]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/infiniband/hw/mlx5/odp.c
IB/umem: Add contiguous ODP support
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / mlx5 / odp.c
CommitLineData
8cdd312c 1/*
6cf0a15f 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
8cdd312c
HE
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
7bdf65d4
HE
33#include <rdma/ib_umem.h>
34#include <rdma/ib_umem_odp.h>
35
8cdd312c 36#include "mlx5_ib.h"
81713d37 37#include "cmd.h"
8cdd312c 38
eab668a6
HE
39#define MAX_PREFETCH_LEN (4*1024*1024U)
40
b4cfe447
HE
41/* Timeout in ms to wait for an active mmu notifier to complete when handling
42 * a pagefault. */
43#define MMU_NOTIFIER_TIMEOUT 1000
44
81713d37
AK
45#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
46#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
47#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
48#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
49#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
50
51#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
52
53static u64 mlx5_imr_ksm_entries;
54
55static int check_parent(struct ib_umem_odp *odp,
56 struct mlx5_ib_mr *parent)
57{
58 struct mlx5_ib_mr *mr = odp->private;
59
523791d7 60 return mr && mr->parent == parent && !odp->dying;
81713d37
AK
61}
62
63static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
64{
65 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
66 struct ib_ucontext *ctx = odp->umem->context;
67 struct rb_node *rb;
68
69 down_read(&ctx->umem_rwsem);
70 while (1) {
71 rb = rb_next(&odp->interval_tree.rb);
72 if (!rb)
73 goto not_found;
74 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
75 if (check_parent(odp, parent))
76 goto end;
77 }
78not_found:
79 odp = NULL;
80end:
81 up_read(&ctx->umem_rwsem);
82 return odp;
83}
84
85static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
86 u64 start, u64 length,
87 struct mlx5_ib_mr *parent)
88{
89 struct ib_umem_odp *odp;
90 struct rb_node *rb;
91
92 down_read(&ctx->umem_rwsem);
93 odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
94 if (!odp)
95 goto end;
96
97 while (1) {
98 if (check_parent(odp, parent))
99 goto end;
100 rb = rb_next(&odp->interval_tree.rb);
101 if (!rb)
102 goto not_found;
103 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
104 if (ib_umem_start(odp->umem) > start + length)
105 goto not_found;
106 }
107not_found:
108 odp = NULL;
109end:
110 up_read(&ctx->umem_rwsem);
111 return odp;
112}
113
114void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
115 size_t nentries, struct mlx5_ib_mr *mr, int flags)
116{
117 struct ib_pd *pd = mr->ibmr.pd;
118 struct ib_ucontext *ctx = pd->uobject->context;
119 struct mlx5_ib_dev *dev = to_mdev(pd->device);
120 struct ib_umem_odp *odp;
121 unsigned long va;
122 int i;
123
124 if (flags & MLX5_IB_UPD_XLT_ZAP) {
125 for (i = 0; i < nentries; i++, pklm++) {
126 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
127 pklm->key = cpu_to_be32(dev->null_mkey);
128 pklm->va = 0;
129 }
130 return;
131 }
132
133 odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
134 nentries * MLX5_IMR_MTT_SIZE, mr);
135
136 for (i = 0; i < nentries; i++, pklm++) {
137 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 va = (offset + i) * MLX5_IMR_MTT_SIZE;
139 if (odp && odp->umem->address == va) {
140 struct mlx5_ib_mr *mtt = odp->private;
141
142 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
143 odp = odp_next(odp);
144 } else {
145 pklm->key = cpu_to_be32(dev->null_mkey);
146 }
147 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
148 i, va, be32_to_cpu(pklm->key));
149 }
150}
151
152static void mr_leaf_free_action(struct work_struct *work)
153{
154 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
155 int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
156 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
157
158 mr->parent = NULL;
159 synchronize_srcu(&mr->dev->mr_srcu);
160
81713d37
AK
161 ib_umem_release(odp->umem);
162 if (imr->live)
163 mlx5_ib_update_xlt(imr, idx, 1, 0,
164 MLX5_IB_UPD_XLT_INDIRECT |
165 MLX5_IB_UPD_XLT_ATOMIC);
166 mlx5_mr_cache_free(mr->dev, mr);
167
168 if (atomic_dec_and_test(&imr->num_leaf_free))
169 wake_up(&imr->q_leaf_free);
170}
171
b4cfe447
HE
172void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
173 unsigned long end)
174{
175 struct mlx5_ib_mr *mr;
31616255
AK
176 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
177 sizeof(struct mlx5_mtt)) - 1;
b4cfe447
HE
178 u64 idx = 0, blk_start_idx = 0;
179 int in_block = 0;
180 u64 addr;
181
182 if (!umem || !umem->odp_data) {
183 pr_err("invalidation called on NULL umem or non-ODP umem\n");
184 return;
185 }
186
187 mr = umem->odp_data->private;
188
189 if (!mr || !mr->ibmr.pd)
190 return;
191
192 start = max_t(u64, ib_umem_start(umem), start);
193 end = min_t(u64, ib_umem_end(umem), end);
194
195 /*
196 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
197 * while we are doing the invalidation, no page fault will attempt to
198 * overwrite the same MTTs. Concurent invalidations might race us,
199 * but they will write 0s as well, so no difference in the end result.
200 */
201
3e7e1193 202 for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
b4cfe447
HE
203 idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
204 /*
205 * Strive to write the MTTs in chunks, but avoid overwriting
206 * non-existing MTTs. The huristic here can be improved to
207 * estimate the cost of another UMR vs. the cost of bigger
208 * UMR.
209 */
210 if (umem->odp_data->dma_list[idx] &
211 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
212 if (!in_block) {
213 blk_start_idx = idx;
214 in_block = 1;
215 }
216 } else {
217 u64 umr_offset = idx & umr_block_mask;
218
219 if (in_block && umr_offset == 0) {
7d0cc6ed
AK
220 mlx5_ib_update_xlt(mr, blk_start_idx,
221 idx - blk_start_idx,
222 PAGE_SHIFT,
223 MLX5_IB_UPD_XLT_ZAP |
224 MLX5_IB_UPD_XLT_ATOMIC);
b4cfe447
HE
225 in_block = 0;
226 }
227 }
228 }
229 if (in_block)
7d0cc6ed
AK
230 mlx5_ib_update_xlt(mr, blk_start_idx,
231 idx - blk_start_idx + 1,
232 PAGE_SHIFT,
233 MLX5_IB_UPD_XLT_ZAP |
234 MLX5_IB_UPD_XLT_ATOMIC);
b4cfe447
HE
235 /*
236 * We are now sure that the device will not access the
237 * memory. We can safely unmap it, and mark it as dirty if
238 * needed.
239 */
240
241 ib_umem_odp_unmap_dma_pages(umem, start, end);
81713d37
AK
242
243 if (unlikely(!umem->npages && mr->parent &&
244 !umem->odp_data->dying)) {
245 WRITE_ONCE(umem->odp_data->dying, 1);
246 atomic_inc(&mr->parent->num_leaf_free);
247 schedule_work(&umem->odp_data->work);
248 }
b4cfe447
HE
249}
250
938fe83c 251void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
8cdd312c 252{
8cdd312c
HE
253 struct ib_odp_caps *caps = &dev->odp_caps;
254
255 memset(caps, 0, sizeof(*caps));
256
938fe83c
SM
257 if (!MLX5_CAP_GEN(dev->mdev, pg))
258 return;
8cdd312c 259
b4cfe447 260 caps->general_caps = IB_ODP_SUPPORT;
938fe83c 261
c438fde1
AK
262 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
263 dev->odp_max_size = U64_MAX;
264 else
265 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
266
938fe83c
SM
267 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
268 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
269
270 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
271 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
272
273 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
274 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
275
276 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
277 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
278
279 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
280 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
281
17d2f88f
AK
282 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
283 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
284
81713d37
AK
285 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
286 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
287 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
288 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
289
938fe83c 290 return;
8cdd312c 291}
6aec21f6
HE
292
293static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
294 u32 key)
295{
296 u32 base_key = mlx5_base_mkey(key);
a606b0f6 297 struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
aa8e08d2
AK
298 struct mlx5_ib_mr *mr;
299
300 if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR)
301 return NULL;
302
303 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
6aec21f6 304
aa8e08d2 305 if (!mr->live)
6aec21f6
HE
306 return NULL;
307
a606b0f6 308 return container_of(mmkey, struct mlx5_ib_mr, mmkey);
6aec21f6
HE
309}
310
d9aaed83
AK
311static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
312 struct mlx5_pagefault *pfault,
19098df2 313 int error)
314{
d9aaed83
AK
315 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
316 pfault->wqe.wq_num : pfault->token;
19098df2 317 int ret = mlx5_core_page_fault_resume(dev->mdev,
d9aaed83
AK
318 pfault->token,
319 wq_num,
320 pfault->type,
6aec21f6
HE
321 error);
322 if (ret)
d9aaed83
AK
323 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
324 wq_num);
6aec21f6
HE
325}
326
81713d37
AK
327static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
328 struct ib_umem *umem,
329 bool ksm, int access_flags)
330{
331 struct mlx5_ib_dev *dev = to_mdev(pd->device);
332 struct mlx5_ib_mr *mr;
333 int err;
334
335 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
336 MLX5_IMR_MTT_CACHE_ENTRY);
337
338 if (IS_ERR(mr))
339 return mr;
340
341 mr->ibmr.pd = pd;
342
343 mr->dev = dev;
344 mr->access_flags = access_flags;
345 mr->mmkey.iova = 0;
346 mr->umem = umem;
347
348 if (ksm) {
349 err = mlx5_ib_update_xlt(mr, 0,
350 mlx5_imr_ksm_entries,
351 MLX5_KSM_PAGE_SHIFT,
352 MLX5_IB_UPD_XLT_INDIRECT |
353 MLX5_IB_UPD_XLT_ZAP |
354 MLX5_IB_UPD_XLT_ENABLE);
355
356 } else {
357 err = mlx5_ib_update_xlt(mr, 0,
358 MLX5_IMR_MTT_ENTRIES,
359 PAGE_SHIFT,
360 MLX5_IB_UPD_XLT_ZAP |
361 MLX5_IB_UPD_XLT_ENABLE |
362 MLX5_IB_UPD_XLT_ATOMIC);
363 }
364
365 if (err)
366 goto fail;
367
368 mr->ibmr.lkey = mr->mmkey.key;
369 mr->ibmr.rkey = mr->mmkey.key;
370
371 mr->live = 1;
372
373 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
374 mr->mmkey.key, dev->mdev, mr);
375
376 return mr;
377
378fail:
379 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
380 mlx5_mr_cache_free(dev, mr);
381
382 return ERR_PTR(err);
383}
384
385static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
386 u64 io_virt, size_t bcnt)
387{
388 struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
389 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
390 struct ib_umem_odp *odp, *result = NULL;
391 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
392 int nentries = 0, start_idx = 0, ret;
393 struct mlx5_ib_mr *mtt;
394 struct ib_umem *umem;
395
396 mutex_lock(&mr->umem->odp_data->umem_mutex);
397 odp = odp_lookup(ctx, addr, 1, mr);
398
399 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
400 io_virt, bcnt, addr, odp);
401
402next_mr:
403 if (likely(odp)) {
404 if (nentries)
405 nentries++;
406 } else {
407 umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
408 if (IS_ERR(umem)) {
409 mutex_unlock(&mr->umem->odp_data->umem_mutex);
410 return ERR_CAST(umem);
411 }
412
413 mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
414 if (IS_ERR(mtt)) {
415 mutex_unlock(&mr->umem->odp_data->umem_mutex);
416 ib_umem_release(umem);
417 return ERR_CAST(mtt);
418 }
419
420 odp = umem->odp_data;
421 odp->private = mtt;
422 mtt->umem = umem;
423 mtt->mmkey.iova = addr;
424 mtt->parent = mr;
425 INIT_WORK(&odp->work, mr_leaf_free_action);
426
427 if (!nentries)
428 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
429 nentries++;
430 }
431
81713d37
AK
432 /* Return first odp if region not covered by single one */
433 if (likely(!result))
434 result = odp;
435
436 addr += MLX5_IMR_MTT_SIZE;
437 if (unlikely(addr < io_virt + bcnt)) {
438 odp = odp_next(odp);
439 if (odp && odp->umem->address != addr)
440 odp = NULL;
441 goto next_mr;
442 }
443
444 if (unlikely(nentries)) {
445 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
446 MLX5_IB_UPD_XLT_INDIRECT |
447 MLX5_IB_UPD_XLT_ATOMIC);
448 if (ret) {
449 mlx5_ib_err(dev, "Failed to update PAS\n");
450 result = ERR_PTR(ret);
451 }
452 }
453
454 mutex_unlock(&mr->umem->odp_data->umem_mutex);
455 return result;
456}
457
458struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
459 int access_flags)
460{
461 struct ib_ucontext *ctx = pd->ibpd.uobject->context;
462 struct mlx5_ib_mr *imr;
463 struct ib_umem *umem;
464
465 umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
466 if (IS_ERR(umem))
467 return ERR_CAST(umem);
468
469 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
470 if (IS_ERR(imr)) {
471 ib_umem_release(umem);
472 return ERR_CAST(imr);
473 }
474
475 imr->umem = umem;
476 init_waitqueue_head(&imr->q_leaf_free);
477 atomic_set(&imr->num_leaf_free, 0);
478
479 return imr;
480}
481
482static int mr_leaf_free(struct ib_umem *umem, u64 start,
483 u64 end, void *cookie)
484{
485 struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
486
487 if (mr->parent != imr)
488 return 0;
489
490 ib_umem_odp_unmap_dma_pages(umem,
491 ib_umem_start(umem),
492 ib_umem_end(umem));
493
494 if (umem->odp_data->dying)
495 return 0;
496
497 WRITE_ONCE(umem->odp_data->dying, 1);
498 atomic_inc(&imr->num_leaf_free);
499 schedule_work(&umem->odp_data->work);
500
501 return 0;
502}
503
504void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
505{
506 struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
507
508 down_read(&ctx->umem_rwsem);
509 rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
510 mr_leaf_free, imr);
511 up_read(&ctx->umem_rwsem);
512
513 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
514}
515
7bdf65d4 516/*
d9aaed83 517 * Handle a single data segment in a page-fault WQE or RDMA region.
7bdf65d4 518 *
d9aaed83 519 * Returns number of pages retrieved on success. The caller may continue to
7bdf65d4
HE
520 * the next data segment.
521 * Can return the following error codes:
522 * -EAGAIN to designate a temporary error. The caller will abort handling the
523 * page fault and resolve it.
524 * -EFAULT when there's an error mapping the requested pages. The caller will
d9aaed83 525 * abort the page fault handling.
7bdf65d4 526 */
81713d37 527static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
7bdf65d4 528 u32 key, u64 io_virt, size_t bcnt,
d9aaed83 529 u32 *bytes_committed,
7bdf65d4
HE
530 u32 *bytes_mapped)
531{
7bdf65d4 532 int srcu_key;
81713d37 533 unsigned int current_seq = 0;
7bdf65d4
HE
534 u64 start_idx;
535 int npages = 0, ret = 0;
536 struct mlx5_ib_mr *mr;
537 u64 access_mask = ODP_READ_ALLOWED_BIT;
81713d37
AK
538 struct ib_umem_odp *odp;
539 int implicit = 0;
540 size_t size;
7bdf65d4 541
81713d37
AK
542 srcu_key = srcu_read_lock(&dev->mr_srcu);
543 mr = mlx5_ib_odp_find_mr_lkey(dev, key);
7bdf65d4
HE
544 /*
545 * If we didn't find the MR, it means the MR was closed while we were
546 * handling the ODP event. In this case we return -EFAULT so that the
547 * QP will be closed.
548 */
549 if (!mr || !mr->ibmr.pd) {
81713d37
AK
550 mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
551 key);
7bdf65d4
HE
552 ret = -EFAULT;
553 goto srcu_unlock;
554 }
555 if (!mr->umem->odp_data) {
81713d37
AK
556 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
557 key);
7bdf65d4
HE
558 if (bytes_mapped)
559 *bytes_mapped +=
d9aaed83 560 (bcnt - *bytes_committed);
7bdf65d4
HE
561 goto srcu_unlock;
562 }
563
7bdf65d4
HE
564 /*
565 * Avoid branches - this code will perform correctly
566 * in all iterations (in iteration 2 and above,
567 * bytes_committed == 0).
568 */
d9aaed83
AK
569 io_virt += *bytes_committed;
570 bcnt -= *bytes_committed;
7bdf65d4 571
81713d37
AK
572 if (!mr->umem->odp_data->page_list) {
573 odp = implicit_mr_get_data(mr, io_virt, bcnt);
574
575 if (IS_ERR(odp)) {
576 ret = PTR_ERR(odp);
577 goto srcu_unlock;
578 }
579 mr = odp->private;
580 implicit = 1;
581
582 } else {
583 odp = mr->umem->odp_data;
584 }
585
586next_mr:
587 current_seq = READ_ONCE(odp->notifiers_seq);
588 /*
589 * Ensure the sequence number is valid for some time before we call
590 * gup.
591 */
592 smp_rmb();
593
594 size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
a606b0f6 595 start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
7bdf65d4
HE
596
597 if (mr->umem->writable)
598 access_mask |= ODP_WRITE_ALLOWED_BIT;
81713d37
AK
599
600 ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
601 access_mask, current_seq);
602
603 if (ret < 0)
7bdf65d4 604 goto srcu_unlock;
7bdf65d4 605
81713d37
AK
606 if (ret > 0) {
607 int np = ret;
608
609 mutex_lock(&odp->umem_mutex);
b4cfe447
HE
610 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
611 /*
612 * No need to check whether the MTTs really belong to
613 * this MR, since ib_umem_odp_map_dma_pages already
614 * checks this.
615 */
81713d37 616 ret = mlx5_ib_update_xlt(mr, start_idx, np,
7d0cc6ed
AK
617 PAGE_SHIFT,
618 MLX5_IB_UPD_XLT_ATOMIC);
b4cfe447
HE
619 } else {
620 ret = -EAGAIN;
621 }
81713d37 622 mutex_unlock(&odp->umem_mutex);
7bdf65d4 623 if (ret < 0) {
b4cfe447 624 if (ret != -EAGAIN)
81713d37 625 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
7bdf65d4
HE
626 goto srcu_unlock;
627 }
628
629 if (bytes_mapped) {
81713d37 630 u32 new_mappings = np * PAGE_SIZE -
7bdf65d4 631 (io_virt - round_down(io_virt, PAGE_SIZE));
81713d37 632 *bytes_mapped += min_t(u32, new_mappings, size);
7bdf65d4 633 }
81713d37
AK
634
635 npages += np;
636 }
637
638 bcnt -= size;
639 if (unlikely(bcnt)) {
640 struct ib_umem_odp *next;
641
642 io_virt += size;
643 next = odp_next(odp);
644 if (unlikely(!next || next->umem->address != io_virt)) {
645 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
646 io_virt, next);
647 ret = -EAGAIN;
648 goto srcu_unlock_no_wait;
649 }
650 odp = next;
651 mr = odp->private;
652 goto next_mr;
7bdf65d4
HE
653 }
654
655srcu_unlock:
b4cfe447 656 if (ret == -EAGAIN) {
81713d37 657 if (implicit || !odp->dying) {
b4cfe447
HE
658 unsigned long timeout =
659 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
660
661 if (!wait_for_completion_timeout(
81713d37 662 &odp->notifier_completion,
b4cfe447 663 timeout)) {
81713d37
AK
664 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
665 current_seq, odp->notifiers_seq);
b4cfe447
HE
666 }
667 } else {
668 /* The MR is being killed, kill the QP as well. */
669 ret = -EFAULT;
670 }
671 }
81713d37
AK
672
673srcu_unlock_no_wait:
674 srcu_read_unlock(&dev->mr_srcu, srcu_key);
d9aaed83 675 *bytes_committed = 0;
7bdf65d4
HE
676 return ret ? ret : npages;
677}
678
679/**
680 * Parse a series of data segments for page fault handling.
681 *
682 * @qp the QP on which the fault occurred.
683 * @pfault contains page fault information.
684 * @wqe points at the first data segment in the WQE.
685 * @wqe_end points after the end of the WQE.
686 * @bytes_mapped receives the number of bytes that the function was able to
687 * map. This allows the caller to decide intelligently whether
688 * enough memory was mapped to resolve the page fault
689 * successfully (e.g. enough for the next MTU, or the entire
690 * WQE).
691 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
692 * the committed bytes).
693 *
694 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
695 * negative error code.
696 */
d9aaed83
AK
697static int pagefault_data_segments(struct mlx5_ib_dev *dev,
698 struct mlx5_pagefault *pfault,
699 struct mlx5_ib_qp *qp, void *wqe,
7bdf65d4
HE
700 void *wqe_end, u32 *bytes_mapped,
701 u32 *total_wqe_bytes, int receive_queue)
702{
703 int ret = 0, npages = 0;
704 u64 io_virt;
705 u32 key;
706 u32 byte_count;
707 size_t bcnt;
708 int inline_segment;
709
710 /* Skip SRQ next-WQE segment. */
711 if (receive_queue && qp->ibqp.srq)
712 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
713
714 if (bytes_mapped)
715 *bytes_mapped = 0;
716 if (total_wqe_bytes)
717 *total_wqe_bytes = 0;
718
719 while (wqe < wqe_end) {
720 struct mlx5_wqe_data_seg *dseg = wqe;
721
722 io_virt = be64_to_cpu(dseg->addr);
723 key = be32_to_cpu(dseg->lkey);
724 byte_count = be32_to_cpu(dseg->byte_count);
725 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
726 bcnt = byte_count & ~MLX5_INLINE_SEG;
727
728 if (inline_segment) {
729 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
730 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
731 16);
732 } else {
733 wqe += sizeof(*dseg);
734 }
735
736 /* receive WQE end of sg list. */
737 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
738 io_virt == 0)
739 break;
740
741 if (!inline_segment && total_wqe_bytes) {
742 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
d9aaed83 743 pfault->bytes_committed);
7bdf65d4
HE
744 }
745
746 /* A zero length data segment designates a length of 2GB. */
747 if (bcnt == 0)
748 bcnt = 1U << 31;
749
d9aaed83
AK
750 if (inline_segment || bcnt <= pfault->bytes_committed) {
751 pfault->bytes_committed -=
7bdf65d4 752 min_t(size_t, bcnt,
d9aaed83 753 pfault->bytes_committed);
7bdf65d4
HE
754 continue;
755 }
756
d9aaed83
AK
757 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
758 &pfault->bytes_committed,
759 bytes_mapped);
7bdf65d4
HE
760 if (ret < 0)
761 break;
762 npages += ret;
763 }
764
765 return ret < 0 ? ret : npages;
766}
767
17d2f88f
AK
768static const u32 mlx5_ib_odp_opcode_cap[] = {
769 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
770 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
771 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
772 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
773 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
774 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
775 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
776 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
777};
778
7bdf65d4
HE
779/*
780 * Parse initiator WQE. Advances the wqe pointer to point at the
781 * scatter-gather list, and set wqe_end to the end of the WQE.
782 */
783static int mlx5_ib_mr_initiator_pfault_handler(
d9aaed83
AK
784 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
785 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
7bdf65d4 786{
7bdf65d4 787 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
d9aaed83 788 u16 wqe_index = pfault->wqe.wqe_index;
17d2f88f
AK
789 u32 transport_caps;
790 struct mlx5_base_av *av;
7bdf65d4
HE
791 unsigned ds, opcode;
792#if defined(DEBUG)
793 u32 ctrl_wqe_index, ctrl_qpn;
794#endif
19098df2 795 u32 qpn = qp->trans_qp.base.mqp.qpn;
7bdf65d4
HE
796
797 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
798 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
799 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
800 ds, wqe_length);
801 return -EFAULT;
802 }
803
804 if (ds == 0) {
805 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
19098df2 806 wqe_index, qpn);
7bdf65d4
HE
807 return -EFAULT;
808 }
809
810#if defined(DEBUG)
811 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
812 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
813 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
814 if (wqe_index != ctrl_wqe_index) {
815 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
19098df2 816 wqe_index, qpn,
7bdf65d4
HE
817 ctrl_wqe_index);
818 return -EFAULT;
819 }
820
821 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
822 MLX5_WQE_CTRL_QPN_SHIFT;
19098df2 823 if (qpn != ctrl_qpn) {
7bdf65d4 824 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
19098df2 825 wqe_index, qpn,
7bdf65d4
HE
826 ctrl_qpn);
827 return -EFAULT;
828 }
829#endif /* DEBUG */
830
831 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
832 *wqe += sizeof(*ctrl);
833
834 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
835 MLX5_WQE_CTRL_OPCODE_MASK;
17d2f88f 836
7bdf65d4
HE
837 switch (qp->ibqp.qp_type) {
838 case IB_QPT_RC:
17d2f88f 839 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
7bdf65d4
HE
840 break;
841 case IB_QPT_UD:
17d2f88f 842 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
7bdf65d4
HE
843 break;
844 default:
17d2f88f
AK
845 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
846 qp->ibqp.qp_type);
7bdf65d4
HE
847 return -EFAULT;
848 }
849
17d2f88f
AK
850 if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
851 sizeof(mlx5_ib_odp_opcode_cap[0]) ||
852 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
853 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
854 opcode);
855 return -EFAULT;
856 }
857
858 if (qp->ibqp.qp_type != IB_QPT_RC) {
859 av = *wqe;
860 if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT))
861 *wqe += sizeof(struct mlx5_av);
862 else
863 *wqe += sizeof(struct mlx5_base_av);
864 }
865
866 switch (opcode) {
867 case MLX5_OPCODE_RDMA_WRITE:
868 case MLX5_OPCODE_RDMA_WRITE_IMM:
869 case MLX5_OPCODE_RDMA_READ:
870 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
871 break;
872 case MLX5_OPCODE_ATOMIC_CS:
873 case MLX5_OPCODE_ATOMIC_FA:
874 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
875 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
876 break;
877 }
878
7bdf65d4
HE
879 return 0;
880}
881
882/*
883 * Parse responder WQE. Advances the wqe pointer to point at the
884 * scatter-gather list, and set wqe_end to the end of the WQE.
885 */
886static int mlx5_ib_mr_responder_pfault_handler(
d9aaed83
AK
887 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
888 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
7bdf65d4 889{
7bdf65d4
HE
890 struct mlx5_ib_wq *wq = &qp->rq;
891 int wqe_size = 1 << wq->wqe_shift;
892
893 if (qp->ibqp.srq) {
894 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
895 return -EFAULT;
896 }
897
898 if (qp->wq_sig) {
899 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
900 return -EFAULT;
901 }
902
903 if (wqe_size > wqe_length) {
904 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
905 return -EFAULT;
906 }
907
908 switch (qp->ibqp.qp_type) {
909 case IB_QPT_RC:
910 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
911 IB_ODP_SUPPORT_RECV))
912 goto invalid_transport_or_opcode;
913 break;
914 default:
915invalid_transport_or_opcode:
916 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
917 qp->ibqp.qp_type);
918 return -EFAULT;
919 }
920
921 *wqe_end = *wqe + wqe_size;
922
923 return 0;
924}
925
d9aaed83
AK
926static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
927 u32 wq_num)
928{
929 struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
930
931 if (!mqp) {
932 mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
933 return NULL;
934 }
935
936 return to_mibqp(mqp);
937}
938
939static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
940 struct mlx5_pagefault *pfault)
7bdf65d4 941{
7bdf65d4
HE
942 int ret;
943 void *wqe, *wqe_end;
944 u32 bytes_mapped, total_wqe_bytes;
945 char *buffer = NULL;
d9aaed83
AK
946 int resume_with_error = 1;
947 u16 wqe_index = pfault->wqe.wqe_index;
948 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
949 struct mlx5_ib_qp *qp;
7bdf65d4
HE
950
951 buffer = (char *)__get_free_page(GFP_KERNEL);
952 if (!buffer) {
953 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
7bdf65d4
HE
954 goto resolve_page_fault;
955 }
956
d9aaed83
AK
957 qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
958 if (!qp)
959 goto resolve_page_fault;
960
7bdf65d4 961 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
19098df2 962 PAGE_SIZE, &qp->trans_qp.base);
7bdf65d4 963 if (ret < 0) {
d9aaed83
AK
964 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
965 ret, wqe_index, pfault->token);
7bdf65d4
HE
966 goto resolve_page_fault;
967 }
968
969 wqe = buffer;
970 if (requestor)
d9aaed83 971 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
7bdf65d4
HE
972 &wqe_end, ret);
973 else
d9aaed83 974 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
7bdf65d4 975 &wqe_end, ret);
d9aaed83 976 if (ret < 0)
7bdf65d4 977 goto resolve_page_fault;
7bdf65d4
HE
978
979 if (wqe >= wqe_end) {
980 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
7bdf65d4
HE
981 goto resolve_page_fault;
982 }
983
d9aaed83
AK
984 ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
985 &bytes_mapped, &total_wqe_bytes,
986 !requestor);
7bdf65d4 987 if (ret == -EAGAIN) {
d9aaed83 988 resume_with_error = 0;
7bdf65d4
HE
989 goto resolve_page_fault;
990 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
7bdf65d4
HE
991 goto resolve_page_fault;
992 }
993
d9aaed83 994 resume_with_error = 0;
7bdf65d4 995resolve_page_fault:
d9aaed83
AK
996 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
997 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
81713d37 998 pfault->wqe.wq_num, resume_with_error,
d9aaed83 999 pfault->type);
7bdf65d4
HE
1000 free_page((unsigned long)buffer);
1001}
1002
eab668a6
HE
1003static int pages_in_range(u64 address, u32 length)
1004{
1005 return (ALIGN(address + length, PAGE_SIZE) -
1006 (address & PAGE_MASK)) >> PAGE_SHIFT;
1007}
1008
d9aaed83
AK
1009static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1010 struct mlx5_pagefault *pfault)
eab668a6 1011{
eab668a6
HE
1012 u64 address;
1013 u32 length;
d9aaed83 1014 u32 prefetch_len = pfault->bytes_committed;
eab668a6 1015 int prefetch_activated = 0;
d9aaed83 1016 u32 rkey = pfault->rdma.r_key;
eab668a6
HE
1017 int ret;
1018
1019 /* The RDMA responder handler handles the page fault in two parts.
1020 * First it brings the necessary pages for the current packet
1021 * (and uses the pfault context), and then (after resuming the QP)
1022 * prefetches more pages. The second operation cannot use the pfault
1023 * context and therefore uses the dummy_pfault context allocated on
1024 * the stack */
d9aaed83
AK
1025 pfault->rdma.rdma_va += pfault->bytes_committed;
1026 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1027 pfault->rdma.rdma_op_len);
1028 pfault->bytes_committed = 0;
eab668a6 1029
d9aaed83
AK
1030 address = pfault->rdma.rdma_va;
1031 length = pfault->rdma.rdma_op_len;
eab668a6
HE
1032
1033 /* For some operations, the hardware cannot tell the exact message
1034 * length, and in those cases it reports zero. Use prefetch
1035 * logic. */
1036 if (length == 0) {
1037 prefetch_activated = 1;
d9aaed83 1038 length = pfault->rdma.packet_size;
eab668a6
HE
1039 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1040 }
1041
d9aaed83
AK
1042 ret = pagefault_single_data_segment(dev, rkey, address, length,
1043 &pfault->bytes_committed, NULL);
eab668a6
HE
1044 if (ret == -EAGAIN) {
1045 /* We're racing with an invalidation, don't prefetch */
1046 prefetch_activated = 0;
1047 } else if (ret < 0 || pages_in_range(address, length) > ret) {
d9aaed83
AK
1048 mlx5_ib_page_fault_resume(dev, pfault, 1);
1049 if (ret != -ENOENT)
4df4a5ba
AK
1050 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1051 ret, pfault->token, pfault->type);
eab668a6
HE
1052 return;
1053 }
1054
d9aaed83
AK
1055 mlx5_ib_page_fault_resume(dev, pfault, 0);
1056 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1057 pfault->token, pfault->type,
1058 prefetch_activated);
eab668a6
HE
1059
1060 /* At this point, there might be a new pagefault already arriving in
1061 * the eq, switch to the dummy pagefault for the rest of the
1062 * processing. We're still OK with the objects being alive as the
1063 * work-queue is being fenced. */
1064
1065 if (prefetch_activated) {
d9aaed83
AK
1066 u32 bytes_committed = 0;
1067
1068 ret = pagefault_single_data_segment(dev, rkey, address,
eab668a6 1069 prefetch_len,
d9aaed83 1070 &bytes_committed, NULL);
81713d37 1071 if (ret < 0 && ret != -EAGAIN) {
4df4a5ba
AK
1072 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1073 ret, pfault->token, address, prefetch_len);
eab668a6
HE
1074 }
1075 }
1076}
1077
d9aaed83
AK
1078void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1079 struct mlx5_pagefault *pfault)
6aec21f6 1080{
d9aaed83
AK
1081 struct mlx5_ib_dev *dev = context;
1082 u8 event_subtype = pfault->event_subtype;
6aec21f6
HE
1083
1084 switch (event_subtype) {
7bdf65d4 1085 case MLX5_PFAULT_SUBTYPE_WQE:
d9aaed83 1086 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
7bdf65d4 1087 break;
eab668a6 1088 case MLX5_PFAULT_SUBTYPE_RDMA:
d9aaed83 1089 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
eab668a6 1090 break;
6aec21f6 1091 default:
d9aaed83
AK
1092 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1093 event_subtype);
1094 mlx5_ib_page_fault_resume(dev, pfault, 1);
6aec21f6
HE
1095 }
1096}
1097
81713d37
AK
1098void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1099{
1100 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1101 return;
1102
1103 switch (ent->order - 2) {
1104 case MLX5_IMR_MTT_CACHE_ENTRY:
1105 ent->page = PAGE_SHIFT;
1106 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1107 sizeof(struct mlx5_mtt) /
1108 MLX5_IB_UMR_OCTOWORD;
1109 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1110 ent->limit = 0;
1111 break;
1112
1113 case MLX5_IMR_KSM_CACHE_ENTRY:
1114 ent->page = MLX5_KSM_PAGE_SHIFT;
1115 ent->xlt = mlx5_imr_ksm_entries *
1116 sizeof(struct mlx5_klm) /
1117 MLX5_IB_UMR_OCTOWORD;
1118 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1119 ent->limit = 0;
1120 break;
1121 }
1122}
1123
1124int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
6aec21f6
HE
1125{
1126 int ret;
1127
81713d37 1128 ret = init_srcu_struct(&dev->mr_srcu);
6aec21f6
HE
1129 if (ret)
1130 return ret;
1131
81713d37
AK
1132 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1133 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1134 if (ret) {
1135 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1136 return ret;
1137 }
1138 }
1139
6aec21f6
HE
1140 return 0;
1141}
1142
81713d37
AK
1143void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
1144{
1145 cleanup_srcu_struct(&dev->mr_srcu);
1146}
1147
1148int mlx5_ib_odp_init(void)
6aec21f6 1149{
81713d37
AK
1150 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1151 MLX5_IMR_MTT_BITS);
1152
1153 return 0;
6aec21f6
HE
1154}
1155