg(dd, i, "dedicated",
17fb4f29 11191 be16_to_cpu(new_bc->vl[i].dedicated));
77241056 11192 nonzero_msg(dd, i, "shared",
17fb4f29 11193 be16_to_cpu(new_bc->vl[i].shared));
77241056
MM
11194 new_bc->vl[i].dedicated = 0;
11195 new_bc->vl[i].shared = 0;
11196 }
11197 new_total += be16_to_cpu(new_bc->overall_shared_limit);
bff14bb6 11198
77241056
MM
11199 /* fetch the current values */
11200 get_buffer_control(dd, &cur_bc, &cur_total);
11201
11202 /*
11203 * Create the masks we will use.
11204 */
11205 memset(changing, 0, sizeof(changing));
11206 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
4d114fdd
JJ
11207 /*
11208 * NOTE: Assumes that the individual VL bits are adjacent and in
11209 * increasing order
11210 */
77241056
MM
11211 stat_mask =
11212 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11213 changing_mask = 0;
11214 ld_mask = 0;
11215 change_count = 0;
11216 any_shared_limit_changing = 0;
11217 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11218 if (!valid_vl(i))
11219 continue;
11220 this_shared_changing = new_bc->vl[i].shared
11221 != cur_bc.vl[i].shared;
11222 if (this_shared_changing)
11223 any_shared_limit_changing = 1;
d0d236ea
JJ
11224 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11225 this_shared_changing) {
77241056
MM
11226 changing[i] = 1;
11227 changing_mask |= stat_mask;
11228 change_count++;
11229 }
11230 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11231 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11232 lowering_dedicated[i] = 1;
11233 ld_mask |= stat_mask;
11234 }
11235 }
11236
11237 /* bracket the credit change with a total adjustment */
11238 if (new_total > cur_total)
11239 set_global_limit(dd, new_total);
11240
11241 /*
11242 * Start the credit change algorithm.
11243 */
11244 use_all_mask = 0;
11245 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
11246 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11247 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
11248 set_global_shared(dd, 0);
11249 cur_bc.overall_shared_limit = 0;
11250 use_all_mask = 1;
11251 }
11252
11253 for (i = 0; i < NUM_USABLE_VLS; i++) {
11254 if (!valid_vl(i))
11255 continue;
11256
11257 if (changing[i]) {
11258 set_vl_shared(dd, i, 0);
11259 cur_bc.vl[i].shared = 0;
11260 }
11261 }
11262
11263 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
17fb4f29 11264 "shared");
77241056
MM
11265
11266 if (change_count > 0) {
11267 for (i = 0; i < NUM_USABLE_VLS; i++) {
11268 if (!valid_vl(i))
11269 continue;
11270
11271 if (lowering_dedicated[i]) {
11272 set_vl_dedicated(dd, i,
17fb4f29
JJ
11273 be16_to_cpu(new_bc->
11274 vl[i].dedicated));
77241056
MM
11275 cur_bc.vl[i].dedicated =
11276 new_bc->vl[i].dedicated;
11277 }
11278 }
11279
11280 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11281
11282 /* now raise all dedicated that are going up */
11283 for (i = 0; i < NUM_USABLE_VLS; i++) {
11284 if (!valid_vl(i))
11285 continue;
11286
11287 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11288 be16_to_cpu(cur_bc.vl[i].dedicated))
11289 set_vl_dedicated(dd, i,
17fb4f29
JJ
11290 be16_to_cpu(new_bc->
11291 vl[i].dedicated));
77241056
MM
11292 }
11293 }
11294
11295 /* next raise all shared that are going up */
11296 for (i = 0; i < NUM_USABLE_VLS; i++) {
11297 if (!valid_vl(i))
11298 continue;
11299
11300 if (be16_to_cpu(new_bc->vl[i].shared) >
11301 be16_to_cpu(cur_bc.vl[i].shared))
11302 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11303 }
11304
11305 /* finally raise the global shared */
11306 if (be16_to_cpu(new_bc->overall_shared_limit) >
17fb4f29 11307 be16_to_cpu(cur_bc.overall_shared_limit))
77241056 11308 set_global_shared(dd,
17fb4f29 11309 be16_to_cpu(new_bc->overall_shared_limit));
77241056
MM
11310
11311 /* bracket the credit change with a total adjustment */
11312 if (new_total < cur_total)
11313 set_global_limit(dd, new_total);
8a4d3444
MM
11314
11315 /*
11316 * Determine the actual number of operational VLS using the number of
11317 * dedicated and shared credits for each VL.
11318 */
11319 if (change_count > 0) {
11320 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11321 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11322 be16_to_cpu(new_bc->vl[i].shared) > 0)
11323 vl_count++;
11324 ppd->actual_vls_operational = vl_count;
11325 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11326 ppd->actual_vls_operational :
11327 ppd->vls_operational,
11328 NULL);
11329 if (ret == 0)
11330 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11331 ppd->actual_vls_operational :
11332 ppd->vls_operational, NULL);
11333 if (ret)
11334 return ret;
11335 }
77241056
MM
11336 return 0;
11337}
11338
11339/*
11340 * Read the given fabric manager table. Return the size of the
11341 * table (in bytes) on success, and a negative error code on
11342 * failure.
11343 */
11344int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11345
11346{
11347 int size;
11348 struct vl_arb_cache *vlc;
11349
11350 switch (which) {
11351 case FM_TBL_VL_HIGH_ARB:
11352 size = 256;
11353 /*
11354 * OPA specifies 128 elements (of 2 bytes each), though
11355 * HFI supports only 16 elements in h/w.
11356 */
11357 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11358 vl_arb_get_cache(vlc, t);
11359 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11360 break;
11361 case FM_TBL_VL_LOW_ARB:
11362 size = 256;
11363 /*
11364 * OPA specifies 128 elements (of 2 bytes each), though
11365 * HFI supports only 16 elements in h/w.
11366 */
11367 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11368 vl_arb_get_cache(vlc, t);
11369 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11370 break;
11371 case FM_TBL_BUFFER_CONTROL:
11372 size = get_buffer_control(ppd->dd, t, NULL);
11373 break;
11374 case FM_TBL_SC2VLNT:
11375 size = get_sc2vlnt(ppd->dd, t);
11376 break;
11377 case FM_TBL_VL_PREEMPT_ELEMS:
11378 size = 256;
11379 /* OPA specifies 128 elements, of 2 bytes each */
11380 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11381 break;
11382 case FM_TBL_VL_PREEMPT_MATRIX:
11383 size = 256;
11384 /*
11385 * OPA specifies that this is the same size as the VL
11386 * arbitration tables (i.e., 256 bytes).
11387 */
11388 break;
11389 default:
11390 return -EINVAL;
11391 }
11392 return size;
11393}
11394
11395/*
11396 * Write the given fabric manager table.
11397 */
11398int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11399{
11400 int ret = 0;
11401 struct vl_arb_cache *vlc;
11402
11403 switch (which) {
11404 case FM_TBL_VL_HIGH_ARB:
11405 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11406 if (vl_arb_match_cache(vlc, t)) {
11407 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11408 break;
11409 }
11410 vl_arb_set_cache(vlc, t);
11411 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11412 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11413 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11414 break;
11415 case FM_TBL_VL_LOW_ARB:
11416 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11417 if (vl_arb_match_cache(vlc, t)) {
11418 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11419 break;
11420 }
11421 vl_arb_set_cache(vlc, t);
11422 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11423 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11424 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11425 break;
11426 case FM_TBL_BUFFER_CONTROL:
8a4d3444 11427 ret = set_buffer_control(ppd, t);
77241056
MM
11428 break;
11429 case FM_TBL_SC2VLNT:
11430 set_sc2vlnt(ppd->dd, t);
11431 break;
11432 default:
11433 ret = -EINVAL;
11434 }
11435 return ret;
11436}
11437
11438/*
11439 * Disable all data VLs.
11440 *
11441 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11442 */
11443static int disable_data_vls(struct hfi1_devdata *dd)
11444{
995deafa 11445 if (is_ax(dd))
77241056
MM
11446 return 1;
11447
11448 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11449
11450 return 0;
11451}
11452
11453/*
11454 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11455 * Just re-enables all data VLs (the "fill" part happens
11456 * automatically - the name was chosen for symmetry with
11457 * stop_drain_data_vls()).
11458 *
11459 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11460 */
11461int open_fill_data_vls(struct hfi1_devdata *dd)
11462{
995deafa 11463 if (is_ax(dd))
77241056
MM
11464 return 1;
11465
11466 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11467
11468 return 0;
11469}
11470
11471/*
11472 * drain_data_vls() - assumes that disable_data_vls() has been called,
11473 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11474 * engines to drop to 0.
11475 */
11476static void drain_data_vls(struct hfi1_devdata *dd)
11477{
11478 sc_wait(dd);
11479 sdma_wait(dd);
11480 pause_for_credit_return(dd);
11481}
11482
11483/*
11484 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11485 *
11486 * Use open_fill_data_vls() to resume using data VLs. This pair is
11487 * meant to be used like this:
11488 *
11489 * stop_drain_data_vls(dd);
11490 * // do things with per-VL resources
11491 * open_fill_data_vls(dd);
11492 */
11493int stop_drain_data_vls(struct hfi1_devdata *dd)
11494{
11495 int ret;
11496
11497 ret = disable_data_vls(dd);
11498 if (ret == 0)
11499 drain_data_vls(dd);
11500
11501 return ret;
11502}
11503
11504/*
11505 * Convert a nanosecond time to a cclock count. No matter how slow
11506 * the cclock, a non-zero ns will always have a non-zero result.
11507 */
11508u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11509{
11510 u32 cclocks;
11511
11512 if (dd->icode == ICODE_FPGA_EMULATION)
11513 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11514 else /* simulation pretends to be ASIC */
11515 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11516 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11517 cclocks = 1;
11518 return cclocks;
11519}
11520
11521/*
11522 * Convert a cclock count to nanoseconds. Not matter how slow
11523 * the cclock, a non-zero cclocks will always have a non-zero result.
11524 */
11525u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11526{
11527 u32 ns;
11528
11529 if (dd->icode == ICODE_FPGA_EMULATION)
11530 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11531 else /* simulation pretends to be ASIC */
11532 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11533 if (cclocks && !ns)
11534 ns = 1;
11535 return ns;
11536}
11537
11538/*
11539 * Dynamically adjust the receive interrupt timeout for a context based on
11540 * incoming packet rate.
11541 *
11542 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11543 */
11544static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11545{
11546 struct hfi1_devdata *dd = rcd->dd;
11547 u32 timeout = rcd->rcvavail_timeout;
11548
11549 /*
11550 * This algorithm doubles or halves the timeout depending on whether
11551 * the number of packets received in this interrupt were less than or
11552 * greater equal the interrupt count.
11553 *
11554 * The calculations below do not allow a steady state to be achieved.
11555 * Only at the endpoints it is possible to have an unchanging
11556 * timeout.
11557 */
11558 if (npkts < rcv_intr_count) {
11559 /*
11560 * Not enough packets arrived before the timeout, adjust
11561 * timeout downward.
11562 */
11563 if (timeout < 2) /* already at minimum? */
11564 return;
11565 timeout >>= 1;
11566 } else {
11567 /*
11568 * More than enough packets arrived before the timeout, adjust
11569 * timeout upward.
11570 */
11571 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11572 return;
11573 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11574 }
11575
11576 rcd->rcvavail_timeout = timeout;
4d114fdd
JJ
11577 /*
11578 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11579 * been verified to be in range
11580 */
77241056 11581 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29
JJ
11582 (u64)timeout <<
11583 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
77241056
MM
11584}
11585
11586void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11587 u32 intr_adjust, u32 npkts)
11588{
11589 struct hfi1_devdata *dd = rcd->dd;
11590 u64 reg;
11591 u32 ctxt = rcd->ctxt;
11592
11593 /*
11594 * Need to write timeout register before updating RcvHdrHead to ensure
11595 * that a new value is used when the HW decides to restart counting.
11596 */
11597 if (intr_adjust)
11598 adjust_rcv_timeout(rcd, npkts);
11599 if (updegr) {
11600 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11601 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11602 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11603 }
11604 mmiowb();
11605 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11606 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11607 << RCV_HDR_HEAD_HEAD_SHIFT);
11608 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11609 mmiowb();
11610}
11611
11612u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11613{
11614 u32 head, tail;
11615
11616 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11617 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11618
11619 if (rcd->rcvhdrtail_kvaddr)
11620 tail = get_rcvhdrtail(rcd);
11621 else
11622 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11623
11624 return head == tail;
11625}
11626
11627/*
11628 * Context Control and Receive Array encoding for buffer size:
11629 * 0x0 invalid
11630 * 0x1 4 KB
11631 * 0x2 8 KB
11632 * 0x3 16 KB
11633 * 0x4 32 KB
11634 * 0x5 64 KB
11635 * 0x6 128 KB
11636 * 0x7 256 KB
11637 * 0x8 512 KB (Receive Array only)
11638 * 0x9 1 MB (Receive Array only)
11639 * 0xa 2 MB (Receive Array only)
11640 *
11641 * 0xB-0xF - reserved (Receive Array only)
11642 *
11643 *
11644 * This routine assumes that the value has already been sanity checked.
11645 */
11646static u32 encoded_size(u32 size)
11647{
11648 switch (size) {
8638b77f
JJ
11649 case 4 * 1024: return 0x1;
11650 case 8 * 1024: return 0x2;
11651 case 16 * 1024: return 0x3;
11652 case 32 * 1024: return 0x4;
11653 case 64 * 1024: return 0x5;
11654 case 128 * 1024: return 0x6;
11655 case 256 * 1024: return 0x7;
11656 case 512 * 1024: return 0x8;
11657 case 1 * 1024 * 1024: return 0x9;
11658 case 2 * 1024 * 1024: return 0xa;
77241056
MM
11659 }
11660 return 0x1; /* if invalid, go with the minimum size */
11661}
11662
11663void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11664{
11665 struct hfi1_ctxtdata *rcd;
11666 u64 rcvctrl, reg;
11667 int did_enable = 0;
11668
11669 rcd = dd->rcd[ctxt];
11670 if (!rcd)
11671 return;
11672
11673 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11674
11675 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11676 /* if the context already enabled, don't do the extra steps */
d0d236ea
JJ
11677 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11678 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
77241056
MM
11679 /* reset the tail and hdr addresses, and sequence count */
11680 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
60368186 11681 rcd->rcvhdrq_dma);
77241056
MM
11682 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11683 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11684 rcd->rcvhdrqtailaddr_dma);
77241056
MM
11685 rcd->seq_cnt = 1;
11686
11687 /* reset the cached receive header queue head value */
11688 rcd->head = 0;
11689
11690 /*
11691 * Zero the receive header queue so we don't get false
11692 * positives when checking the sequence number. The
11693 * sequence numbers could land exactly on the same spot.
11694 * E.g. a rcd restart before the receive header wrapped.
11695 */
11696 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11697
11698 /* starting timeout */
11699 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11700
11701 /* enable the context */
11702 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11703
11704 /* clean the egr buffer size first */
11705 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11706 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11707 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11708 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11709
11710 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11711 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11712 did_enable = 1;
11713
11714 /* zero RcvEgrIndexHead */
11715 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11716
11717 /* set eager count and base index */
11718 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11719 & RCV_EGR_CTRL_EGR_CNT_MASK)
11720 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11721 (((rcd->eager_base >> RCV_SHIFT)
11722 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11723 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11724 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11725
11726 /*
11727 * Set TID (expected) count and base index.
11728 * rcd->expected_count is set to individual RcvArray entries,
11729 * not pairs, and the CSR takes a pair-count in groups of
11730 * four, so divide by 8.
11731 */
11732 reg = (((rcd->expected_count >> RCV_SHIFT)
11733 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11734 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11735 (((rcd->expected_base >> RCV_SHIFT)
11736 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11737 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11738 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
11739 if (ctxt == HFI1_CTRL_CTXT)
11740 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
11741 }
11742 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11743 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
11744 /*
11745 * When receive context is being disabled turn on tail
11746 * update with a dummy tail address and then disable
11747 * receive context.
11748 */
60368186 11749 if (dd->rcvhdrtail_dummy_dma) {
46b010d3 11750 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11751 dd->rcvhdrtail_dummy_dma);
566c157c 11752 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
46b010d3
MB
11753 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11754 }
11755
77241056
MM
11756 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11757 }
11758 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11759 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11760 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11761 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
60368186 11762 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
77241056 11763 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
566c157c
MH
11764 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11765 /* See comment on RcvCtxtCtrl.TailUpd above */
11766 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11767 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11768 }
77241056
MM
11769 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11770 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11771 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11772 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11773 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
4d114fdd
JJ
11774 /*
11775 * In one-packet-per-eager mode, the size comes from
11776 * the RcvArray entry.
11777 */
77241056
MM
11778 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11779 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11780 }
11781 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11782 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11783 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11784 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11785 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11786 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11787 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11788 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11789 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11790 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11791 rcd->rcvctrl = rcvctrl;
11792 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11793 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11794
11795 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
d0d236ea
JJ
11796 if (did_enable &&
11797 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
77241056
MM
11798 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11799 if (reg != 0) {
11800 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
17fb4f29 11801 ctxt, reg);
77241056
MM
11802 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11803 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11804 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11805 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11806 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11807 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
17fb4f29 11808 ctxt, reg, reg == 0 ? "not" : "still");
77241056
MM
11809 }
11810 }
11811
11812 if (did_enable) {
11813 /*
11814 * The interrupt timeout and count must be set after
11815 * the context is enabled to take effect.
11816 */
11817 /* set interrupt timeout */
11818 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29 11819 (u64)rcd->rcvavail_timeout <<
77241056
MM
11820 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11821
11822 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11823 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11824 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11825 }
11826
11827 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11828 /*
11829 * If the context has been disabled and the Tail Update has
46b010d3
MB
11830 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11831 * so it doesn't contain an address that is invalid.
77241056 11832 */
46b010d3 11833 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11834 dd->rcvhdrtail_dummy_dma);
77241056
MM
11835}
11836
582e05c3 11837u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
77241056
MM
11838{
11839 int ret;
11840 u64 val = 0;
11841
11842 if (namep) {
11843 ret = dd->cntrnameslen;
77241056
MM
11844 *namep = dd->cntrnames;
11845 } else {
11846 const struct cntr_entry *entry;
11847 int i, j;
11848
11849 ret = (dd->ndevcntrs) * sizeof(u64);
77241056
MM
11850
11851 /* Get the start of the block of counters */
11852 *cntrp = dd->cntrs;
11853
11854 /*
11855 * Now go and fill in each counter in the block.
11856 */
11857 for (i = 0; i < DEV_CNTR_LAST; i++) {
11858 entry = &dev_cntrs[i];
11859 hfi1_cdbg(CNTR, "reading %s", entry->name);
11860 if (entry->flags & CNTR_DISABLED) {
11861 /* Nothing */
11862 hfi1_cdbg(CNTR, "\tDisabled\n");
11863 } else {
11864 if (entry->flags & CNTR_VL) {
11865 hfi1_cdbg(CNTR, "\tPer VL\n");
11866 for (j = 0; j < C_VL_COUNT; j++) {
11867 val = entry->rw_cntr(entry,
11868 dd, j,
11869 CNTR_MODE_R,
11870 0);
11871 hfi1_cdbg(
11872 CNTR,
11873 "\t\tRead 0x%llx for %d\n",
11874 val, j);
11875 dd->cntrs[entry->offset + j] =
11876 val;
11877 }
a699c6c2
VM
11878 } else if (entry->flags & CNTR_SDMA) {
11879 hfi1_cdbg(CNTR,
11880 "\t Per SDMA Engine\n");
11881 for (j = 0; j < dd->chip_sdma_engines;
11882 j++) {
11883 val =
11884 entry->rw_cntr(entry, dd, j,
11885 CNTR_MODE_R, 0);
11886 hfi1_cdbg(CNTR,
11887 "\t\tRead 0x%llx for %d\n",
11888 val, j);
11889 dd->cntrs[entry->offset + j] =
11890 val;
11891 }
77241056
MM
11892 } else {
11893 val = entry->rw_cntr(entry, dd,
11894 CNTR_INVALID_VL,
11895 CNTR_MODE_R, 0);
11896 dd->cntrs[entry->offset] = val;
11897 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11898 }
11899 }
11900 }
11901 }
11902 return ret;
11903}
11904
11905/*
11906 * Used by sysfs to create files for hfi stats to read
11907 */
582e05c3 11908u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
77241056
MM
11909{
11910 int ret;
11911 u64 val = 0;
11912
11913 if (namep) {
582e05c3
DL
11914 ret = ppd->dd->portcntrnameslen;
11915 *namep = ppd->dd->portcntrnames;
77241056
MM
11916 } else {
11917 const struct cntr_entry *entry;
77241056
MM
11918 int i, j;
11919
582e05c3 11920 ret = ppd->dd->nportcntrs * sizeof(u64);
77241056
MM
11921 *cntrp = ppd->cntrs;
11922
11923 for (i = 0; i < PORT_CNTR_LAST; i++) {
11924 entry = &port_cntrs[i];
11925 hfi1_cdbg(CNTR, "reading %s", entry->name);
11926 if (entry->flags & CNTR_DISABLED) {
11927 /* Nothing */
11928 hfi1_cdbg(CNTR, "\tDisabled\n");
11929 continue;
11930 }
11931
11932 if (entry->flags & CNTR_VL) {
11933 hfi1_cdbg(CNTR, "\tPer VL");
11934 for (j = 0; j < C_VL_COUNT; j++) {
11935 val = entry->rw_cntr(entry, ppd, j,
11936 CNTR_MODE_R,
11937 0);
11938 hfi1_cdbg(
11939 CNTR,
11940 "\t\tRead 0x%llx for %d",
11941 val, j);
11942 ppd->cntrs[entry->offset + j] = val;
11943 }
11944 } else {
11945 val = entry->rw_cntr(entry, ppd,
11946 CNTR_INVALID_VL,
11947 CNTR_MODE_R,
11948 0);
11949 ppd->cntrs[entry->offset] = val;
11950 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11951 }
11952 }
11953 }
11954 return ret;
11955}
11956
11957static void free_cntrs(struct hfi1_devdata *dd)
11958{
11959 struct hfi1_pportdata *ppd;
11960 int i;
11961
11962 if (dd->synth_stats_timer.data)
11963 del_timer_sync(&dd->synth_stats_timer);
11964 dd->synth_stats_timer.data = 0;
11965 ppd = (struct hfi1_pportdata *)(dd + 1);
11966 for (i = 0; i < dd->num_pports; i++, ppd++) {
11967 kfree(ppd->cntrs);
11968 kfree(ppd->scntrs);
4eb06882
DD
11969 free_percpu(ppd->ibport_data.rvp.rc_acks);
11970 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11971 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
77241056
MM
11972 ppd->cntrs = NULL;
11973 ppd->scntrs = NULL;
4eb06882
DD
11974 ppd->ibport_data.rvp.rc_acks = NULL;
11975 ppd->ibport_data.rvp.rc_qacks = NULL;
11976 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
77241056
MM
11977 }
11978 kfree(dd->portcntrnames);
11979 dd->portcntrnames = NULL;
11980 kfree(dd->cntrs);
11981 dd->cntrs = NULL;
11982 kfree(dd->scntrs);
11983 dd->scntrs = NULL;
11984 kfree(dd->cntrnames);
11985 dd->cntrnames = NULL;
22546b74
TS
11986 if (dd->update_cntr_wq) {
11987 destroy_workqueue(dd->update_cntr_wq);
11988 dd->update_cntr_wq = NULL;
11989 }
77241056
MM
11990}
11991
77241056
MM
11992static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11993 u64 *psval, void *context, int vl)
11994{
11995 u64 val;
11996 u64 sval = *psval;
11997
11998 if (entry->flags & CNTR_DISABLED) {
11999 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12000 return 0;
12001 }
12002
12003 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12004
12005 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12006
12007 /* If its a synthetic counter there is more work we need to do */
12008 if (entry->flags & CNTR_SYNTH) {
12009 if (sval == CNTR_MAX) {
12010 /* No need to read already saturated */
12011 return CNTR_MAX;
12012 }
12013
12014 if (entry->flags & CNTR_32BIT) {
12015 /* 32bit counters can wrap multiple times */
12016 u64 upper = sval >> 32;
12017 u64 lower = (sval << 32) >> 32;
12018
12019 if (lower > val) { /* hw wrapped */
12020 if (upper == CNTR_32BIT_MAX)
12021 val = CNTR_MAX;
12022 else
12023 upper++;
12024 }
12025
12026 if (val != CNTR_MAX)
12027 val = (upper << 32) | val;
12028
12029 } else {
12030 /* If we rolled we are saturated */
12031 if ((val < sval) || (val > CNTR_MAX))
12032 val = CNTR_MAX;
12033 }
12034 }
12035
12036 *psval = val;
12037
12038 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12039
12040 return val;
12041}
12042
12043static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12044 struct cntr_entry *entry,
12045 u64 *psval, void *context, int vl, u64 data)
12046{
12047 u64 val;
12048
12049 if (entry->flags & CNTR_DISABLED) {
12050 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12051 return 0;
12052 }
12053
12054 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12055
12056 if (entry->flags & CNTR_SYNTH) {
12057 *psval = data;
12058 if (entry->flags & CNTR_32BIT) {
12059 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12060 (data << 32) >> 32);
12061 val = data; /* return the full 64bit value */
12062 } else {
12063 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12064 data);
12065 }
12066 } else {
12067 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12068 }
12069
12070 *psval = val;
12071
12072 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12073
12074 return val;
12075}
12076
12077u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12078{
12079 struct cntr_entry *entry;
12080 u64 *sval;
12081
12082 entry = &dev_cntrs[index];
12083 sval = dd->scntrs + entry->offset;
12084
12085 if (vl != CNTR_INVALID_VL)
12086 sval += vl;
12087
12088 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12089}
12090
12091u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12092{
12093 struct cntr_entry *entry;
12094 u64 *sval;
12095
12096 entry = &dev_cntrs[index];
12097 sval = dd->scntrs + entry->offset;
12098
12099 if (vl != CNTR_INVALID_VL)
12100 sval += vl;
12101
12102 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12103}
12104
12105u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12106{
12107 struct cntr_entry *entry;
12108 u64 *sval;
12109
12110 entry = &port_cntrs[index];
12111 sval = ppd->scntrs + entry->offset;
12112
12113 if (vl != CNTR_INVALID_VL)
12114 sval += vl;
12115
12116 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12117 (index <= C_RCV_HDR_OVF_LAST)) {
12118 /* We do not want to bother for disabled contexts */
12119 return 0;
12120 }
12121
12122 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12123}
12124
12125u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12126{
12127 struct cntr_entry *entry;
12128 u64 *sval;
12129
12130 entry = &port_cntrs[index];
12131 sval = ppd->scntrs + entry->offset;
12132
12133 if (vl != CNTR_INVALID_VL)
12134 sval += vl;
12135
12136 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12137 (index <= C_RCV_HDR_OVF_LAST)) {
12138 /* We do not want to bother for disabled contexts */
12139 return 0;
12140 }
12141
12142 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12143}
12144
22546b74 12145static void do_update_synth_timer(struct work_struct *work)
77241056
MM
12146{
12147 u64 cur_tx;
12148 u64 cur_rx;
12149 u64 total_flits;
12150 u8 update = 0;
12151 int i, j, vl;
12152 struct hfi1_pportdata *ppd;
12153 struct cntr_entry *entry;
22546b74
TS
12154 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12155 update_cntr_work);
77241056
MM
12156
12157 /*
12158 * Rather than keep beating on the CSRs pick a minimal set that we can
12159 * check to watch for potential roll over. We can do this by looking at
12160 * the number of flits sent/recv. If the total flits exceeds 32bits then
12161 * we have to iterate all the counters and update.
12162 */
12163 entry = &dev_cntrs[C_DC_RCV_FLITS];
12164 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12165
12166 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12167 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12168
12169 hfi1_cdbg(
12170 CNTR,
12171 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12172 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12173
12174 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12175 /*
12176 * May not be strictly necessary to update but it won't hurt and
12177 * simplifies the logic here.
12178 */
12179 update = 1;
12180 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12181 dd->unit);
12182 } else {
12183 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12184 hfi1_cdbg(CNTR,
12185 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12186 total_flits, (u64)CNTR_32BIT_MAX);
12187 if (total_flits >= CNTR_32BIT_MAX) {
12188 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12189 dd->unit);
12190 update = 1;
12191 }
12192 }
12193
12194 if (update) {
12195 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12196 for (i = 0; i < DEV_CNTR_LAST; i++) {
12197 entry = &dev_cntrs[i];
12198 if (entry->flags & CNTR_VL) {
12199 for (vl = 0; vl < C_VL_COUNT; vl++)
12200 read_dev_cntr(dd, i, vl);
12201 } else {
12202 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12203 }
12204 }
12205 ppd = (struct hfi1_pportdata *)(dd + 1);
12206 for (i = 0; i < dd->num_pports; i++, ppd++) {
12207 for (j = 0; j < PORT_CNTR_LAST; j++) {
12208 entry = &port_cntrs[j];
12209 if (entry->flags & CNTR_VL) {
12210 for (vl = 0; vl < C_VL_COUNT; vl++)
12211 read_port_cntr(ppd, j, vl);
12212 } else {
12213 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12214 }
12215 }
12216 }
12217
12218 /*
12219 * We want the value in the register. The goal is to keep track
12220 * of the number of "ticks" not the counter value. In other
12221 * words if the register rolls we want to notice it and go ahead
12222 * and force an update.
12223 */
12224 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12225 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12226 CNTR_MODE_R, 0);
12227
12228 entry = &dev_cntrs[C_DC_RCV_FLITS];
12229 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12230 CNTR_MODE_R, 0);
12231
12232 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12233 dd->unit, dd->last_tx, dd->last_rx);
12234
12235 } else {
12236 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12237 }
22546b74 12238}
77241056 12239
22546b74
TS
12240static void update_synth_timer(unsigned long opaque)
12241{
12242 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12243
12244 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
48a0cc13 12245 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
77241056
MM
12246}
12247
09a7908b 12248#define C_MAX_NAME 16 /* 15 chars + one for /0 */
77241056
MM
12249static int init_cntrs(struct hfi1_devdata *dd)
12250{
c024c554 12251 int i, rcv_ctxts, j;
77241056
MM
12252 size_t sz;
12253 char *p;
12254 char name[C_MAX_NAME];
12255 struct hfi1_pportdata *ppd;
11d2b114
SS
12256 const char *bit_type_32 = ",32";
12257 const int bit_type_32_sz = strlen(bit_type_32);
77241056
MM
12258
12259 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
12260 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12261 (unsigned long)dd);
77241056
MM
12262
12263 /***********************/
12264 /* per device counters */
12265 /***********************/
12266
12267 /* size names and determine how many we have*/
12268 dd->ndevcntrs = 0;
12269 sz = 0;
77241056
MM
12270
12271 for (i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
12272 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12273 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12274 continue;
12275 }
12276
12277 if (dev_cntrs[i].flags & CNTR_VL) {
c024c554 12278 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 12279 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12280 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12281 dev_cntrs[i].name, vl_from_idx(j));
77241056 12282 sz += strlen(name);
11d2b114
SS
12283 /* Add ",32" for 32-bit counters */
12284 if (dev_cntrs[i].flags & CNTR_32BIT)
12285 sz += bit_type_32_sz;
77241056 12286 sz++;
77241056 12287 dd->ndevcntrs++;
77241056 12288 }
a699c6c2 12289 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
c024c554 12290 dev_cntrs[i].offset = dd->ndevcntrs;
a699c6c2 12291 for (j = 0; j < dd->chip_sdma_engines; j++) {
a699c6c2
VM
12292 snprintf(name, C_MAX_NAME, "%s%d",
12293 dev_cntrs[i].name, j);
77241056 12294 sz += strlen(name);
11d2b114
SS
12295 /* Add ",32" for 32-bit counters */
12296 if (dev_cntrs[i].flags & CNTR_32BIT)
12297 sz += bit_type_32_sz;
77241056 12298 sz++;
77241056 12299 dd->ndevcntrs++;
77241056
MM
12300 }
12301 } else {
11d2b114 12302 /* +1 for newline. */
77241056 12303 sz += strlen(dev_cntrs[i].name) + 1;
11d2b114
SS
12304 /* Add ",32" for 32-bit counters */
12305 if (dev_cntrs[i].flags & CNTR_32BIT)
12306 sz += bit_type_32_sz;
c024c554 12307 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 12308 dd->ndevcntrs++;
77241056
MM
12309 }
12310 }
12311
12312 /* allocate space for the counter values */
c024c554 12313 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
12314 if (!dd->cntrs)
12315 goto bail;
12316
c024c554 12317 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
12318 if (!dd->scntrs)
12319 goto bail;
12320
77241056
MM
12321 /* allocate space for the counter names */
12322 dd->cntrnameslen = sz;
12323 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12324 if (!dd->cntrnames)
12325 goto bail;
12326
12327 /* fill in the names */
c024c554 12328 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
12329 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12330 /* Nothing */
11d2b114
SS
12331 } else if (dev_cntrs[i].flags & CNTR_VL) {
12332 for (j = 0; j < C_VL_COUNT; j++) {
11d2b114
SS
12333 snprintf(name, C_MAX_NAME, "%s%d",
12334 dev_cntrs[i].name,
12335 vl_from_idx(j));
12336 memcpy(p, name, strlen(name));
12337 p += strlen(name);
12338
12339 /* Counter is 32 bits */
12340 if (dev_cntrs[i].flags & CNTR_32BIT) {
12341 memcpy(p, bit_type_32, bit_type_32_sz);
12342 p += bit_type_32_sz;
77241056 12343 }
11d2b114
SS
12344
12345 *p++ = '\n';
12346 }
12347 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12348 for (j = 0; j < dd->chip_sdma_engines; j++) {
11d2b114
SS
12349 snprintf(name, C_MAX_NAME, "%s%d",
12350 dev_cntrs[i].name, j);
12351 memcpy(p, name, strlen(name));
12352 p += strlen(name);
12353
12354 /* Counter is 32 bits */
12355 if (dev_cntrs[i].flags & CNTR_32BIT) {
12356 memcpy(p, bit_type_32, bit_type_32_sz);
12357 p += bit_type_32_sz;
a699c6c2 12358 }
11d2b114 12359
77241056
MM
12360 *p++ = '\n';
12361 }
11d2b114
SS
12362 } else {
12363 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12364 p += strlen(dev_cntrs[i].name);
12365
12366 /* Counter is 32 bits */
12367 if (dev_cntrs[i].flags & CNTR_32BIT) {
12368 memcpy(p, bit_type_32, bit_type_32_sz);
12369 p += bit_type_32_sz;
12370 }
12371
12372 *p++ = '\n';
77241056
MM
12373 }
12374 }
12375
12376 /*********************/
12377 /* per port counters */
12378 /*********************/
12379
12380 /*
12381 * Go through the counters for the overflows and disable the ones we
12382 * don't need. This varies based on platform so we need to do it
12383 * dynamically here.
12384 */
12385 rcv_ctxts = dd->num_rcv_contexts;
12386 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12387 i <= C_RCV_HDR_OVF_LAST; i++) {
12388 port_cntrs[i].flags |= CNTR_DISABLED;
12389 }
12390
12391 /* size port counter names and determine how many we have*/
12392 sz = 0;
12393 dd->nportcntrs = 0;
12394 for (i = 0; i < PORT_CNTR_LAST; i++) {
77241056
MM
12395 if (port_cntrs[i].flags & CNTR_DISABLED) {
12396 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12397 continue;
12398 }
12399
12400 if (port_cntrs[i].flags & CNTR_VL) {
77241056
MM
12401 port_cntrs[i].offset = dd->nportcntrs;
12402 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12403 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12404 port_cntrs[i].name, vl_from_idx(j));
77241056 12405 sz += strlen(name);
11d2b114
SS
12406 /* Add ",32" for 32-bit counters */
12407 if (port_cntrs[i].flags & CNTR_32BIT)
12408 sz += bit_type_32_sz;
77241056 12409 sz++;
77241056
MM
12410 dd->nportcntrs++;
12411 }
12412 } else {
11d2b114 12413 /* +1 for newline */
77241056 12414 sz += strlen(port_cntrs[i].name) + 1;
11d2b114
SS
12415 /* Add ",32" for 32-bit counters */
12416 if (port_cntrs[i].flags & CNTR_32BIT)
12417 sz += bit_type_32_sz;
77241056
MM
12418 port_cntrs[i].offset = dd->nportcntrs;
12419 dd->nportcntrs++;
77241056
MM
12420 }
12421 }
12422
12423 /* allocate space for the counter names */
12424 dd->portcntrnameslen = sz;
12425 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12426 if (!dd->portcntrnames)
12427 goto bail;
12428
12429 /* fill in port cntr names */
12430 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12431 if (port_cntrs[i].flags & CNTR_DISABLED)
12432 continue;
12433
12434 if (port_cntrs[i].flags & CNTR_VL) {
12435 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12436 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12437 port_cntrs[i].name, vl_from_idx(j));
77241056
MM
12438 memcpy(p, name, strlen(name));
12439 p += strlen(name);
11d2b114
SS
12440
12441 /* Counter is 32 bits */
12442 if (port_cntrs[i].flags & CNTR_32BIT) {
12443 memcpy(p, bit_type_32, bit_type_32_sz);
12444 p += bit_type_32_sz;
12445 }
12446
77241056
MM
12447 *p++ = '\n';
12448 }
12449 } else {
12450 memcpy(p, port_cntrs[i].name,
12451 strlen(port_cntrs[i].name));
12452 p += strlen(port_cntrs[i].name);
11d2b114
SS
12453
12454 /* Counter is 32 bits */
12455 if (port_cntrs[i].flags & CNTR_32BIT) {
12456 memcpy(p, bit_type_32, bit_type_32_sz);
12457 p += bit_type_32_sz;
12458 }
12459
77241056
MM
12460 *p++ = '\n';
12461 }
12462 }
12463
12464 /* allocate per port storage for counter values */
12465 ppd = (struct hfi1_pportdata *)(dd + 1);
12466 for (i = 0; i < dd->num_pports; i++, ppd++) {
12467 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12468 if (!ppd->cntrs)
12469 goto bail;
12470
12471 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12472 if (!ppd->scntrs)
12473 goto bail;
12474 }
12475
12476 /* CPU counters need to be allocated and zeroed */
12477 if (init_cpu_counters(dd))
12478 goto bail;
12479
22546b74
TS
12480 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12481 WQ_MEM_RECLAIM, dd->unit);
12482 if (!dd->update_cntr_wq)
12483 goto bail;
12484
12485 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12486
77241056
MM
12487 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12488 return 0;
12489bail:
12490 free_cntrs(dd);
12491 return -ENOMEM;
12492}
12493
77241056
MM
12494static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12495{
12496 switch (chip_lstate) {
12497 default:
12498 dd_dev_err(dd,
17fb4f29
JJ
12499 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12500 chip_lstate);
77241056
MM
12501 /* fall through */
12502 case LSTATE_DOWN:
12503 return IB_PORT_DOWN;
12504 case LSTATE_INIT:
12505 return IB_PORT_INIT;
12506 case LSTATE_ARMED:
12507 return IB_PORT_ARMED;
12508 case LSTATE_ACTIVE:
12509 return IB_PORT_ACTIVE;
12510 }
12511}
12512
12513u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12514{
12515 /* look at the HFI meta-states only */
12516 switch (chip_pstate & 0xf0) {
12517 default:
12518 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
17fb4f29 12519 chip_pstate);
77241056
MM
12520 /* fall through */
12521 case PLS_DISABLED:
12522 return IB_PORTPHYSSTATE_DISABLED;
12523 case PLS_OFFLINE:
12524 return OPA_PORTPHYSSTATE_OFFLINE;
12525 case PLS_POLLING:
12526 return IB_PORTPHYSSTATE_POLLING;
12527 case PLS_CONFIGPHY:
12528 return IB_PORTPHYSSTATE_TRAINING;
12529 case PLS_LINKUP:
12530 return IB_PORTPHYSSTATE_LINKUP;
12531 case PLS_PHYTEST:
12532 return IB_PORTPHYSSTATE_PHY_TEST;
12533 }
12534}
12535
12536/* return the OPA port logical state name */
12537const char *opa_lstate_name(u32 lstate)
12538{
12539 static const char * const port_logical_names[] = {
12540 "PORT_NOP",
12541 "PORT_DOWN",
12542 "PORT_INIT",
12543 "PORT_ARMED",
12544 "PORT_ACTIVE",
12545 "PORT_ACTIVE_DEFER",
12546 };
12547 if (lstate < ARRAY_SIZE(port_logical_names))
12548 return port_logical_names[lstate];
12549 return "unknown";
12550}
12551
12552/* return the OPA port physical state name */
12553const char *opa_pstate_name(u32 pstate)
12554{
12555 static const char * const port_physical_names[] = {
12556 "PHYS_NOP",
12557 "reserved1",
12558 "PHYS_POLL",
12559 "PHYS_DISABLED",
12560 "PHYS_TRAINING",
12561 "PHYS_LINKUP",
12562 "PHYS_LINK_ERR_RECOVER",
12563 "PHYS_PHY_TEST",
12564 "reserved8",
12565 "PHYS_OFFLINE",
12566 "PHYS_GANGED",
12567 "PHYS_TEST",
12568 };
12569 if (pstate < ARRAY_SIZE(port_physical_names))
12570 return port_physical_names[pstate];
12571 return "unknown";
12572}
12573
12574/*
12575 * Read the hardware link state and set the driver's cached value of it.
12576 * Return the (new) current value.
12577 */
12578u32 get_logical_state(struct hfi1_pportdata *ppd)
12579{
12580 u32 new_state;
12581
12582 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12583 if (new_state != ppd->lstate) {
12584 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
17fb4f29 12585 opa_lstate_name(new_state), new_state);
77241056
MM
12586 ppd->lstate = new_state;
12587 }
12588 /*
12589 * Set port status flags in the page mapped into userspace
12590 * memory. Do it here to ensure a reliable state - this is
12591 * the only function called by all state handling code.
12592 * Always set the flags due to the fact that the cache value
12593 * might have been changed explicitly outside of this
12594 * function.
12595 */
12596 if (ppd->statusp) {
12597 switch (ppd->lstate) {
12598 case IB_PORT_DOWN:
12599 case IB_PORT_INIT:
12600 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12601 HFI1_STATUS_IB_READY);
12602 break;
12603 case IB_PORT_ARMED:
12604 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12605 break;
12606 case IB_PORT_ACTIVE:
12607 *ppd->statusp |= HFI1_STATUS_IB_READY;
12608 break;
12609 }
12610 }
12611 return ppd->lstate;
12612}
12613
12614/**
12615 * wait_logical_linkstate - wait for an IB link state change to occur
12616 * @ppd: port device
12617 * @state: the state to wait for
12618 * @msecs: the number of milliseconds to wait
12619 *
12620 * Wait up to msecs milliseconds for IB link state change to occur.
12621 * For now, take the easy polling route.
12622 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12623 */
12624static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12625 int msecs)
12626{
12627 unsigned long timeout;
12628
12629 timeout = jiffies + msecs_to_jiffies(msecs);
12630 while (1) {
12631 if (get_logical_state(ppd) == state)
12632 return 0;
12633 if (time_after(jiffies, timeout))
12634 break;
12635 msleep(20);
12636 }
12637 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12638
12639 return -ETIMEDOUT;
12640}
12641
12642u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12643{
77241056
MM
12644 u32 pstate;
12645 u32 ib_pstate;
12646
12647 pstate = read_physical_state(ppd->dd);
12648 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
f45c8dc8 12649 if (ppd->last_pstate != ib_pstate) {
77241056 12650 dd_dev_info(ppd->dd,
17fb4f29
JJ
12651 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12652 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12653 pstate);
f45c8dc8 12654 ppd->last_pstate = ib_pstate;
77241056
MM
12655 }
12656 return ib_pstate;
12657}
12658
77241056
MM
12659#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12660(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12661
12662#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12663(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12664
12665int hfi1_init_ctxt(struct send_context *sc)
12666{
d125a6c6 12667 if (sc) {
77241056
MM
12668 struct hfi1_devdata *dd = sc->dd;
12669 u64 reg;
12670 u8 set = (sc->type == SC_USER ?
12671 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12672 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12673 reg = read_kctxt_csr(dd, sc->hw_context,
12674 SEND_CTXT_CHECK_ENABLE);
12675 if (set)
12676 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12677 else
12678 SET_STATIC_RATE_CONTROL_SMASK(reg);
12679 write_kctxt_csr(dd, sc->hw_context,
12680 SEND_CTXT_CHECK_ENABLE, reg);
12681 }
12682 return 0;
12683}
12684
12685int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12686{
12687 int ret = 0;
12688 u64 reg;
12689
12690 if (dd->icode != ICODE_RTL_SILICON) {
12691 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12692 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12693 __func__);
12694 return -EINVAL;
12695 }
12696 reg = read_csr(dd, ASIC_STS_THERM);
12697 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12698 ASIC_STS_THERM_CURR_TEMP_MASK);
12699 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12700 ASIC_STS_THERM_LO_TEMP_MASK);
12701 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12702 ASIC_STS_THERM_HI_TEMP_MASK);
12703 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12704 ASIC_STS_THERM_CRIT_TEMP_MASK);
12705 /* triggers is a 3-bit value - 1 bit per trigger. */
12706 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12707
12708 return ret;
12709}
12710
12711/* ========================================================================= */
12712
12713/*
12714 * Enable/disable chip from delivering interrupts.
12715 */
12716void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12717{
12718 int i;
12719
12720 /*
12721 * In HFI, the mask needs to be 1 to allow interrupts.
12722 */
12723 if (enable) {
77241056
MM
12724 /* enable all interrupts */
12725 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12726 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
77241056 12727
8ebd4cf1 12728 init_qsfp_int(dd);
77241056
MM
12729 } else {
12730 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12731 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
12732 }
12733}
12734
12735/*
12736 * Clear all interrupt sources on the chip.
12737 */
12738static void clear_all_interrupts(struct hfi1_devdata *dd)
12739{
12740 int i;
12741
12742 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12743 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
77241056
MM
12744
12745 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12746 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12747 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12748 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12749 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12750 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12751 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12752 for (i = 0; i < dd->chip_send_contexts; i++)
12753 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12754 for (i = 0; i < dd->chip_sdma_engines; i++)
12755 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12756
12757 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12758 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12759 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12760}
12761
12762/* Move to pcie.c? */
12763static void disable_intx(struct pci_dev *pdev)
12764{
12765 pci_intx(pdev, 0);
12766}
12767
12768static void clean_up_interrupts(struct hfi1_devdata *dd)
12769{
12770 int i;
12771
12772 /* remove irqs - must happen before disabling/turning off */
12773 if (dd->num_msix_entries) {
12774 /* MSI-X */
12775 struct hfi1_msix_entry *me = dd->msix_entries;
12776
12777 for (i = 0; i < dd->num_msix_entries; i++, me++) {
d125a6c6 12778 if (!me->arg) /* => no irq, no affinity */
957558c9
MH
12779 continue;
12780 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
77241056
MM
12781 free_irq(me->msix.vector, me->arg);
12782 }
12783 } else {
12784 /* INTx */
12785 if (dd->requested_intx_irq) {
12786 free_irq(dd->pcidev->irq, dd);
12787 dd->requested_intx_irq = 0;
12788 }
12789 }
12790
12791 /* turn off interrupts */
12792 if (dd->num_msix_entries) {
12793 /* MSI-X */
6e5b6131 12794 pci_disable_msix(dd->pcidev);
77241056
MM
12795 } else {
12796 /* INTx */
12797 disable_intx(dd->pcidev);
12798 }
12799
12800 /* clean structures */
77241056
MM
12801 kfree(dd->msix_entries);
12802 dd->msix_entries = NULL;
12803 dd->num_msix_entries = 0;
12804}
12805
12806/*
12807 * Remap the interrupt source from the general handler to the given MSI-X
12808 * interrupt.
12809 */
12810static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12811{
12812 u64 reg;
12813 int m, n;
12814
12815 /* clear from the handled mask of the general interrupt */
12816 m = isrc / 64;
12817 n = isrc % 64;
12818 dd->gi_mask[m] &= ~((u64)1 << n);
12819
12820 /* direct the chip source to the given MSI-X interrupt */
12821 m = isrc / 8;
12822 n = isrc % 8;
8638b77f
JJ
12823 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12824 reg &= ~((u64)0xff << (8 * n));
12825 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12826 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
77241056
MM
12827}
12828
12829static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12830 int engine, int msix_intr)
12831{
12832 /*
12833 * SDMA engine interrupt sources grouped by type, rather than
12834 * engine. Per-engine interrupts are as follows:
12835 * SDMA
12836 * SDMAProgress
12837 * SDMAIdle
12838 */
8638b77f 12839 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12840 msix_intr);
8638b77f 12841 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12842 msix_intr);
8638b77f 12843 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12844 msix_intr);
77241056
MM
12845}
12846
77241056
MM
12847static int request_intx_irq(struct hfi1_devdata *dd)
12848{
12849 int ret;
12850
9805071e
JJ
12851 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12852 dd->unit);
77241056 12853 ret = request_irq(dd->pcidev->irq, general_interrupt,
17fb4f29 12854 IRQF_SHARED, dd->intx_name, dd);
77241056
MM
12855 if (ret)
12856 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
17fb4f29 12857 ret);
77241056
MM
12858 else
12859 dd->requested_intx_irq = 1;
12860 return ret;
12861}
12862
12863static int request_msix_irqs(struct hfi1_devdata *dd)
12864{
77241056
MM
12865 int first_general, last_general;
12866 int first_sdma, last_sdma;
12867 int first_rx, last_rx;
957558c9 12868 int i, ret = 0;
77241056
MM
12869
12870 /* calculate the ranges we are going to use */
12871 first_general = 0;
f3ff8189
JJ
12872 last_general = first_general + 1;
12873 first_sdma = last_general;
12874 last_sdma = first_sdma + dd->num_sdma;
12875 first_rx = last_sdma;
2280740f
VN
12876 last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12877
12878 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12879 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
77241056 12880
77241056
MM
12881 /*
12882 * Sanity check - the code expects all SDMA chip source
12883 * interrupts to be in the same CSR, starting at bit 0. Verify
12884 * that this is true by checking the bit location of the start.
12885 */
12886 BUILD_BUG_ON(IS_SDMA_START % 64);
12887
12888 for (i = 0; i < dd->num_msix_entries; i++) {
12889 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12890 const char *err_info;
12891 irq_handler_t handler;
f4f30031 12892 irq_handler_t thread = NULL;
2280740f 12893 void *arg = NULL;
77241056
MM
12894 int idx;
12895 struct hfi1_ctxtdata *rcd = NULL;
12896 struct sdma_engine *sde = NULL;
12897
12898 /* obtain the arguments to request_irq */
12899 if (first_general <= i && i < last_general) {
12900 idx = i - first_general;
12901 handler = general_interrupt;
12902 arg = dd;
12903 snprintf(me->name, sizeof(me->name),
9805071e 12904 DRIVER_NAME "_%d", dd->unit);
77241056 12905 err_info = "general";
957558c9 12906 me->type = IRQ_GENERAL;
77241056
MM
12907 } else if (first_sdma <= i && i < last_sdma) {
12908 idx = i - first_sdma;
12909 sde = &dd->per_sdma[idx];
12910 handler = sdma_interrupt;
12911 arg = sde;
12912 snprintf(me->name, sizeof(me->name),
9805071e 12913 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
12914 err_info = "sdma";
12915 remap_sdma_interrupts(dd, idx, i);
957558c9 12916 me->type = IRQ_SDMA;
77241056
MM
12917 } else if (first_rx <= i && i < last_rx) {
12918 idx = i - first_rx;
12919 rcd = dd->rcd[idx];
2280740f
VN
12920 if (rcd) {
12921 /*
12922 * Set the interrupt register and mask for this
12923 * context's interrupt.
12924 */
12925 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12926 rcd->imask = ((u64)1) <<
12927 ((IS_RCVAVAIL_START + idx) % 64);
12928 handler = receive_context_interrupt;
12929 thread = receive_context_thread;
12930 arg = rcd;
12931 snprintf(me->name, sizeof(me->name),
12932 DRIVER_NAME "_%d kctxt%d",
12933 dd->unit, idx);
12934 err_info = "receive context";
12935 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12936 me->type = IRQ_RCVCTXT;
12937 rcd->msix_intr = i;
12938 }
77241056
MM
12939 } else {
12940 /* not in our expected range - complain, then
4d114fdd
JJ
12941 * ignore it
12942 */
77241056 12943 dd_dev_err(dd,
17fb4f29 12944 "Unexpected extra MSI-X interrupt %d\n", i);
77241056
MM
12945 continue;
12946 }
12947 /* no argument, no interrupt */
d125a6c6 12948 if (!arg)
77241056
MM
12949 continue;
12950 /* make sure the name is terminated */
8638b77f 12951 me->name[sizeof(me->name) - 1] = 0;
77241056 12952
f4f30031 12953 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
17fb4f29 12954 me->name, arg);
77241056
MM
12955 if (ret) {
12956 dd_dev_err(dd,
17fb4f29
JJ
12957 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12958 err_info, me->msix.vector, idx, ret);
77241056
MM
12959 return ret;
12960 }
12961 /*
12962 * assign arg after request_irq call, so it will be
12963 * cleaned up
12964 */
12965 me->arg = arg;
12966
957558c9
MH
12967 ret = hfi1_get_irq_affinity(dd, me);
12968 if (ret)
12969 dd_dev_err(dd,
12970 "unable to pin IRQ %d\n", ret);
77241056
MM
12971 }
12972
77241056 12973 return ret;
77241056
MM
12974}
12975
2280740f
VN
12976void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
12977{
12978 int i;
12979
12980 if (!dd->num_msix_entries) {
12981 synchronize_irq(dd->pcidev->irq);
12982 return;
12983 }
12984
12985 for (i = 0; i < dd->vnic.num_ctxt; i++) {
12986 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
12987 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
12988
12989 synchronize_irq(me->msix.vector);
12990 }
12991}
12992
12993void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
12994{
12995 struct hfi1_devdata *dd = rcd->dd;
12996 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
12997
12998 if (!me->arg) /* => no irq, no affinity */
12999 return;
13000
13001 hfi1_put_irq_affinity(dd, me);
13002 free_irq(me->msix.vector, me->arg);
13003
13004 me->arg = NULL;
13005}
13006
13007void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13008{
13009 struct hfi1_devdata *dd = rcd->dd;
13010 struct hfi1_msix_entry *me;
13011 int idx = rcd->ctxt;
13012 void *arg = rcd;
13013 int ret;
13014
13015 rcd->msix_intr = dd->vnic.msix_idx++;
13016 me = &dd->msix_entries[rcd->msix_intr];
13017
13018 /*
13019 * Set the interrupt register and mask for this
13020 * context's interrupt.
13021 */
13022 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13023 rcd->imask = ((u64)1) <<
13024 ((IS_RCVAVAIL_START + idx) % 64);
13025
13026 snprintf(me->name, sizeof(me->name),
13027 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13028 me->name[sizeof(me->name) - 1] = 0;
13029 me->type = IRQ_RCVCTXT;
13030
13031 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13032
13033 ret = request_threaded_irq(me->msix.vector, receive_context_interrupt,
13034 receive_context_thread, 0, me->name, arg);
13035 if (ret) {
13036 dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n",
13037 me->msix.vector, idx, ret);
13038 return;
13039 }
13040 /*
13041 * assign arg after request_irq call, so it will be
13042 * cleaned up
13043 */
13044 me->arg = arg;
13045
13046 ret = hfi1_get_irq_affinity(dd, me);
13047 if (ret) {
13048 dd_dev_err(dd,
13049 "unable to pin IRQ %d\n", ret);
13050 free_irq(me->msix.vector, me->arg);
13051 }
13052}
13053
77241056
MM
13054/*
13055 * Set the general handler to accept all interrupts, remap all
13056 * chip interrupts back to MSI-X 0.
13057 */
13058static void reset_interrupts(struct hfi1_devdata *dd)
13059{
13060 int i;
13061
13062 /* all interrupts handled by the general handler */
13063 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13064 dd->gi_mask[i] = ~(u64)0;
13065
13066 /* all chip interrupts map to MSI-X 0 */
13067 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 13068 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
13069}
13070
13071static int set_up_interrupts(struct hfi1_devdata *dd)
13072{
13073 struct hfi1_msix_entry *entries;
13074 u32 total, request;
13075 int i, ret;
13076 int single_interrupt = 0; /* we expect to have all the interrupts */
13077
13078 /*
13079 * Interrupt count:
13080 * 1 general, "slow path" interrupt (includes the SDMA engines
13081 * slow source, SDMACleanupDone)
13082 * N interrupts - one per used SDMA engine
13083 * M interrupt - one per kernel receive context
13084 */
2280740f 13085 total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
77241056
MM
13086
13087 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
13088 if (!entries) {
77241056
MM
13089 ret = -ENOMEM;
13090 goto fail;
13091 }
13092 /* 1-1 MSI-X entry assignment */
13093 for (i = 0; i < total; i++)
13094 entries[i].msix.entry = i;
13095
13096 /* ask for MSI-X interrupts */
13097 request = total;
13098 request_msix(dd, &request, entries);
13099
13100 if (request == 0) {
13101 /* using INTx */
13102 /* dd->num_msix_entries already zero */
13103 kfree(entries);
13104 single_interrupt = 1;
13105 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13106 } else {
13107 /* using MSI-X */
13108 dd->num_msix_entries = request;
13109 dd->msix_entries = entries;
13110
13111 if (request != total) {
13112 /* using MSI-X, with reduced interrupts */
13113 dd_dev_err(
13114 dd,
13115 "cannot handle reduced interrupt case, want %u, got %u\n",
13116 total, request);
13117 ret = -EINVAL;
13118 goto fail;
13119 }
13120 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13121 }
13122
13123 /* mask all interrupts */
13124 set_intr_state(dd, 0);
13125 /* clear all pending interrupts */
13126 clear_all_interrupts(dd);
13127
13128 /* reset general handler mask, chip MSI-X mappings */
13129 reset_interrupts(dd);
13130
13131 if (single_interrupt)
13132 ret = request_intx_irq(dd);
13133 else
13134 ret = request_msix_irqs(dd);
13135 if (ret)
13136 goto fail;
13137
13138 return 0;
13139
13140fail:
13141 clean_up_interrupts(dd);
13142 return ret;
13143}
13144
13145/*
13146 * Set up context values in dd. Sets:
13147 *
13148 * num_rcv_contexts - number of contexts being used
13149 * n_krcv_queues - number of kernel contexts
2280740f
VN
13150 * first_dyn_alloc_ctxt - first dynamically allocated context
13151 * in array of contexts
77241056
MM
13152 * freectxts - number of free user contexts
13153 * num_send_contexts - number of PIO send contexts being used
13154 */
13155static int set_up_context_variables(struct hfi1_devdata *dd)
13156{
429b6a72 13157 unsigned long num_kernel_contexts;
77241056
MM
13158 int total_contexts;
13159 int ret;
13160 unsigned ngroups;
8f000f7f
DL
13161 int qos_rmt_count;
13162 int user_rmt_reduced;
77241056
MM
13163
13164 /*
33a9eb52 13165 * Kernel receive contexts:
82c2611d 13166 * - Context 0 - control context (VL15/multicast/error)
33a9eb52
DL
13167 * - Context 1 - first kernel context
13168 * - Context 2 - second kernel context
13169 * ...
77241056
MM
13170 */
13171 if (n_krcvqs)
82c2611d 13172 /*
33a9eb52
DL
13173 * n_krcvqs is the sum of module parameter kernel receive
13174 * contexts, krcvqs[]. It does not include the control
13175 * context, so add that.
82c2611d 13176 */
33a9eb52 13177 num_kernel_contexts = n_krcvqs + 1;
77241056 13178 else
8784ac02 13179 num_kernel_contexts = DEFAULT_KRCVQS + 1;
77241056
MM
13180 /*
13181 * Every kernel receive context needs an ACK send context.
13182 * one send context is allocated for each VL{0-7} and VL15
13183 */
13184 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13185 dd_dev_err(dd,
429b6a72 13186 "Reducing # kernel rcv contexts to: %d, from %lu\n",
77241056 13187 (int)(dd->chip_send_contexts - num_vls - 1),
429b6a72 13188 num_kernel_contexts);
77241056
MM
13189 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13190 }
13191 /*
0852d241
JJ
13192 * User contexts:
13193 * - default to 1 user context per real (non-HT) CPU core if
13194 * num_user_contexts is negative
77241056 13195 */
2ce6bf22 13196 if (num_user_contexts < 0)
0852d241 13197 num_user_contexts =
4197344b 13198 cpumask_weight(&node_affinity.real_cpu_mask);
77241056
MM
13199
13200 total_contexts = num_kernel_contexts + num_user_contexts;
13201
13202 /*
13203 * Adjust the counts given a global max.
13204 */
13205 if (total_contexts > dd->chip_rcv_contexts) {
13206 dd_dev_err(dd,
13207 "Reducing # user receive contexts to: %d, from %d\n",
13208 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13209 (int)num_user_contexts);
13210 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13211 /* recalculate */
13212 total_contexts = num_kernel_contexts + num_user_contexts;
13213 }
13214
8f000f7f
DL
13215 /* each user context requires an entry in the RMT */
13216 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13217 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13218 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13219 dd_dev_err(dd,
13220 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13221 (int)num_user_contexts,
13222 user_rmt_reduced);
13223 /* recalculate */
13224 num_user_contexts = user_rmt_reduced;
13225 total_contexts = num_kernel_contexts + num_user_contexts;
13226 }
13227
2280740f
VN
13228 /* Accommodate VNIC contexts */
13229 if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13230 total_contexts += HFI1_NUM_VNIC_CTXT;
13231
13232 /* the first N are kernel contexts, the rest are user/vnic contexts */
77241056
MM
13233 dd->num_rcv_contexts = total_contexts;
13234 dd->n_krcv_queues = num_kernel_contexts;
2280740f 13235 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
affa48de 13236 dd->num_user_contexts = num_user_contexts;
77241056
MM
13237 dd->freectxts = num_user_contexts;
13238 dd_dev_info(dd,
17fb4f29
JJ
13239 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13240 (int)dd->chip_rcv_contexts,
13241 (int)dd->num_rcv_contexts,
13242 (int)dd->n_krcv_queues,
13243 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
77241056
MM
13244
13245 /*
13246 * Receive array allocation:
13247 * All RcvArray entries are divided into groups of 8. This
13248 * is required by the hardware and will speed up writes to
13249 * consecutive entries by using write-combining of the entire
13250 * cacheline.
13251 *
13252 * The number of groups are evenly divided among all contexts.
13253 * any left over groups will be given to the first N user
13254 * contexts.
13255 */
13256 dd->rcv_entries.group_size = RCV_INCREMENT;
13257 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13258 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13259 dd->rcv_entries.nctxt_extra = ngroups -
13260 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13261 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13262 dd->rcv_entries.ngroups,
13263 dd->rcv_entries.nctxt_extra);
13264 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13265 MAX_EAGER_ENTRIES * 2) {
13266 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13267 dd->rcv_entries.group_size;
13268 dd_dev_info(dd,
17fb4f29
JJ
13269 "RcvArray group count too high, change to %u\n",
13270 dd->rcv_entries.ngroups);
77241056
MM
13271 dd->rcv_entries.nctxt_extra = 0;
13272 }
13273 /*
13274 * PIO send contexts
13275 */
13276 ret = init_sc_pools_and_sizes(dd);
13277 if (ret >= 0) { /* success */
13278 dd->num_send_contexts = ret;
13279 dd_dev_info(
13280 dd,
44306f15 13281 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
77241056
MM
13282 dd->chip_send_contexts,
13283 dd->num_send_contexts,
13284 dd->sc_sizes[SC_KERNEL].count,
13285 dd->sc_sizes[SC_ACK].count,
44306f15
JX
13286 dd->sc_sizes[SC_USER].count,
13287 dd->sc_sizes[SC_VL15].count);
77241056
MM
13288 ret = 0; /* success */
13289 }
13290
13291 return ret;
13292}
13293
13294/*
13295 * Set the device/port partition key table. The MAD code
13296 * will ensure that, at least, the partial management
13297 * partition key is present in the table.
13298 */
13299static void set_partition_keys(struct hfi1_pportdata *ppd)
13300{
13301 struct hfi1_devdata *dd = ppd->dd;
13302 u64 reg = 0;
13303 int i;
13304
13305 dd_dev_info(dd, "Setting partition keys\n");
13306 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13307 reg |= (ppd->pkeys[i] &
13308 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13309 ((i % 4) *
13310 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13311 /* Each register holds 4 PKey values. */
13312 if ((i % 4) == 3) {
13313 write_csr(dd, RCV_PARTITION_KEY +
13314 ((i - 3) * 2), reg);
13315 reg = 0;
13316 }
13317 }
13318
13319 /* Always enable HW pkeys check when pkeys table is set */
13320 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13321}
13322
13323/*
13324 * These CSRs and memories are uninitialized on reset and must be
13325 * written before reading to set the ECC/parity bits.
13326 *
13327 * NOTE: All user context CSRs that are not mmaped write-only
13328 * (e.g. the TID flows) must be initialized even if the driver never
13329 * reads them.
13330 */
13331static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13332{
13333 int i, j;
13334
13335 /* CceIntMap */
13336 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 13337 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
13338
13339 /* SendCtxtCreditReturnAddr */
13340 for (i = 0; i < dd->chip_send_contexts; i++)
13341 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13342
13343 /* PIO Send buffers */
13344 /* SDMA Send buffers */
4d114fdd
JJ
13345 /*
13346 * These are not normally read, and (presently) have no method
13347 * to be read, so are not pre-initialized
13348 */
77241056
MM
13349
13350 /* RcvHdrAddr */
13351 /* RcvHdrTailAddr */
13352 /* RcvTidFlowTable */
13353 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13354 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13355 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13356 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
8638b77f 13357 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
13358 }
13359
13360 /* RcvArray */
13361 for (i = 0; i < dd->chip_rcv_array_count; i++)
8638b77f 13362 write_csr(dd, RCV_ARRAY + (8 * i),
17fb4f29 13363 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
77241056
MM
13364
13365 /* RcvQPMapTable */
13366 for (i = 0; i < 32; i++)
13367 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13368}
13369
13370/*
13371 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13372 */
13373static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13374 u64 ctrl_bits)
13375{
13376 unsigned long timeout;
13377 u64 reg;
13378
13379 /* is the condition present? */
13380 reg = read_csr(dd, CCE_STATUS);
13381 if ((reg & status_bits) == 0)
13382 return;
13383
13384 /* clear the condition */
13385 write_csr(dd, CCE_CTRL, ctrl_bits);
13386
13387 /* wait for the condition to clear */
13388 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13389 while (1) {
13390 reg = read_csr(dd, CCE_STATUS);
13391 if ((reg & status_bits) == 0)
13392 return;
13393 if (time_after(jiffies, timeout)) {
13394 dd_dev_err(dd,
17fb4f29
JJ
13395 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13396 status_bits, reg & status_bits);
77241056
MM
13397 return;
13398 }
13399 udelay(1);
13400 }
13401}
13402
13403/* set CCE CSRs to chip reset defaults */
13404static void reset_cce_csrs(struct hfi1_devdata *dd)
13405{
13406 int i;
13407
13408 /* CCE_REVISION read-only */
13409 /* CCE_REVISION2 read-only */
13410 /* CCE_CTRL - bits clear automatically */
13411 /* CCE_STATUS read-only, use CceCtrl to clear */
13412 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13413 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13414 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13415 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13416 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13417 /* CCE_ERR_STATUS read-only */
13418 write_csr(dd, CCE_ERR_MASK, 0);
13419 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13420 /* CCE_ERR_FORCE leave alone */
13421 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13422 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13423 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13424 /* CCE_PCIE_CTRL leave alone */
13425 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13426 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13427 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
17fb4f29 13428 CCE_MSIX_TABLE_UPPER_RESETCSR);
77241056
MM
13429 }
13430 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13431 /* CCE_MSIX_PBA read-only */
13432 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13433 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13434 }
13435 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13436 write_csr(dd, CCE_INT_MAP, 0);
13437 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13438 /* CCE_INT_STATUS read-only */
13439 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13440 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13441 /* CCE_INT_FORCE leave alone */
13442 /* CCE_INT_BLOCKED read-only */
13443 }
13444 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13445 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13446}
13447
77241056
MM
13448/* set MISC CSRs to chip reset defaults */
13449static void reset_misc_csrs(struct hfi1_devdata *dd)
13450{
13451 int i;
13452
13453 for (i = 0; i < 32; i++) {
13454 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13455 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13456 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13457 }
4d114fdd
JJ
13458 /*
13459 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13460 * only be written 128-byte chunks
13461 */
77241056
MM
13462 /* init RSA engine to clear lingering errors */
13463 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13464 write_csr(dd, MISC_CFG_RSA_MU, 0);
13465 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13466 /* MISC_STS_8051_DIGEST read-only */
13467 /* MISC_STS_SBM_DIGEST read-only */
13468 /* MISC_STS_PCIE_DIGEST read-only */
13469 /* MISC_STS_FAB_DIGEST read-only */
13470 /* MISC_ERR_STATUS read-only */
13471 write_csr(dd, MISC_ERR_MASK, 0);
13472 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13473 /* MISC_ERR_FORCE leave alone */
13474}
13475
13476/* set TXE CSRs to chip reset defaults */
13477static void reset_txe_csrs(struct hfi1_devdata *dd)
13478{
13479 int i;
13480
13481 /*
13482 * TXE Kernel CSRs
13483 */
13484 write_csr(dd, SEND_CTRL, 0);
13485 __cm_reset(dd, 0); /* reset CM internal state */
13486 /* SEND_CONTEXTS read-only */
13487 /* SEND_DMA_ENGINES read-only */
13488 /* SEND_PIO_MEM_SIZE read-only */
13489 /* SEND_DMA_MEM_SIZE read-only */
13490 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13491 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13492 /* SEND_PIO_ERR_STATUS read-only */
13493 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13494 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13495 /* SEND_PIO_ERR_FORCE leave alone */
13496 /* SEND_DMA_ERR_STATUS read-only */
13497 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13498 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13499 /* SEND_DMA_ERR_FORCE leave alone */
13500 /* SEND_EGRESS_ERR_STATUS read-only */
13501 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13502 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13503 /* SEND_EGRESS_ERR_FORCE leave alone */
13504 write_csr(dd, SEND_BTH_QP, 0);
13505 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13506 write_csr(dd, SEND_SC2VLT0, 0);
13507 write_csr(dd, SEND_SC2VLT1, 0);
13508 write_csr(dd, SEND_SC2VLT2, 0);
13509 write_csr(dd, SEND_SC2VLT3, 0);
13510 write_csr(dd, SEND_LEN_CHECK0, 0);
13511 write_csr(dd, SEND_LEN_CHECK1, 0);
13512 /* SEND_ERR_STATUS read-only */
13513 write_csr(dd, SEND_ERR_MASK, 0);
13514 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13515 /* SEND_ERR_FORCE read-only */
13516 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
8638b77f 13517 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
77241056 13518 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
8638b77f
JJ
13519 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13520 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13521 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
77241056 13522 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
8638b77f 13523 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
77241056 13524 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
8638b77f 13525 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
77241056 13526 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
17fb4f29 13527 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
77241056
MM
13528 /* SEND_CM_CREDIT_USED_STATUS read-only */
13529 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13530 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13531 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13532 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13533 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13534 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 13535 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056
MM
13536 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13537 /* SEND_CM_CREDIT_USED_VL read-only */
13538 /* SEND_CM_CREDIT_USED_VL15 read-only */
13539 /* SEND_EGRESS_CTXT_STATUS read-only */
13540 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13541 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13542 /* SEND_EGRESS_ERR_INFO read-only */
13543 /* SEND_EGRESS_ERR_SOURCE read-only */
13544
13545 /*
13546 * TXE Per-Context CSRs
13547 */
13548 for (i = 0; i < dd->chip_send_contexts; i++) {
13549 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13550 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13551 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13552 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13553 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13554 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13555 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13556 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13557 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13558 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13559 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13560 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13561 }
13562
13563 /*
13564 * TXE Per-SDMA CSRs
13565 */
13566 for (i = 0; i < dd->chip_sdma_engines; i++) {
13567 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13568 /* SEND_DMA_STATUS read-only */
13569 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13570 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13571 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13572 /* SEND_DMA_HEAD read-only */
13573 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13574 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13575 /* SEND_DMA_IDLE_CNT read-only */
13576 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13577 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13578 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13579 /* SEND_DMA_ENG_ERR_STATUS read-only */
13580 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13581 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13582 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13583 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13584 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13585 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13586 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13587 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13588 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13589 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13590 }
13591}
13592
13593/*
13594 * Expect on entry:
13595 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13596 */
13597static void init_rbufs(struct hfi1_devdata *dd)
13598{
13599 u64 reg;
13600 int count;
13601
13602 /*
13603 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13604 * clear.
13605 */
13606 count = 0;
13607 while (1) {
13608 reg = read_csr(dd, RCV_STATUS);
13609 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13610 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13611 break;
13612 /*
13613 * Give up after 1ms - maximum wait time.
13614 *
e8a70af2 13615 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
77241056 13616 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
e8a70af2 13617 * 136 KB / (66% * 250MB/s) = 844us
77241056
MM
13618 */
13619 if (count++ > 500) {
13620 dd_dev_err(dd,
17fb4f29
JJ
13621 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13622 __func__, reg);
77241056
MM
13623 break;
13624 }
13625 udelay(2); /* do not busy-wait the CSR */
13626 }
13627
13628 /* start the init - expect RcvCtrl to be 0 */
13629 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13630
13631 /*
13632 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13633 * period after the write before RcvStatus.RxRbufInitDone is valid.
13634 * The delay in the first run through the loop below is sufficient and
13635 * required before the first read of RcvStatus.RxRbufInintDone.
13636 */
13637 read_csr(dd, RCV_CTRL);
13638
13639 /* wait for the init to finish */
13640 count = 0;
13641 while (1) {
13642 /* delay is required first time through - see above */
13643 udelay(2); /* do not busy-wait the CSR */
13644 reg = read_csr(dd, RCV_STATUS);
13645 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13646 break;
13647
13648 /* give up after 100us - slowest possible at 33MHz is 73us */
13649 if (count++ > 50) {
13650 dd_dev_err(dd,
17fb4f29
JJ
13651 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13652 __func__);
77241056
MM
13653 break;
13654 }
13655 }
13656}
13657
13658/* set RXE CSRs to chip reset defaults */
13659static void reset_rxe_csrs(struct hfi1_devdata *dd)
13660{
13661 int i, j;
13662
13663 /*
13664 * RXE Kernel CSRs
13665 */
13666 write_csr(dd, RCV_CTRL, 0);
13667 init_rbufs(dd);
13668 /* RCV_STATUS read-only */
13669 /* RCV_CONTEXTS read-only */
13670 /* RCV_ARRAY_CNT read-only */
13671 /* RCV_BUF_SIZE read-only */
13672 write_csr(dd, RCV_BTH_QP, 0);
13673 write_csr(dd, RCV_MULTICAST, 0);
13674 write_csr(dd, RCV_BYPASS, 0);
13675 write_csr(dd, RCV_VL15, 0);
13676 /* this is a clear-down */
13677 write_csr(dd, RCV_ERR_INFO,
17fb4f29 13678 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
77241056
MM
13679 /* RCV_ERR_STATUS read-only */
13680 write_csr(dd, RCV_ERR_MASK, 0);
13681 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13682 /* RCV_ERR_FORCE leave alone */
13683 for (i = 0; i < 32; i++)
13684 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13685 for (i = 0; i < 4; i++)
13686 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13687 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13688 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13689 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13690 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
2280740f
VN
13691 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13692 clear_rsm_rule(dd, i);
77241056
MM
13693 for (i = 0; i < 32; i++)
13694 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13695
13696 /*
13697 * RXE Kernel and User Per-Context CSRs
13698 */
13699 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13700 /* kernel */
13701 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13702 /* RCV_CTXT_STATUS read-only */
13703 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13704 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13705 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13706 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13707 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13708 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13709 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13710 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13711 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13712 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13713
13714 /* user */
13715 /* RCV_HDR_TAIL read-only */
13716 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13717 /* RCV_EGR_INDEX_TAIL read-only */
13718 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13719 /* RCV_EGR_OFFSET_TAIL read-only */
13720 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
17fb4f29
JJ
13721 write_uctxt_csr(dd, i,
13722 RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
13723 }
13724 }
13725}
13726
13727/*
13728 * Set sc2vl tables.
13729 *
13730 * They power on to zeros, so to avoid send context errors
13731 * they need to be set:
13732 *
13733 * SC 0-7 -> VL 0-7 (respectively)
13734 * SC 15 -> VL 15
13735 * otherwise
13736 * -> VL 0
13737 */
13738static void init_sc2vl_tables(struct hfi1_devdata *dd)
13739{
13740 int i;
13741 /* init per architecture spec, constrained by hardware capability */
13742
13743 /* HFI maps sent packets */
13744 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13745 0,
13746 0, 0, 1, 1,
13747 2, 2, 3, 3,
13748 4, 4, 5, 5,
13749 6, 6, 7, 7));
13750 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13751 1,
13752 8, 0, 9, 0,
13753 10, 0, 11, 0,
13754 12, 0, 13, 0,
13755 14, 0, 15, 15));
13756 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13757 2,
13758 16, 0, 17, 0,
13759 18, 0, 19, 0,
13760 20, 0, 21, 0,
13761 22, 0, 23, 0));
13762 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13763 3,
13764 24, 0, 25, 0,
13765 26, 0, 27, 0,
13766 28, 0, 29, 0,
13767 30, 0, 31, 0));
13768
13769 /* DC maps received packets */
13770 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13771 15_0,
13772 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13773 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13774 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13775 31_16,
13776 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13777 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13778
13779 /* initialize the cached sc2vl values consistently with h/w */
13780 for (i = 0; i < 32; i++) {
13781 if (i < 8 || i == 15)
13782 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13783 else
13784 *((u8 *)(dd->sc2vl) + i) = 0;
13785 }
13786}
13787
13788/*
13789 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13790 * depend on the chip going through a power-on reset - a driver may be loaded
13791 * and unloaded many times.
13792 *
13793 * Do not write any CSR values to the chip in this routine - there may be
13794 * a reset following the (possible) FLR in this routine.
13795 *
13796 */
13797static void init_chip(struct hfi1_devdata *dd)
13798{
13799 int i;
13800
13801 /*
13802 * Put the HFI CSRs in a known state.
13803 * Combine this with a DC reset.
13804 *
13805 * Stop the device from doing anything while we do a
13806 * reset. We know there are no other active users of
13807 * the device since we are now in charge. Turn off
13808 * off all outbound and inbound traffic and make sure
13809 * the device does not generate any interrupts.
13810 */
13811
13812 /* disable send contexts and SDMA engines */
13813 write_csr(dd, SEND_CTRL, 0);
13814 for (i = 0; i < dd->chip_send_contexts; i++)
13815 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13816 for (i = 0; i < dd->chip_sdma_engines; i++)
13817 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13818 /* disable port (turn off RXE inbound traffic) and contexts */
13819 write_csr(dd, RCV_CTRL, 0);
13820 for (i = 0; i < dd->chip_rcv_contexts; i++)
13821 write_csr(dd, RCV_CTXT_CTRL, 0);
13822 /* mask all interrupt sources */
13823 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 13824 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
13825
13826 /*
13827 * DC Reset: do a full DC reset before the register clear.
13828 * A recommended length of time to hold is one CSR read,
13829 * so reread the CceDcCtrl. Then, hold the DC in reset
13830 * across the clear.
13831 */
13832 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
50e5dcbe 13833 (void)read_csr(dd, CCE_DC_CTRL);
77241056
MM
13834
13835 if (use_flr) {
13836 /*
13837 * A FLR will reset the SPC core and part of the PCIe.
13838 * The parts that need to be restored have already been
13839 * saved.
13840 */
13841 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13842
13843 /* do the FLR, the DC reset will remain */
13844 hfi1_pcie_flr(dd);
13845
13846 /* restore command and BARs */
13847 restore_pci_variables(dd);
13848
995deafa 13849 if (is_ax(dd)) {
77241056
MM
13850 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13851 hfi1_pcie_flr(dd);
13852 restore_pci_variables(dd);
13853 }
77241056
MM
13854 } else {
13855 dd_dev_info(dd, "Resetting CSRs with writes\n");
13856 reset_cce_csrs(dd);
13857 reset_txe_csrs(dd);
13858 reset_rxe_csrs(dd);
77241056
MM
13859 reset_misc_csrs(dd);
13860 }
13861 /* clear the DC reset */
13862 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 13863
77241056 13864 /* Set the LED off */
773d0451
SS
13865 setextled(dd, 0);
13866
77241056
MM
13867 /*
13868 * Clear the QSFP reset.
72a67ba2 13869 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 13870 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 13871 * anything plugged constantly in reset, if it pays attention
77241056 13872 * to RESET_N.
72a67ba2 13873 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
13874 * I2CCLK and I2CDAT will change per direction, and INT_N and
13875 * MODPRS_N are input only and their value is ignored.
13876 */
72a67ba2
EH
13877 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13878 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
a2ee27a4 13879 init_chip_resources(dd);
77241056
MM
13880}
13881
13882static void init_early_variables(struct hfi1_devdata *dd)
13883{
13884 int i;
13885
13886 /* assign link credit variables */
13887 dd->vau = CM_VAU;
13888 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 13889 if (is_ax(dd))
77241056
MM
13890 dd->link_credits--;
13891 dd->vcu = cu_to_vcu(hfi1_cu);
13892 /* enough room for 8 MAD packets plus header - 17K */
13893 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13894 if (dd->vl15_init > dd->link_credits)
13895 dd->vl15_init = dd->link_credits;
13896
13897 write_uninitialized_csrs_and_memories(dd);
13898
13899 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13900 for (i = 0; i < dd->num_pports; i++) {
13901 struct hfi1_pportdata *ppd = &dd->pport[i];
13902
13903 set_partition_keys(ppd);
13904 }
13905 init_sc2vl_tables(dd);
13906}
13907
13908static void init_kdeth_qp(struct hfi1_devdata *dd)
13909{
13910 /* user changed the KDETH_QP */
13911 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13912 /* out of range or illegal value */
13913 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13914 kdeth_qp = 0;
13915 }
13916 if (kdeth_qp == 0) /* not set, or failed range check */
13917 kdeth_qp = DEFAULT_KDETH_QP;
13918
13919 write_csr(dd, SEND_BTH_QP,
17fb4f29
JJ
13920 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13921 SEND_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
13922
13923 write_csr(dd, RCV_BTH_QP,
17fb4f29
JJ
13924 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13925 RCV_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
13926}
13927
13928/**
13929 * init_qpmap_table
13930 * @dd - device data
13931 * @first_ctxt - first context
13932 * @last_ctxt - first context
13933 *
13934 * This return sets the qpn mapping table that
13935 * is indexed by qpn[8:1].
13936 *
13937 * The routine will round robin the 256 settings
13938 * from first_ctxt to last_ctxt.
13939 *
13940 * The first/last looks ahead to having specialized
13941 * receive contexts for mgmt and bypass. Normal
13942 * verbs traffic will assumed to be on a range
13943 * of receive contexts.
13944 */
13945static void init_qpmap_table(struct hfi1_devdata *dd,
13946 u32 first_ctxt,
13947 u32 last_ctxt)
13948{
13949 u64 reg = 0;
13950 u64 regno = RCV_QP_MAP_TABLE;
13951 int i;
13952 u64 ctxt = first_ctxt;
13953
60d585ad 13954 for (i = 0; i < 256; i++) {
77241056 13955 reg |= ctxt << (8 * (i % 8));
77241056
MM
13956 ctxt++;
13957 if (ctxt > last_ctxt)
13958 ctxt = first_ctxt;
60d585ad 13959 if (i % 8 == 7) {
77241056
MM
13960 write_csr(dd, regno, reg);
13961 reg = 0;
13962 regno += 8;
13963 }
13964 }
77241056
MM
13965
13966 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13967 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13968}
13969
372cc85a
DL
13970struct rsm_map_table {
13971 u64 map[NUM_MAP_REGS];
13972 unsigned int used;
13973};
13974
b12349ae
DL
13975struct rsm_rule_data {
13976 u8 offset;
13977 u8 pkt_type;
13978 u32 field1_off;
13979 u32 field2_off;
13980 u32 index1_off;
13981 u32 index1_width;
13982 u32 index2_off;
13983 u32 index2_width;
13984 u32 mask1;
13985 u32 value1;
13986 u32 mask2;
13987 u32 value2;
13988};
13989
372cc85a
DL
13990/*
13991 * Return an initialized RMT map table for users to fill in. OK if it
13992 * returns NULL, indicating no table.
13993 */
13994static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13995{
13996 struct rsm_map_table *rmt;
13997 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
13998
13999 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14000 if (rmt) {
14001 memset(rmt->map, rxcontext, sizeof(rmt->map));
14002 rmt->used = 0;
14003 }
14004
14005 return rmt;
14006}
14007
14008/*
14009 * Write the final RMT map table to the chip and free the table. OK if
14010 * table is NULL.
14011 */
14012static void complete_rsm_map_table(struct hfi1_devdata *dd,
14013 struct rsm_map_table *rmt)
14014{
14015 int i;
14016
14017 if (rmt) {
14018 /* write table to chip */
14019 for (i = 0; i < NUM_MAP_REGS; i++)
14020 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14021
14022 /* enable RSM */
14023 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14024 }
14025}
14026
b12349ae
DL
14027/*
14028 * Add a receive side mapping rule.
14029 */
14030static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14031 struct rsm_rule_data *rrd)
14032{
14033 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14034 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14035 1ull << rule_index | /* enable bit */
14036 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14037 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14038 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14039 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14040 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14041 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14042 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14043 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14044 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14045 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14046 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14047 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14048 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14049}
14050
2280740f
VN
14051/*
14052 * Clear a receive side mapping rule.
14053 */
14054static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14055{
14056 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14057 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14058 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14059}
14060
4a818bed
DL
14061/* return the number of RSM map table entries that will be used for QOS */
14062static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14063 unsigned int *np)
14064{
14065 int i;
14066 unsigned int m, n;
14067 u8 max_by_vl = 0;
14068
14069 /* is QOS active at all? */
14070 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14071 num_vls == 1 ||
14072 krcvqsset <= 1)
14073 goto no_qos;
14074
14075 /* determine bits for qpn */
14076 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14077 if (krcvqs[i] > max_by_vl)
14078 max_by_vl = krcvqs[i];
14079 if (max_by_vl > 32)
14080 goto no_qos;
14081 m = ilog2(__roundup_pow_of_two(max_by_vl));
14082
14083 /* determine bits for vl */
14084 n = ilog2(__roundup_pow_of_two(num_vls));
14085
14086 /* reject if too much is used */
14087 if ((m + n) > 7)
14088 goto no_qos;
14089
14090 if (mp)
14091 *mp = m;
14092 if (np)
14093 *np = n;
14094
14095 return 1 << (m + n);
14096
14097no_qos:
14098 if (mp)
14099 *mp = 0;
14100 if (np)
14101 *np = 0;
14102 return 0;
14103}
14104
77241056
MM
14105/**
14106 * init_qos - init RX qos
14107 * @dd - device data
372cc85a 14108 * @rmt - RSM map table
77241056 14109 *
33a9eb52
DL
14110 * This routine initializes Rule 0 and the RSM map table to implement
14111 * quality of service (qos).
77241056 14112 *
33a9eb52
DL
14113 * If all of the limit tests succeed, qos is applied based on the array
14114 * interpretation of krcvqs where entry 0 is VL0.
77241056 14115 *
33a9eb52
DL
14116 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14117 * feed both the RSM map table and the single rule.
77241056 14118 */
372cc85a 14119static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
77241056 14120{
b12349ae 14121 struct rsm_rule_data rrd;
77241056 14122 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
372cc85a 14123 unsigned int rmt_entries;
77241056 14124 u64 reg;
77241056 14125
4a818bed 14126 if (!rmt)
77241056 14127 goto bail;
4a818bed
DL
14128 rmt_entries = qos_rmt_entries(dd, &m, &n);
14129 if (rmt_entries == 0)
77241056 14130 goto bail;
4a818bed
DL
14131 qpns_per_vl = 1 << m;
14132
372cc85a
DL
14133 /* enough room in the map table? */
14134 rmt_entries = 1 << (m + n);
14135 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
859bcad9 14136 goto bail;
4a818bed 14137
372cc85a 14138 /* add qos entries to the the RSM map table */
33a9eb52 14139 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
77241056
MM
14140 unsigned tctxt;
14141
14142 for (qpn = 0, tctxt = ctxt;
14143 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14144 unsigned idx, regoff, regidx;
14145
372cc85a
DL
14146 /* generate the index the hardware will produce */
14147 idx = rmt->used + ((qpn << n) ^ i);
77241056
MM
14148 regoff = (idx % 8) * 8;
14149 regidx = idx / 8;
372cc85a
DL
14150 /* replace default with context number */
14151 reg = rmt->map[regidx];
77241056
MM
14152 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14153 << regoff);
14154 reg |= (u64)(tctxt++) << regoff;
372cc85a 14155 rmt->map[regidx] = reg;
77241056
MM
14156 if (tctxt == ctxt + krcvqs[i])
14157 tctxt = ctxt;
14158 }
14159 ctxt += krcvqs[i];
14160 }
b12349ae
DL
14161
14162 rrd.offset = rmt->used;
14163 rrd.pkt_type = 2;
14164 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14165 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14166 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14167 rrd.index1_width = n;
14168 rrd.index2_off = QPN_SELECT_OFFSET;
14169 rrd.index2_width = m + n;
14170 rrd.mask1 = LRH_BTH_MASK;
14171 rrd.value1 = LRH_BTH_VALUE;
14172 rrd.mask2 = LRH_SC_MASK;
14173 rrd.value2 = LRH_SC_VALUE;
14174
14175 /* add rule 0 */
2280740f 14176 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
b12349ae 14177
372cc85a
DL
14178 /* mark RSM map entries as used */
14179 rmt->used += rmt_entries;
33a9eb52
DL
14180 /* map everything else to the mcast/err/vl15 context */
14181 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
77241056
MM
14182 dd->qos_shift = n + 1;
14183 return;
14184bail:
14185 dd->qos_shift = 1;
82c2611d 14186 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
14187}
14188
8f000f7f
DL
14189static void init_user_fecn_handling(struct hfi1_devdata *dd,
14190 struct rsm_map_table *rmt)
14191{
14192 struct rsm_rule_data rrd;
14193 u64 reg;
14194 int i, idx, regoff, regidx;
14195 u8 offset;
14196
14197 /* there needs to be enough room in the map table */
14198 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14199 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14200 return;
14201 }
14202
14203 /*
14204 * RSM will extract the destination context as an index into the
14205 * map table. The destination contexts are a sequential block
2280740f 14206 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
8f000f7f
DL
14207 * Map entries are accessed as offset + extracted value. Adjust
14208 * the added offset so this sequence can be placed anywhere in
14209 * the table - as long as the entries themselves do not wrap.
14210 * There are only enough bits in offset for the table size, so
14211 * start with that to allow for a "negative" offset.
14212 */
14213 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
2280740f 14214 (int)dd->first_dyn_alloc_ctxt);
8f000f7f 14215
2280740f 14216 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
8f000f7f
DL
14217 i < dd->num_rcv_contexts; i++, idx++) {
14218 /* replace with identity mapping */
14219 regoff = (idx % 8) * 8;
14220 regidx = idx / 8;
14221 reg = rmt->map[regidx];
14222 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14223 reg |= (u64)i << regoff;
14224 rmt->map[regidx] = reg;
14225 }
14226
14227 /*
14228 * For RSM intercept of Expected FECN packets:
14229 * o packet type 0 - expected
14230 * o match on F (bit 95), using select/match 1, and
14231 * o match on SH (bit 133), using select/match 2.
14232 *
14233 * Use index 1 to extract the 8-bit receive context from DestQP
14234 * (start at bit 64). Use that as the RSM map table index.
14235 */
14236 rrd.offset = offset;
14237 rrd.pkt_type = 0;
14238 rrd.field1_off = 95;
14239 rrd.field2_off = 133;
14240 rrd.index1_off = 64;
14241 rrd.index1_width = 8;
14242 rrd.index2_off = 0;
14243 rrd.index2_width = 0;
14244 rrd.mask1 = 1;
14245 rrd.value1 = 1;
14246 rrd.mask2 = 1;
14247 rrd.value2 = 1;
14248
14249 /* add rule 1 */
2280740f 14250 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
8f000f7f
DL
14251
14252 rmt->used += dd->num_user_contexts;
14253}
14254
2280740f
VN
14255/* Initialize RSM for VNIC */
14256void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14257{
14258 u8 i, j;
14259 u8 ctx_id = 0;
14260 u64 reg;
14261 u32 regoff;
14262 struct rsm_rule_data rrd;
14263
14264 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14265 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14266 dd->vnic.rmt_start);
14267 return;
14268 }
14269
14270 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14271 dd->vnic.rmt_start,
14272 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14273
14274 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14275 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14276 reg = read_csr(dd, regoff);
14277 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14278 /* Update map register with vnic context */
14279 j = (dd->vnic.rmt_start + i) % 8;
14280 reg &= ~(0xffllu << (j * 8));
14281 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14282 /* Wrap up vnic ctx index */
14283 ctx_id %= dd->vnic.num_ctxt;
14284 /* Write back map register */
14285 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14286 dev_dbg(&(dd)->pcidev->dev,
14287 "Vnic rsm map reg[%d] =0x%llx\n",
14288 regoff - RCV_RSM_MAP_TABLE, reg);
14289
14290 write_csr(dd, regoff, reg);
14291 regoff += 8;
14292 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14293 reg = read_csr(dd, regoff);
14294 }
14295 }
14296
14297 /* Add rule for vnic */
14298 rrd.offset = dd->vnic.rmt_start;
14299 rrd.pkt_type = 4;
14300 /* Match 16B packets */
14301 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14302 rrd.mask1 = L2_TYPE_MASK;
14303 rrd.value1 = L2_16B_VALUE;
14304 /* Match ETH L4 packets */
14305 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14306 rrd.mask2 = L4_16B_TYPE_MASK;
14307 rrd.value2 = L4_16B_ETH_VALUE;
14308 /* Calc context from veswid and entropy */
14309 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14310 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14311 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14312 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14313 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14314
14315 /* Enable RSM if not already enabled */
14316 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14317}
14318
14319void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14320{
14321 clear_rsm_rule(dd, RSM_INS_VNIC);
14322
14323 /* Disable RSM if used only by vnic */
14324 if (dd->vnic.rmt_start == 0)
14325 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14326}
14327
77241056
MM
14328static void init_rxe(struct hfi1_devdata *dd)
14329{
372cc85a
DL
14330 struct rsm_map_table *rmt;
14331
77241056
MM
14332 /* enable all receive errors */
14333 write_csr(dd, RCV_ERR_MASK, ~0ull);
372cc85a
DL
14334
14335 rmt = alloc_rsm_map_table(dd);
14336 /* set up QOS, including the QPN map table */
14337 init_qos(dd, rmt);
8f000f7f 14338 init_user_fecn_handling(dd, rmt);
372cc85a 14339 complete_rsm_map_table(dd, rmt);
2280740f
VN
14340 /* record number of used rsm map entries for vnic */
14341 dd->vnic.rmt_start = rmt->used;
372cc85a
DL
14342 kfree(rmt);
14343
77241056
MM
14344 /*
14345 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14346 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14347 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14348 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14349 * Max_PayLoad_Size set to its minimum of 128.
14350 *
14351 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14352 * (64 bytes). Max_Payload_Size is possibly modified upward in
14353 * tune_pcie_caps() which is called after this routine.
14354 */
14355}
14356
14357static void init_other(struct hfi1_devdata *dd)
14358{
14359 /* enable all CCE errors */
14360 write_csr(dd, CCE_ERR_MASK, ~0ull);
14361 /* enable *some* Misc errors */
14362 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14363 /* enable all DC errors, except LCB */
14364 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14365 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14366}
14367
14368/*
14369 * Fill out the given AU table using the given CU. A CU is defined in terms
14370 * AUs. The table is a an encoding: given the index, how many AUs does that
14371 * represent?
14372 *
14373 * NOTE: Assumes that the register layout is the same for the
14374 * local and remote tables.
14375 */
14376static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14377 u32 csr0to3, u32 csr4to7)
14378{
14379 write_csr(dd, csr0to3,
17fb4f29
JJ
14380 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14381 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14382 2ull * cu <<
14383 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14384 4ull * cu <<
14385 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
77241056 14386 write_csr(dd, csr4to7,
17fb4f29
JJ
14387 8ull * cu <<
14388 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14389 16ull * cu <<
14390 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14391 32ull * cu <<
14392 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14393 64ull * cu <<
14394 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
77241056
MM
14395}
14396
14397static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14398{
14399 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
17fb4f29 14400 SEND_CM_LOCAL_AU_TABLE4_TO7);
77241056
MM
14401}
14402
14403void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14404{
14405 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
17fb4f29 14406 SEND_CM_REMOTE_AU_TABLE4_TO7);
77241056
MM
14407}
14408
14409static void init_txe(struct hfi1_devdata *dd)
14410{
14411 int i;
14412
14413 /* enable all PIO, SDMA, general, and Egress errors */
14414 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14415 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14416 write_csr(dd, SEND_ERR_MASK, ~0ull);
14417 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14418
14419 /* enable all per-context and per-SDMA engine errors */
14420 for (i = 0; i < dd->chip_send_contexts; i++)
14421 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14422 for (i = 0; i < dd->chip_sdma_engines; i++)
14423 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14424
14425 /* set the local CU to AU mapping */
14426 assign_local_cm_au_table(dd, dd->vcu);
14427
14428 /*
14429 * Set reasonable default for Credit Return Timer
14430 * Don't set on Simulator - causes it to choke.
14431 */
14432 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14433 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14434}
14435
14436int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14437{
14438 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14439 unsigned sctxt;
14440 int ret = 0;
14441 u64 reg;
14442
14443 if (!rcd || !rcd->sc) {
14444 ret = -EINVAL;
14445 goto done;
14446 }
14447 sctxt = rcd->sc->hw_context;
14448 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14449 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14450 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14451 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14452 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14453 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14454 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14455 /*
14456 * Enable send-side J_KEY integrity check, unless this is A0 h/w
77241056 14457 */
995deafa 14458 if (!is_ax(dd)) {
77241056
MM
14459 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14460 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14461 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14462 }
14463
14464 /* Enable J_KEY check on receive context. */
14465 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14466 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14467 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14468 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14469done:
14470 return ret;
14471}
14472
14473int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14474{
14475 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14476 unsigned sctxt;
14477 int ret = 0;
14478 u64 reg;
14479
14480 if (!rcd || !rcd->sc) {
14481 ret = -EINVAL;
14482 goto done;
14483 }
14484 sctxt = rcd->sc->hw_context;
14485 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14486 /*
14487 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14488 * This check would not have been enabled for A0 h/w, see
14489 * set_ctxt_jkey().
14490 */
995deafa 14491 if (!is_ax(dd)) {
77241056
MM
14492 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14493 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14494 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14495 }
14496 /* Turn off the J_KEY on the receive side */
14497 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14498done:
14499 return ret;
14500}
14501
14502int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14503{
14504 struct hfi1_ctxtdata *rcd;
14505 unsigned sctxt;
14506 int ret = 0;
14507 u64 reg;
14508
e490974e 14509 if (ctxt < dd->num_rcv_contexts) {
77241056 14510 rcd = dd->rcd[ctxt];
e490974e 14511 } else {
77241056
MM
14512 ret = -EINVAL;
14513 goto done;
14514 }
14515 if (!rcd || !rcd->sc) {
14516 ret = -EINVAL;
14517 goto done;
14518 }
14519 sctxt = rcd->sc->hw_context;
14520 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14521 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14522 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14523 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14524 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
e38d1e4f 14525 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
77241056
MM
14526 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14527done:
14528 return ret;
14529}
14530
14531int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14532{
14533 struct hfi1_ctxtdata *rcd;
14534 unsigned sctxt;
14535 int ret = 0;
14536 u64 reg;
14537
e490974e 14538 if (ctxt < dd->num_rcv_contexts) {
77241056 14539 rcd = dd->rcd[ctxt];
e490974e 14540 } else {
77241056
MM
14541 ret = -EINVAL;
14542 goto done;
14543 }
14544 if (!rcd || !rcd->sc) {
14545 ret = -EINVAL;
14546 goto done;
14547 }
14548 sctxt = rcd->sc->hw_context;
14549 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14550 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14551 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14552 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14553done:
14554 return ret;
14555}
14556
14557/*
14558 * Start doing the clean up the the chip. Our clean up happens in multiple
14559 * stages and this is just the first.
14560 */
14561void hfi1_start_cleanup(struct hfi1_devdata *dd)
14562{
affa48de 14563 aspm_exit(dd);
77241056
MM
14564 free_cntrs(dd);
14565 free_rcverr(dd);
14566 clean_up_interrupts(dd);
a2ee27a4 14567 finish_chip_resources(dd);
77241056
MM
14568}
14569
14570#define HFI_BASE_GUID(dev) \
14571 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14572
14573/*
78eb129d
DL
14574 * Information can be shared between the two HFIs on the same ASIC
14575 * in the same OS. This function finds the peer device and sets
14576 * up a shared structure.
77241056 14577 */
78eb129d 14578static int init_asic_data(struct hfi1_devdata *dd)
77241056
MM
14579{
14580 unsigned long flags;
14581 struct hfi1_devdata *tmp, *peer = NULL;
98f179a5 14582 struct hfi1_asic_data *asic_data;
78eb129d 14583 int ret = 0;
77241056 14584
98f179a5
TS
14585 /* pre-allocate the asic structure in case we are the first device */
14586 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14587 if (!asic_data)
14588 return -ENOMEM;
14589
77241056
MM
14590 spin_lock_irqsave(&hfi1_devs_lock, flags);
14591 /* Find our peer device */
14592 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14593 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14594 dd->unit != tmp->unit) {
14595 peer = tmp;
14596 break;
14597 }
14598 }
14599
78eb129d 14600 if (peer) {
98f179a5 14601 /* use already allocated structure */
78eb129d 14602 dd->asic_data = peer->asic_data;
98f179a5 14603 kfree(asic_data);
78eb129d 14604 } else {
98f179a5 14605 dd->asic_data = asic_data;
78eb129d
DL
14606 mutex_init(&dd->asic_data->asic_resource_mutex);
14607 }
14608 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
77241056 14609 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
dba715f0
DL
14610
14611 /* first one through - set up i2c devices */
14612 if (!peer)
14613 ret = set_up_i2c(dd, dd->asic_data);
14614
78eb129d 14615 return ret;
77241056
MM
14616}
14617
5d9157aa
DL
14618/*
14619 * Set dd->boardname. Use a generic name if a name is not returned from
14620 * EFI variable space.
14621 *
14622 * Return 0 on success, -ENOMEM if space could not be allocated.
14623 */
14624static int obtain_boardname(struct hfi1_devdata *dd)
14625{
14626 /* generic board description */
14627 const char generic[] =
14628 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14629 unsigned long size;
14630 int ret;
14631
14632 ret = read_hfi1_efi_var(dd, "description", &size,
14633 (void **)&dd->boardname);
14634 if (ret) {
845f876d 14635 dd_dev_info(dd, "Board description not found\n");
5d9157aa
DL
14636 /* use generic description */
14637 dd->boardname = kstrdup(generic, GFP_KERNEL);
14638 if (!dd->boardname)
14639 return -ENOMEM;
14640 }
14641 return 0;
14642}
14643
24487dd3
KW
14644/*
14645 * Check the interrupt registers to make sure that they are mapped correctly.
14646 * It is intended to help user identify any mismapping by VMM when the driver
14647 * is running in a VM. This function should only be called before interrupt
14648 * is set up properly.
14649 *
14650 * Return 0 on success, -EINVAL on failure.
14651 */
14652static int check_int_registers(struct hfi1_devdata *dd)
14653{
14654 u64 reg;
14655 u64 all_bits = ~(u64)0;
14656 u64 mask;
14657
14658 /* Clear CceIntMask[0] to avoid raising any interrupts */
14659 mask = read_csr(dd, CCE_INT_MASK);
14660 write_csr(dd, CCE_INT_MASK, 0ull);
14661 reg = read_csr(dd, CCE_INT_MASK);
14662 if (reg)
14663 goto err_exit;
14664
14665 /* Clear all interrupt status bits */
14666 write_csr(dd, CCE_INT_CLEAR, all_bits);
14667 reg = read_csr(dd, CCE_INT_STATUS);
14668 if (reg)
14669 goto err_exit;
14670
14671 /* Set all interrupt status bits */
14672 write_csr(dd, CCE_INT_FORCE, all_bits);
14673 reg = read_csr(dd, CCE_INT_STATUS);
14674 if (reg != all_bits)
14675 goto err_exit;
14676
14677 /* Restore the interrupt mask */
14678 write_csr(dd, CCE_INT_CLEAR, all_bits);
14679 write_csr(dd, CCE_INT_MASK, mask);
14680
14681 return 0;
14682err_exit:
14683 write_csr(dd, CCE_INT_MASK, mask);
14684 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14685 return -EINVAL;
14686}
14687
77241056 14688/**
7c03ed85 14689 * Allocate and initialize the device structure for the hfi.
77241056
MM
14690 * @dev: the pci_dev for hfi1_ib device
14691 * @ent: pci_device_id struct for this dev
14692 *
14693 * Also allocates, initializes, and returns the devdata struct for this
14694 * device instance
14695 *
14696 * This is global, and is called directly at init to set up the
14697 * chip-specific function pointers for later use.
14698 */
14699struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14700 const struct pci_device_id *ent)
14701{
14702 struct hfi1_devdata *dd;
14703 struct hfi1_pportdata *ppd;
14704 u64 reg;
14705 int i, ret;
14706 static const char * const inames[] = { /* implementation names */
14707 "RTL silicon",
14708 "RTL VCS simulation",
14709 "RTL FPGA emulation",
14710 "Functional simulator"
14711 };
24487dd3 14712 struct pci_dev *parent = pdev->bus->self;
77241056 14713
17fb4f29
JJ
14714 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14715 sizeof(struct hfi1_pportdata));
77241056
MM
14716 if (IS_ERR(dd))
14717 goto bail;
14718 ppd = dd->pport;
14719 for (i = 0; i < dd->num_pports; i++, ppd++) {
14720 int vl;
14721 /* init common fields */
14722 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14723 /* DC supports 4 link widths */
14724 ppd->link_width_supported =
14725 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14726 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14727 ppd->link_width_downgrade_supported =
14728 ppd->link_width_supported;
14729 /* start out enabling only 4X */
14730 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14731 ppd->link_width_downgrade_enabled =
14732 ppd->link_width_downgrade_supported;
14733 /* link width active is 0 when link is down */
14734 /* link width downgrade active is 0 when link is down */
14735
d0d236ea
JJ
14736 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14737 num_vls > HFI1_MAX_VLS_SUPPORTED) {
77241056
MM
14738 hfi1_early_err(&pdev->dev,
14739 "Invalid num_vls %u, using %u VLs\n",
14740 num_vls, HFI1_MAX_VLS_SUPPORTED);
14741 num_vls = HFI1_MAX_VLS_SUPPORTED;
14742 }
14743 ppd->vls_supported = num_vls;
14744 ppd->vls_operational = ppd->vls_supported;
8a4d3444 14745 ppd->actual_vls_operational = ppd->vls_supported;
77241056
MM
14746 /* Set the default MTU. */
14747 for (vl = 0; vl < num_vls; vl++)
14748 dd->vld[vl].mtu = hfi1_max_mtu;
14749 dd->vld[15].mtu = MAX_MAD_PACKET;
14750 /*
14751 * Set the initial values to reasonable default, will be set
14752 * for real when link is up.
14753 */
14754 ppd->lstate = IB_PORT_DOWN;
14755 ppd->overrun_threshold = 0x4;
14756 ppd->phy_error_threshold = 0xf;
14757 ppd->port_crc_mode_enabled = link_crc_mask;
14758 /* initialize supported LTP CRC mode */
14759 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14760 /* initialize enabled LTP CRC mode */
14761 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14762 /* start in offline */
14763 ppd->host_link_state = HLS_DN_OFFLINE;
14764 init_vl_arb_caches(ppd);
f45c8dc8 14765 ppd->last_pstate = 0xff; /* invalid value */
77241056
MM
14766 }
14767
14768 dd->link_default = HLS_DN_POLL;
14769
14770 /*
14771 * Do remaining PCIe setup and save PCIe values in dd.
14772 * Any error printing is already done by the init code.
14773 * On return, we have the chip mapped.
14774 */
26ea2544 14775 ret = hfi1_pcie_ddinit(dd, pdev);
77241056
MM
14776 if (ret < 0)
14777 goto bail_free;
14778
14779 /* verify that reads actually work, save revision for reset check */
14780 dd->revision = read_csr(dd, CCE_REVISION);
14781 if (dd->revision == ~(u64)0) {
14782 dd_dev_err(dd, "cannot read chip CSRs\n");
14783 ret = -EINVAL;
14784 goto bail_cleanup;
14785 }
14786 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14787 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14788 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14789 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14790
24487dd3
KW
14791 /*
14792 * Check interrupt registers mapping if the driver has no access to
14793 * the upstream component. In this case, it is likely that the driver
14794 * is running in a VM.
14795 */
14796 if (!parent) {
14797 ret = check_int_registers(dd);
14798 if (ret)
14799 goto bail_cleanup;
14800 }
14801
4d114fdd
JJ
14802 /*
14803 * obtain the hardware ID - NOT related to unit, which is a
14804 * software enumeration
14805 */
77241056
MM
14806 reg = read_csr(dd, CCE_REVISION2);
14807 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14808 & CCE_REVISION2_HFI_ID_MASK;
14809 /* the variable size will remove unwanted bits */
14810 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14811 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14812 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
17fb4f29
JJ
14813 dd->icode < ARRAY_SIZE(inames) ?
14814 inames[dd->icode] : "unknown", (int)dd->irev);
77241056
MM
14815
14816 /* speeds the hardware can support */
14817 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14818 /* speeds allowed to run at */
14819 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14820 /* give a reasonable active value, will be set on link up */
14821 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14822
14823 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14824 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14825 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14826 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14827 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14828 /* fix up link widths for emulation _p */
14829 ppd = dd->pport;
14830 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14831 ppd->link_width_supported =
14832 ppd->link_width_enabled =
14833 ppd->link_width_downgrade_supported =
14834 ppd->link_width_downgrade_enabled =
14835 OPA_LINK_WIDTH_1X;
14836 }
14837 /* insure num_vls isn't larger than number of sdma engines */
14838 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14839 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
11a5909b
DL
14840 num_vls, dd->chip_sdma_engines);
14841 num_vls = dd->chip_sdma_engines;
14842 ppd->vls_supported = dd->chip_sdma_engines;
8a4d3444 14843 ppd->vls_operational = ppd->vls_supported;
77241056
MM
14844 }
14845
14846 /*
14847 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14848 * Limit the max if larger than the field holds. If timeout is
14849 * non-zero, then the calculated field will be at least 1.
14850 *
14851 * Must be after icode is set up - the cclock rate depends
14852 * on knowing the hardware being used.
14853 */
14854 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14855 if (dd->rcv_intr_timeout_csr >
14856 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14857 dd->rcv_intr_timeout_csr =
14858 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14859 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14860 dd->rcv_intr_timeout_csr = 1;
14861
7c03ed85
EH
14862 /* needs to be done before we look for the peer device */
14863 read_guid(dd);
14864
78eb129d
DL
14865 /* set up shared ASIC data with peer device */
14866 ret = init_asic_data(dd);
14867 if (ret)
14868 goto bail_cleanup;
7c03ed85 14869
77241056
MM
14870 /* obtain chip sizes, reset chip CSRs */
14871 init_chip(dd);
14872
14873 /* read in the PCIe link speed information */
14874 ret = pcie_speeds(dd);
14875 if (ret)
14876 goto bail_cleanup;
14877
e83eba21
DL
14878 /* call before get_platform_config(), after init_chip_resources() */
14879 ret = eprom_init(dd);
14880 if (ret)
14881 goto bail_free_rcverr;
14882
c3838b39
EH
14883 /* Needs to be called before hfi1_firmware_init */
14884 get_platform_config(dd);
14885
77241056
MM
14886 /* read in firmware */
14887 ret = hfi1_firmware_init(dd);
14888 if (ret)
14889 goto bail_cleanup;
14890
14891 /*
14892 * In general, the PCIe Gen3 transition must occur after the
14893 * chip has been idled (so it won't initiate any PCIe transactions
14894 * e.g. an interrupt) and before the driver changes any registers
14895 * (the transition will reset the registers).
14896 *
14897 * In particular, place this call after:
14898 * - init_chip() - the chip will not initiate any PCIe transactions
14899 * - pcie_speeds() - reads the current link speed
14900 * - hfi1_firmware_init() - the needed firmware is ready to be
14901 * downloaded
14902 */
14903 ret = do_pcie_gen3_transition(dd);
14904 if (ret)
14905 goto bail_cleanup;
14906
14907 /* start setting dd values and adjusting CSRs */
14908 init_early_variables(dd);
14909
14910 parse_platform_config(dd);
14911
5d9157aa
DL
14912 ret = obtain_boardname(dd);
14913 if (ret)
77241056 14914 goto bail_cleanup;
77241056
MM
14915
14916 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 14917 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 14918 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
14919 (u32)dd->majrev,
14920 (u32)dd->minrev,
14921 (dd->revision >> CCE_REVISION_SW_SHIFT)
14922 & CCE_REVISION_SW_MASK);
14923
14924 ret = set_up_context_variables(dd);
14925 if (ret)
14926 goto bail_cleanup;
14927
14928 /* set initial RXE CSRs */
14929 init_rxe(dd);
14930 /* set initial TXE CSRs */
14931 init_txe(dd);
14932 /* set initial non-RXE, non-TXE CSRs */
14933 init_other(dd);
14934 /* set up KDETH QP prefix in both RX and TX CSRs */
14935 init_kdeth_qp(dd);
14936
4197344b
DD
14937 ret = hfi1_dev_affinity_init(dd);
14938 if (ret)
14939 goto bail_cleanup;
957558c9 14940
77241056
MM
14941 /* send contexts must be set up before receive contexts */
14942 ret = init_send_contexts(dd);
14943 if (ret)
14944 goto bail_cleanup;
14945
14946 ret = hfi1_create_ctxts(dd);
14947 if (ret)
14948 goto bail_cleanup;
14949
14950 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14951 /*
14952 * rcd[0] is guaranteed to be valid by this point. Also, all
14953 * context are using the same value, as per the module parameter.
14954 */
14955 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14956
14957 ret = init_pervl_scs(dd);
14958 if (ret)
14959 goto bail_cleanup;
14960
14961 /* sdma init */
14962 for (i = 0; i < dd->num_pports; ++i) {
14963 ret = sdma_init(dd, i);
14964 if (ret)
14965 goto bail_cleanup;
14966 }
14967
14968 /* use contexts created by hfi1_create_ctxts */
14969 ret = set_up_interrupts(dd);
14970 if (ret)
14971 goto bail_cleanup;
14972
14973 /* set up LCB access - must be after set_up_interrupts() */
14974 init_lcb_access(dd);
14975
fc0b76c0
IW
14976 /*
14977 * Serial number is created from the base guid:
14978 * [27:24] = base guid [38:35]
14979 * [23: 0] = base guid [23: 0]
14980 */
77241056 14981 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
fc0b76c0
IW
14982 (dd->base_guid & 0xFFFFFF) |
14983 ((dd->base_guid >> 11) & 0xF000000));
77241056
MM
14984
14985 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14986 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14987 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14988
14989 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14990 if (ret)
14991 goto bail_clear_intr;
77241056
MM
14992
14993 thermal_init(dd);
14994
14995 ret = init_cntrs(dd);
14996 if (ret)
14997 goto bail_clear_intr;
14998
14999 ret = init_rcverr(dd);
15000 if (ret)
15001 goto bail_free_cntrs;
15002
acd7c8fe
TS
15003 init_completion(&dd->user_comp);
15004
15005 /* The user refcount starts with one to inidicate an active device */
15006 atomic_set(&dd->user_refcount, 1);
15007
77241056
MM
15008 goto bail;
15009
15010bail_free_rcverr:
15011 free_rcverr(dd);
15012bail_free_cntrs:
15013 free_cntrs(dd);
15014bail_clear_intr:
15015 clean_up_interrupts(dd);
15016bail_cleanup:
15017 hfi1_pcie_ddcleanup(dd);
15018bail_free:
15019 hfi1_free_devdata(dd);
15020 dd = ERR_PTR(ret);
15021bail:
15022 return dd;
15023}
15024
15025static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15026 u32 dw_len)
15027{
15028 u32 delta_cycles;
15029 u32 current_egress_rate = ppd->current_egress_rate;
15030 /* rates here are in units of 10^6 bits/sec */
15031
15032 if (desired_egress_rate == -1)
15033 return 0; /* shouldn't happen */
15034
15035 if (desired_egress_rate >= current_egress_rate)
15036 return 0; /* we can't help go faster, only slower */
15037
15038 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15039 egress_cycles(dw_len * 4, current_egress_rate);
15040
15041 return (u16)delta_cycles;
15042}
15043
77241056
MM
15044/**
15045 * create_pbc - build a pbc for transmission
15046 * @flags: special case flags or-ed in built pbc
15047 * @srate: static rate
15048 * @vl: vl
15049 * @dwlen: dword length (header words + data words + pbc words)
15050 *
15051 * Create a PBC with the given flags, rate, VL, and length.
15052 *
15053 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15054 * for verbs, which does not use this PSM feature. The lone other caller
15055 * is for the diagnostic interface which calls this if the user does not
15056 * supply their own PBC.
15057 */
15058u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15059 u32 dw_len)
15060{
15061 u64 pbc, delay = 0;
15062
15063 if (unlikely(srate_mbs))
15064 delay = delay_cycles(ppd, srate_mbs, dw_len);
15065
15066 pbc = flags
15067 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15068 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15069 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15070 | (dw_len & PBC_LENGTH_DWS_MASK)
15071 << PBC_LENGTH_DWS_SHIFT;
15072
15073 return pbc;
15074}
15075
15076#define SBUS_THERMAL 0x4f
15077#define SBUS_THERM_MONITOR_MODE 0x1
15078
15079#define THERM_FAILURE(dev, ret, reason) \
15080 dd_dev_err((dd), \
15081 "Thermal sensor initialization failed: %s (%d)\n", \
15082 (reason), (ret))
15083
15084/*
cde10afa 15085 * Initialize the thermal sensor.
77241056
MM
15086 *
15087 * After initialization, enable polling of thermal sensor through
15088 * SBus interface. In order for this to work, the SBus Master
15089 * firmware has to be loaded due to the fact that the HW polling
15090 * logic uses SBus interrupts, which are not supported with
15091 * default firmware. Otherwise, no data will be returned through
15092 * the ASIC_STS_THERM CSR.
15093 */
15094static int thermal_init(struct hfi1_devdata *dd)
15095{
15096 int ret = 0;
15097
15098 if (dd->icode != ICODE_RTL_SILICON ||
a453698b 15099 check_chip_resource(dd, CR_THERM_INIT, NULL))
77241056
MM
15100 return ret;
15101
576531fd
DL
15102 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15103 if (ret) {
15104 THERM_FAILURE(dd, ret, "Acquire SBus");
15105 return ret;
15106 }
15107
77241056 15108 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
15109 /* Disable polling of thermal readings */
15110 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15111 msleep(100);
77241056
MM
15112 /* Thermal Sensor Initialization */
15113 /* Step 1: Reset the Thermal SBus Receiver */
15114 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15115 RESET_SBUS_RECEIVER, 0);
15116 if (ret) {
15117 THERM_FAILURE(dd, ret, "Bus Reset");
15118 goto done;
15119 }
15120 /* Step 2: Set Reset bit in Thermal block */
15121 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15122 WRITE_SBUS_RECEIVER, 0x1);
15123 if (ret) {
15124 THERM_FAILURE(dd, ret, "Therm Block Reset");
15125 goto done;
15126 }
15127 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15128 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15129 WRITE_SBUS_RECEIVER, 0x32);
15130 if (ret) {
15131 THERM_FAILURE(dd, ret, "Write Clock Div");
15132 goto done;
15133 }
15134 /* Step 4: Select temperature mode */
15135 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15136 WRITE_SBUS_RECEIVER,
15137 SBUS_THERM_MONITOR_MODE);
15138 if (ret) {
15139 THERM_FAILURE(dd, ret, "Write Mode Sel");
15140 goto done;
15141 }
15142 /* Step 5: De-assert block reset and start conversion */
15143 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15144 WRITE_SBUS_RECEIVER, 0x2);
15145 if (ret) {
15146 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15147 goto done;
15148 }
15149 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15150 msleep(22);
15151
15152 /* Enable polling of thermal readings */
15153 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
a453698b
DL
15154
15155 /* Set initialized flag */
15156 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15157 if (ret)
15158 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15159
77241056 15160done:
576531fd 15161 release_chip_resource(dd, CR_SBUS);
77241056
MM
15162 return ret;
15163}
15164
15165static void handle_temp_err(struct hfi1_devdata *dd)
15166{
15167 struct hfi1_pportdata *ppd = &dd->pport[0];
15168 /*
15169 * Thermal Critical Interrupt
15170 * Put the device into forced freeze mode, take link down to
15171 * offline, and put DC into reset.
15172 */
15173 dd_dev_emerg(dd,
15174 "Critical temperature reached! Forcing device into freeze mode!\n");
15175 dd->flags |= HFI1_FORCED_FREEZE;
8638b77f 15176 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
77241056
MM
15177 /*
15178 * Shut DC down as much and as quickly as possible.
15179 *
15180 * Step 1: Take the link down to OFFLINE. This will cause the
15181 * 8051 to put the Serdes in reset. However, we don't want to
15182 * go through the entire link state machine since we want to
15183 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15184 * but rather an attempt to save the chip.
15185 * Code below is almost the same as quiet_serdes() but avoids
15186 * all the extra work and the sleeps.
15187 */
15188 ppd->driver_link_ready = 0;
15189 ppd->link_enabled = 0;
bf640096
HC
15190 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15191 PLS_OFFLINE);
77241056
MM
15192 /*
15193 * Step 2: Shutdown LCB and 8051
15194 * After shutdown, do not restore DC_CFG_RESET value.
15195 */
15196 dc_shutdown(dd);
15197}