]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/infiniband/hw/mlx5/odp.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / mlx5 / odp.c
CommitLineData
8cdd312c 1/*
6cf0a15f 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
8cdd312c
HE
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
7bdf65d4
HE
33#include <rdma/ib_umem.h>
34#include <rdma/ib_umem_odp.h>
35
8cdd312c 36#include "mlx5_ib.h"
81713d37 37#include "cmd.h"
8cdd312c 38
eab668a6
HE
39#define MAX_PREFETCH_LEN (4*1024*1024U)
40
b4cfe447
HE
41/* Timeout in ms to wait for an active mmu notifier to complete when handling
42 * a pagefault. */
43#define MMU_NOTIFIER_TIMEOUT 1000
44
81713d37
AK
45#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
46#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
47#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
48#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
49#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
50
51#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
52
53static u64 mlx5_imr_ksm_entries;
54
55static int check_parent(struct ib_umem_odp *odp,
56 struct mlx5_ib_mr *parent)
57{
58 struct mlx5_ib_mr *mr = odp->private;
59
523791d7 60 return mr && mr->parent == parent && !odp->dying;
81713d37
AK
61}
62
63static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
64{
65 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
66 struct ib_ucontext *ctx = odp->umem->context;
67 struct rb_node *rb;
68
69 down_read(&ctx->umem_rwsem);
70 while (1) {
71 rb = rb_next(&odp->interval_tree.rb);
72 if (!rb)
73 goto not_found;
74 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
75 if (check_parent(odp, parent))
76 goto end;
77 }
78not_found:
79 odp = NULL;
80end:
81 up_read(&ctx->umem_rwsem);
82 return odp;
83}
84
85static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
86 u64 start, u64 length,
87 struct mlx5_ib_mr *parent)
88{
89 struct ib_umem_odp *odp;
90 struct rb_node *rb;
91
92 down_read(&ctx->umem_rwsem);
93 odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
94 if (!odp)
95 goto end;
96
97 while (1) {
98 if (check_parent(odp, parent))
99 goto end;
100 rb = rb_next(&odp->interval_tree.rb);
101 if (!rb)
102 goto not_found;
103 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
104 if (ib_umem_start(odp->umem) > start + length)
105 goto not_found;
106 }
107not_found:
108 odp = NULL;
109end:
110 up_read(&ctx->umem_rwsem);
111 return odp;
112}
113
114void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
115 size_t nentries, struct mlx5_ib_mr *mr, int flags)
116{
117 struct ib_pd *pd = mr->ibmr.pd;
118 struct ib_ucontext *ctx = pd->uobject->context;
119 struct mlx5_ib_dev *dev = to_mdev(pd->device);
120 struct ib_umem_odp *odp;
121 unsigned long va;
122 int i;
123
124 if (flags & MLX5_IB_UPD_XLT_ZAP) {
125 for (i = 0; i < nentries; i++, pklm++) {
126 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
127 pklm->key = cpu_to_be32(dev->null_mkey);
128 pklm->va = 0;
129 }
130 return;
131 }
132
133 odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
134 nentries * MLX5_IMR_MTT_SIZE, mr);
135
136 for (i = 0; i < nentries; i++, pklm++) {
137 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 va = (offset + i) * MLX5_IMR_MTT_SIZE;
139 if (odp && odp->umem->address == va) {
140 struct mlx5_ib_mr *mtt = odp->private;
141
142 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
143 odp = odp_next(odp);
144 } else {
145 pklm->key = cpu_to_be32(dev->null_mkey);
146 }
147 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
148 i, va, be32_to_cpu(pklm->key));
149 }
150}
151
152static void mr_leaf_free_action(struct work_struct *work)
153{
154 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
155 int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
156 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
157
158 mr->parent = NULL;
159 synchronize_srcu(&mr->dev->mr_srcu);
160
81713d37
AK
161 ib_umem_release(odp->umem);
162 if (imr->live)
163 mlx5_ib_update_xlt(imr, idx, 1, 0,
164 MLX5_IB_UPD_XLT_INDIRECT |
165 MLX5_IB_UPD_XLT_ATOMIC);
166 mlx5_mr_cache_free(mr->dev, mr);
167
168 if (atomic_dec_and_test(&imr->num_leaf_free))
169 wake_up(&imr->q_leaf_free);
170}
171
b4cfe447
HE
172void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
173 unsigned long end)
174{
175 struct mlx5_ib_mr *mr;
31616255
AK
176 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
177 sizeof(struct mlx5_mtt)) - 1;
b4cfe447
HE
178 u64 idx = 0, blk_start_idx = 0;
179 int in_block = 0;
180 u64 addr;
181
182 if (!umem || !umem->odp_data) {
183 pr_err("invalidation called on NULL umem or non-ODP umem\n");
184 return;
185 }
186
187 mr = umem->odp_data->private;
188
189 if (!mr || !mr->ibmr.pd)
190 return;
191
192 start = max_t(u64, ib_umem_start(umem), start);
193 end = min_t(u64, ib_umem_end(umem), end);
194
195 /*
196 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
197 * while we are doing the invalidation, no page fault will attempt to
198 * overwrite the same MTTs. Concurent invalidations might race us,
199 * but they will write 0s as well, so no difference in the end result.
200 */
201
3e7e1193 202 for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
b2ac9188 203 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
b4cfe447
HE
204 /*
205 * Strive to write the MTTs in chunks, but avoid overwriting
206 * non-existing MTTs. The huristic here can be improved to
207 * estimate the cost of another UMR vs. the cost of bigger
208 * UMR.
209 */
210 if (umem->odp_data->dma_list[idx] &
211 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
212 if (!in_block) {
213 blk_start_idx = idx;
214 in_block = 1;
215 }
216 } else {
217 u64 umr_offset = idx & umr_block_mask;
218
219 if (in_block && umr_offset == 0) {
7d0cc6ed 220 mlx5_ib_update_xlt(mr, blk_start_idx,
b2ac9188 221 idx - blk_start_idx, 0,
7d0cc6ed
AK
222 MLX5_IB_UPD_XLT_ZAP |
223 MLX5_IB_UPD_XLT_ATOMIC);
b4cfe447
HE
224 in_block = 0;
225 }
226 }
227 }
228 if (in_block)
7d0cc6ed 229 mlx5_ib_update_xlt(mr, blk_start_idx,
b2ac9188 230 idx - blk_start_idx + 1, 0,
7d0cc6ed
AK
231 MLX5_IB_UPD_XLT_ZAP |
232 MLX5_IB_UPD_XLT_ATOMIC);
b4cfe447
HE
233 /*
234 * We are now sure that the device will not access the
235 * memory. We can safely unmap it, and mark it as dirty if
236 * needed.
237 */
238
239 ib_umem_odp_unmap_dma_pages(umem, start, end);
81713d37
AK
240
241 if (unlikely(!umem->npages && mr->parent &&
242 !umem->odp_data->dying)) {
243 WRITE_ONCE(umem->odp_data->dying, 1);
244 atomic_inc(&mr->parent->num_leaf_free);
245 schedule_work(&umem->odp_data->work);
246 }
b4cfe447
HE
247}
248
938fe83c 249void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
8cdd312c 250{
8cdd312c
HE
251 struct ib_odp_caps *caps = &dev->odp_caps;
252
253 memset(caps, 0, sizeof(*caps));
254
938fe83c
SM
255 if (!MLX5_CAP_GEN(dev->mdev, pg))
256 return;
8cdd312c 257
b4cfe447 258 caps->general_caps = IB_ODP_SUPPORT;
938fe83c 259
c438fde1
AK
260 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
261 dev->odp_max_size = U64_MAX;
262 else
263 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
264
938fe83c
SM
265 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
266 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
267
268 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
269 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
270
271 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
272 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
273
274 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
275 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
276
277 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
278 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
279
17d2f88f
AK
280 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
281 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
282
81713d37
AK
283 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
284 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
285 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
286 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
287
938fe83c 288 return;
8cdd312c 289}
6aec21f6 290
d9aaed83
AK
291static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
292 struct mlx5_pagefault *pfault,
19098df2 293 int error)
294{
d9aaed83
AK
295 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
296 pfault->wqe.wq_num : pfault->token;
19098df2 297 int ret = mlx5_core_page_fault_resume(dev->mdev,
d9aaed83
AK
298 pfault->token,
299 wq_num,
300 pfault->type,
6aec21f6
HE
301 error);
302 if (ret)
d9aaed83
AK
303 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
304 wq_num);
6aec21f6
HE
305}
306
81713d37
AK
307static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
308 struct ib_umem *umem,
309 bool ksm, int access_flags)
310{
311 struct mlx5_ib_dev *dev = to_mdev(pd->device);
312 struct mlx5_ib_mr *mr;
313 int err;
314
315 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
316 MLX5_IMR_MTT_CACHE_ENTRY);
317
318 if (IS_ERR(mr))
319 return mr;
320
321 mr->ibmr.pd = pd;
322
323 mr->dev = dev;
324 mr->access_flags = access_flags;
325 mr->mmkey.iova = 0;
326 mr->umem = umem;
327
328 if (ksm) {
329 err = mlx5_ib_update_xlt(mr, 0,
330 mlx5_imr_ksm_entries,
331 MLX5_KSM_PAGE_SHIFT,
332 MLX5_IB_UPD_XLT_INDIRECT |
333 MLX5_IB_UPD_XLT_ZAP |
334 MLX5_IB_UPD_XLT_ENABLE);
335
336 } else {
337 err = mlx5_ib_update_xlt(mr, 0,
338 MLX5_IMR_MTT_ENTRIES,
339 PAGE_SHIFT,
340 MLX5_IB_UPD_XLT_ZAP |
341 MLX5_IB_UPD_XLT_ENABLE |
342 MLX5_IB_UPD_XLT_ATOMIC);
343 }
344
345 if (err)
346 goto fail;
347
348 mr->ibmr.lkey = mr->mmkey.key;
349 mr->ibmr.rkey = mr->mmkey.key;
350
351 mr->live = 1;
352
353 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
354 mr->mmkey.key, dev->mdev, mr);
355
356 return mr;
357
358fail:
359 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
360 mlx5_mr_cache_free(dev, mr);
361
362 return ERR_PTR(err);
363}
364
365static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
366 u64 io_virt, size_t bcnt)
367{
368 struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
369 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
370 struct ib_umem_odp *odp, *result = NULL;
371 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
372 int nentries = 0, start_idx = 0, ret;
373 struct mlx5_ib_mr *mtt;
374 struct ib_umem *umem;
375
376 mutex_lock(&mr->umem->odp_data->umem_mutex);
377 odp = odp_lookup(ctx, addr, 1, mr);
378
379 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
380 io_virt, bcnt, addr, odp);
381
382next_mr:
383 if (likely(odp)) {
384 if (nentries)
385 nentries++;
386 } else {
387 umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
388 if (IS_ERR(umem)) {
389 mutex_unlock(&mr->umem->odp_data->umem_mutex);
390 return ERR_CAST(umem);
391 }
392
393 mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
394 if (IS_ERR(mtt)) {
395 mutex_unlock(&mr->umem->odp_data->umem_mutex);
396 ib_umem_release(umem);
397 return ERR_CAST(mtt);
398 }
399
400 odp = umem->odp_data;
401 odp->private = mtt;
402 mtt->umem = umem;
403 mtt->mmkey.iova = addr;
404 mtt->parent = mr;
405 INIT_WORK(&odp->work, mr_leaf_free_action);
406
407 if (!nentries)
408 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
409 nentries++;
410 }
411
81713d37
AK
412 /* Return first odp if region not covered by single one */
413 if (likely(!result))
414 result = odp;
415
416 addr += MLX5_IMR_MTT_SIZE;
417 if (unlikely(addr < io_virt + bcnt)) {
418 odp = odp_next(odp);
419 if (odp && odp->umem->address != addr)
420 odp = NULL;
421 goto next_mr;
422 }
423
424 if (unlikely(nentries)) {
425 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
426 MLX5_IB_UPD_XLT_INDIRECT |
427 MLX5_IB_UPD_XLT_ATOMIC);
428 if (ret) {
429 mlx5_ib_err(dev, "Failed to update PAS\n");
430 result = ERR_PTR(ret);
431 }
432 }
433
434 mutex_unlock(&mr->umem->odp_data->umem_mutex);
435 return result;
436}
437
438struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
439 int access_flags)
440{
441 struct ib_ucontext *ctx = pd->ibpd.uobject->context;
442 struct mlx5_ib_mr *imr;
443 struct ib_umem *umem;
444
445 umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
446 if (IS_ERR(umem))
447 return ERR_CAST(umem);
448
449 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
450 if (IS_ERR(imr)) {
451 ib_umem_release(umem);
452 return ERR_CAST(imr);
453 }
454
455 imr->umem = umem;
456 init_waitqueue_head(&imr->q_leaf_free);
457 atomic_set(&imr->num_leaf_free, 0);
458
459 return imr;
460}
461
462static int mr_leaf_free(struct ib_umem *umem, u64 start,
463 u64 end, void *cookie)
464{
465 struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
466
467 if (mr->parent != imr)
468 return 0;
469
470 ib_umem_odp_unmap_dma_pages(umem,
471 ib_umem_start(umem),
472 ib_umem_end(umem));
473
474 if (umem->odp_data->dying)
475 return 0;
476
477 WRITE_ONCE(umem->odp_data->dying, 1);
478 atomic_inc(&imr->num_leaf_free);
479 schedule_work(&umem->odp_data->work);
480
481 return 0;
482}
483
484void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
485{
486 struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
487
488 down_read(&ctx->umem_rwsem);
489 rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
490 mr_leaf_free, imr);
491 up_read(&ctx->umem_rwsem);
492
493 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
494}
495
1b7dbc26
AK
496static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
497 u64 io_virt, size_t bcnt, u32 *bytes_mapped)
7bdf65d4 498{
7bdf65d4 499 u64 access_mask = ODP_READ_ALLOWED_BIT;
1b7dbc26
AK
500 int npages = 0, page_shift, np;
501 u64 start_idx, page_mask;
81713d37 502 struct ib_umem_odp *odp;
1b7dbc26 503 int current_seq;
81713d37 504 size_t size;
1b7dbc26 505 int ret;
7bdf65d4 506
81713d37
AK
507 if (!mr->umem->odp_data->page_list) {
508 odp = implicit_mr_get_data(mr, io_virt, bcnt);
509
1b7dbc26
AK
510 if (IS_ERR(odp))
511 return PTR_ERR(odp);
81713d37 512 mr = odp->private;
81713d37
AK
513
514 } else {
515 odp = mr->umem->odp_data;
516 }
517
1b7dbc26
AK
518next_mr:
519 size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
520
b2ac9188
AK
521 page_shift = mr->umem->page_shift;
522 page_mask = ~(BIT(page_shift) - 1);
1b7dbc26
AK
523 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
524
525 if (mr->umem->writable)
526 access_mask |= ODP_WRITE_ALLOWED_BIT;
b2ac9188 527
81713d37
AK
528 current_seq = READ_ONCE(odp->notifiers_seq);
529 /*
530 * Ensure the sequence number is valid for some time before we call
531 * gup.
532 */
533 smp_rmb();
534
81713d37
AK
535 ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
536 access_mask, current_seq);
537
538 if (ret < 0)
1b7dbc26 539 goto out;
7bdf65d4 540
1b7dbc26
AK
541 np = ret;
542
543 mutex_lock(&odp->umem_mutex);
544 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
545 /*
546 * No need to check whether the MTTs really belong to
547 * this MR, since ib_umem_odp_map_dma_pages already
548 * checks this.
549 */
550 ret = mlx5_ib_update_xlt(mr, start_idx, np,
551 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
552 } else {
553 ret = -EAGAIN;
554 }
555 mutex_unlock(&odp->umem_mutex);
556
557 if (ret < 0) {
558 if (ret != -EAGAIN)
559 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
560 goto out;
561 }
81713d37 562
1b7dbc26
AK
563 if (bytes_mapped) {
564 u32 new_mappings = (np << page_shift) -
565 (io_virt - round_down(io_virt, 1 << page_shift));
566 *bytes_mapped += min_t(u32, new_mappings, size);
81713d37
AK
567 }
568
1b7dbc26 569 npages += np << (page_shift - PAGE_SHIFT);
81713d37 570 bcnt -= size;
1b7dbc26 571
81713d37
AK
572 if (unlikely(bcnt)) {
573 struct ib_umem_odp *next;
574
575 io_virt += size;
576 next = odp_next(odp);
577 if (unlikely(!next || next->umem->address != io_virt)) {
578 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
579 io_virt, next);
1b7dbc26 580 return -EAGAIN;
81713d37
AK
581 }
582 odp = next;
583 mr = odp->private;
584 goto next_mr;
7bdf65d4
HE
585 }
586
1b7dbc26
AK
587 return npages;
588
589out:
b4cfe447 590 if (ret == -EAGAIN) {
1b7dbc26 591 if (mr->parent || !odp->dying) {
b4cfe447
HE
592 unsigned long timeout =
593 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
594
595 if (!wait_for_completion_timeout(
81713d37 596 &odp->notifier_completion,
b4cfe447 597 timeout)) {
81713d37
AK
598 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
599 current_seq, odp->notifiers_seq);
b4cfe447
HE
600 }
601 } else {
602 /* The MR is being killed, kill the QP as well. */
603 ret = -EFAULT;
604 }
605 }
81713d37 606
1b7dbc26
AK
607 return ret;
608}
609
db570d7d
AK
610struct pf_frame {
611 struct pf_frame *next;
612 u32 key;
613 u64 io_virt;
614 size_t bcnt;
615 int depth;
616};
617
1b7dbc26
AK
618/*
619 * Handle a single data segment in a page-fault WQE or RDMA region.
620 *
621 * Returns number of OS pages retrieved on success. The caller may continue to
622 * the next data segment.
623 * Can return the following error codes:
624 * -EAGAIN to designate a temporary error. The caller will abort handling the
625 * page fault and resolve it.
626 * -EFAULT when there's an error mapping the requested pages. The caller will
627 * abort the page fault handling.
628 */
629static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
630 u32 key, u64 io_virt, size_t bcnt,
631 u32 *bytes_committed,
632 u32 *bytes_mapped)
633{
db570d7d
AK
634 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
635 struct pf_frame *head = NULL, *frame;
636 struct mlx5_core_mkey *mmkey;
637 struct mlx5_ib_mw *mw;
1b7dbc26 638 struct mlx5_ib_mr *mr;
db570d7d
AK
639 struct mlx5_klm *pklm;
640 u32 *out = NULL;
641 size_t offset;
1b7dbc26
AK
642
643 srcu_key = srcu_read_lock(&dev->mr_srcu);
db570d7d
AK
644
645 io_virt += *bytes_committed;
646 bcnt -= *bytes_committed;
647
648next_mr:
649 mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
650 if (!mmkey || mmkey->key != key) {
651 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
1b7dbc26
AK
652 ret = -EFAULT;
653 goto srcu_unlock;
654 }
db570d7d
AK
655
656 switch (mmkey->type) {
657 case MLX5_MKEY_MR:
658 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
659 if (!mr->live || !mr->ibmr.pd) {
660 mlx5_ib_dbg(dev, "got dead MR\n");
661 ret = -EFAULT;
662 goto srcu_unlock;
663 }
664
665 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
666 if (ret < 0)
667 goto srcu_unlock;
668
669 npages += ret;
670 ret = 0;
671 break;
672
673 case MLX5_MKEY_MW:
674 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
675
676 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
677 mlx5_ib_dbg(dev, "indirection level exceeded\n");
678 ret = -EFAULT;
679 goto srcu_unlock;
680 }
681
682 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
683 sizeof(*pklm) * (mw->ndescs - 2);
684
685 if (outlen > cur_outlen) {
686 kfree(out);
687 out = kzalloc(outlen, GFP_KERNEL);
688 if (!out) {
689 ret = -ENOMEM;
690 goto srcu_unlock;
691 }
692 cur_outlen = outlen;
693 }
694
695 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
696 bsf0_klm0_pas_mtt0_1);
697
698 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
699 if (ret)
700 goto srcu_unlock;
701
702 offset = io_virt - MLX5_GET64(query_mkey_out, out,
703 memory_key_mkey_entry.start_addr);
704
705 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
706 if (offset >= be32_to_cpu(pklm->bcount)) {
707 offset -= be32_to_cpu(pklm->bcount);
708 continue;
709 }
710
711 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
712 if (!frame) {
713 ret = -ENOMEM;
714 goto srcu_unlock;
715 }
716
717 frame->key = be32_to_cpu(pklm->key);
718 frame->io_virt = be64_to_cpu(pklm->va) + offset;
719 frame->bcnt = min_t(size_t, bcnt,
720 be32_to_cpu(pklm->bcount) - offset);
721 frame->depth = depth + 1;
722 frame->next = head;
723 head = frame;
724
725 bcnt -= frame->bcnt;
726 }
727 break;
728
729 default:
730 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
731 ret = -EFAULT;
1b7dbc26
AK
732 goto srcu_unlock;
733 }
734
db570d7d
AK
735 if (head) {
736 frame = head;
737 head = frame->next;
738
739 key = frame->key;
740 io_virt = frame->io_virt;
741 bcnt = frame->bcnt;
742 depth = frame->depth;
743 kfree(frame);
1b7dbc26 744
db570d7d
AK
745 goto next_mr;
746 }
1b7dbc26
AK
747
748srcu_unlock:
db570d7d
AK
749 while (head) {
750 frame = head;
751 head = frame->next;
752 kfree(frame);
753 }
754 kfree(out);
755
81713d37 756 srcu_read_unlock(&dev->mr_srcu, srcu_key);
d9aaed83 757 *bytes_committed = 0;
7bdf65d4
HE
758 return ret ? ret : npages;
759}
760
761/**
762 * Parse a series of data segments for page fault handling.
763 *
764 * @qp the QP on which the fault occurred.
765 * @pfault contains page fault information.
766 * @wqe points at the first data segment in the WQE.
767 * @wqe_end points after the end of the WQE.
768 * @bytes_mapped receives the number of bytes that the function was able to
769 * map. This allows the caller to decide intelligently whether
770 * enough memory was mapped to resolve the page fault
771 * successfully (e.g. enough for the next MTU, or the entire
772 * WQE).
773 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
774 * the committed bytes).
775 *
776 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
777 * negative error code.
778 */
d9aaed83
AK
779static int pagefault_data_segments(struct mlx5_ib_dev *dev,
780 struct mlx5_pagefault *pfault,
781 struct mlx5_ib_qp *qp, void *wqe,
7bdf65d4
HE
782 void *wqe_end, u32 *bytes_mapped,
783 u32 *total_wqe_bytes, int receive_queue)
784{
785 int ret = 0, npages = 0;
786 u64 io_virt;
787 u32 key;
788 u32 byte_count;
789 size_t bcnt;
790 int inline_segment;
791
792 /* Skip SRQ next-WQE segment. */
793 if (receive_queue && qp->ibqp.srq)
794 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
795
796 if (bytes_mapped)
797 *bytes_mapped = 0;
798 if (total_wqe_bytes)
799 *total_wqe_bytes = 0;
800
801 while (wqe < wqe_end) {
802 struct mlx5_wqe_data_seg *dseg = wqe;
803
804 io_virt = be64_to_cpu(dseg->addr);
805 key = be32_to_cpu(dseg->lkey);
806 byte_count = be32_to_cpu(dseg->byte_count);
807 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
808 bcnt = byte_count & ~MLX5_INLINE_SEG;
809
810 if (inline_segment) {
811 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
812 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
813 16);
814 } else {
815 wqe += sizeof(*dseg);
816 }
817
818 /* receive WQE end of sg list. */
819 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
820 io_virt == 0)
821 break;
822
823 if (!inline_segment && total_wqe_bytes) {
824 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
d9aaed83 825 pfault->bytes_committed);
7bdf65d4
HE
826 }
827
828 /* A zero length data segment designates a length of 2GB. */
829 if (bcnt == 0)
830 bcnt = 1U << 31;
831
d9aaed83
AK
832 if (inline_segment || bcnt <= pfault->bytes_committed) {
833 pfault->bytes_committed -=
7bdf65d4 834 min_t(size_t, bcnt,
d9aaed83 835 pfault->bytes_committed);
7bdf65d4
HE
836 continue;
837 }
838
d9aaed83
AK
839 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
840 &pfault->bytes_committed,
841 bytes_mapped);
7bdf65d4
HE
842 if (ret < 0)
843 break;
844 npages += ret;
845 }
846
847 return ret < 0 ? ret : npages;
848}
849
17d2f88f
AK
850static const u32 mlx5_ib_odp_opcode_cap[] = {
851 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
852 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
853 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
854 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
855 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
856 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
857 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
858 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
859};
860
7bdf65d4
HE
861/*
862 * Parse initiator WQE. Advances the wqe pointer to point at the
863 * scatter-gather list, and set wqe_end to the end of the WQE.
864 */
865static int mlx5_ib_mr_initiator_pfault_handler(
d9aaed83
AK
866 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
867 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
7bdf65d4 868{
7bdf65d4 869 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
d9aaed83 870 u16 wqe_index = pfault->wqe.wqe_index;
17d2f88f
AK
871 u32 transport_caps;
872 struct mlx5_base_av *av;
7bdf65d4
HE
873 unsigned ds, opcode;
874#if defined(DEBUG)
875 u32 ctrl_wqe_index, ctrl_qpn;
876#endif
19098df2 877 u32 qpn = qp->trans_qp.base.mqp.qpn;
7bdf65d4
HE
878
879 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
880 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
881 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
882 ds, wqe_length);
883 return -EFAULT;
884 }
885
886 if (ds == 0) {
887 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
19098df2 888 wqe_index, qpn);
7bdf65d4
HE
889 return -EFAULT;
890 }
891
892#if defined(DEBUG)
893 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
894 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
895 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
896 if (wqe_index != ctrl_wqe_index) {
897 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
19098df2 898 wqe_index, qpn,
7bdf65d4
HE
899 ctrl_wqe_index);
900 return -EFAULT;
901 }
902
903 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
904 MLX5_WQE_CTRL_QPN_SHIFT;
19098df2 905 if (qpn != ctrl_qpn) {
7bdf65d4 906 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
19098df2 907 wqe_index, qpn,
7bdf65d4
HE
908 ctrl_qpn);
909 return -EFAULT;
910 }
911#endif /* DEBUG */
912
913 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
914 *wqe += sizeof(*ctrl);
915
916 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
917 MLX5_WQE_CTRL_OPCODE_MASK;
17d2f88f 918
7bdf65d4
HE
919 switch (qp->ibqp.qp_type) {
920 case IB_QPT_RC:
17d2f88f 921 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
7bdf65d4
HE
922 break;
923 case IB_QPT_UD:
17d2f88f 924 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
7bdf65d4
HE
925 break;
926 default:
17d2f88f
AK
927 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
928 qp->ibqp.qp_type);
7bdf65d4
HE
929 return -EFAULT;
930 }
931
17d2f88f
AK
932 if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
933 sizeof(mlx5_ib_odp_opcode_cap[0]) ||
934 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
935 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
936 opcode);
937 return -EFAULT;
938 }
939
940 if (qp->ibqp.qp_type != IB_QPT_RC) {
941 av = *wqe;
931b3c1a 942 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
17d2f88f
AK
943 *wqe += sizeof(struct mlx5_av);
944 else
945 *wqe += sizeof(struct mlx5_base_av);
946 }
947
948 switch (opcode) {
949 case MLX5_OPCODE_RDMA_WRITE:
950 case MLX5_OPCODE_RDMA_WRITE_IMM:
951 case MLX5_OPCODE_RDMA_READ:
952 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
953 break;
954 case MLX5_OPCODE_ATOMIC_CS:
955 case MLX5_OPCODE_ATOMIC_FA:
956 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
957 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
958 break;
959 }
960
7bdf65d4
HE
961 return 0;
962}
963
964/*
965 * Parse responder WQE. Advances the wqe pointer to point at the
966 * scatter-gather list, and set wqe_end to the end of the WQE.
967 */
968static int mlx5_ib_mr_responder_pfault_handler(
d9aaed83
AK
969 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
970 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
7bdf65d4 971{
7bdf65d4
HE
972 struct mlx5_ib_wq *wq = &qp->rq;
973 int wqe_size = 1 << wq->wqe_shift;
974
975 if (qp->ibqp.srq) {
976 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
977 return -EFAULT;
978 }
979
980 if (qp->wq_sig) {
981 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
982 return -EFAULT;
983 }
984
985 if (wqe_size > wqe_length) {
986 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
987 return -EFAULT;
988 }
989
990 switch (qp->ibqp.qp_type) {
991 case IB_QPT_RC:
992 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
993 IB_ODP_SUPPORT_RECV))
994 goto invalid_transport_or_opcode;
995 break;
996 default:
997invalid_transport_or_opcode:
998 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
999 qp->ibqp.qp_type);
1000 return -EFAULT;
1001 }
1002
1003 *wqe_end = *wqe + wqe_size;
1004
1005 return 0;
1006}
1007
d9aaed83
AK
1008static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
1009 u32 wq_num)
1010{
1011 struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
1012
1013 if (!mqp) {
1014 mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
1015 return NULL;
1016 }
1017
1018 return to_mibqp(mqp);
1019}
1020
1021static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1022 struct mlx5_pagefault *pfault)
7bdf65d4 1023{
7bdf65d4
HE
1024 int ret;
1025 void *wqe, *wqe_end;
1026 u32 bytes_mapped, total_wqe_bytes;
1027 char *buffer = NULL;
d9aaed83
AK
1028 int resume_with_error = 1;
1029 u16 wqe_index = pfault->wqe.wqe_index;
1030 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1031 struct mlx5_ib_qp *qp;
7bdf65d4
HE
1032
1033 buffer = (char *)__get_free_page(GFP_KERNEL);
1034 if (!buffer) {
1035 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
7bdf65d4
HE
1036 goto resolve_page_fault;
1037 }
1038
d9aaed83
AK
1039 qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
1040 if (!qp)
1041 goto resolve_page_fault;
1042
7bdf65d4 1043 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
19098df2 1044 PAGE_SIZE, &qp->trans_qp.base);
7bdf65d4 1045 if (ret < 0) {
d9aaed83
AK
1046 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1047 ret, wqe_index, pfault->token);
7bdf65d4
HE
1048 goto resolve_page_fault;
1049 }
1050
1051 wqe = buffer;
1052 if (requestor)
d9aaed83 1053 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
7bdf65d4
HE
1054 &wqe_end, ret);
1055 else
d9aaed83 1056 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
7bdf65d4 1057 &wqe_end, ret);
d9aaed83 1058 if (ret < 0)
7bdf65d4 1059 goto resolve_page_fault;
7bdf65d4
HE
1060
1061 if (wqe >= wqe_end) {
1062 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
7bdf65d4
HE
1063 goto resolve_page_fault;
1064 }
1065
d9aaed83
AK
1066 ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1067 &bytes_mapped, &total_wqe_bytes,
1068 !requestor);
7bdf65d4 1069 if (ret == -EAGAIN) {
d9aaed83 1070 resume_with_error = 0;
7bdf65d4
HE
1071 goto resolve_page_fault;
1072 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
7bdf65d4
HE
1073 goto resolve_page_fault;
1074 }
1075
d9aaed83 1076 resume_with_error = 0;
7bdf65d4 1077resolve_page_fault:
d9aaed83
AK
1078 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1079 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
81713d37 1080 pfault->wqe.wq_num, resume_with_error,
d9aaed83 1081 pfault->type);
7bdf65d4
HE
1082 free_page((unsigned long)buffer);
1083}
1084
eab668a6
HE
1085static int pages_in_range(u64 address, u32 length)
1086{
1087 return (ALIGN(address + length, PAGE_SIZE) -
1088 (address & PAGE_MASK)) >> PAGE_SHIFT;
1089}
1090
d9aaed83
AK
1091static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1092 struct mlx5_pagefault *pfault)
eab668a6 1093{
eab668a6
HE
1094 u64 address;
1095 u32 length;
d9aaed83 1096 u32 prefetch_len = pfault->bytes_committed;
eab668a6 1097 int prefetch_activated = 0;
d9aaed83 1098 u32 rkey = pfault->rdma.r_key;
eab668a6
HE
1099 int ret;
1100
1101 /* The RDMA responder handler handles the page fault in two parts.
1102 * First it brings the necessary pages for the current packet
1103 * (and uses the pfault context), and then (after resuming the QP)
1104 * prefetches more pages. The second operation cannot use the pfault
1105 * context and therefore uses the dummy_pfault context allocated on
1106 * the stack */
d9aaed83
AK
1107 pfault->rdma.rdma_va += pfault->bytes_committed;
1108 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1109 pfault->rdma.rdma_op_len);
1110 pfault->bytes_committed = 0;
eab668a6 1111
d9aaed83
AK
1112 address = pfault->rdma.rdma_va;
1113 length = pfault->rdma.rdma_op_len;
eab668a6
HE
1114
1115 /* For some operations, the hardware cannot tell the exact message
1116 * length, and in those cases it reports zero. Use prefetch
1117 * logic. */
1118 if (length == 0) {
1119 prefetch_activated = 1;
d9aaed83 1120 length = pfault->rdma.packet_size;
eab668a6
HE
1121 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1122 }
1123
d9aaed83
AK
1124 ret = pagefault_single_data_segment(dev, rkey, address, length,
1125 &pfault->bytes_committed, NULL);
eab668a6
HE
1126 if (ret == -EAGAIN) {
1127 /* We're racing with an invalidation, don't prefetch */
1128 prefetch_activated = 0;
1129 } else if (ret < 0 || pages_in_range(address, length) > ret) {
d9aaed83
AK
1130 mlx5_ib_page_fault_resume(dev, pfault, 1);
1131 if (ret != -ENOENT)
4df4a5ba
AK
1132 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1133 ret, pfault->token, pfault->type);
eab668a6
HE
1134 return;
1135 }
1136
d9aaed83
AK
1137 mlx5_ib_page_fault_resume(dev, pfault, 0);
1138 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1139 pfault->token, pfault->type,
1140 prefetch_activated);
eab668a6
HE
1141
1142 /* At this point, there might be a new pagefault already arriving in
1143 * the eq, switch to the dummy pagefault for the rest of the
1144 * processing. We're still OK with the objects being alive as the
1145 * work-queue is being fenced. */
1146
1147 if (prefetch_activated) {
d9aaed83
AK
1148 u32 bytes_committed = 0;
1149
1150 ret = pagefault_single_data_segment(dev, rkey, address,
eab668a6 1151 prefetch_len,
d9aaed83 1152 &bytes_committed, NULL);
81713d37 1153 if (ret < 0 && ret != -EAGAIN) {
4df4a5ba
AK
1154 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1155 ret, pfault->token, address, prefetch_len);
eab668a6
HE
1156 }
1157 }
1158}
1159
d9aaed83
AK
1160void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1161 struct mlx5_pagefault *pfault)
6aec21f6 1162{
d9aaed83
AK
1163 struct mlx5_ib_dev *dev = context;
1164 u8 event_subtype = pfault->event_subtype;
6aec21f6
HE
1165
1166 switch (event_subtype) {
7bdf65d4 1167 case MLX5_PFAULT_SUBTYPE_WQE:
d9aaed83 1168 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
7bdf65d4 1169 break;
eab668a6 1170 case MLX5_PFAULT_SUBTYPE_RDMA:
d9aaed83 1171 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
eab668a6 1172 break;
6aec21f6 1173 default:
d9aaed83
AK
1174 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1175 event_subtype);
1176 mlx5_ib_page_fault_resume(dev, pfault, 1);
6aec21f6
HE
1177 }
1178}
1179
81713d37
AK
1180void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1181{
1182 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1183 return;
1184
1185 switch (ent->order - 2) {
1186 case MLX5_IMR_MTT_CACHE_ENTRY:
1187 ent->page = PAGE_SHIFT;
1188 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1189 sizeof(struct mlx5_mtt) /
1190 MLX5_IB_UMR_OCTOWORD;
1191 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1192 ent->limit = 0;
1193 break;
1194
1195 case MLX5_IMR_KSM_CACHE_ENTRY:
1196 ent->page = MLX5_KSM_PAGE_SHIFT;
1197 ent->xlt = mlx5_imr_ksm_entries *
1198 sizeof(struct mlx5_klm) /
1199 MLX5_IB_UMR_OCTOWORD;
1200 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1201 ent->limit = 0;
1202 break;
1203 }
1204}
1205
1206int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
6aec21f6
HE
1207{
1208 int ret;
1209
81713d37 1210 ret = init_srcu_struct(&dev->mr_srcu);
6aec21f6
HE
1211 if (ret)
1212 return ret;
1213
81713d37
AK
1214 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1215 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1216 if (ret) {
1217 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1218 return ret;
1219 }
1220 }
1221
6aec21f6
HE
1222 return 0;
1223}
1224
81713d37
AK
1225void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
1226{
1227 cleanup_srcu_struct(&dev->mr_srcu);
1228}
1229
1230int mlx5_ib_odp_init(void)
6aec21f6 1231{
81713d37
AK
1232 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1233 MLX5_IMR_MTT_BITS);
1234
1235 return 0;
6aec21f6
HE
1236}
1237