]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/infiniband/hw/hfi1/sdma.c
sched/core: Remove the tsk_cpus_allowed() wrapper
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / hfi1 / sdma.c
CommitLineData
77241056 1/*
05d6ac1d 2 * Copyright(c) 2015, 2016 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/spinlock.h>
49#include <linux/seqlock.h>
50#include <linux/netdevice.h>
51#include <linux/moduleparam.h>
52#include <linux/bitops.h>
53#include <linux/timer.h>
54#include <linux/vmalloc.h>
f4d26d81 55#include <linux/highmem.h>
77241056
MM
56
57#include "hfi.h"
58#include "common.h"
59#include "qp.h"
60#include "sdma.h"
61#include "iowait.h"
62#include "trace.h"
63
64/* must be a power of 2 >= 64 <= 32768 */
028d7254 65#define SDMA_DESCQ_CNT 2048
ee947859 66#define SDMA_DESC_INTR 64
77241056
MM
67#define INVALID_TAIL 0xffff
68
69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70module_param(sdma_descq_cnt, uint, S_IRUGO);
71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73static uint sdma_idle_cnt = 250;
74module_param(sdma_idle_cnt, uint, S_IRUGO);
75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77uint mod_num_sdma;
78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
ee947859
MH
81static uint sdma_desct_intr = SDMA_DESC_INTR;
82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
77241056
MM
85#define SDMA_WAIT_BATCH_SIZE 20
86/* max wait time for a SDMA engine to indicate it has halted */
87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88/* all SDMA engine errors that cause a halt */
89
90#define SD(name) SEND_DMA_##name
91#define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111/* sdma_sendctrl operations */
349ac71f 112#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114#define SDMA_SENDCTRL_OP_HALT BIT(2)
115#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
77241056
MM
116
117/* handle long defines */
118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135};
136
eac71936 137#ifdef CONFIG_SDMA_VERBOSITY
77241056
MM
138static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153};
eac71936 154#endif
77241056
MM
155
156static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226};
227
228#define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230/* declare all statics here rather than keep sorting */
231static void sdma_complete(struct kref *);
232static void sdma_finalput(struct sdma_state *);
233static void sdma_get(struct sdma_state *);
234static void sdma_hw_clean_up_task(unsigned long);
235static void sdma_put(struct sdma_state *);
236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237static void sdma_start_hw_clean_up(struct sdma_engine *);
77241056
MM
238static void sdma_sw_clean_up_task(unsigned long);
239static void sdma_sendctrl(struct sdma_engine *, unsigned);
240static void init_sdma_regs(struct sdma_engine *, u32, uint);
241static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247static void dump_sdma_state(struct sdma_engine *sde);
248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250static void sdma_flush_descq(struct sdma_engine *sde);
251
252/**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
256static const char *sdma_state_name(enum sdma_states state)
257{
258 return sdma_state_names[state];
259}
260
261static void sdma_get(struct sdma_state *ss)
262{
263 kref_get(&ss->kref);
264}
265
266static void sdma_complete(struct kref *kref)
267{
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272}
273
274static void sdma_put(struct sdma_state *ss)
275{
276 kref_put(&ss->kref, sdma_complete);
277}
278
279static void sdma_finalput(struct sdma_state *ss)
280{
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283}
284
285static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289{
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291}
292
293static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296{
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298}
299
300/*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306{
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
25d97dd5
VM
310 u64 reg_prev;
311 u64 reg = 0;
77241056
MM
312
313 while (1) {
25d97dd5
VM
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
77241056
MM
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
25d97dd5
VM
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
17fb4f29 327 __func__, sde->this_idx, (u32)reg);
25d97dd5 328 queue_work(dd->pport->hfi1_wq,
17fb4f29 329 &dd->pport->link_bounce_work);
77241056
MM
330 break;
331 }
332 udelay(1);
333 }
334}
335
336/*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
340void sdma_wait(struct hfi1_devdata *dd)
341{
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349}
350
351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352{
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361}
362
a545f530
MM
363static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366{
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
6b5c5213
MM
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
a545f530 374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
6b5c5213 375 sde->head_sn, tx->sn);
a545f530
MM
376 sde->head_sn++;
377#endif
63df8e09 378 __sdma_txclean(sde->dd, tx);
a545f530
MM
379 if (complete)
380 (*complete)(tx, res);
b96b0404 381 if (wait && iowait_sdma_dec(wait))
a545f530
MM
382 iowait_drain_wakeup(wait);
383}
384
77241056
MM
385/*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
403static void sdma_flush(struct sdma_engine *sde)
404{
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
b77d713a 407 unsigned long flags;
77241056
MM
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
b77d713a 411 spin_lock_irqsave(&sde->flushlist_lock, flags);
77241056
MM
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
b77d713a 417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
77241056 418 /* flush from flush list */
a545f530
MM
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056
MM
421}
422
423/*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
433static void sdma_field_flush(struct work_struct *work)
434{
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443}
444
445static void sdma_err_halt_wait(struct work_struct *work)
446{
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
17fb4f29
JJ
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
77241056
MM
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472}
473
77241056
MM
474static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475{
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
77241056
MM
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492}
493
494static void sdma_err_progress_check(unsigned long data)
495{
496 unsigned index;
497 struct sdma_engine *sde = (struct sdma_engine *)data;
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531}
532
533static void sdma_hw_clean_up_task(unsigned long opaque)
534{
50e5dcbe 535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
536 u64 statuscsr;
537
538 while (1) {
539#ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543#endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552}
553
554static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555{
556 smp_read_barrier_depends(); /* see sdma_update_tail() */
557 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558}
559
560/*
561 * flush ring for recovery
562 */
563static void sdma_flush_descq(struct sdma_engine *sde)
564{
565 u16 head, tail;
566 int progress = 0;
567 struct sdma_txreq *txp = get_txhead(sde);
568
569 /* The reason for some of the complexity of this code is that
570 * not all descriptors have corresponding txps. So, we have to
571 * be able to skip over descs until we wander into the range of
572 * the next txp on the list.
573 */
574 head = sde->descq_head & sde->sdma_mask;
575 tail = sde->descq_tail & sde->sdma_mask;
576 while (head != tail) {
577 /* advance head, wrap if needed */
578 head = ++sde->descq_head & sde->sdma_mask;
579 /* if now past this txp's descs, do the callback */
580 if (txp && txp->next_descq_idx == head) {
77241056
MM
581 /* remove from list */
582 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 583 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056 584 trace_hfi1_sdma_progress(sde, head, tail, txp);
77241056
MM
585 txp = get_txhead(sde);
586 }
587 progress++;
588 }
589 if (progress)
590 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591}
592
593static void sdma_sw_clean_up_task(unsigned long opaque)
594{
50e5dcbe 595 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
596 unsigned long flags;
597
598 spin_lock_irqsave(&sde->tail_lock, flags);
599 write_seqlock(&sde->head_lock);
600
601 /*
602 * At this point, the following should always be true:
603 * - We are halted, so no more descriptors are getting retired.
604 * - We are not running, so no one is submitting new work.
605 * - Only we can send the e40_sw_cleaned, so we can't start
606 * running again until we say so. So, the active list and
607 * descq are ours to play with.
608 */
609
77241056
MM
610 /*
611 * In the error clean up sequence, software clean must be called
612 * before the hardware clean so we can use the hardware head in
613 * the progress routine. A hardware clean or SPC unfreeze will
614 * reset the hardware head.
615 *
616 * Process all retired requests. The progress routine will use the
617 * latest physical hardware head - we are not running so speed does
618 * not matter.
619 */
620 sdma_make_progress(sde, 0);
621
622 sdma_flush(sde);
623
624 /*
625 * Reset our notion of head and tail.
626 * Note that the HW registers have been reset via an earlier
627 * clean up.
628 */
629 sde->descq_tail = 0;
630 sde->descq_head = 0;
631 sde->desc_avail = sdma_descq_freecnt(sde);
632 *sde->head_dma = 0;
633
634 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636 write_sequnlock(&sde->head_lock);
637 spin_unlock_irqrestore(&sde->tail_lock, flags);
638}
639
640static void sdma_sw_tear_down(struct sdma_engine *sde)
641{
642 struct sdma_state *ss = &sde->state;
643
644 /* Releasing this reference means the state machine has stopped. */
645 sdma_put(ss);
646
647 /* stop waiting for all unfreeze events to complete */
648 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650}
651
652static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653{
654 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655}
656
77241056 657static void sdma_set_state(struct sdma_engine *sde,
17fb4f29 658 enum sdma_states next_state)
77241056
MM
659{
660 struct sdma_state *ss = &sde->state;
661 const struct sdma_set_state_action *action = sdma_action_table;
662 unsigned op = 0;
663
664 trace_hfi1_sdma_state(
665 sde,
666 sdma_state_names[ss->current_state],
667 sdma_state_names[next_state]);
668
669 /* debugging bookkeeping */
670 ss->previous_state = ss->current_state;
671 ss->previous_op = ss->current_op;
672 ss->current_state = next_state;
673
d0d236ea
JJ
674 if (ss->previous_state != sdma_state_s99_running &&
675 next_state == sdma_state_s99_running)
77241056
MM
676 sdma_flush(sde);
677
678 if (action[next_state].op_enable)
679 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681 if (action[next_state].op_intenable)
682 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684 if (action[next_state].op_halt)
685 op |= SDMA_SENDCTRL_OP_HALT;
686
687 if (action[next_state].op_cleanup)
688 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690 if (action[next_state].go_s99_running_tofalse)
691 ss->go_s99_running = 0;
692
693 if (action[next_state].go_s99_running_totrue)
694 ss->go_s99_running = 1;
695
696 ss->current_op = op;
697 sdma_sendctrl(sde, ss->current_op);
698}
699
700/**
701 * sdma_get_descq_cnt() - called when device probed
702 *
703 * Return a validated descq count.
704 *
705 * This is currently only used in the verbs initialization to build the tx
706 * list.
707 *
708 * This will probably be deleted in favor of a more scalable approach to
709 * alloc tx's.
710 *
711 */
712u16 sdma_get_descq_cnt(void)
713{
714 u16 count = sdma_descq_cnt;
715
716 if (!count)
717 return SDMA_DESCQ_CNT;
718 /* count must be a power of 2 greater than 64 and less than
719 * 32768. Otherwise return default.
720 */
721 if (!is_power_of_2(count))
722 return SDMA_DESCQ_CNT;
aeef010a 723 if (count < 64 || count > 32768)
77241056
MM
724 return SDMA_DESCQ_CNT;
725 return count;
726}
b91cc573 727
0cb2aa69
TS
728/**
729 * sdma_engine_get_vl() - return vl for a given sdma engine
730 * @sde: sdma engine
731 *
732 * This function returns the vl mapped to a given engine, or an error if
733 * the mapping can't be found. The mapping fields are protected by RCU.
734 */
735int sdma_engine_get_vl(struct sdma_engine *sde)
736{
737 struct hfi1_devdata *dd = sde->dd;
738 struct sdma_vl_map *m;
739 u8 vl;
740
741 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
742 return -EINVAL;
743
744 rcu_read_lock();
745 m = rcu_dereference(dd->sdma_map);
746 if (unlikely(!m)) {
747 rcu_read_unlock();
748 return -EINVAL;
749 }
750 vl = m->engine_to_vl[sde->this_idx];
751 rcu_read_unlock();
752
753 return vl;
754}
755
77241056
MM
756/**
757 * sdma_select_engine_vl() - select sdma engine
758 * @dd: devdata
759 * @selector: a spreading factor
760 * @vl: this vl
761 *
762 *
763 * This function returns an engine based on the selector and a vl. The
764 * mapping fields are protected by RCU.
765 */
766struct sdma_engine *sdma_select_engine_vl(
767 struct hfi1_devdata *dd,
768 u32 selector,
769 u8 vl)
770{
771 struct sdma_vl_map *m;
772 struct sdma_map_elem *e;
773 struct sdma_engine *rval;
774
4be81991
IW
775 /* NOTE This should only happen if SC->VL changed after the initial
776 * checks on the QP/AH
777 * Default will return engine 0 below
778 */
779 if (vl >= num_vls) {
780 rval = NULL;
781 goto done;
782 }
77241056
MM
783
784 rcu_read_lock();
785 m = rcu_dereference(dd->sdma_map);
786 if (unlikely(!m)) {
787 rcu_read_unlock();
0a226edd 788 return &dd->per_sdma[0];
77241056
MM
789 }
790 e = m->map[vl & m->mask];
791 rval = e->sde[selector & e->mask];
792 rcu_read_unlock();
793
4be81991 794done:
0a226edd 795 rval = !rval ? &dd->per_sdma[0] : rval;
77241056
MM
796 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
797 return rval;
798}
799
800/**
801 * sdma_select_engine_sc() - select sdma engine
802 * @dd: devdata
803 * @selector: a spreading factor
804 * @sc5: the 5 bit sc
805 *
806 *
807 * This function returns an engine based on the selector and an sc.
808 */
809struct sdma_engine *sdma_select_engine_sc(
810 struct hfi1_devdata *dd,
811 u32 selector,
812 u8 sc5)
813{
814 u8 vl = sc_to_vlt(dd, sc5);
815
816 return sdma_select_engine_vl(dd, selector, vl);
817}
818
0cb2aa69
TS
819struct sdma_rht_map_elem {
820 u32 mask;
821 u8 ctr;
822 struct sdma_engine *sde[0];
823};
824
825struct sdma_rht_node {
826 unsigned long cpu_id;
827 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
828 struct rhash_head node;
829};
830
831#define NR_CPUS_HINT 192
832
833static const struct rhashtable_params sdma_rht_params = {
834 .nelem_hint = NR_CPUS_HINT,
835 .head_offset = offsetof(struct sdma_rht_node, node),
836 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
837 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
838 .max_size = NR_CPUS,
839 .min_size = 8,
840 .automatic_shrinking = true,
841};
842
843/*
844 * sdma_select_user_engine() - select sdma engine based on user setup
845 * @dd: devdata
846 * @selector: a spreading factor
847 * @vl: this vl
848 *
849 * This function returns an sdma engine for a user sdma request.
850 * User defined sdma engine affinity setting is honored when applicable,
851 * otherwise system default sdma engine mapping is used. To ensure correct
852 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853 */
854struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
855 u32 selector, u8 vl)
856{
857 struct sdma_rht_node *rht_node;
858 struct sdma_engine *sde = NULL;
0c98d344 859 const struct cpumask *current_mask = &current->cpus_allowed;
0cb2aa69
TS
860 unsigned long cpu_id;
861
862 /*
863 * To ensure that always the same sdma engine(s) will be
864 * selected make sure the process is pinned to this CPU only.
865 */
866 if (cpumask_weight(current_mask) != 1)
867 goto out;
868
869 cpu_id = smp_processor_id();
870 rcu_read_lock();
871 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu_id,
872 sdma_rht_params);
873
874 if (rht_node && rht_node->map[vl]) {
875 struct sdma_rht_map_elem *map = rht_node->map[vl];
876
877 sde = map->sde[selector & map->mask];
878 }
879 rcu_read_unlock();
880
881 if (sde)
882 return sde;
883
884out:
885 return sdma_select_engine_vl(dd, selector, vl);
886}
887
888static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889{
890 int i;
891
892 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
893 map->sde[map->ctr + i] = map->sde[i];
894}
895
896static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
897 struct sdma_engine *sde)
898{
899 unsigned int i, pow;
900
901 /* only need to check the first ctr entries for a match */
902 for (i = 0; i < map->ctr; i++) {
903 if (map->sde[i] == sde) {
904 memmove(&map->sde[i], &map->sde[i + 1],
905 (map->ctr - i - 1) * sizeof(map->sde[0]));
906 map->ctr--;
907 pow = roundup_pow_of_two(map->ctr ? : 1);
908 map->mask = pow - 1;
909 sdma_populate_sde_map(map);
910 break;
911 }
912 }
913}
914
915/*
916 * Prevents concurrent reads and writes of the sdma engine cpu_mask
917 */
918static DEFINE_MUTEX(process_to_sde_mutex);
919
920ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
921 size_t count)
922{
923 struct hfi1_devdata *dd = sde->dd;
924 cpumask_var_t mask, new_mask;
925 unsigned long cpu;
926 int ret, vl, sz;
927
928 vl = sdma_engine_get_vl(sde);
929 if (unlikely(vl < 0))
930 return -EINVAL;
931
932 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 if (!ret)
934 return -ENOMEM;
935
936 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937 if (!ret) {
938 free_cpumask_var(mask);
939 return -ENOMEM;
940 }
941 ret = cpulist_parse(buf, mask);
942 if (ret)
943 goto out_free;
944
945 if (!cpumask_subset(mask, cpu_online_mask)) {
946 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947 ret = -EINVAL;
948 goto out_free;
949 }
950
951 sz = sizeof(struct sdma_rht_map_elem) +
952 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954 mutex_lock(&process_to_sde_mutex);
955
956 for_each_cpu(cpu, mask) {
957 struct sdma_rht_node *rht_node;
958
959 /* Check if we have this already mapped */
960 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
961 cpumask_set_cpu(cpu, new_mask);
962 continue;
963 }
964
965 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
966 sdma_rht_params);
967 if (!rht_node) {
968 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
969 if (!rht_node) {
970 ret = -ENOMEM;
971 goto out;
972 }
973
974 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
975 if (!rht_node->map[vl]) {
976 kfree(rht_node);
977 ret = -ENOMEM;
978 goto out;
979 }
980 rht_node->cpu_id = cpu;
981 rht_node->map[vl]->mask = 0;
982 rht_node->map[vl]->ctr = 1;
983 rht_node->map[vl]->sde[0] = sde;
984
985 ret = rhashtable_insert_fast(&dd->sdma_rht,
986 &rht_node->node,
987 sdma_rht_params);
988 if (ret) {
989 kfree(rht_node->map[vl]);
990 kfree(rht_node);
991 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
992 cpu);
993 goto out;
994 }
995
996 } else {
997 int ctr, pow;
998
999 /* Add new user mappings */
1000 if (!rht_node->map[vl])
1001 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1002
1003 if (!rht_node->map[vl]) {
1004 ret = -ENOMEM;
1005 goto out;
1006 }
1007
1008 rht_node->map[vl]->ctr++;
1009 ctr = rht_node->map[vl]->ctr;
1010 rht_node->map[vl]->sde[ctr - 1] = sde;
1011 pow = roundup_pow_of_two(ctr);
1012 rht_node->map[vl]->mask = pow - 1;
1013
1014 /* Populate the sde map table */
1015 sdma_populate_sde_map(rht_node->map[vl]);
1016 }
1017 cpumask_set_cpu(cpu, new_mask);
1018 }
1019
1020 /* Clean up old mappings */
1021 for_each_cpu(cpu, cpu_online_mask) {
1022 struct sdma_rht_node *rht_node;
1023
1024 /* Don't cleanup sdes that are set in the new mask */
1025 if (cpumask_test_cpu(cpu, mask))
1026 continue;
1027
1028 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
1029 sdma_rht_params);
1030 if (rht_node) {
1031 bool empty = true;
1032 int i;
1033
1034 /* Remove mappings for old sde */
1035 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1036 if (rht_node->map[i])
1037 sdma_cleanup_sde_map(rht_node->map[i],
1038 sde);
1039
1040 /* Free empty hash table entries */
1041 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1042 if (!rht_node->map[i])
1043 continue;
1044
1045 if (rht_node->map[i]->ctr) {
1046 empty = false;
1047 break;
1048 }
1049 }
1050
1051 if (empty) {
1052 ret = rhashtable_remove_fast(&dd->sdma_rht,
1053 &rht_node->node,
1054 sdma_rht_params);
1055 WARN_ON(ret);
1056
1057 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1058 kfree(rht_node->map[i]);
1059
1060 kfree(rht_node);
1061 }
1062 }
1063 }
1064
1065 cpumask_copy(&sde->cpu_mask, new_mask);
1066out:
1067 mutex_unlock(&process_to_sde_mutex);
1068out_free:
1069 free_cpumask_var(mask);
1070 free_cpumask_var(new_mask);
1071 return ret ? : strnlen(buf, PAGE_SIZE);
1072}
1073
1074ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1075{
1076 mutex_lock(&process_to_sde_mutex);
1077 if (cpumask_empty(&sde->cpu_mask))
1078 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1079 else
1080 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1081 mutex_unlock(&process_to_sde_mutex);
1082 return strnlen(buf, PAGE_SIZE);
1083}
1084
1085static void sdma_rht_free(void *ptr, void *arg)
1086{
1087 struct sdma_rht_node *rht_node = ptr;
1088 int i;
1089
1090 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1091 kfree(rht_node->map[i]);
1092
1093 kfree(rht_node);
1094}
1095
af3674d6
TS
1096/**
1097 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1098 * @s: seq file
1099 * @dd: hfi1_devdata
1100 * @cpuid: cpu id
1101 *
1102 * This routine dumps the process to sde mappings per cpu
1103 */
1104void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1105 struct hfi1_devdata *dd,
1106 unsigned long cpuid)
1107{
1108 struct sdma_rht_node *rht_node;
1109 int i, j;
1110
1111 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpuid,
1112 sdma_rht_params);
1113 if (!rht_node)
1114 return;
1115
1116 seq_printf(s, "cpu%3lu: ", cpuid);
1117 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1118 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1119 continue;
1120
1121 seq_printf(s, " vl%d: [", i);
1122
1123 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1124 if (!rht_node->map[i]->sde[j])
1125 continue;
1126
1127 if (j > 0)
1128 seq_puts(s, ",");
1129
1130 seq_printf(s, " sdma%2d",
1131 rht_node->map[i]->sde[j]->this_idx);
1132 }
1133 seq_puts(s, " ]");
1134 }
1135
1136 seq_puts(s, "\n");
1137}
1138
77241056
MM
1139/*
1140 * Free the indicated map struct
1141 */
1142static void sdma_map_free(struct sdma_vl_map *m)
1143{
1144 int i;
1145
1146 for (i = 0; m && i < m->actual_vls; i++)
1147 kfree(m->map[i]);
1148 kfree(m);
1149}
1150
1151/*
1152 * Handle RCU callback
1153 */
1154static void sdma_map_rcu_callback(struct rcu_head *list)
1155{
1156 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1157
1158 sdma_map_free(m);
1159}
1160
1161/**
1162 * sdma_map_init - called when # vls change
1163 * @dd: hfi1_devdata
1164 * @port: port number
1165 * @num_vls: number of vls
1166 * @vl_engines: per vl engine mapping (optional)
1167 *
1168 * This routine changes the mapping based on the number of vls.
1169 *
1170 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1171 * implies auto computing the loading and giving each VLs a uniform
1172 * distribution of engines per VL.
1173 *
1174 * The auto algorithm computes the sde_per_vl and the number of extra
1175 * engines. Any extra engines are added from the last VL on down.
1176 *
1177 * rcu locking is used here to control access to the mapping fields.
1178 *
1179 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1180 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1181 * up to the next highest power of 2 and the first entry is reused
1182 * in a round robin fashion.
1183 *
1184 * If an error occurs the map change is not done and the mapping is
1185 * not changed.
1186 *
1187 */
1188int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1189{
1190 int i, j;
1191 int extra, sde_per_vl;
1192 int engine = 0;
1193 u8 lvl_engines[OPA_MAX_VLS];
1194 struct sdma_vl_map *oldmap, *newmap;
1195
1196 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1197 return 0;
1198
1199 if (!vl_engines) {
1200 /* truncate divide */
1201 sde_per_vl = dd->num_sdma / num_vls;
1202 /* extras */
1203 extra = dd->num_sdma % num_vls;
1204 vl_engines = lvl_engines;
1205 /* add extras from last vl down */
1206 for (i = num_vls - 1; i >= 0; i--, extra--)
1207 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1208 }
1209 /* build new map */
1210 newmap = kzalloc(
1211 sizeof(struct sdma_vl_map) +
1212 roundup_pow_of_two(num_vls) *
1213 sizeof(struct sdma_map_elem *),
1214 GFP_KERNEL);
1215 if (!newmap)
1216 goto bail;
1217 newmap->actual_vls = num_vls;
1218 newmap->vls = roundup_pow_of_two(num_vls);
1219 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
69a00b8e
MM
1220 /* initialize back-map */
1221 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1222 newmap->engine_to_vl[i] = -1;
77241056
MM
1223 for (i = 0; i < newmap->vls; i++) {
1224 /* save for wrap around */
1225 int first_engine = engine;
1226
1227 if (i < newmap->actual_vls) {
1228 int sz = roundup_pow_of_two(vl_engines[i]);
1229
1230 /* only allocate once */
1231 newmap->map[i] = kzalloc(
1232 sizeof(struct sdma_map_elem) +
1233 sz * sizeof(struct sdma_engine *),
1234 GFP_KERNEL);
1235 if (!newmap->map[i])
1236 goto bail;
1237 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1238 /* assign engines */
1239 for (j = 0; j < sz; j++) {
1240 newmap->map[i]->sde[j] =
1241 &dd->per_sdma[engine];
1242 if (++engine >= first_engine + vl_engines[i])
1243 /* wrap back to first engine */
1244 engine = first_engine;
1245 }
69a00b8e
MM
1246 /* assign back-map */
1247 for (j = 0; j < vl_engines[i]; j++)
1248 newmap->engine_to_vl[first_engine + j] = i;
77241056
MM
1249 } else {
1250 /* just re-use entry without allocating */
1251 newmap->map[i] = newmap->map[i % num_vls];
1252 }
1253 engine = first_engine + vl_engines[i];
1254 }
1255 /* newmap in hand, save old map */
1256 spin_lock_irq(&dd->sde_map_lock);
1257 oldmap = rcu_dereference_protected(dd->sdma_map,
17fb4f29 1258 lockdep_is_held(&dd->sde_map_lock));
77241056
MM
1259
1260 /* publish newmap */
1261 rcu_assign_pointer(dd->sdma_map, newmap);
1262
1263 spin_unlock_irq(&dd->sde_map_lock);
1264 /* success, free any old map after grace period */
1265 if (oldmap)
1266 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1267 return 0;
1268bail:
1269 /* free any partial allocation */
1270 sdma_map_free(newmap);
1271 return -ENOMEM;
1272}
1273
1274/*
1275 * Clean up allocated memory.
1276 *
1277 * This routine is can be called regardless of the success of sdma_init()
1278 *
1279 */
1280static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281{
1282 size_t i;
1283 struct sdma_engine *sde;
1284
1285 if (dd->sdma_pad_dma) {
1286 dma_free_coherent(&dd->pcidev->dev, 4,
1287 (void *)dd->sdma_pad_dma,
1288 dd->sdma_pad_phys);
1289 dd->sdma_pad_dma = NULL;
1290 dd->sdma_pad_phys = 0;
1291 }
1292 if (dd->sdma_heads_dma) {
1293 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294 (void *)dd->sdma_heads_dma,
1295 dd->sdma_heads_phys);
1296 dd->sdma_heads_dma = NULL;
1297 dd->sdma_heads_phys = 0;
1298 }
1299 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300 sde = &dd->per_sdma[i];
1301
1302 sde->head_dma = NULL;
1303 sde->head_phys = 0;
1304
1305 if (sde->descq) {
1306 dma_free_coherent(
1307 &dd->pcidev->dev,
1308 sde->descq_cnt * sizeof(u64[2]),
1309 sde->descq,
1310 sde->descq_phys
1311 );
1312 sde->descq = NULL;
1313 sde->descq_phys = 0;
1314 }
60f57ec2 1315 kvfree(sde->tx_ring);
77241056
MM
1316 sde->tx_ring = NULL;
1317 }
1318 spin_lock_irq(&dd->sde_map_lock);
79d0c088 1319 sdma_map_free(rcu_access_pointer(dd->sdma_map));
77241056
MM
1320 RCU_INIT_POINTER(dd->sdma_map, NULL);
1321 spin_unlock_irq(&dd->sde_map_lock);
1322 synchronize_rcu();
1323 kfree(dd->per_sdma);
1324 dd->per_sdma = NULL;
1325}
1326
1327/**
1328 * sdma_init() - called when device probed
1329 * @dd: hfi1_devdata
1330 * @port: port number (currently only zero)
1331 *
1332 * sdma_init initializes the specified number of engines.
1333 *
1334 * The code initializes each sde, its csrs. Interrupts
1335 * are not required to be enabled.
1336 *
1337 * Returns:
1338 * 0 - success, -errno on failure
1339 */
1340int sdma_init(struct hfi1_devdata *dd, u8 port)
1341{
1342 unsigned this_idx;
1343 struct sdma_engine *sde;
1344 u16 descq_cnt;
1345 void *curr_head;
1346 struct hfi1_pportdata *ppd = dd->pport + port;
1347 u32 per_sdma_credits;
1348 uint idle_cnt = sdma_idle_cnt;
1349 size_t num_engines = dd->chip_sdma_engines;
1350
1351 if (!HFI1_CAP_IS_KSET(SDMA)) {
1352 HFI1_CAP_CLEAR(SDMA_AHG);
1353 return 0;
1354 }
1355 if (mod_num_sdma &&
17fb4f29
JJ
1356 /* can't exceed chip support */
1357 mod_num_sdma <= dd->chip_sdma_engines &&
1358 /* count must be >= vls */
1359 mod_num_sdma >= num_vls)
77241056
MM
1360 num_engines = mod_num_sdma;
1361
1362 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1363 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1364 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
17fb4f29 1365 dd->chip_sdma_mem_size);
77241056
MM
1366
1367 per_sdma_credits =
8638b77f 1368 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
77241056
MM
1369
1370 /* set up freeze waitqueue */
1371 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1372 atomic_set(&dd->sdma_unfreeze_count, 0);
1373
1374 descq_cnt = sdma_get_descq_cnt();
1375 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
17fb4f29 1376 num_engines, descq_cnt);
77241056
MM
1377
1378 /* alloc memory for array of send engines */
1379 dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1380 if (!dd->per_sdma)
1381 return -ENOMEM;
1382
1383 idle_cnt = ns_to_cclock(dd, idle_cnt);
ee947859
MH
1384 if (!sdma_desct_intr)
1385 sdma_desct_intr = SDMA_DESC_INTR;
1386
77241056
MM
1387 /* Allocate memory for SendDMA descriptor FIFOs */
1388 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1389 sde = &dd->per_sdma[this_idx];
1390 sde->dd = dd;
1391 sde->ppd = ppd;
1392 sde->this_idx = this_idx;
1393 sde->descq_cnt = descq_cnt;
1394 sde->desc_avail = sdma_descq_freecnt(sde);
1395 sde->sdma_shift = ilog2(descq_cnt);
1396 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
a699c6c2
VM
1397
1398 /* Create a mask specifically for each interrupt source */
1399 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1400 this_idx);
1401 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1402 this_idx);
1403 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1404 this_idx);
1405 /* Create a combined mask to cover all 3 interrupt sources */
1406 sde->imask = sde->int_mask | sde->progress_mask |
1407 sde->idle_mask;
1408
77241056
MM
1409 spin_lock_init(&sde->tail_lock);
1410 seqlock_init(&sde->head_lock);
1411 spin_lock_init(&sde->senddmactrl_lock);
1412 spin_lock_init(&sde->flushlist_lock);
1413 /* insure there is always a zero bit */
1414 sde->ahg_bits = 0xfffffffe00000000ULL;
1415
1416 sdma_set_state(sde, sdma_state_s00_hw_down);
1417
1418 /* set up reference counting */
1419 kref_init(&sde->state.kref);
1420 init_completion(&sde->state.comp);
1421
1422 INIT_LIST_HEAD(&sde->flushlist);
1423 INIT_LIST_HEAD(&sde->dmawait);
1424
1425 sde->tail_csr =
1426 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1427
1428 if (idle_cnt)
1429 dd->default_desc1 =
1430 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1431 else
1432 dd->default_desc1 =
1433 SDMA_DESC1_INT_REQ_FLAG;
1434
1435 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
17fb4f29 1436 (unsigned long)sde);
77241056
MM
1437
1438 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
17fb4f29 1439 (unsigned long)sde);
77241056
MM
1440 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1441 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1442
1443 sde->progress_check_head = 0;
1444
daac731b
MFW
1445 setup_timer(&sde->err_progress_check_timer,
1446 sdma_err_progress_check, (unsigned long)sde);
77241056
MM
1447
1448 sde->descq = dma_zalloc_coherent(
1449 &dd->pcidev->dev,
1450 descq_cnt * sizeof(u64[2]),
1451 &sde->descq_phys,
1452 GFP_KERNEL
1453 );
1454 if (!sde->descq)
1455 goto bail;
1456 sde->tx_ring =
1457 kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1458 GFP_KERNEL);
1459 if (!sde->tx_ring)
1460 sde->tx_ring =
1461 vzalloc(
1462 sizeof(struct sdma_txreq *) *
1463 descq_cnt);
1464 if (!sde->tx_ring)
1465 goto bail;
1466 }
1467
1468 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1469 /* Allocate memory for DMA of head registers to memory */
1470 dd->sdma_heads_dma = dma_zalloc_coherent(
1471 &dd->pcidev->dev,
1472 dd->sdma_heads_size,
1473 &dd->sdma_heads_phys,
1474 GFP_KERNEL
1475 );
1476 if (!dd->sdma_heads_dma) {
1477 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1478 goto bail;
1479 }
1480
1481 /* Allocate memory for pad */
1482 dd->sdma_pad_dma = dma_zalloc_coherent(
1483 &dd->pcidev->dev,
1484 sizeof(u32),
1485 &dd->sdma_pad_phys,
1486 GFP_KERNEL
1487 );
1488 if (!dd->sdma_pad_dma) {
1489 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1490 goto bail;
1491 }
1492
1493 /* assign each engine to different cacheline and init registers */
1494 curr_head = (void *)dd->sdma_heads_dma;
1495 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1496 unsigned long phys_offset;
1497
1498 sde = &dd->per_sdma[this_idx];
1499
1500 sde->head_dma = curr_head;
1501 curr_head += L1_CACHE_BYTES;
1502 phys_offset = (unsigned long)sde->head_dma -
1503 (unsigned long)dd->sdma_heads_dma;
1504 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1505 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1506 }
1507 dd->flags |= HFI1_HAS_SEND_DMA;
1508 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1509 dd->num_sdma = num_engines;
1510 if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1511 goto bail;
0cb2aa69
TS
1512
1513 if (rhashtable_init(&dd->sdma_rht, &sdma_rht_params))
1514 goto bail;
1515
77241056
MM
1516 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1517 return 0;
1518
1519bail:
1520 sdma_clean(dd, num_engines);
1521 return -ENOMEM;
1522}
1523
1524/**
1525 * sdma_all_running() - called when the link goes up
1526 * @dd: hfi1_devdata
1527 *
1528 * This routine moves all engines to the running state.
1529 */
1530void sdma_all_running(struct hfi1_devdata *dd)
1531{
1532 struct sdma_engine *sde;
1533 unsigned int i;
1534
1535 /* move all engines to running */
1536 for (i = 0; i < dd->num_sdma; ++i) {
1537 sde = &dd->per_sdma[i];
1538 sdma_process_event(sde, sdma_event_e30_go_running);
1539 }
1540}
1541
1542/**
1543 * sdma_all_idle() - called when the link goes down
1544 * @dd: hfi1_devdata
1545 *
1546 * This routine moves all engines to the idle state.
1547 */
1548void sdma_all_idle(struct hfi1_devdata *dd)
1549{
1550 struct sdma_engine *sde;
1551 unsigned int i;
1552
1553 /* idle all engines */
1554 for (i = 0; i < dd->num_sdma; ++i) {
1555 sde = &dd->per_sdma[i];
1556 sdma_process_event(sde, sdma_event_e70_go_idle);
1557 }
1558}
1559
1560/**
1561 * sdma_start() - called to kick off state processing for all engines
1562 * @dd: hfi1_devdata
1563 *
1564 * This routine is for kicking off the state processing for all required
1565 * sdma engines. Interrupts need to be working at this point.
1566 *
1567 */
1568void sdma_start(struct hfi1_devdata *dd)
1569{
1570 unsigned i;
1571 struct sdma_engine *sde;
1572
1573 /* kick off the engines state processing */
1574 for (i = 0; i < dd->num_sdma; ++i) {
1575 sde = &dd->per_sdma[i];
1576 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1577 }
1578}
1579
1580/**
1581 * sdma_exit() - used when module is removed
1582 * @dd: hfi1_devdata
1583 */
1584void sdma_exit(struct hfi1_devdata *dd)
1585{
1586 unsigned this_idx;
1587 struct sdma_engine *sde;
1588
1589 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1590 ++this_idx) {
77241056
MM
1591 sde = &dd->per_sdma[this_idx];
1592 if (!list_empty(&sde->dmawait))
1593 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
17fb4f29 1594 sde->this_idx);
77241056
MM
1595 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1596
1597 del_timer_sync(&sde->err_progress_check_timer);
1598
1599 /*
1600 * This waits for the state machine to exit so it is not
1601 * necessary to kill the sdma_sw_clean_up_task to make sure
1602 * it is not running.
1603 */
1604 sdma_finalput(&sde->state);
1605 }
1606 sdma_clean(dd, dd->num_sdma);
0cb2aa69 1607 rhashtable_free_and_destroy(&dd->sdma_rht, sdma_rht_free, NULL);
77241056
MM
1608}
1609
1610/*
1611 * unmap the indicated descriptor
1612 */
1613static inline void sdma_unmap_desc(
1614 struct hfi1_devdata *dd,
1615 struct sdma_desc *descp)
1616{
1617 switch (sdma_mapping_type(descp)) {
1618 case SDMA_MAP_SINGLE:
1619 dma_unmap_single(
1620 &dd->pcidev->dev,
1621 sdma_mapping_addr(descp),
1622 sdma_mapping_len(descp),
1623 DMA_TO_DEVICE);
1624 break;
1625 case SDMA_MAP_PAGE:
1626 dma_unmap_page(
1627 &dd->pcidev->dev,
1628 sdma_mapping_addr(descp),
1629 sdma_mapping_len(descp),
1630 DMA_TO_DEVICE);
1631 break;
1632 }
1633}
1634
1635/*
1636 * return the mode as indicated by the first
1637 * descriptor in the tx.
1638 */
1639static inline u8 ahg_mode(struct sdma_txreq *tx)
1640{
1641 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1642 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1643}
1644
1645/**
63df8e09 1646 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
77241056
MM
1647 * @dd: hfi1_devdata for unmapping
1648 * @tx: tx request to clean
1649 *
1650 * This is used in the progress routine to clean the tx or
1651 * by the ULP to toss an in-process tx build.
1652 *
1653 * The code can be called multiple times without issue.
1654 *
1655 */
63df8e09 1656void __sdma_txclean(
77241056
MM
1657 struct hfi1_devdata *dd,
1658 struct sdma_txreq *tx)
1659{
1660 u16 i;
1661
1662 if (tx->num_desc) {
1663 u8 skip = 0, mode = ahg_mode(tx);
1664
1665 /* unmap first */
1666 sdma_unmap_desc(dd, &tx->descp[0]);
1667 /* determine number of AHG descriptors to skip */
1668 if (mode > SDMA_AHG_APPLY_UPDATE1)
1669 skip = mode >> 1;
1670 for (i = 1 + skip; i < tx->num_desc; i++)
1671 sdma_unmap_desc(dd, &tx->descp[i]);
1672 tx->num_desc = 0;
1673 }
1674 kfree(tx->coalesce_buf);
1675 tx->coalesce_buf = NULL;
1676 /* kmalloc'ed descp */
1677 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1678 tx->desc_limit = ARRAY_SIZE(tx->descs);
1679 kfree(tx->descp);
1680 }
1681}
1682
1683static inline u16 sdma_gethead(struct sdma_engine *sde)
1684{
1685 struct hfi1_devdata *dd = sde->dd;
1686 int use_dmahead;
1687 u16 hwhead;
1688
1689#ifdef CONFIG_SDMA_VERBOSITY
1690 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1691 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1692#endif
1693
1694retry:
1695 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1696 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1697 hwhead = use_dmahead ?
50e5dcbe
JJ
1698 (u16)le64_to_cpu(*sde->head_dma) :
1699 (u16)read_sde_csr(sde, SD(HEAD));
77241056
MM
1700
1701 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1702 u16 cnt;
1703 u16 swtail;
1704 u16 swhead;
1705 int sane;
1706
1707 swhead = sde->descq_head & sde->sdma_mask;
1708 /* this code is really bad for cache line trading */
1709 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1710 cnt = sde->descq_cnt;
1711
1712 if (swhead < swtail)
1713 /* not wrapped */
1714 sane = (hwhead >= swhead) & (hwhead <= swtail);
1715 else if (swhead > swtail)
1716 /* wrapped around */
1717 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1718 (hwhead <= swtail);
1719 else
1720 /* empty */
1721 sane = (hwhead == swhead);
1722
1723 if (unlikely(!sane)) {
1724 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
17fb4f29
JJ
1725 sde->this_idx,
1726 use_dmahead ? "dma" : "kreg",
1727 hwhead, swhead, swtail, cnt);
77241056
MM
1728 if (use_dmahead) {
1729 /* try one more time, using csr */
1730 use_dmahead = 0;
1731 goto retry;
1732 }
1733 /* proceed as if no progress */
1734 hwhead = swhead;
1735 }
1736 }
1737 return hwhead;
1738}
1739
1740/*
1741 * This is called when there are send DMA descriptors that might be
1742 * available.
1743 *
1744 * This is called with head_lock held.
1745 */
1746static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1747{
1748 struct iowait *wait, *nw;
1749 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1750 unsigned i, n = 0, seq;
1751 struct sdma_txreq *stx;
1752 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1753
1754#ifdef CONFIG_SDMA_VERBOSITY
1755 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1756 slashstrip(__FILE__), __LINE__, __func__);
1757 dd_dev_err(sde->dd, "avail: %u\n", avail);
1758#endif
1759
1760 do {
1761 seq = read_seqbegin(&dev->iowait_lock);
1762 if (!list_empty(&sde->dmawait)) {
1763 /* at least one item */
1764 write_seqlock(&dev->iowait_lock);
1765 /* Harvest waiters wanting DMA descriptors */
1766 list_for_each_entry_safe(
1767 wait,
1768 nw,
1769 &sde->dmawait,
1770 list) {
1771 u16 num_desc = 0;
1772
1773 if (!wait->wakeup)
1774 continue;
1775 if (n == ARRAY_SIZE(waits))
1776 break;
1777 if (!list_empty(&wait->tx_head)) {
1778 stx = list_first_entry(
1779 &wait->tx_head,
1780 struct sdma_txreq,
1781 list);
1782 num_desc = stx->num_desc;
1783 }
1784 if (num_desc > avail)
1785 break;
1786 avail -= num_desc;
1787 list_del_init(&wait->list);
1788 waits[n++] = wait;
1789 }
1790 write_sequnlock(&dev->iowait_lock);
1791 break;
1792 }
1793 } while (read_seqretry(&dev->iowait_lock, seq));
1794
1795 for (i = 0; i < n; i++)
1796 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1797}
1798
1799/* head_lock must be held */
1800static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1801{
1802 struct sdma_txreq *txp = NULL;
1803 int progress = 0;
a545f530 1804 u16 hwhead, swhead;
77241056
MM
1805 int idle_check_done = 0;
1806
1807 hwhead = sdma_gethead(sde);
1808
1809 /* The reason for some of the complexity of this code is that
1810 * not all descriptors have corresponding txps. So, we have to
1811 * be able to skip over descs until we wander into the range of
1812 * the next txp on the list.
1813 */
1814
1815retry:
1816 txp = get_txhead(sde);
1817 swhead = sde->descq_head & sde->sdma_mask;
1818 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1819 while (swhead != hwhead) {
1820 /* advance head, wrap if needed */
1821 swhead = ++sde->descq_head & sde->sdma_mask;
1822
1823 /* if now past this txp's descs, do the callback */
1824 if (txp && txp->next_descq_idx == swhead) {
77241056
MM
1825 /* remove from list */
1826 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 1827 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
77241056
MM
1828 /* see if there is another txp */
1829 txp = get_txhead(sde);
1830 }
1831 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1832 progress++;
1833 }
1834
1835 /*
1836 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1837 * to updates to the the dma_head location in host memory. The head
1838 * value read might not be fully up to date. If there are pending
1839 * descriptors and the SDMA idle interrupt fired then read from the
1840 * CSR SDMA head instead to get the latest value from the hardware.
1841 * The hardware SDMA head should be read at most once in this invocation
1842 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1843 */
1844 if ((status & sde->idle_mask) && !idle_check_done) {
a545f530
MM
1845 u16 swtail;
1846
77241056
MM
1847 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1848 if (swtail != hwhead) {
1849 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1850 idle_check_done = 1;
1851 goto retry;
1852 }
1853 }
1854
1855 sde->last_status = status;
1856 if (progress)
1857 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1858}
1859
1860/*
1861 * sdma_engine_interrupt() - interrupt handler for engine
1862 * @sde: sdma engine
1863 * @status: sdma interrupt reason
1864 *
1865 * Status is a mask of the 3 possible interrupts for this engine. It will
1866 * contain bits _only_ for this SDMA engine. It will contain at least one
1867 * bit, it may contain more.
1868 */
1869void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1870{
1871 trace_hfi1_sdma_engine_interrupt(sde, status);
1872 write_seqlock(&sde->head_lock);
ee947859 1873 sdma_set_desc_cnt(sde, sdma_desct_intr);
a699c6c2
VM
1874 if (status & sde->idle_mask)
1875 sde->idle_int_cnt++;
1876 else if (status & sde->progress_mask)
1877 sde->progress_int_cnt++;
1878 else if (status & sde->int_mask)
1879 sde->sdma_int_cnt++;
77241056
MM
1880 sdma_make_progress(sde, status);
1881 write_sequnlock(&sde->head_lock);
1882}
1883
1884/**
1885 * sdma_engine_error() - error handler for engine
1886 * @sde: sdma engine
1887 * @status: sdma interrupt reason
1888 */
1889void sdma_engine_error(struct sdma_engine *sde, u64 status)
1890{
1891 unsigned long flags;
1892
1893#ifdef CONFIG_SDMA_VERBOSITY
1894 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1895 sde->this_idx,
1896 (unsigned long long)status,
1897 sdma_state_names[sde->state.current_state]);
1898#endif
1899 spin_lock_irqsave(&sde->tail_lock, flags);
1900 write_seqlock(&sde->head_lock);
1901 if (status & ALL_SDMA_ENG_HALT_ERRS)
1902 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1903 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1904 dd_dev_err(sde->dd,
17fb4f29
JJ
1905 "SDMA (%u) engine error: 0x%llx state %s\n",
1906 sde->this_idx,
1907 (unsigned long long)status,
1908 sdma_state_names[sde->state.current_state]);
77241056
MM
1909 dump_sdma_state(sde);
1910 }
1911 write_sequnlock(&sde->head_lock);
1912 spin_unlock_irqrestore(&sde->tail_lock, flags);
1913}
1914
1915static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1916{
1917 u64 set_senddmactrl = 0;
1918 u64 clr_senddmactrl = 0;
1919 unsigned long flags;
1920
1921#ifdef CONFIG_SDMA_VERBOSITY
1922 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1923 sde->this_idx,
1924 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1925 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1926 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1927 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1928#endif
1929
1930 if (op & SDMA_SENDCTRL_OP_ENABLE)
1931 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1932 else
1933 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1934
1935 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1936 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1937 else
1938 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1939
1940 if (op & SDMA_SENDCTRL_OP_HALT)
1941 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1942 else
1943 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1944
1945 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1946
1947 sde->p_senddmactrl |= set_senddmactrl;
1948 sde->p_senddmactrl &= ~clr_senddmactrl;
1949
1950 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1951 write_sde_csr(sde, SD(CTRL),
17fb4f29
JJ
1952 sde->p_senddmactrl |
1953 SD(CTRL_SDMA_CLEANUP_SMASK));
77241056
MM
1954 else
1955 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1956
1957 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1958
1959#ifdef CONFIG_SDMA_VERBOSITY
1960 sdma_dumpstate(sde);
1961#endif
1962}
1963
1964static void sdma_setlengen(struct sdma_engine *sde)
1965{
1966#ifdef CONFIG_SDMA_VERBOSITY
1967 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1968 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1969#endif
1970
1971 /*
1972 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1973 * count to enable generation checking and load the internal
1974 * generation counter.
1975 */
1976 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29 1977 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
77241056 1978 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29
JJ
1979 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1980 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
77241056
MM
1981}
1982
1983static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1984{
1985 /* Commit writes to memory and advance the tail on the chip */
1986 smp_wmb(); /* see get_txhead() */
1987 writeq(tail, sde->tail_csr);
1988}
1989
1990/*
1991 * This is called when changing to state s10_hw_start_up_halt_wait as
1992 * a result of send buffer errors or send DMA descriptor errors.
1993 */
1994static void sdma_hw_start_up(struct sdma_engine *sde)
1995{
1996 u64 reg;
1997
1998#ifdef CONFIG_SDMA_VERBOSITY
1999 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2000 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2001#endif
2002
2003 sdma_setlengen(sde);
2004 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2005 *sde->head_dma = 0;
2006
2007 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2008 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2009 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2010}
2011
77241056
MM
2012/*
2013 * set_sdma_integrity
2014 *
2015 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2016 */
2017static void set_sdma_integrity(struct sdma_engine *sde)
2018{
2019 struct hfi1_devdata *dd = sde->dd;
77241056 2020
d9ac4555
JP
2021 write_sde_csr(sde, SD(CHECK_ENABLE),
2022 hfi1_pkt_base_sdma_integrity(dd));
77241056
MM
2023}
2024
77241056
MM
2025static void init_sdma_regs(
2026 struct sdma_engine *sde,
2027 u32 credits,
2028 uint idle_cnt)
2029{
2030 u8 opval, opmask;
2031#ifdef CONFIG_SDMA_VERBOSITY
2032 struct hfi1_devdata *dd = sde->dd;
2033
2034 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2035 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2036#endif
2037
2038 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2039 sdma_setlengen(sde);
2040 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2041 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2042 write_sde_csr(sde, SD(DESC_CNT), 0);
2043 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2044 write_sde_csr(sde, SD(MEMORY),
17fb4f29
JJ
2045 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2046 ((u64)(credits * sde->this_idx) <<
2047 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
77241056
MM
2048 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2049 set_sdma_integrity(sde);
2050 opmask = OPCODE_CHECK_MASK_DISABLED;
2051 opval = OPCODE_CHECK_VAL_DISABLED;
2052 write_sde_csr(sde, SD(CHECK_OPCODE),
17fb4f29
JJ
2053 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2054 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
77241056
MM
2055}
2056
2057#ifdef CONFIG_SDMA_VERBOSITY
2058
2059#define sdma_dumpstate_helper0(reg) do { \
2060 csr = read_csr(sde->dd, reg); \
2061 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2062 } while (0)
2063
2064#define sdma_dumpstate_helper(reg) do { \
2065 csr = read_sde_csr(sde, reg); \
2066 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2067 #reg, sde->this_idx, csr); \
2068 } while (0)
2069
2070#define sdma_dumpstate_helper2(reg) do { \
2071 csr = read_csr(sde->dd, reg + (8 * i)); \
2072 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2073 #reg, i, csr); \
2074 } while (0)
2075
2076void sdma_dumpstate(struct sdma_engine *sde)
2077{
2078 u64 csr;
2079 unsigned i;
2080
2081 sdma_dumpstate_helper(SD(CTRL));
2082 sdma_dumpstate_helper(SD(STATUS));
2083 sdma_dumpstate_helper0(SD(ERR_STATUS));
2084 sdma_dumpstate_helper0(SD(ERR_MASK));
2085 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2086 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2087
2088 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
6fd8edab 2089 sdma_dumpstate_helper2(CCE_INT_STATUS);
77241056
MM
2090 sdma_dumpstate_helper2(CCE_INT_MASK);
2091 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2092 }
2093
2094 sdma_dumpstate_helper(SD(TAIL));
2095 sdma_dumpstate_helper(SD(HEAD));
2096 sdma_dumpstate_helper(SD(PRIORITY_THLD));
6fd8edab 2097 sdma_dumpstate_helper(SD(IDLE_CNT));
77241056
MM
2098 sdma_dumpstate_helper(SD(RELOAD_CNT));
2099 sdma_dumpstate_helper(SD(DESC_CNT));
2100 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2101 sdma_dumpstate_helper(SD(MEMORY));
2102 sdma_dumpstate_helper0(SD(ENGINES));
2103 sdma_dumpstate_helper0(SD(MEM_SIZE));
2104 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2105 sdma_dumpstate_helper(SD(BASE_ADDR));
2106 sdma_dumpstate_helper(SD(LEN_GEN));
2107 sdma_dumpstate_helper(SD(HEAD_ADDR));
2108 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2109 sdma_dumpstate_helper(SD(CHECK_VL));
2110 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2111 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2112 sdma_dumpstate_helper(SD(CHECK_SLID));
2113 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2114}
2115#endif
2116
2117static void dump_sdma_state(struct sdma_engine *sde)
2118{
2119 struct hw_sdma_desc *descq;
2120 struct hw_sdma_desc *descqp;
2121 u64 desc[2];
2122 u64 addr;
2123 u8 gen;
2124 u16 len;
2125 u16 head, tail, cnt;
2126
2127 head = sde->descq_head & sde->sdma_mask;
2128 tail = sde->descq_tail & sde->sdma_mask;
2129 cnt = sdma_descq_freecnt(sde);
2130 descq = sde->descq;
2131
2132 dd_dev_err(sde->dd,
17fb4f29
JJ
2133 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2134 sde->this_idx, head, tail, cnt,
2135 !list_empty(&sde->flushlist));
77241056
MM
2136
2137 /* print info for each entry in the descriptor queue */
2138 while (head != tail) {
2139 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2140
2141 descqp = &sde->descq[head];
2142 desc[0] = le64_to_cpu(descqp->qw[0]);
2143 desc[1] = le64_to_cpu(descqp->qw[1]);
2144 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2145 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2146 'H' : '-';
2147 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2148 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2149 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2150 & SDMA_DESC0_PHY_ADDR_MASK;
2151 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2152 & SDMA_DESC1_GENERATION_MASK;
2153 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2154 & SDMA_DESC0_BYTE_COUNT_MASK;
2155 dd_dev_err(sde->dd,
17fb4f29
JJ
2156 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2157 head, flags, addr, gen, len);
77241056 2158 dd_dev_err(sde->dd,
17fb4f29
JJ
2159 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2160 desc[0], desc[1]);
77241056
MM
2161 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2162 dd_dev_err(sde->dd,
17fb4f29
JJ
2163 "\taidx: %u amode: %u alen: %u\n",
2164 (u8)((desc[1] &
2165 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2166 SDMA_DESC1_HEADER_INDEX_SHIFT),
2167 (u8)((desc[1] &
2168 SDMA_DESC1_HEADER_MODE_SMASK) >>
2169 SDMA_DESC1_HEADER_MODE_SHIFT),
2170 (u8)((desc[1] &
2171 SDMA_DESC1_HEADER_DWS_SMASK) >>
2172 SDMA_DESC1_HEADER_DWS_SHIFT));
77241056
MM
2173 head++;
2174 head &= sde->sdma_mask;
2175 }
2176}
2177
2178#define SDE_FMT \
0a226edd 2179 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
77241056
MM
2180/**
2181 * sdma_seqfile_dump_sde() - debugfs dump of sde
2182 * @s: seq file
2183 * @sde: send dma engine to dump
2184 *
2185 * This routine dumps the sde to the indicated seq file.
2186 */
2187void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2188{
2189 u16 head, tail;
2190 struct hw_sdma_desc *descqp;
2191 u64 desc[2];
2192 u64 addr;
2193 u8 gen;
2194 u16 len;
2195
2196 head = sde->descq_head & sde->sdma_mask;
2197 tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
2198 seq_printf(s, SDE_FMT, sde->this_idx,
17fb4f29
JJ
2199 sde->cpu,
2200 sdma_state_name(sde->state.current_state),
2201 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2202 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2203 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2204 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2205 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2206 (unsigned long long)le64_to_cpu(*sde->head_dma),
2207 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2208 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2209 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2210 (unsigned long long)sde->last_status,
2211 (unsigned long long)sde->ahg_bits,
2212 sde->tx_tail,
2213 sde->tx_head,
2214 sde->descq_tail,
2215 sde->descq_head,
77241056 2216 !list_empty(&sde->flushlist),
17fb4f29
JJ
2217 sde->descq_full_count,
2218 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
77241056
MM
2219
2220 /* print info for each entry in the descriptor queue */
2221 while (head != tail) {
2222 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2223
2224 descqp = &sde->descq[head];
2225 desc[0] = le64_to_cpu(descqp->qw[0]);
2226 desc[1] = le64_to_cpu(descqp->qw[1]);
2227 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2228 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2229 'H' : '-';
2230 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2231 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2232 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2233 & SDMA_DESC0_PHY_ADDR_MASK;
2234 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2235 & SDMA_DESC1_GENERATION_MASK;
2236 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2237 & SDMA_DESC0_BYTE_COUNT_MASK;
2238 seq_printf(s,
17fb4f29
JJ
2239 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2240 head, flags, addr, gen, len);
77241056
MM
2241 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2242 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
17fb4f29
JJ
2243 (u8)((desc[1] &
2244 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2245 SDMA_DESC1_HEADER_INDEX_SHIFT),
2246 (u8)((desc[1] &
2247 SDMA_DESC1_HEADER_MODE_SMASK) >>
2248 SDMA_DESC1_HEADER_MODE_SHIFT));
77241056
MM
2249 head = (head + 1) & sde->sdma_mask;
2250 }
2251}
2252
2253/*
2254 * add the generation number into
2255 * the qw1 and return
2256 */
2257static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2258{
2259 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2260
2261 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2262 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2263 << SDMA_DESC1_GENERATION_SHIFT;
2264 return qw1;
2265}
2266
2267/*
2268 * This routine submits the indicated tx
2269 *
2270 * Space has already been guaranteed and
2271 * tail side of ring is locked.
2272 *
2273 * The hardware tail update is done
2274 * in the caller and that is facilitated
2275 * by returning the new tail.
2276 *
2277 * There is special case logic for ahg
2278 * to not add the generation number for
2279 * up to 2 descriptors that follow the
2280 * first descriptor.
2281 *
2282 */
2283static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2284{
2285 int i;
2286 u16 tail;
2287 struct sdma_desc *descp = tx->descp;
2288 u8 skip = 0, mode = ahg_mode(tx);
2289
2290 tail = sde->descq_tail & sde->sdma_mask;
2291 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2292 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2293 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2294 tail, &sde->descq[tail]);
2295 tail = ++sde->descq_tail & sde->sdma_mask;
2296 descp++;
2297 if (mode > SDMA_AHG_APPLY_UPDATE1)
2298 skip = mode >> 1;
2299 for (i = 1; i < tx->num_desc; i++, descp++) {
2300 u64 qw1;
2301
2302 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2303 if (skip) {
2304 /* edits don't have generation */
2305 qw1 = descp->qw[1];
2306 skip--;
2307 } else {
2308 /* replace generation with real one for non-edits */
2309 qw1 = add_gen(sde, descp->qw[1]);
2310 }
2311 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2312 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2313 tail, &sde->descq[tail]);
2314 tail = ++sde->descq_tail & sde->sdma_mask;
2315 }
2316 tx->next_descq_idx = tail;
2317#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2318 tx->sn = sde->tail_sn++;
2319 trace_hfi1_sdma_in_sn(sde, tx->sn);
2320 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2321#endif
2322 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2323 sde->desc_avail -= tx->num_desc;
2324 return tail;
2325}
2326
2327/*
2328 * Check for progress
2329 */
2330static int sdma_check_progress(
2331 struct sdma_engine *sde,
2332 struct iowait *wait,
2333 struct sdma_txreq *tx)
2334{
2335 int ret;
2336
2337 sde->desc_avail = sdma_descq_freecnt(sde);
2338 if (tx->num_desc <= sde->desc_avail)
2339 return -EAGAIN;
2340 /* pulse the head_lock */
2341 if (wait && wait->sleep) {
2342 unsigned seq;
2343
2344 seq = raw_seqcount_begin(
2345 (const seqcount_t *)&sde->head_lock.seqcount);
2346 ret = wait->sleep(sde, wait, tx, seq);
2347 if (ret == -EAGAIN)
2348 sde->desc_avail = sdma_descq_freecnt(sde);
e490974e 2349 } else {
77241056 2350 ret = -EBUSY;
e490974e 2351 }
77241056
MM
2352 return ret;
2353}
2354
2355/**
2356 * sdma_send_txreq() - submit a tx req to ring
2357 * @sde: sdma engine to use
2358 * @wait: wait structure to use when full (may be NULL)
2359 * @tx: sdma_txreq to submit
2360 *
2361 * The call submits the tx into the ring. If a iowait structure is non-NULL
2362 * the packet will be queued to the list in wait.
2363 *
2364 * Return:
2365 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2366 * ring (wait == NULL)
2367 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2368 */
2369int sdma_send_txreq(struct sdma_engine *sde,
2370 struct iowait *wait,
2371 struct sdma_txreq *tx)
2372{
2373 int ret = 0;
2374 u16 tail;
2375 unsigned long flags;
2376
2377 /* user should have supplied entire packet */
2378 if (unlikely(tx->tlen))
2379 return -EINVAL;
2380 tx->wait = wait;
2381 spin_lock_irqsave(&sde->tail_lock, flags);
2382retry:
2383 if (unlikely(!__sdma_running(sde)))
2384 goto unlock_noconn;
2385 if (unlikely(tx->num_desc > sde->desc_avail))
2386 goto nodesc;
2387 tail = submit_tx(sde, tx);
2388 if (wait)
14553ca1 2389 iowait_sdma_inc(wait);
77241056
MM
2390 sdma_update_tail(sde, tail);
2391unlock:
2392 spin_unlock_irqrestore(&sde->tail_lock, flags);
2393 return ret;
2394unlock_noconn:
2395 if (wait)
14553ca1 2396 iowait_sdma_inc(wait);
77241056
MM
2397 tx->next_descq_idx = 0;
2398#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2399 tx->sn = sde->tail_sn++;
2400 trace_hfi1_sdma_in_sn(sde, tx->sn);
2401#endif
f4f30031 2402 spin_lock(&sde->flushlist_lock);
77241056 2403 list_add_tail(&tx->list, &sde->flushlist);
f4f30031 2404 spin_unlock(&sde->flushlist_lock);
77241056
MM
2405 if (wait) {
2406 wait->tx_count++;
2407 wait->count += tx->num_desc;
2408 }
2409 schedule_work(&sde->flush_worker);
2410 ret = -ECOMM;
2411 goto unlock;
2412nodesc:
2413 ret = sdma_check_progress(sde, wait, tx);
2414 if (ret == -EAGAIN) {
2415 ret = 0;
2416 goto retry;
2417 }
2418 sde->descq_full_count++;
2419 goto unlock;
2420}
2421
2422/**
2423 * sdma_send_txlist() - submit a list of tx req to ring
2424 * @sde: sdma engine to use
2425 * @wait: wait structure to use when full (may be NULL)
2426 * @tx_list: list of sdma_txreqs to submit
0b115ef1
HC
2427 * @count: pointer to a u32 which, after return will contain the total number of
2428 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2429 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2430 * which are added to SDMA engine flush list if the SDMA engine state is
2431 * not running.
77241056
MM
2432 *
2433 * The call submits the list into the ring.
2434 *
2435 * If the iowait structure is non-NULL and not equal to the iowait list
2436 * the unprocessed part of the list will be appended to the list in wait.
2437 *
2438 * In all cases, the tx_list will be updated so the head of the tx_list is
2439 * the list of descriptors that have yet to be transmitted.
2440 *
2441 * The intent of this call is to provide a more efficient
2442 * way of submitting multiple packets to SDMA while holding the tail
2443 * side locking.
2444 *
2445 * Return:
0b115ef1 2446 * 0 - Success,
c7cbf2fa 2447 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
77241056
MM
2448 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2449 */
17fb4f29 2450int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
0b115ef1 2451 struct list_head *tx_list, u32 *count_out)
77241056
MM
2452{
2453 struct sdma_txreq *tx, *tx_next;
2454 int ret = 0;
2455 unsigned long flags;
2456 u16 tail = INVALID_TAIL;
0b115ef1 2457 u32 submit_count = 0, flush_count = 0, total_count;
77241056
MM
2458
2459 spin_lock_irqsave(&sde->tail_lock, flags);
2460retry:
2461 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2462 tx->wait = wait;
2463 if (unlikely(!__sdma_running(sde)))
2464 goto unlock_noconn;
2465 if (unlikely(tx->num_desc > sde->desc_avail))
2466 goto nodesc;
2467 if (unlikely(tx->tlen)) {
2468 ret = -EINVAL;
2469 goto update_tail;
2470 }
2471 list_del_init(&tx->list);
2472 tail = submit_tx(sde, tx);
0b115ef1 2473 submit_count++;
77241056 2474 if (tail != INVALID_TAIL &&
0b115ef1 2475 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
77241056
MM
2476 sdma_update_tail(sde, tail);
2477 tail = INVALID_TAIL;
2478 }
2479 }
2480update_tail:
0b115ef1 2481 total_count = submit_count + flush_count;
77241056 2482 if (wait)
0b115ef1 2483 iowait_sdma_add(wait, total_count);
77241056
MM
2484 if (tail != INVALID_TAIL)
2485 sdma_update_tail(sde, tail);
2486 spin_unlock_irqrestore(&sde->tail_lock, flags);
0b115ef1
HC
2487 *count_out = total_count;
2488 return ret;
77241056
MM
2489unlock_noconn:
2490 spin_lock(&sde->flushlist_lock);
2491 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2492 tx->wait = wait;
2493 list_del_init(&tx->list);
77241056
MM
2494 tx->next_descq_idx = 0;
2495#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2496 tx->sn = sde->tail_sn++;
2497 trace_hfi1_sdma_in_sn(sde, tx->sn);
2498#endif
2499 list_add_tail(&tx->list, &sde->flushlist);
0b115ef1 2500 flush_count++;
77241056
MM
2501 if (wait) {
2502 wait->tx_count++;
2503 wait->count += tx->num_desc;
2504 }
2505 }
2506 spin_unlock(&sde->flushlist_lock);
2507 schedule_work(&sde->flush_worker);
2508 ret = -ECOMM;
2509 goto update_tail;
2510nodesc:
2511 ret = sdma_check_progress(sde, wait, tx);
2512 if (ret == -EAGAIN) {
2513 ret = 0;
2514 goto retry;
2515 }
2516 sde->descq_full_count++;
2517 goto update_tail;
2518}
2519
17fb4f29 2520static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
77241056
MM
2521{
2522 unsigned long flags;
2523
2524 spin_lock_irqsave(&sde->tail_lock, flags);
2525 write_seqlock(&sde->head_lock);
2526
2527 __sdma_process_event(sde, event);
2528
2529 if (sde->state.current_state == sdma_state_s99_running)
2530 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2531
2532 write_sequnlock(&sde->head_lock);
2533 spin_unlock_irqrestore(&sde->tail_lock, flags);
2534}
2535
2536static void __sdma_process_event(struct sdma_engine *sde,
17fb4f29 2537 enum sdma_events event)
77241056
MM
2538{
2539 struct sdma_state *ss = &sde->state;
2540 int need_progress = 0;
2541
2542 /* CONFIG SDMA temporary */
2543#ifdef CONFIG_SDMA_VERBOSITY
2544 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2545 sdma_state_names[ss->current_state],
2546 sdma_event_names[event]);
2547#endif
2548
2549 switch (ss->current_state) {
2550 case sdma_state_s00_hw_down:
2551 switch (event) {
2552 case sdma_event_e00_go_hw_down:
2553 break;
2554 case sdma_event_e30_go_running:
2555 /*
2556 * If down, but running requested (usually result
2557 * of link up, then we need to start up.
2558 * This can happen when hw down is requested while
2559 * bringing the link up with traffic active on
4d114fdd
JJ
2560 * 7220, e.g.
2561 */
77241056
MM
2562 ss->go_s99_running = 1;
2563 /* fall through and start dma engine */
2564 case sdma_event_e10_go_hw_start:
2565 /* This reference means the state machine is started */
2566 sdma_get(&sde->state);
2567 sdma_set_state(sde,
17fb4f29 2568 sdma_state_s10_hw_start_up_halt_wait);
77241056
MM
2569 break;
2570 case sdma_event_e15_hw_halt_done:
2571 break;
2572 case sdma_event_e25_hw_clean_up_done:
2573 break;
2574 case sdma_event_e40_sw_cleaned:
2575 sdma_sw_tear_down(sde);
2576 break;
2577 case sdma_event_e50_hw_cleaned:
2578 break;
2579 case sdma_event_e60_hw_halted:
2580 break;
2581 case sdma_event_e70_go_idle:
2582 break;
2583 case sdma_event_e80_hw_freeze:
2584 break;
2585 case sdma_event_e81_hw_frozen:
2586 break;
2587 case sdma_event_e82_hw_unfreeze:
2588 break;
2589 case sdma_event_e85_link_down:
2590 break;
2591 case sdma_event_e90_sw_halted:
2592 break;
2593 }
2594 break;
2595
2596 case sdma_state_s10_hw_start_up_halt_wait:
2597 switch (event) {
2598 case sdma_event_e00_go_hw_down:
2599 sdma_set_state(sde, sdma_state_s00_hw_down);
2600 sdma_sw_tear_down(sde);
2601 break;
2602 case sdma_event_e10_go_hw_start:
2603 break;
2604 case sdma_event_e15_hw_halt_done:
2605 sdma_set_state(sde,
17fb4f29 2606 sdma_state_s15_hw_start_up_clean_wait);
77241056
MM
2607 sdma_start_hw_clean_up(sde);
2608 break;
2609 case sdma_event_e25_hw_clean_up_done:
2610 break;
2611 case sdma_event_e30_go_running:
2612 ss->go_s99_running = 1;
2613 break;
2614 case sdma_event_e40_sw_cleaned:
2615 break;
2616 case sdma_event_e50_hw_cleaned:
2617 break;
2618 case sdma_event_e60_hw_halted:
8edf7502 2619 schedule_work(&sde->err_halt_worker);
77241056
MM
2620 break;
2621 case sdma_event_e70_go_idle:
2622 ss->go_s99_running = 0;
2623 break;
2624 case sdma_event_e80_hw_freeze:
2625 break;
2626 case sdma_event_e81_hw_frozen:
2627 break;
2628 case sdma_event_e82_hw_unfreeze:
2629 break;
2630 case sdma_event_e85_link_down:
2631 break;
2632 case sdma_event_e90_sw_halted:
2633 break;
2634 }
2635 break;
2636
2637 case sdma_state_s15_hw_start_up_clean_wait:
2638 switch (event) {
2639 case sdma_event_e00_go_hw_down:
2640 sdma_set_state(sde, sdma_state_s00_hw_down);
2641 sdma_sw_tear_down(sde);
2642 break;
2643 case sdma_event_e10_go_hw_start:
2644 break;
2645 case sdma_event_e15_hw_halt_done:
2646 break;
2647 case sdma_event_e25_hw_clean_up_done:
2648 sdma_hw_start_up(sde);
2649 sdma_set_state(sde, ss->go_s99_running ?
2650 sdma_state_s99_running :
2651 sdma_state_s20_idle);
2652 break;
2653 case sdma_event_e30_go_running:
2654 ss->go_s99_running = 1;
2655 break;
2656 case sdma_event_e40_sw_cleaned:
2657 break;
2658 case sdma_event_e50_hw_cleaned:
2659 break;
2660 case sdma_event_e60_hw_halted:
2661 break;
2662 case sdma_event_e70_go_idle:
2663 ss->go_s99_running = 0;
2664 break;
2665 case sdma_event_e80_hw_freeze:
2666 break;
2667 case sdma_event_e81_hw_frozen:
2668 break;
2669 case sdma_event_e82_hw_unfreeze:
2670 break;
2671 case sdma_event_e85_link_down:
2672 break;
2673 case sdma_event_e90_sw_halted:
2674 break;
2675 }
2676 break;
2677
2678 case sdma_state_s20_idle:
2679 switch (event) {
2680 case sdma_event_e00_go_hw_down:
2681 sdma_set_state(sde, sdma_state_s00_hw_down);
2682 sdma_sw_tear_down(sde);
2683 break;
2684 case sdma_event_e10_go_hw_start:
2685 break;
2686 case sdma_event_e15_hw_halt_done:
2687 break;
2688 case sdma_event_e25_hw_clean_up_done:
2689 break;
2690 case sdma_event_e30_go_running:
2691 sdma_set_state(sde, sdma_state_s99_running);
2692 ss->go_s99_running = 1;
2693 break;
2694 case sdma_event_e40_sw_cleaned:
2695 break;
2696 case sdma_event_e50_hw_cleaned:
2697 break;
2698 case sdma_event_e60_hw_halted:
2699 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 2700 schedule_work(&sde->err_halt_worker);
77241056
MM
2701 break;
2702 case sdma_event_e70_go_idle:
2703 break;
2704 case sdma_event_e85_link_down:
2705 /* fall through */
2706 case sdma_event_e80_hw_freeze:
2707 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2708 atomic_dec(&sde->dd->sdma_unfreeze_count);
2709 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2710 break;
2711 case sdma_event_e81_hw_frozen:
2712 break;
2713 case sdma_event_e82_hw_unfreeze:
2714 break;
2715 case sdma_event_e90_sw_halted:
2716 break;
2717 }
2718 break;
2719
2720 case sdma_state_s30_sw_clean_up_wait:
2721 switch (event) {
2722 case sdma_event_e00_go_hw_down:
2723 sdma_set_state(sde, sdma_state_s00_hw_down);
2724 break;
2725 case sdma_event_e10_go_hw_start:
2726 break;
2727 case sdma_event_e15_hw_halt_done:
2728 break;
2729 case sdma_event_e25_hw_clean_up_done:
2730 break;
2731 case sdma_event_e30_go_running:
2732 ss->go_s99_running = 1;
2733 break;
2734 case sdma_event_e40_sw_cleaned:
2735 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2736 sdma_start_hw_clean_up(sde);
2737 break;
2738 case sdma_event_e50_hw_cleaned:
2739 break;
2740 case sdma_event_e60_hw_halted:
2741 break;
2742 case sdma_event_e70_go_idle:
2743 ss->go_s99_running = 0;
2744 break;
2745 case sdma_event_e80_hw_freeze:
2746 break;
2747 case sdma_event_e81_hw_frozen:
2748 break;
2749 case sdma_event_e82_hw_unfreeze:
2750 break;
2751 case sdma_event_e85_link_down:
2752 ss->go_s99_running = 0;
2753 break;
2754 case sdma_event_e90_sw_halted:
2755 break;
2756 }
2757 break;
2758
2759 case sdma_state_s40_hw_clean_up_wait:
2760 switch (event) {
2761 case sdma_event_e00_go_hw_down:
2762 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2763 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2764 break;
2765 case sdma_event_e10_go_hw_start:
2766 break;
2767 case sdma_event_e15_hw_halt_done:
2768 break;
2769 case sdma_event_e25_hw_clean_up_done:
2770 sdma_hw_start_up(sde);
2771 sdma_set_state(sde, ss->go_s99_running ?
2772 sdma_state_s99_running :
2773 sdma_state_s20_idle);
2774 break;
2775 case sdma_event_e30_go_running:
2776 ss->go_s99_running = 1;
2777 break;
2778 case sdma_event_e40_sw_cleaned:
2779 break;
2780 case sdma_event_e50_hw_cleaned:
2781 break;
2782 case sdma_event_e60_hw_halted:
2783 break;
2784 case sdma_event_e70_go_idle:
2785 ss->go_s99_running = 0;
2786 break;
2787 case sdma_event_e80_hw_freeze:
2788 break;
2789 case sdma_event_e81_hw_frozen:
2790 break;
2791 case sdma_event_e82_hw_unfreeze:
2792 break;
2793 case sdma_event_e85_link_down:
2794 ss->go_s99_running = 0;
2795 break;
2796 case sdma_event_e90_sw_halted:
2797 break;
2798 }
2799 break;
2800
2801 case sdma_state_s50_hw_halt_wait:
2802 switch (event) {
2803 case sdma_event_e00_go_hw_down:
2804 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2805 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2806 break;
2807 case sdma_event_e10_go_hw_start:
2808 break;
2809 case sdma_event_e15_hw_halt_done:
2810 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2811 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2812 break;
2813 case sdma_event_e25_hw_clean_up_done:
2814 break;
2815 case sdma_event_e30_go_running:
2816 ss->go_s99_running = 1;
2817 break;
2818 case sdma_event_e40_sw_cleaned:
2819 break;
2820 case sdma_event_e50_hw_cleaned:
2821 break;
2822 case sdma_event_e60_hw_halted:
8edf7502 2823 schedule_work(&sde->err_halt_worker);
77241056
MM
2824 break;
2825 case sdma_event_e70_go_idle:
2826 ss->go_s99_running = 0;
2827 break;
2828 case sdma_event_e80_hw_freeze:
2829 break;
2830 case sdma_event_e81_hw_frozen:
2831 break;
2832 case sdma_event_e82_hw_unfreeze:
2833 break;
2834 case sdma_event_e85_link_down:
2835 ss->go_s99_running = 0;
2836 break;
2837 case sdma_event_e90_sw_halted:
2838 break;
2839 }
2840 break;
2841
2842 case sdma_state_s60_idle_halt_wait:
2843 switch (event) {
2844 case sdma_event_e00_go_hw_down:
2845 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2846 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2847 break;
2848 case sdma_event_e10_go_hw_start:
2849 break;
2850 case sdma_event_e15_hw_halt_done:
2851 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2852 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2853 break;
2854 case sdma_event_e25_hw_clean_up_done:
2855 break;
2856 case sdma_event_e30_go_running:
2857 ss->go_s99_running = 1;
2858 break;
2859 case sdma_event_e40_sw_cleaned:
2860 break;
2861 case sdma_event_e50_hw_cleaned:
2862 break;
2863 case sdma_event_e60_hw_halted:
8edf7502 2864 schedule_work(&sde->err_halt_worker);
77241056
MM
2865 break;
2866 case sdma_event_e70_go_idle:
2867 ss->go_s99_running = 0;
2868 break;
2869 case sdma_event_e80_hw_freeze:
2870 break;
2871 case sdma_event_e81_hw_frozen:
2872 break;
2873 case sdma_event_e82_hw_unfreeze:
2874 break;
2875 case sdma_event_e85_link_down:
2876 break;
2877 case sdma_event_e90_sw_halted:
2878 break;
2879 }
2880 break;
2881
2882 case sdma_state_s80_hw_freeze:
2883 switch (event) {
2884 case sdma_event_e00_go_hw_down:
2885 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2886 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2887 break;
2888 case sdma_event_e10_go_hw_start:
2889 break;
2890 case sdma_event_e15_hw_halt_done:
2891 break;
2892 case sdma_event_e25_hw_clean_up_done:
2893 break;
2894 case sdma_event_e30_go_running:
2895 ss->go_s99_running = 1;
2896 break;
2897 case sdma_event_e40_sw_cleaned:
2898 break;
2899 case sdma_event_e50_hw_cleaned:
2900 break;
2901 case sdma_event_e60_hw_halted:
2902 break;
2903 case sdma_event_e70_go_idle:
2904 ss->go_s99_running = 0;
2905 break;
2906 case sdma_event_e80_hw_freeze:
2907 break;
2908 case sdma_event_e81_hw_frozen:
2909 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
8edf7502 2910 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2911 break;
2912 case sdma_event_e82_hw_unfreeze:
2913 break;
2914 case sdma_event_e85_link_down:
2915 break;
2916 case sdma_event_e90_sw_halted:
2917 break;
2918 }
2919 break;
2920
2921 case sdma_state_s82_freeze_sw_clean:
2922 switch (event) {
2923 case sdma_event_e00_go_hw_down:
2924 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2925 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2926 break;
2927 case sdma_event_e10_go_hw_start:
2928 break;
2929 case sdma_event_e15_hw_halt_done:
2930 break;
2931 case sdma_event_e25_hw_clean_up_done:
2932 break;
2933 case sdma_event_e30_go_running:
2934 ss->go_s99_running = 1;
2935 break;
2936 case sdma_event_e40_sw_cleaned:
2937 /* notify caller this engine is done cleaning */
2938 atomic_dec(&sde->dd->sdma_unfreeze_count);
2939 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2940 break;
2941 case sdma_event_e50_hw_cleaned:
2942 break;
2943 case sdma_event_e60_hw_halted:
2944 break;
2945 case sdma_event_e70_go_idle:
2946 ss->go_s99_running = 0;
2947 break;
2948 case sdma_event_e80_hw_freeze:
2949 break;
2950 case sdma_event_e81_hw_frozen:
2951 break;
2952 case sdma_event_e82_hw_unfreeze:
2953 sdma_hw_start_up(sde);
2954 sdma_set_state(sde, ss->go_s99_running ?
2955 sdma_state_s99_running :
2956 sdma_state_s20_idle);
2957 break;
2958 case sdma_event_e85_link_down:
2959 break;
2960 case sdma_event_e90_sw_halted:
2961 break;
2962 }
2963 break;
2964
2965 case sdma_state_s99_running:
2966 switch (event) {
2967 case sdma_event_e00_go_hw_down:
2968 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2969 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2970 break;
2971 case sdma_event_e10_go_hw_start:
2972 break;
2973 case sdma_event_e15_hw_halt_done:
2974 break;
2975 case sdma_event_e25_hw_clean_up_done:
2976 break;
2977 case sdma_event_e30_go_running:
2978 break;
2979 case sdma_event_e40_sw_cleaned:
2980 break;
2981 case sdma_event_e50_hw_cleaned:
2982 break;
2983 case sdma_event_e60_hw_halted:
2984 need_progress = 1;
2985 sdma_err_progress_check_schedule(sde);
2986 case sdma_event_e90_sw_halted:
2987 /*
2988 * SW initiated halt does not perform engines
2989 * progress check
2990 */
2991 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 2992 schedule_work(&sde->err_halt_worker);
77241056
MM
2993 break;
2994 case sdma_event_e70_go_idle:
2995 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2996 break;
2997 case sdma_event_e85_link_down:
2998 ss->go_s99_running = 0;
2999 /* fall through */
3000 case sdma_event_e80_hw_freeze:
3001 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3002 atomic_dec(&sde->dd->sdma_unfreeze_count);
3003 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3004 break;
3005 case sdma_event_e81_hw_frozen:
3006 break;
3007 case sdma_event_e82_hw_unfreeze:
3008 break;
3009 }
3010 break;
3011 }
3012
3013 ss->last_event = event;
3014 if (need_progress)
3015 sdma_make_progress(sde, 0);
3016}
3017
3018/*
3019 * _extend_sdma_tx_descs() - helper to extend txreq
3020 *
3021 * This is called once the initial nominal allocation
3022 * of descriptors in the sdma_txreq is exhausted.
3023 *
3024 * The code will bump the allocation up to the max
f4d26d81
NV
3025 * of MAX_DESC (64) descriptors. There doesn't seem
3026 * much point in an interim step. The last descriptor
3027 * is reserved for coalesce buffer in order to support
3028 * cases where input packet has >MAX_DESC iovecs.
77241056
MM
3029 *
3030 */
f4d26d81 3031static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
77241056
MM
3032{
3033 int i;
3034
f4d26d81
NV
3035 /* Handle last descriptor */
3036 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3037 /* if tlen is 0, it is for padding, release last descriptor */
3038 if (!tx->tlen) {
3039 tx->desc_limit = MAX_DESC;
3040 } else if (!tx->coalesce_buf) {
3041 /* allocate coalesce buffer with space for padding */
3042 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3043 GFP_ATOMIC);
3044 if (!tx->coalesce_buf)
a5a9e8cc 3045 goto enomem;
f4d26d81
NV
3046 tx->coalesce_idx = 0;
3047 }
3048 return 0;
3049 }
3050
3051 if (unlikely(tx->num_desc == MAX_DESC))
a5a9e8cc 3052 goto enomem;
f4d26d81 3053
77241056
MM
3054 tx->descp = kmalloc_array(
3055 MAX_DESC,
3056 sizeof(struct sdma_desc),
3057 GFP_ATOMIC);
3058 if (!tx->descp)
a5a9e8cc 3059 goto enomem;
f4d26d81
NV
3060
3061 /* reserve last descriptor for coalescing */
3062 tx->desc_limit = MAX_DESC - 1;
77241056
MM
3063 /* copy ones already built */
3064 for (i = 0; i < tx->num_desc; i++)
3065 tx->descp[i] = tx->descs[i];
3066 return 0;
a5a9e8cc 3067enomem:
63df8e09 3068 __sdma_txclean(dd, tx);
a5a9e8cc 3069 return -ENOMEM;
77241056
MM
3070}
3071
f4d26d81
NV
3072/*
3073 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3074 *
3075 * This is called once the initial nominal allocation of descriptors
3076 * in the sdma_txreq is exhausted.
3077 *
3078 * This function calls _extend_sdma_tx_descs to extend or allocate
3079 * coalesce buffer. If there is a allocated coalesce buffer, it will
3080 * copy the input packet data into the coalesce buffer. It also adds
16733b88 3081 * coalesce buffer descriptor once when whole packet is received.
f4d26d81
NV
3082 *
3083 * Return:
3084 * <0 - error
3085 * 0 - coalescing, don't populate descriptor
3086 * 1 - continue with populating descriptor
3087 */
3088int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3089 int type, void *kvaddr, struct page *page,
3090 unsigned long offset, u16 len)
3091{
3092 int pad_len, rval;
3093 dma_addr_t addr;
3094
3095 rval = _extend_sdma_tx_descs(dd, tx);
3096 if (rval) {
63df8e09 3097 __sdma_txclean(dd, tx);
f4d26d81
NV
3098 return rval;
3099 }
3100
3101 /* If coalesce buffer is allocated, copy data into it */
3102 if (tx->coalesce_buf) {
3103 if (type == SDMA_MAP_NONE) {
63df8e09 3104 __sdma_txclean(dd, tx);
f4d26d81
NV
3105 return -EINVAL;
3106 }
3107
3108 if (type == SDMA_MAP_PAGE) {
3109 kvaddr = kmap(page);
3110 kvaddr += offset;
3111 } else if (WARN_ON(!kvaddr)) {
63df8e09 3112 __sdma_txclean(dd, tx);
f4d26d81
NV
3113 return -EINVAL;
3114 }
3115
3116 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3117 tx->coalesce_idx += len;
3118 if (type == SDMA_MAP_PAGE)
3119 kunmap(page);
3120
3121 /* If there is more data, return */
3122 if (tx->tlen - tx->coalesce_idx)
3123 return 0;
3124
3125 /* Whole packet is received; add any padding */
3126 pad_len = tx->packet_len & (sizeof(u32) - 1);
3127 if (pad_len) {
3128 pad_len = sizeof(u32) - pad_len;
3129 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3130 /* padding is taken care of for coalescing case */
3131 tx->packet_len += pad_len;
3132 tx->tlen += pad_len;
3133 }
3134
3135 /* dma map the coalesce buffer */
3136 addr = dma_map_single(&dd->pcidev->dev,
3137 tx->coalesce_buf,
3138 tx->tlen,
3139 DMA_TO_DEVICE);
3140
3141 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
63df8e09 3142 __sdma_txclean(dd, tx);
f4d26d81
NV
3143 return -ENOSPC;
3144 }
3145
3146 /* Add descriptor for coalesce buffer */
3147 tx->desc_limit = MAX_DESC;
3148 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3149 addr, tx->tlen);
3150 }
3151
3152 return 1;
3153}
3154
77241056
MM
3155/* Update sdes when the lmc changes */
3156void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3157{
3158 struct sdma_engine *sde;
3159 int i;
3160 u64 sreg;
3161
3162 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3163 SD(CHECK_SLID_MASK_SHIFT)) |
3164 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3165 SD(CHECK_SLID_VALUE_SHIFT));
3166
3167 for (i = 0; i < dd->num_sdma; i++) {
3168 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3169 i, (u32)sreg);
3170 sde = &dd->per_sdma[i];
3171 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3172 }
3173}
3174
3175/* tx not dword sized - pad */
3176int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3177{
3178 int rval = 0;
3179
f4d26d81 3180 tx->num_desc++;
77241056
MM
3181 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3182 rval = _extend_sdma_tx_descs(dd, tx);
f4d26d81 3183 if (rval) {
63df8e09 3184 __sdma_txclean(dd, tx);
77241056 3185 return rval;
f4d26d81 3186 }
77241056 3187 }
f4d26d81 3188 /* finish the one just added */
77241056
MM
3189 make_tx_sdma_desc(
3190 tx,
3191 SDMA_MAP_NONE,
3192 dd->sdma_pad_phys,
3193 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3194 _sdma_close_tx(dd, tx);
3195 return rval;
3196}
3197
3198/*
3199 * Add ahg to the sdma_txreq
3200 *
3201 * The logic will consume up to 3
3202 * descriptors at the beginning of
3203 * sdma_txreq.
3204 */
3205void _sdma_txreq_ahgadd(
3206 struct sdma_txreq *tx,
3207 u8 num_ahg,
3208 u8 ahg_entry,
3209 u32 *ahg,
3210 u8 ahg_hlen)
3211{
3212 u32 i, shift = 0, desc = 0;
3213 u8 mode;
3214
3215 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3216 /* compute mode */
3217 if (num_ahg == 1)
3218 mode = SDMA_AHG_APPLY_UPDATE1;
3219 else if (num_ahg <= 5)
3220 mode = SDMA_AHG_APPLY_UPDATE2;
3221 else
3222 mode = SDMA_AHG_APPLY_UPDATE3;
3223 tx->num_desc++;
3224 /* initialize to consumed descriptors to zero */
3225 switch (mode) {
3226 case SDMA_AHG_APPLY_UPDATE3:
3227 tx->num_desc++;
3228 tx->descs[2].qw[0] = 0;
3229 tx->descs[2].qw[1] = 0;
3230 /* FALLTHROUGH */
3231 case SDMA_AHG_APPLY_UPDATE2:
3232 tx->num_desc++;
3233 tx->descs[1].qw[0] = 0;
3234 tx->descs[1].qw[1] = 0;
3235 break;
3236 }
3237 ahg_hlen >>= 2;
3238 tx->descs[0].qw[1] |=
3239 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3240 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3241 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3242 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3243 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3244 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3245 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3246 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3247 for (i = 0; i < (num_ahg - 1); i++) {
3248 if (!shift && !(i & 2))
3249 desc++;
3250 tx->descs[desc].qw[!!(i & 2)] |=
3251 (((u64)ahg[i + 1])
3252 << shift);
3253 shift = (shift + 32) & 63;
3254 }
3255}
3256
3257/**
3258 * sdma_ahg_alloc - allocate an AHG entry
3259 * @sde: engine to allocate from
3260 *
3261 * Return:
3262 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3263 * -ENOSPC if an entry is not available
3264 */
3265int sdma_ahg_alloc(struct sdma_engine *sde)
3266{
3267 int nr;
3268 int oldbit;
3269
3270 if (!sde) {
3271 trace_hfi1_ahg_allocate(sde, -EINVAL);
3272 return -EINVAL;
3273 }
3274 while (1) {
3275 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
3276 if (nr > 31) {
3277 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3278 return -ENOSPC;
3279 }
3280 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3281 if (!oldbit)
3282 break;
3283 cpu_relax();
3284 }
3285 trace_hfi1_ahg_allocate(sde, nr);
3286 return nr;
3287}
3288
3289/**
3290 * sdma_ahg_free - free an AHG entry
3291 * @sde: engine to return AHG entry
3292 * @ahg_index: index to free
3293 *
3294 * This routine frees the indicate AHG entry.
3295 */
3296void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3297{
3298 if (!sde)
3299 return;
3300 trace_hfi1_ahg_deallocate(sde, ahg_index);
3301 if (ahg_index < 0 || ahg_index > 31)
3302 return;
3303 clear_bit(ahg_index, &sde->ahg_bits);
3304}
3305
3306/*
3307 * SPC freeze handling for SDMA engines. Called when the driver knows
3308 * the SPC is going into a freeze but before the freeze is fully
3309 * settled. Generally an error interrupt.
3310 *
3311 * This event will pull the engine out of running so no more entries can be
3312 * added to the engine's queue.
3313 */
3314void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3315{
3316 int i;
3317 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3318 sdma_event_e80_hw_freeze;
3319
3320 /* set up the wait but do not wait here */
3321 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3322
3323 /* tell all engines to stop running and wait */
3324 for (i = 0; i < dd->num_sdma; i++)
3325 sdma_process_event(&dd->per_sdma[i], event);
3326
3327 /* sdma_freeze() will wait for all engines to have stopped */
3328}
3329
3330/*
3331 * SPC freeze handling for SDMA engines. Called when the driver knows
3332 * the SPC is fully frozen.
3333 */
3334void sdma_freeze(struct hfi1_devdata *dd)
3335{
3336 int i;
3337 int ret;
3338
3339 /*
3340 * Make sure all engines have moved out of the running state before
3341 * continuing.
3342 */
3343 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
17fb4f29
JJ
3344 atomic_read(&dd->sdma_unfreeze_count) <=
3345 0);
77241056
MM
3346 /* interrupted or count is negative, then unloading - just exit */
3347 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3348 return;
3349
3350 /* set up the count for the next wait */
3351 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3352
3353 /* tell all engines that the SPC is frozen, they can start cleaning */
3354 for (i = 0; i < dd->num_sdma; i++)
3355 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3356
3357 /*
3358 * Wait for everyone to finish software clean before exiting. The
3359 * software clean will read engine CSRs, so must be completed before
3360 * the next step, which will clear the engine CSRs.
3361 */
50e5dcbe 3362 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
77241056
MM
3363 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3364 /* no need to check results - done no matter what */
3365}
3366
3367/*
3368 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3369 *
3370 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3371 * that is left is a software clean. We could do it after the SPC is fully
3372 * frozen, but then we'd have to add another state to wait for the unfreeze.
3373 * Instead, just defer the software clean until the unfreeze step.
3374 */
3375void sdma_unfreeze(struct hfi1_devdata *dd)
3376{
3377 int i;
3378
3379 /* tell all engines start freeze clean up */
3380 for (i = 0; i < dd->num_sdma; i++)
3381 sdma_process_event(&dd->per_sdma[i],
17fb4f29 3382 sdma_event_e82_hw_unfreeze);
77241056
MM
3383}
3384
3385/**
3386 * _sdma_engine_progress_schedule() - schedule progress on engine
3387 * @sde: sdma_engine to schedule progress
3388 *
3389 */
3390void _sdma_engine_progress_schedule(
3391 struct sdma_engine *sde)
3392{
3393 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3394 /* assume we have selected a good cpu */
3395 write_csr(sde->dd,
17fb4f29
JJ
3396 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3397 sde->progress_mask);
77241056 3398}