]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/input/input.c
Merge tag 'arm-defconfig-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / drivers / input / input.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
1da177e4 8
da0c4901
JP
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
1da177e4 11#include <linux/init.h>
ffd0db97 12#include <linux/types.h>
7f8d4cad 13#include <linux/idr.h>
47c78e89 14#include <linux/input/mt.h>
1da177e4 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
1da177e4
LT
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
a99bbaf5 20#include <linux/sched.h>
969b21cd 21#include <linux/seq_file.h>
1da177e4
LT
22#include <linux/poll.h>
23#include <linux/device.h>
e676c232 24#include <linux/mutex.h>
8006479c 25#include <linux/rcupdate.h>
15e184af 26#include "input-compat.h"
e95656ea 27#include "input-poller.h"
1da177e4
LT
28
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
7f8d4cad
DT
33#define INPUT_MAX_CHAR_DEVICES 1024
34#define INPUT_FIRST_DYNAMIC_DEV 256
35static DEFINE_IDA(input_ida);
1da177e4
LT
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
8006479c
DT
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
4369c64c
HR
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
8006479c
DT
50static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
1da177e4 52{
8006479c
DT
53 return code <= max && test_bit(code, bm);
54}
1da177e4 55
8006479c
DT
56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57{
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
1da177e4 61
8006479c
DT
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
1da177e4 64
8006479c
DT
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
1da177e4 68
8006479c
DT
69 return value;
70}
1da177e4 71
352ac4bd
HR
72static void input_start_autorepeat(struct input_dev *dev, int code)
73{
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
4e974c12 76 dev->timer.function) {
352ac4bd
HR
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81}
82
83static void input_stop_autorepeat(struct input_dev *dev)
84{
85 del_timer(&dev->timer);
86}
87
8006479c 88/*
ef7995f4
DT
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
82ba56c2 91 * dev->event_lock held and interrupts disabled.
8006479c 92 */
4369c64c
HR
93static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
8006479c 95{
4369c64c
HR
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
82ba56c2 99
2c50ad34
AG
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
4369c64c 109 }
1da177e4 110
4369c64c
HR
111 if (!count)
112 return 0;
ef7995f4 113
4369c64c
HR
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
2c50ad34 117 for (v = vals; v != vals + count; v++)
4369c64c 118 handler->event(handle, v->type, v->code, v->value);
ef7995f4 119
4369c64c
HR
120 return count;
121}
ef7995f4 122
4369c64c
HR
123/*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
128static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
8006479c 130{
82ba56c2 131 struct input_handle *handle;
4369c64c 132 struct input_value *v;
ef7995f4 133
4369c64c
HR
134 if (!count)
135 return;
82ba56c2
DT
136
137 rcu_read_lock();
1da177e4 138
82ba56c2 139 handle = rcu_dereference(dev->grab);
4369c64c
HR
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
2c50ad34 144 if (handle->open) {
4369c64c 145 count = input_to_handler(handle, vals, count);
2c50ad34
AG
146 if (!count)
147 break;
148 }
ef7995f4 149 }
ef7995f4 150
82ba56c2 151 rcu_read_unlock();
ef7995f4 152
352ac4bd 153 /* trigger auto repeat for key events */
5ab17145
AG
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
ef7995f4
DT
162 }
163 }
4369c64c 164}
ef7995f4 165
4369c64c
HR
166static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168{
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
8006479c 172}
1da177e4 173
8006479c
DT
174/*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
4e974c12 179static void input_repeat_key(struct timer_list *t)
8006479c 180{
4e974c12 181 struct input_dev *dev = from_timer(dev, t, timer);
8006479c 182 unsigned long flags;
1da177e4 183
8006479c 184 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 185
8006479c
DT
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
4369c64c
HR
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
1da177e4 192
4134252a 193 input_set_timestamp(dev, ktime_get());
4369c64c 194 input_pass_values(dev, vals, ARRAY_SIZE(vals));
31581066 195
8006479c
DT
196 if (dev->rep[REP_PERIOD])
197 mod_timer(&dev->timer, jiffies +
198 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 }
31581066 200
8006479c
DT
201 spin_unlock_irqrestore(&dev->event_lock, flags);
202}
31581066 203
8006479c
DT
204#define INPUT_IGNORE_EVENT 0
205#define INPUT_PASS_TO_HANDLERS 1
206#define INPUT_PASS_TO_DEVICE 2
4369c64c
HR
207#define INPUT_SLOT 4
208#define INPUT_FLUSH 8
8006479c 209#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
1da177e4 210
40d007e7
HR
211static int input_handle_abs_event(struct input_dev *dev,
212 unsigned int code, int *pval)
213{
8d18fba2 214 struct input_mt *mt = dev->mt;
40d007e7
HR
215 bool is_mt_event;
216 int *pold;
217
218 if (code == ABS_MT_SLOT) {
219 /*
220 * "Stage" the event; we'll flush it later, when we
144c0f88 221 * get actual touch data.
40d007e7 222 */
8d18fba2
HR
223 if (mt && *pval >= 0 && *pval < mt->num_slots)
224 mt->slot = *pval;
40d007e7
HR
225
226 return INPUT_IGNORE_EVENT;
227 }
228
b89529a1 229 is_mt_event = input_is_mt_value(code);
40d007e7
HR
230
231 if (!is_mt_event) {
d31b2865 232 pold = &dev->absinfo[code].value;
8d18fba2
HR
233 } else if (mt) {
234 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
40d007e7
HR
235 } else {
236 /*
144c0f88 237 * Bypass filtering for multi-touch events when
40d007e7
HR
238 * not employing slots.
239 */
240 pold = NULL;
241 }
242
243 if (pold) {
244 *pval = input_defuzz_abs_event(*pval, *pold,
d31b2865 245 dev->absinfo[code].fuzz);
40d007e7
HR
246 if (*pold == *pval)
247 return INPUT_IGNORE_EVENT;
248
249 *pold = *pval;
250 }
251
252 /* Flush pending "slot" event */
8d18fba2
HR
253 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
4369c64c 255 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
40d007e7
HR
256 }
257
258 return INPUT_PASS_TO_HANDLERS;
259}
260
4369c64c 261static int input_get_disposition(struct input_dev *dev,
50c5d36d 262 unsigned int type, unsigned int code, int *pval)
8006479c
DT
263{
264 int disposition = INPUT_IGNORE_EVENT;
50c5d36d 265 int value = *pval;
1da177e4 266
8006479c 267 switch (type) {
1da177e4 268
8006479c
DT
269 case EV_SYN:
270 switch (code) {
271 case SYN_CONFIG:
272 disposition = INPUT_PASS_TO_ALL;
273 break;
1da177e4 274
8006479c 275 case SYN_REPORT:
4369c64c 276 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
1da177e4 277 break;
5e5ee686 278 case SYN_MT_REPORT:
5e5ee686
HR
279 disposition = INPUT_PASS_TO_HANDLERS;
280 break;
8006479c
DT
281 }
282 break;
1da177e4 283
8006479c 284 case EV_KEY:
0672120a 285 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
1da177e4 286
0672120a
HR
287 /* auto-repeat bypasses state updates */
288 if (value == 2) {
289 disposition = INPUT_PASS_TO_HANDLERS;
290 break;
8006479c 291 }
1da177e4 292
0672120a 293 if (!!test_bit(code, dev->key) != !!value) {
1da177e4 294
8006479c 295 __change_bit(code, dev->key);
0672120a 296 disposition = INPUT_PASS_TO_HANDLERS;
8006479c 297 }
8006479c
DT
298 }
299 break;
1da177e4 300
8006479c
DT
301 case EV_SW:
302 if (is_event_supported(code, dev->swbit, SW_MAX) &&
0672120a 303 !!test_bit(code, dev->sw) != !!value) {
1da177e4 304
8006479c
DT
305 __change_bit(code, dev->sw);
306 disposition = INPUT_PASS_TO_HANDLERS;
307 }
308 break;
1da177e4 309
8006479c 310 case EV_ABS:
40d007e7 311 if (is_event_supported(code, dev->absbit, ABS_MAX))
9ae4345a 312 disposition = input_handle_abs_event(dev, code, &value);
61994a61 313
8006479c 314 break;
1da177e4 315
8006479c
DT
316 case EV_REL:
317 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 disposition = INPUT_PASS_TO_HANDLERS;
1da177e4 319
8006479c 320 break;
1e0afb28 321
8006479c
DT
322 case EV_MSC:
323 if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 disposition = INPUT_PASS_TO_ALL;
1da177e4 325
8006479c 326 break;
1da177e4 327
8006479c
DT
328 case EV_LED:
329 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
0672120a 330 !!test_bit(code, dev->led) != !!value) {
1da177e4 331
8006479c
DT
332 __change_bit(code, dev->led);
333 disposition = INPUT_PASS_TO_ALL;
334 }
335 break;
336
337 case EV_SND:
338 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
1da177e4 339
8fdc1948 340 if (!!test_bit(code, dev->snd) != !!value)
8006479c
DT
341 __change_bit(code, dev->snd);
342 disposition = INPUT_PASS_TO_ALL;
343 }
344 break;
8fdc1948 345
8006479c
DT
346 case EV_REP:
347 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 dev->rep[code] = value;
349 disposition = INPUT_PASS_TO_ALL;
350 }
351 break;
1da177e4 352
8006479c
DT
353 case EV_FF:
354 if (value >= 0)
355 disposition = INPUT_PASS_TO_ALL;
356 break;
ed2fa4dd
RP
357
358 case EV_PWR:
359 disposition = INPUT_PASS_TO_ALL;
360 break;
8006479c 361 }
1da177e4 362
50c5d36d 363 *pval = value;
4369c64c
HR
364 return disposition;
365}
366
367static void input_handle_event(struct input_dev *dev,
368 unsigned int type, unsigned int code, int value)
369{
b55eb298 370 int disposition = input_get_disposition(dev, type, code, &value);
4369c64c 371
b55eb298
DT
372 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
373 add_input_randomness(type, code, value);
1da177e4 374
8006479c
DT
375 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
376 dev->event(dev, type, code, value);
1da177e4 377
4369c64c
HR
378 if (!dev->vals)
379 return;
380
381 if (disposition & INPUT_PASS_TO_HANDLERS) {
382 struct input_value *v;
383
384 if (disposition & INPUT_SLOT) {
385 v = &dev->vals[dev->num_vals++];
386 v->type = EV_ABS;
387 v->code = ABS_MT_SLOT;
388 v->value = dev->mt->slot;
389 }
390
391 v = &dev->vals[dev->num_vals++];
392 v->type = type;
393 v->code = code;
394 v->value = value;
395 }
396
397 if (disposition & INPUT_FLUSH) {
398 if (dev->num_vals >= 2)
399 input_pass_values(dev, dev->vals, dev->num_vals);
400 dev->num_vals = 0;
4370b231
DT
401 /*
402 * Reset the timestamp on flush so we won't end up
403 * with a stale one. Note we only need to reset the
404 * monolithic one as we use its presence when deciding
405 * whether to generate a synthetic timestamp.
406 */
407 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
4369c64c
HR
408 } else if (dev->num_vals >= dev->max_vals - 2) {
409 dev->vals[dev->num_vals++] = input_value_sync;
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 }
413
8006479c 414}
1da177e4 415
8006479c
DT
416/**
417 * input_event() - report new input event
418 * @dev: device that generated the event
419 * @type: type of the event
420 * @code: event code
421 * @value: value of the event
422 *
423 * This function should be used by drivers implementing various input
df2d4637
DT
424 * devices to report input events. See also input_inject_event().
425 *
426 * NOTE: input_event() may be safely used right after input device was
427 * allocated with input_allocate_device(), even before it is registered
428 * with input_register_device(), but the event will not reach any of the
429 * input handlers. Such early invocation of input_event() may be used
430 * to 'seed' initial state of a switch or initial position of absolute
431 * axis, etc.
8006479c 432 */
8006479c
DT
433void input_event(struct input_dev *dev,
434 unsigned int type, unsigned int code, int value)
435{
436 unsigned long flags;
509ca1a9 437
8006479c 438 if (is_event_supported(type, dev->evbit, EV_MAX)) {
509ca1a9 439
8006479c 440 spin_lock_irqsave(&dev->event_lock, flags);
9ae4345a 441 input_handle_event(dev, type, code, value);
8006479c 442 spin_unlock_irqrestore(&dev->event_lock, flags);
1da177e4 443 }
1da177e4 444}
ca56fe07 445EXPORT_SYMBOL(input_event);
1da177e4 446
0e739d28
DT
447/**
448 * input_inject_event() - send input event from input handler
449 * @handle: input handle to send event through
450 * @type: type of the event
451 * @code: event code
452 * @value: value of the event
453 *
8006479c
DT
454 * Similar to input_event() but will ignore event if device is
455 * "grabbed" and handle injecting event is not the one that owns
456 * the device.
0e739d28 457 */
8006479c
DT
458void input_inject_event(struct input_handle *handle,
459 unsigned int type, unsigned int code, int value)
1da177e4 460{
8006479c
DT
461 struct input_dev *dev = handle->dev;
462 struct input_handle *grab;
463 unsigned long flags;
1da177e4 464
8006479c
DT
465 if (is_event_supported(type, dev->evbit, EV_MAX)) {
466 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 467
82ba56c2 468 rcu_read_lock();
8006479c
DT
469 grab = rcu_dereference(dev->grab);
470 if (!grab || grab == handle)
9ae4345a 471 input_handle_event(dev, type, code, value);
82ba56c2 472 rcu_read_unlock();
1da177e4 473
8006479c
DT
474 spin_unlock_irqrestore(&dev->event_lock, flags);
475 }
1da177e4 476}
8006479c 477EXPORT_SYMBOL(input_inject_event);
1da177e4 478
d31b2865
DM
479/**
480 * input_alloc_absinfo - allocates array of input_absinfo structs
481 * @dev: the input device emitting absolute events
482 *
483 * If the absinfo struct the caller asked for is already allocated, this
484 * functions will not do anything.
485 */
486void input_alloc_absinfo(struct input_dev *dev)
487{
100294ce
DT
488 if (dev->absinfo)
489 return;
d31b2865 490
100294ce
DT
491 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
492 if (!dev->absinfo) {
493 dev_err(dev->dev.parent ?: &dev->dev,
494 "%s: unable to allocate memory\n", __func__);
495 /*
496 * We will handle this allocation failure in
497 * input_register_device() when we refuse to register input
498 * device with ABS bits but without absinfo.
499 */
500 }
d31b2865
DM
501}
502EXPORT_SYMBOL(input_alloc_absinfo);
503
504void input_set_abs_params(struct input_dev *dev, unsigned int axis,
505 int min, int max, int fuzz, int flat)
506{
507 struct input_absinfo *absinfo;
508
509 input_alloc_absinfo(dev);
510 if (!dev->absinfo)
511 return;
512
513 absinfo = &dev->absinfo[axis];
514 absinfo->minimum = min;
515 absinfo->maximum = max;
516 absinfo->fuzz = fuzz;
517 absinfo->flat = flat;
518
2c9a9cfe
DT
519 __set_bit(EV_ABS, dev->evbit);
520 __set_bit(axis, dev->absbit);
d31b2865
DM
521}
522EXPORT_SYMBOL(input_set_abs_params);
523
524
8006479c
DT
525/**
526 * input_grab_device - grabs device for exclusive use
527 * @handle: input handle that wants to own the device
528 *
529 * When a device is grabbed by an input handle all events generated by
530 * the device are delivered only to this handle. Also events injected
531 * by other input handles are ignored while device is grabbed.
532 */
1da177e4
LT
533int input_grab_device(struct input_handle *handle)
534{
8006479c
DT
535 struct input_dev *dev = handle->dev;
536 int retval;
1da177e4 537
8006479c
DT
538 retval = mutex_lock_interruptible(&dev->mutex);
539 if (retval)
540 return retval;
541
542 if (dev->grab) {
543 retval = -EBUSY;
544 goto out;
545 }
546
547 rcu_assign_pointer(dev->grab, handle);
8006479c
DT
548
549 out:
550 mutex_unlock(&dev->mutex);
551 return retval;
1da177e4 552}
ca56fe07 553EXPORT_SYMBOL(input_grab_device);
1da177e4 554
8006479c 555static void __input_release_device(struct input_handle *handle)
1da177e4 556{
a2b2ed2c 557 struct input_dev *dev = handle->dev;
adc4633c 558 struct input_handle *grabber;
c7e8dc6e 559
adc4633c
DT
560 grabber = rcu_dereference_protected(dev->grab,
561 lockdep_is_held(&dev->mutex));
562 if (grabber == handle) {
8006479c
DT
563 rcu_assign_pointer(dev->grab, NULL);
564 /* Make sure input_pass_event() notices that grab is gone */
82ba56c2 565 synchronize_rcu();
a2b2ed2c
AM
566
567 list_for_each_entry(handle, &dev->h_list, d_node)
8006479c 568 if (handle->open && handle->handler->start)
c7e8dc6e
DT
569 handle->handler->start(handle);
570 }
1da177e4 571}
8006479c
DT
572
573/**
574 * input_release_device - release previously grabbed device
575 * @handle: input handle that owns the device
576 *
577 * Releases previously grabbed device so that other input handles can
578 * start receiving input events. Upon release all handlers attached
579 * to the device have their start() method called so they have a change
580 * to synchronize device state with the rest of the system.
581 */
582void input_release_device(struct input_handle *handle)
583{
584 struct input_dev *dev = handle->dev;
585
586 mutex_lock(&dev->mutex);
587 __input_release_device(handle);
588 mutex_unlock(&dev->mutex);
589}
ca56fe07 590EXPORT_SYMBOL(input_release_device);
1da177e4 591
8006479c
DT
592/**
593 * input_open_device - open input device
594 * @handle: handle through which device is being accessed
595 *
596 * This function should be called by input handlers when they
597 * want to start receive events from given input device.
598 */
1da177e4
LT
599int input_open_device(struct input_handle *handle)
600{
0fbf87ca 601 struct input_dev *dev = handle->dev;
8006479c 602 int retval;
0fbf87ca 603
8006479c
DT
604 retval = mutex_lock_interruptible(&dev->mutex);
605 if (retval)
606 return retval;
607
608 if (dev->going_away) {
609 retval = -ENODEV;
610 goto out;
611 }
0fbf87ca 612
1da177e4 613 handle->open++;
0fbf87ca 614
e95656ea
DT
615 if (dev->users++) {
616 /*
617 * Device is already opened, so we can exit immediately and
618 * report success.
619 */
620 goto out;
621 }
8006479c 622
e95656ea
DT
623 if (dev->open) {
624 retval = dev->open(dev);
625 if (retval) {
626 dev->users--;
627 handle->open--;
8006479c
DT
628 /*
629 * Make sure we are not delivering any more events
630 * through this handle
631 */
82ba56c2 632 synchronize_rcu();
e95656ea 633 goto out;
8006479c
DT
634 }
635 }
0fbf87ca 636
e95656ea
DT
637 if (dev->poller)
638 input_dev_poller_start(dev->poller);
639
8006479c 640 out:
e676c232 641 mutex_unlock(&dev->mutex);
8006479c 642 return retval;
1da177e4 643}
ca56fe07 644EXPORT_SYMBOL(input_open_device);
1da177e4 645
8006479c 646int input_flush_device(struct input_handle *handle, struct file *file)
1da177e4 647{
8006479c
DT
648 struct input_dev *dev = handle->dev;
649 int retval;
1da177e4 650
8006479c
DT
651 retval = mutex_lock_interruptible(&dev->mutex);
652 if (retval)
653 return retval;
654
655 if (dev->flush)
656 retval = dev->flush(dev, file);
657
658 mutex_unlock(&dev->mutex);
659 return retval;
1da177e4 660}
ca56fe07 661EXPORT_SYMBOL(input_flush_device);
1da177e4 662
8006479c
DT
663/**
664 * input_close_device - close input device
665 * @handle: handle through which device is being accessed
666 *
667 * This function should be called by input handlers when they
668 * want to stop receive events from given input device.
669 */
1da177e4
LT
670void input_close_device(struct input_handle *handle)
671{
0fbf87ca
DT
672 struct input_dev *dev = handle->dev;
673
e676c232 674 mutex_lock(&dev->mutex);
0fbf87ca 675
8006479c
DT
676 __input_release_device(handle);
677
e95656ea
DT
678 if (!--dev->users) {
679 if (dev->poller)
680 input_dev_poller_stop(dev->poller);
681
682 if (dev->close)
683 dev->close(dev);
684 }
8006479c
DT
685
686 if (!--handle->open) {
687 /*
82ba56c2 688 * synchronize_rcu() makes sure that input_pass_event()
8006479c
DT
689 * completed and that no more input events are delivered
690 * through this handle
691 */
82ba56c2 692 synchronize_rcu();
8006479c 693 }
0fbf87ca 694
e676c232 695 mutex_unlock(&dev->mutex);
1da177e4 696}
ca56fe07 697EXPORT_SYMBOL(input_close_device);
1da177e4 698
866d7d7b
ON
699/*
700 * Simulate keyup events for all keys that are marked as pressed.
701 * The function must be called with dev->event_lock held.
702 */
703static void input_dev_release_keys(struct input_dev *dev)
704{
00159f19 705 bool need_sync = false;
866d7d7b
ON
706 int code;
707
708 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
00159f19 709 for_each_set_bit(code, dev->key, KEY_CNT) {
3e2b03da 710 input_pass_event(dev, EV_KEY, code, 0);
00159f19
DT
711 need_sync = true;
712 }
713
714 if (need_sync)
715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716
3e2b03da 717 memset(dev->key, 0, sizeof(dev->key));
866d7d7b
ON
718 }
719}
720
8006479c
DT
721/*
722 * Prepare device for unregistering
723 */
724static void input_disconnect_device(struct input_dev *dev)
725{
726 struct input_handle *handle;
8006479c
DT
727
728 /*
729 * Mark device as going away. Note that we take dev->mutex here
730 * not to protect access to dev->going_away but rather to ensure
731 * that there are no threads in the middle of input_open_device()
732 */
733 mutex_lock(&dev->mutex);
ffd0db97 734 dev->going_away = true;
8006479c
DT
735 mutex_unlock(&dev->mutex);
736
737 spin_lock_irq(&dev->event_lock);
738
739 /*
740 * Simulate keyup events for all pressed keys so that handlers
741 * are not left with "stuck" keys. The driver may continue
742 * generate events even after we done here but they will not
743 * reach any handlers.
744 */
866d7d7b 745 input_dev_release_keys(dev);
8006479c
DT
746
747 list_for_each_entry(handle, &dev->h_list, d_node)
748 handle->open = 0;
749
750 spin_unlock_irq(&dev->event_lock);
751}
752
8613e4c2
MCC
753/**
754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
755 * @ke: keymap entry containing scancode to be converted.
756 * @scancode: pointer to the location where converted scancode should
757 * be stored.
758 *
759 * This function is used to convert scancode stored in &struct keymap_entry
760 * into scalar form understood by legacy keymap handling methods. These
761 * methods expect scancodes to be represented as 'unsigned int'.
762 */
763int input_scancode_to_scalar(const struct input_keymap_entry *ke,
764 unsigned int *scancode)
765{
766 switch (ke->len) {
767 case 1:
768 *scancode = *((u8 *)ke->scancode);
769 break;
770
771 case 2:
772 *scancode = *((u16 *)ke->scancode);
773 break;
774
775 case 4:
776 *scancode = *((u32 *)ke->scancode);
777 break;
778
779 default:
780 return -EINVAL;
781 }
782
783 return 0;
784}
785EXPORT_SYMBOL(input_scancode_to_scalar);
786
787/*
788 * Those routines handle the default case where no [gs]etkeycode() is
789 * defined. In this case, an array indexed by the scancode is used.
790 */
791
792static unsigned int input_fetch_keycode(struct input_dev *dev,
793 unsigned int index)
c8e4c772
MR
794{
795 switch (dev->keycodesize) {
8613e4c2
MCC
796 case 1:
797 return ((u8 *)dev->keycode)[index];
c8e4c772 798
8613e4c2
MCC
799 case 2:
800 return ((u16 *)dev->keycode)[index];
c8e4c772 801
8613e4c2
MCC
802 default:
803 return ((u32 *)dev->keycode)[index];
c8e4c772
MR
804 }
805}
806
807static int input_default_getkeycode(struct input_dev *dev,
8613e4c2 808 struct input_keymap_entry *ke)
c8e4c772 809{
8613e4c2
MCC
810 unsigned int index;
811 int error;
812
c8e4c772
MR
813 if (!dev->keycodesize)
814 return -EINVAL;
815
8613e4c2
MCC
816 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
817 index = ke->index;
818 else {
819 error = input_scancode_to_scalar(ke, &index);
820 if (error)
821 return error;
822 }
823
824 if (index >= dev->keycodemax)
c8e4c772
MR
825 return -EINVAL;
826
8613e4c2
MCC
827 ke->keycode = input_fetch_keycode(dev, index);
828 ke->index = index;
829 ke->len = sizeof(index);
830 memcpy(ke->scancode, &index, sizeof(index));
c8e4c772
MR
831
832 return 0;
833}
834
835static int input_default_setkeycode(struct input_dev *dev,
8613e4c2
MCC
836 const struct input_keymap_entry *ke,
837 unsigned int *old_keycode)
c8e4c772 838{
8613e4c2
MCC
839 unsigned int index;
840 int error;
c8e4c772
MR
841 int i;
842
8613e4c2 843 if (!dev->keycodesize)
c8e4c772
MR
844 return -EINVAL;
845
8613e4c2
MCC
846 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
847 index = ke->index;
848 } else {
849 error = input_scancode_to_scalar(ke, &index);
850 if (error)
851 return error;
852 }
853
854 if (index >= dev->keycodemax)
c8e4c772
MR
855 return -EINVAL;
856
de391d12 857 if (dev->keycodesize < sizeof(ke->keycode) &&
8613e4c2 858 (ke->keycode >> (dev->keycodesize * 8)))
c8e4c772
MR
859 return -EINVAL;
860
861 switch (dev->keycodesize) {
862 case 1: {
863 u8 *k = (u8 *)dev->keycode;
8613e4c2
MCC
864 *old_keycode = k[index];
865 k[index] = ke->keycode;
c8e4c772
MR
866 break;
867 }
868 case 2: {
869 u16 *k = (u16 *)dev->keycode;
8613e4c2
MCC
870 *old_keycode = k[index];
871 k[index] = ke->keycode;
c8e4c772
MR
872 break;
873 }
874 default: {
875 u32 *k = (u32 *)dev->keycode;
8613e4c2
MCC
876 *old_keycode = k[index];
877 k[index] = ke->keycode;
c8e4c772
MR
878 break;
879 }
880 }
881
cb222aed
DT
882 if (*old_keycode <= KEY_MAX) {
883 __clear_bit(*old_keycode, dev->keybit);
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887 /* Setting the bit twice is useless, so break */
888 break;
889 }
c8e4c772
MR
890 }
891 }
892
cb222aed 893 __set_bit(ke->keycode, dev->keybit);
c8e4c772
MR
894 return 0;
895}
896
f4f37c8e
DT
897/**
898 * input_get_keycode - retrieve keycode currently mapped to a given scancode
899 * @dev: input device which keymap is being queried
8613e4c2 900 * @ke: keymap entry
f4f37c8e
DT
901 *
902 * This function should be called by anyone interested in retrieving current
8613e4c2 903 * keymap. Presently evdev handlers use it.
f4f37c8e 904 */
8613e4c2 905int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
f4f37c8e 906{
2e2e3b96
DT
907 unsigned long flags;
908 int retval;
909
910 spin_lock_irqsave(&dev->event_lock, flags);
aebd636b 911 retval = dev->getkeycode(dev, ke);
8613e4c2 912 spin_unlock_irqrestore(&dev->event_lock, flags);
aebd636b 913
2e2e3b96 914 return retval;
f4f37c8e
DT
915}
916EXPORT_SYMBOL(input_get_keycode);
917
918/**
8613e4c2 919 * input_set_keycode - attribute a keycode to a given scancode
f4f37c8e 920 * @dev: input device which keymap is being updated
8613e4c2 921 * @ke: new keymap entry
f4f37c8e
DT
922 *
923 * This function should be called by anyone needing to update current
924 * keymap. Presently keyboard and evdev handlers use it.
925 */
58b93995 926int input_set_keycode(struct input_dev *dev,
8613e4c2 927 const struct input_keymap_entry *ke)
f4f37c8e
DT
928{
929 unsigned long flags;
fd6cf3dd 930 unsigned int old_keycode;
f4f37c8e
DT
931 int retval;
932
8613e4c2 933 if (ke->keycode > KEY_MAX)
f4f37c8e
DT
934 return -EINVAL;
935
936 spin_lock_irqsave(&dev->event_lock, flags);
937
aebd636b 938 retval = dev->setkeycode(dev, ke, &old_keycode);
f4f37c8e
DT
939 if (retval)
940 goto out;
941
4f93df40
DT
942 /* Make sure KEY_RESERVED did not get enabled. */
943 __clear_bit(KEY_RESERVED, dev->keybit);
944
f4f37c8e
DT
945 /*
946 * Simulate keyup event if keycode is not present
947 * in the keymap anymore
948 */
cb222aed
DT
949 if (old_keycode > KEY_MAX) {
950 dev_warn(dev->dev.parent ?: &dev->dev,
951 "%s: got too big old keycode %#x\n",
952 __func__, old_keycode);
953 } else if (test_bit(EV_KEY, dev->evbit) &&
954 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
955 __test_and_clear_bit(old_keycode, dev->key)) {
4369c64c
HR
956 struct input_value vals[] = {
957 { EV_KEY, old_keycode, 0 },
958 input_value_sync
959 };
f4f37c8e 960
4369c64c 961 input_pass_values(dev, vals, ARRAY_SIZE(vals));
f4f37c8e
DT
962 }
963
964 out:
965 spin_unlock_irqrestore(&dev->event_lock, flags);
966
967 return retval;
968}
969EXPORT_SYMBOL(input_set_keycode);
c8e4c772 970
55dfce87
DT
971bool input_match_device_id(const struct input_dev *dev,
972 const struct input_device_id *id)
973{
974 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
975 if (id->bustype != dev->id.bustype)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
979 if (id->vendor != dev->id.vendor)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
983 if (id->product != dev->id.product)
984 return false;
985
986 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
987 if (id->version != dev->id.version)
988 return false;
989
990 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
991 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
992 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
993 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
994 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
995 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
996 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
997 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
8724ecb0
DT
998 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
999 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
55dfce87
DT
1000 return false;
1001 }
1002
1003 return true;
1004}
1005EXPORT_SYMBOL(input_match_device_id);
1006
0b7024ac 1007static const struct input_device_id *input_match_device(struct input_handler *handler,
66e66118 1008 struct input_dev *dev)
1da177e4 1009{
0b7024ac 1010 const struct input_device_id *id;
1da177e4 1011
0b7024ac 1012 for (id = handler->id_table; id->flags || id->driver_info; id++) {
55dfce87
DT
1013 if (input_match_device_id(dev, id) &&
1014 (!handler->match || handler->match(handler, dev))) {
0b7024ac 1015 return id;
55dfce87 1016 }
1da177e4
LT
1017 }
1018
1019 return NULL;
1020}
1021
5b2a0826
DT
1022static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023{
1024 const struct input_device_id *id;
1025 int error;
1026
0b7024ac 1027 id = input_match_device(handler, dev);
5b2a0826
DT
1028 if (!id)
1029 return -ENODEV;
1030
1031 error = handler->connect(handler, dev, id);
1032 if (error && error != -ENODEV)
da0c4901
JP
1033 pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 handler->name, kobject_name(&dev->dev.kobj), error);
5b2a0826
DT
1035
1036 return error;
1037}
1038
15e184af
DT
1039#ifdef CONFIG_COMPAT
1040
1041static int input_bits_to_string(char *buf, int buf_size,
1042 unsigned long bits, bool skip_empty)
1043{
1044 int len = 0;
1045
b8b4ead1 1046 if (in_compat_syscall()) {
15e184af
DT
1047 u32 dword = bits >> 32;
1048 if (dword || !skip_empty)
1049 len += snprintf(buf, buf_size, "%x ", dword);
1050
1051 dword = bits & 0xffffffffUL;
1052 if (dword || !skip_empty || len)
1053 len += snprintf(buf + len, max(buf_size - len, 0),
1054 "%x", dword);
1055 } else {
1056 if (bits || !skip_empty)
1057 len += snprintf(buf, buf_size, "%lx", bits);
1058 }
1059
1060 return len;
1061}
1062
1063#else /* !CONFIG_COMPAT */
1064
1065static int input_bits_to_string(char *buf, int buf_size,
1066 unsigned long bits, bool skip_empty)
1067{
1068 return bits || !skip_empty ?
1069 snprintf(buf, buf_size, "%lx", bits) : 0;
1070}
1071
1072#endif
5b2a0826 1073
f96b434d
DT
1074#ifdef CONFIG_PROC_FS
1075
1076static struct proc_dir_entry *proc_bus_input_dir;
1077static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078static int input_devices_state;
1079
1080static inline void input_wakeup_procfs_readers(void)
1081{
1082 input_devices_state++;
1083 wake_up(&input_devices_poll_wait);
1084}
1085
afc9a42b 1086static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
f96b434d 1087{
f96b434d 1088 poll_wait(file, &input_devices_poll_wait, wait);
fa886612
DT
1089 if (file->f_version != input_devices_state) {
1090 file->f_version = input_devices_state;
a9a08845 1091 return EPOLLIN | EPOLLRDNORM;
fa886612 1092 }
1e0afb28 1093
f96b434d
DT
1094 return 0;
1095}
1096
1572ca2a
DT
1097union input_seq_state {
1098 struct {
1099 unsigned short pos;
1100 bool mutex_acquired;
1101 };
1102 void *p;
1103};
1104
969b21cd
DT
1105static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106{
1572ca2a
DT
1107 union input_seq_state *state = (union input_seq_state *)&seq->private;
1108 int error;
1109
1110 /* We need to fit into seq->private pointer */
1111 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112
1113 error = mutex_lock_interruptible(&input_mutex);
1114 if (error) {
1115 state->mutex_acquired = false;
1116 return ERR_PTR(error);
1117 }
1118
1119 state->mutex_acquired = true;
f96b434d 1120
ad5d972c 1121 return seq_list_start(&input_dev_list, *pos);
969b21cd 1122}
051b2fea 1123
969b21cd
DT
1124static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125{
ad5d972c 1126 return seq_list_next(v, &input_dev_list, pos);
969b21cd 1127}
f96b434d 1128
1572ca2a 1129static void input_seq_stop(struct seq_file *seq, void *v)
969b21cd 1130{
1572ca2a
DT
1131 union input_seq_state *state = (union input_seq_state *)&seq->private;
1132
1133 if (state->mutex_acquired)
1134 mutex_unlock(&input_mutex);
969b21cd 1135}
f96b434d 1136
969b21cd
DT
1137static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138 unsigned long *bitmap, int max)
1139{
1140 int i;
15e184af
DT
1141 bool skip_empty = true;
1142 char buf[18];
f96b434d 1143
969b21cd 1144 seq_printf(seq, "B: %s=", name);
15e184af
DT
1145
1146 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147 if (input_bits_to_string(buf, sizeof(buf),
1148 bitmap[i], skip_empty)) {
1149 skip_empty = false;
1150 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 }
1152 }
1153
1154 /*
1155 * If no output was produced print a single 0.
1156 */
1157 if (skip_empty)
bb546136 1158 seq_putc(seq, '0');
15e184af 1159
969b21cd
DT
1160 seq_putc(seq, '\n');
1161}
f96b434d 1162
969b21cd
DT
1163static int input_devices_seq_show(struct seq_file *seq, void *v)
1164{
1165 struct input_dev *dev = container_of(v, struct input_dev, node);
9657d75c 1166 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
969b21cd
DT
1167 struct input_handle *handle;
1168
1169 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171
1172 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
15e03ae8 1175 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
63c95765 1176 seq_puts(seq, "H: Handlers=");
969b21cd
DT
1177
1178 list_for_each_entry(handle, &dev->h_list, d_node)
1179 seq_printf(seq, "%s ", handle->name);
1180 seq_putc(seq, '\n');
1181
85b77200
HR
1182 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183
969b21cd
DT
1184 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185 if (test_bit(EV_KEY, dev->evbit))
1186 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187 if (test_bit(EV_REL, dev->evbit))
1188 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189 if (test_bit(EV_ABS, dev->evbit))
1190 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191 if (test_bit(EV_MSC, dev->evbit))
1192 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193 if (test_bit(EV_LED, dev->evbit))
1194 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195 if (test_bit(EV_SND, dev->evbit))
1196 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197 if (test_bit(EV_FF, dev->evbit))
1198 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199 if (test_bit(EV_SW, dev->evbit))
1200 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201
1202 seq_putc(seq, '\n');
1203
1204 kfree(path);
1205 return 0;
f96b434d
DT
1206}
1207
cec69c37 1208static const struct seq_operations input_devices_seq_ops = {
969b21cd
DT
1209 .start = input_devices_seq_start,
1210 .next = input_devices_seq_next,
1572ca2a 1211 .stop = input_seq_stop,
969b21cd
DT
1212 .show = input_devices_seq_show,
1213};
1214
1215static int input_proc_devices_open(struct inode *inode, struct file *file)
f96b434d 1216{
969b21cd
DT
1217 return seq_open(file, &input_devices_seq_ops);
1218}
1219
97a32539
AD
1220static const struct proc_ops input_devices_proc_ops = {
1221 .proc_open = input_proc_devices_open,
1222 .proc_poll = input_proc_devices_poll,
1223 .proc_read = seq_read,
1224 .proc_lseek = seq_lseek,
1225 .proc_release = seq_release,
969b21cd
DT
1226};
1227
1228static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229{
1572ca2a
DT
1230 union input_seq_state *state = (union input_seq_state *)&seq->private;
1231 int error;
1232
1233 /* We need to fit into seq->private pointer */
1234 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1235
1236 error = mutex_lock_interruptible(&input_mutex);
1237 if (error) {
1238 state->mutex_acquired = false;
1239 return ERR_PTR(error);
1240 }
1241
1242 state->mutex_acquired = true;
1243 state->pos = *pos;
8006479c 1244
ad5d972c 1245 return seq_list_start(&input_handler_list, *pos);
969b21cd 1246}
f96b434d 1247
969b21cd
DT
1248static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1249{
1572ca2a 1250 union input_seq_state *state = (union input_seq_state *)&seq->private;
f96b434d 1251
1572ca2a
DT
1252 state->pos = *pos + 1;
1253 return seq_list_next(v, &input_handler_list, pos);
969b21cd
DT
1254}
1255
1256static int input_handlers_seq_show(struct seq_file *seq, void *v)
1257{
1258 struct input_handler *handler = container_of(v, struct input_handler, node);
1572ca2a 1259 union input_seq_state *state = (union input_seq_state *)&seq->private;
969b21cd 1260
1572ca2a 1261 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
ef7995f4
DT
1262 if (handler->filter)
1263 seq_puts(seq, " (filter)");
7f8d4cad 1264 if (handler->legacy_minors)
969b21cd
DT
1265 seq_printf(seq, " Minor=%d", handler->minor);
1266 seq_putc(seq, '\n');
1267
1268 return 0;
1269}
1572ca2a 1270
cec69c37 1271static const struct seq_operations input_handlers_seq_ops = {
969b21cd
DT
1272 .start = input_handlers_seq_start,
1273 .next = input_handlers_seq_next,
1572ca2a 1274 .stop = input_seq_stop,
969b21cd
DT
1275 .show = input_handlers_seq_show,
1276};
1277
1278static int input_proc_handlers_open(struct inode *inode, struct file *file)
1279{
1280 return seq_open(file, &input_handlers_seq_ops);
1281}
1282
97a32539
AD
1283static const struct proc_ops input_handlers_proc_ops = {
1284 .proc_open = input_proc_handlers_open,
1285 .proc_read = seq_read,
1286 .proc_lseek = seq_lseek,
1287 .proc_release = seq_release,
969b21cd 1288};
f96b434d
DT
1289
1290static int __init input_proc_init(void)
1291{
1292 struct proc_dir_entry *entry;
1293
9c37066d 1294 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
f96b434d
DT
1295 if (!proc_bus_input_dir)
1296 return -ENOMEM;
1297
c7705f34 1298 entry = proc_create("devices", 0, proc_bus_input_dir,
97a32539 1299 &input_devices_proc_ops);
f96b434d
DT
1300 if (!entry)
1301 goto fail1;
1302
c7705f34 1303 entry = proc_create("handlers", 0, proc_bus_input_dir,
97a32539 1304 &input_handlers_proc_ops);
f96b434d
DT
1305 if (!entry)
1306 goto fail2;
1307
f96b434d
DT
1308 return 0;
1309
1310 fail2: remove_proc_entry("devices", proc_bus_input_dir);
9c37066d 1311 fail1: remove_proc_entry("bus/input", NULL);
f96b434d
DT
1312 return -ENOMEM;
1313}
1314
beffbdc2 1315static void input_proc_exit(void)
f96b434d
DT
1316{
1317 remove_proc_entry("devices", proc_bus_input_dir);
1318 remove_proc_entry("handlers", proc_bus_input_dir);
9c37066d 1319 remove_proc_entry("bus/input", NULL);
f96b434d
DT
1320}
1321
1322#else /* !CONFIG_PROC_FS */
1323static inline void input_wakeup_procfs_readers(void) { }
1324static inline int input_proc_init(void) { return 0; }
1325static inline void input_proc_exit(void) { }
1326#endif
1327
9657d75c
DT
1328#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1329static ssize_t input_dev_show_##name(struct device *dev, \
1330 struct device_attribute *attr, \
1331 char *buf) \
1332{ \
1333 struct input_dev *input_dev = to_input_dev(dev); \
1334 \
1335 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1336 input_dev->name ? input_dev->name : ""); \
1337} \
1338static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
5c1e9a6a
DT
1339
1340INPUT_DEV_STRING_ATTR_SHOW(name);
1341INPUT_DEV_STRING_ATTR_SHOW(phys);
1342INPUT_DEV_STRING_ATTR_SHOW(uniq);
1343
ac648a6a
DT
1344static int input_print_modalias_bits(char *buf, int size,
1345 char name, unsigned long *bm,
1346 unsigned int min_bit, unsigned int max_bit)
1d8f430c 1347{
ac648a6a 1348 int len = 0, i;
1d8f430c 1349
ac648a6a
DT
1350 len += snprintf(buf, max(size, 0), "%c", name);
1351 for (i = min_bit; i < max_bit; i++)
7b19ada2 1352 if (bm[BIT_WORD(i)] & BIT_MASK(i))
ac648a6a 1353 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1d8f430c
RR
1354 return len;
1355}
1356
2db66876
DT
1357static int input_print_modalias(char *buf, int size, struct input_dev *id,
1358 int add_cr)
1d8f430c 1359{
bd37e5a9 1360 int len;
1d8f430c 1361
ac648a6a
DT
1362 len = snprintf(buf, max(size, 0),
1363 "input:b%04Xv%04Xp%04Xe%04X-",
1364 id->id.bustype, id->id.vendor,
1365 id->id.product, id->id.version);
1366
1367 len += input_print_modalias_bits(buf + len, size - len,
1368 'e', id->evbit, 0, EV_MAX);
1369 len += input_print_modalias_bits(buf + len, size - len,
1370 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371 len += input_print_modalias_bits(buf + len, size - len,
1372 'r', id->relbit, 0, REL_MAX);
1373 len += input_print_modalias_bits(buf + len, size - len,
1374 'a', id->absbit, 0, ABS_MAX);
1375 len += input_print_modalias_bits(buf + len, size - len,
1376 'm', id->mscbit, 0, MSC_MAX);
1377 len += input_print_modalias_bits(buf + len, size - len,
1378 'l', id->ledbit, 0, LED_MAX);
1379 len += input_print_modalias_bits(buf + len, size - len,
1380 's', id->sndbit, 0, SND_MAX);
1381 len += input_print_modalias_bits(buf + len, size - len,
1382 'f', id->ffbit, 0, FF_MAX);
1383 len += input_print_modalias_bits(buf + len, size - len,
1384 'w', id->swbit, 0, SW_MAX);
2db66876
DT
1385
1386 if (add_cr)
ac648a6a 1387 len += snprintf(buf + len, max(size - len, 0), "\n");
2db66876 1388
bd37e5a9
KS
1389 return len;
1390}
1391
9657d75c
DT
1392static ssize_t input_dev_show_modalias(struct device *dev,
1393 struct device_attribute *attr,
1394 char *buf)
bd37e5a9
KS
1395{
1396 struct input_dev *id = to_input_dev(dev);
1397 ssize_t len;
1398
2db66876
DT
1399 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1400
8a3cf456 1401 return min_t(int, len, PAGE_SIZE);
1d8f430c 1402}
9657d75c 1403static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1d8f430c 1404
85b77200
HR
1405static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1406 int max, int add_cr);
1407
1408static ssize_t input_dev_show_properties(struct device *dev,
1409 struct device_attribute *attr,
1410 char *buf)
1411{
1412 struct input_dev *input_dev = to_input_dev(dev);
1413 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1414 INPUT_PROP_MAX, true);
1415 return min_t(int, len, PAGE_SIZE);
1416}
1417static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1418
629b77a4 1419static struct attribute *input_dev_attrs[] = {
9657d75c
DT
1420 &dev_attr_name.attr,
1421 &dev_attr_phys.attr,
1422 &dev_attr_uniq.attr,
1423 &dev_attr_modalias.attr,
85b77200 1424 &dev_attr_properties.attr,
629b77a4
GKH
1425 NULL
1426};
1427
5e895b74 1428static const struct attribute_group input_dev_attr_group = {
629b77a4 1429 .attrs = input_dev_attrs,
5c1e9a6a
DT
1430};
1431
9657d75c
DT
1432#define INPUT_DEV_ID_ATTR(name) \
1433static ssize_t input_dev_show_id_##name(struct device *dev, \
1434 struct device_attribute *attr, \
1435 char *buf) \
1436{ \
1437 struct input_dev *input_dev = to_input_dev(dev); \
1438 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1439} \
1440static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
5c1e9a6a
DT
1441
1442INPUT_DEV_ID_ATTR(bustype);
1443INPUT_DEV_ID_ATTR(vendor);
1444INPUT_DEV_ID_ATTR(product);
1445INPUT_DEV_ID_ATTR(version);
1446
1447static struct attribute *input_dev_id_attrs[] = {
9657d75c
DT
1448 &dev_attr_bustype.attr,
1449 &dev_attr_vendor.attr,
1450 &dev_attr_product.attr,
1451 &dev_attr_version.attr,
5c1e9a6a
DT
1452 NULL
1453};
1454
5e895b74 1455static const struct attribute_group input_dev_id_attr_group = {
5c1e9a6a
DT
1456 .name = "id",
1457 .attrs = input_dev_id_attrs,
1458};
1459
969b21cd
DT
1460static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1461 int max, int add_cr)
1462{
1463 int i;
1464 int len = 0;
15e184af
DT
1465 bool skip_empty = true;
1466
1467 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1468 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1469 bitmap[i], skip_empty);
1470 if (len) {
1471 skip_empty = false;
1472 if (i > 0)
1473 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1474 }
1475 }
969b21cd 1476
15e184af
DT
1477 /*
1478 * If no output was produced print a single 0.
1479 */
1480 if (len == 0)
1481 len = snprintf(buf, buf_size, "%d", 0);
969b21cd
DT
1482
1483 if (add_cr)
1484 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1485
1486 return len;
1487}
1488
9657d75c
DT
1489#define INPUT_DEV_CAP_ATTR(ev, bm) \
1490static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1491 struct device_attribute *attr, \
1492 char *buf) \
1493{ \
1494 struct input_dev *input_dev = to_input_dev(dev); \
1495 int len = input_print_bitmap(buf, PAGE_SIZE, \
15e184af
DT
1496 input_dev->bm##bit, ev##_MAX, \
1497 true); \
9657d75c
DT
1498 return min_t(int, len, PAGE_SIZE); \
1499} \
1500static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
5c1e9a6a
DT
1501
1502INPUT_DEV_CAP_ATTR(EV, ev);
1503INPUT_DEV_CAP_ATTR(KEY, key);
1504INPUT_DEV_CAP_ATTR(REL, rel);
1505INPUT_DEV_CAP_ATTR(ABS, abs);
1506INPUT_DEV_CAP_ATTR(MSC, msc);
1507INPUT_DEV_CAP_ATTR(LED, led);
1508INPUT_DEV_CAP_ATTR(SND, snd);
1509INPUT_DEV_CAP_ATTR(FF, ff);
1510INPUT_DEV_CAP_ATTR(SW, sw);
1511
1512static struct attribute *input_dev_caps_attrs[] = {
9657d75c
DT
1513 &dev_attr_ev.attr,
1514 &dev_attr_key.attr,
1515 &dev_attr_rel.attr,
1516 &dev_attr_abs.attr,
1517 &dev_attr_msc.attr,
1518 &dev_attr_led.attr,
1519 &dev_attr_snd.attr,
1520 &dev_attr_ff.attr,
1521 &dev_attr_sw.attr,
5c1e9a6a
DT
1522 NULL
1523};
1524
5e895b74 1525static const struct attribute_group input_dev_caps_attr_group = {
5c1e9a6a
DT
1526 .name = "capabilities",
1527 .attrs = input_dev_caps_attrs,
1528};
1529
a4dbd674 1530static const struct attribute_group *input_dev_attr_groups[] = {
cb9def4d
DT
1531 &input_dev_attr_group,
1532 &input_dev_id_attr_group,
1533 &input_dev_caps_attr_group,
e95656ea 1534 &input_poller_attribute_group,
cb9def4d
DT
1535 NULL
1536};
1537
9657d75c 1538static void input_dev_release(struct device *device)
d19fbe8a 1539{
9657d75c 1540 struct input_dev *dev = to_input_dev(device);
d19fbe8a 1541
509ca1a9 1542 input_ff_destroy(dev);
40d007e7 1543 input_mt_destroy_slots(dev);
e95656ea 1544 kfree(dev->poller);
d31b2865 1545 kfree(dev->absinfo);
4369c64c 1546 kfree(dev->vals);
d19fbe8a 1547 kfree(dev);
509ca1a9 1548
d19fbe8a
DT
1549 module_put(THIS_MODULE);
1550}
1551
a7fadbe1 1552/*
312c004d 1553 * Input uevent interface - loading event handlers based on
a7fadbe1
DT
1554 * device bitfields.
1555 */
7eff2e7a 1556static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
ac648a6a 1557 const char *name, unsigned long *bitmap, int max)
a7fadbe1 1558{
7eff2e7a 1559 int len;
a7fadbe1 1560
fcd3027a 1561 if (add_uevent_var(env, "%s", name))
a7fadbe1
DT
1562 return -ENOMEM;
1563
7eff2e7a
KS
1564 len = input_print_bitmap(&env->buf[env->buflen - 1],
1565 sizeof(env->buf) - env->buflen,
15e184af 1566 bitmap, max, false);
7eff2e7a 1567 if (len >= (sizeof(env->buf) - env->buflen))
a7fadbe1
DT
1568 return -ENOMEM;
1569
7eff2e7a 1570 env->buflen += len;
a7fadbe1
DT
1571 return 0;
1572}
1573
7eff2e7a 1574static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
ac648a6a
DT
1575 struct input_dev *dev)
1576{
7eff2e7a 1577 int len;
ac648a6a 1578
7eff2e7a 1579 if (add_uevent_var(env, "MODALIAS="))
ac648a6a
DT
1580 return -ENOMEM;
1581
7eff2e7a
KS
1582 len = input_print_modalias(&env->buf[env->buflen - 1],
1583 sizeof(env->buf) - env->buflen,
1584 dev, 0);
1585 if (len >= (sizeof(env->buf) - env->buflen))
ac648a6a
DT
1586 return -ENOMEM;
1587
7eff2e7a 1588 env->buflen += len;
ac648a6a
DT
1589 return 0;
1590}
1591
a7fadbe1
DT
1592#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1593 do { \
7eff2e7a 1594 int err = add_uevent_var(env, fmt, val); \
a7fadbe1
DT
1595 if (err) \
1596 return err; \
1597 } while (0)
1598
1599#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1600 do { \
7eff2e7a 1601 int err = input_add_uevent_bm_var(env, name, bm, max); \
a7fadbe1
DT
1602 if (err) \
1603 return err; \
1604 } while (0)
1605
ac648a6a
DT
1606#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1607 do { \
7eff2e7a 1608 int err = input_add_uevent_modalias_var(env, dev); \
ac648a6a
DT
1609 if (err) \
1610 return err; \
1611 } while (0)
1612
7eff2e7a 1613static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
a7fadbe1 1614{
9657d75c 1615 struct input_dev *dev = to_input_dev(device);
a7fadbe1
DT
1616
1617 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1618 dev->id.bustype, dev->id.vendor,
1619 dev->id.product, dev->id.version);
1620 if (dev->name)
1621 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1622 if (dev->phys)
1623 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
08de1f04 1624 if (dev->uniq)
a7fadbe1
DT
1625 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1626
85b77200
HR
1627 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1628
a7fadbe1
DT
1629 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1630 if (test_bit(EV_KEY, dev->evbit))
1631 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1632 if (test_bit(EV_REL, dev->evbit))
1633 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1634 if (test_bit(EV_ABS, dev->evbit))
1635 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1636 if (test_bit(EV_MSC, dev->evbit))
1637 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1638 if (test_bit(EV_LED, dev->evbit))
1639 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1640 if (test_bit(EV_SND, dev->evbit))
1641 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1642 if (test_bit(EV_FF, dev->evbit))
1643 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1644 if (test_bit(EV_SW, dev->evbit))
1645 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1646
ac648a6a 1647 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
a7fadbe1
DT
1648
1649 return 0;
1650}
1651
3cc96351
DT
1652#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1653 do { \
1654 int i; \
1655 bool active; \
1656 \
1657 if (!test_bit(EV_##type, dev->evbit)) \
1658 break; \
1659 \
3e2b03da 1660 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
3cc96351
DT
1661 active = test_bit(i, dev->bits); \
1662 if (!active && !on) \
1663 continue; \
1664 \
1665 dev->event(dev, EV_##type, i, on ? active : 0); \
1666 } \
ffd0db97
DT
1667 } while (0)
1668
b50b5216 1669static void input_dev_toggle(struct input_dev *dev, bool activate)
ffd0db97
DT
1670{
1671 if (!dev->event)
1672 return;
1673
1674 INPUT_DO_TOGGLE(dev, LED, led, activate);
1675 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1676
1677 if (activate && test_bit(EV_REP, dev->evbit)) {
1678 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1679 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1680 }
1681}
1682
b50b5216
DT
1683/**
1684 * input_reset_device() - reset/restore the state of input device
1685 * @dev: input device whose state needs to be reset
1686 *
1687 * This function tries to reset the state of an opened input device and
1688 * bring internal state and state if the hardware in sync with each other.
1689 * We mark all keys as released, restore LED state, repeat rate, etc.
1690 */
1691void input_reset_device(struct input_dev *dev)
1692{
768d9aa5 1693 unsigned long flags;
b50b5216 1694
768d9aa5
AM
1695 mutex_lock(&dev->mutex);
1696 spin_lock_irqsave(&dev->event_lock, flags);
b50b5216 1697
768d9aa5
AM
1698 input_dev_toggle(dev, true);
1699 input_dev_release_keys(dev);
b50b5216 1700
768d9aa5 1701 spin_unlock_irqrestore(&dev->event_lock, flags);
b50b5216
DT
1702 mutex_unlock(&dev->mutex);
1703}
1704EXPORT_SYMBOL(input_reset_device);
1705
768d9aa5 1706#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1707static int input_dev_suspend(struct device *dev)
1708{
1709 struct input_dev *input_dev = to_input_dev(dev);
1710
768d9aa5 1711 spin_lock_irq(&input_dev->event_lock);
b50b5216 1712
768d9aa5
AM
1713 /*
1714 * Keys that are pressed now are unlikely to be
1715 * still pressed when we resume.
1716 */
1717 input_dev_release_keys(input_dev);
b50b5216 1718
768d9aa5
AM
1719 /* Turn off LEDs and sounds, if any are active. */
1720 input_dev_toggle(input_dev, false);
1721
1722 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1723
1724 return 0;
1725}
1726
1727static int input_dev_resume(struct device *dev)
1728{
1729 struct input_dev *input_dev = to_input_dev(dev);
1730
768d9aa5
AM
1731 spin_lock_irq(&input_dev->event_lock);
1732
1733 /* Restore state of LEDs and sounds, if any were active. */
1734 input_dev_toggle(input_dev, true);
1735
1736 spin_unlock_irq(&input_dev->event_lock);
1737
1738 return 0;
1739}
1740
1741static int input_dev_freeze(struct device *dev)
1742{
1743 struct input_dev *input_dev = to_input_dev(dev);
1744
1745 spin_lock_irq(&input_dev->event_lock);
1746
1747 /*
1748 * Keys that are pressed now are unlikely to be
1749 * still pressed when we resume.
1750 */
1751 input_dev_release_keys(input_dev);
1752
1753 spin_unlock_irq(&input_dev->event_lock);
1754
1755 return 0;
1756}
1757
1758static int input_dev_poweroff(struct device *dev)
1759{
1760 struct input_dev *input_dev = to_input_dev(dev);
1761
1762 spin_lock_irq(&input_dev->event_lock);
1763
1764 /* Turn off LEDs and sounds, if any are active. */
1765 input_dev_toggle(input_dev, false);
1766
1767 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1768
1769 return 0;
1770}
1771
1772static const struct dev_pm_ops input_dev_pm_ops = {
1773 .suspend = input_dev_suspend,
1774 .resume = input_dev_resume,
768d9aa5
AM
1775 .freeze = input_dev_freeze,
1776 .poweroff = input_dev_poweroff,
ffd0db97
DT
1777 .restore = input_dev_resume,
1778};
1779#endif /* CONFIG_PM */
1780
f719315b 1781static const struct device_type input_dev_type = {
9657d75c
DT
1782 .groups = input_dev_attr_groups,
1783 .release = input_dev_release,
1784 .uevent = input_dev_uevent,
768d9aa5 1785#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1786 .pm = &input_dev_pm_ops,
1787#endif
9657d75c
DT
1788};
1789
2c9ede55 1790static char *input_devnode(struct device *dev, umode_t *mode)
aa5ed63e
KS
1791{
1792 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1793}
1794
ea9f240b 1795struct class input_class = {
9657d75c 1796 .name = "input",
e454cea2 1797 .devnode = input_devnode,
d19fbe8a 1798};
ca56fe07 1799EXPORT_SYMBOL_GPL(input_class);
d19fbe8a 1800
1447190e
DT
1801/**
1802 * input_allocate_device - allocate memory for new input device
1803 *
2be975c6 1804 * Returns prepared struct input_dev or %NULL.
1447190e
DT
1805 *
1806 * NOTE: Use input_free_device() to free devices that have not been
1807 * registered; input_unregister_device() should be used for already
1808 * registered devices.
1809 */
d19fbe8a
DT
1810struct input_dev *input_allocate_device(void)
1811{
9c7d66fa 1812 static atomic_t input_no = ATOMIC_INIT(-1);
d19fbe8a
DT
1813 struct input_dev *dev;
1814
c3f6f861 1815 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
d19fbe8a 1816 if (dev) {
9657d75c
DT
1817 dev->dev.type = &input_dev_type;
1818 dev->dev.class = &input_class;
1819 device_initialize(&dev->dev);
f60d2b11 1820 mutex_init(&dev->mutex);
8006479c 1821 spin_lock_init(&dev->event_lock);
4e974c12 1822 timer_setup(&dev->timer, NULL, 0);
d19fbe8a
DT
1823 INIT_LIST_HEAD(&dev->h_list);
1824 INIT_LIST_HEAD(&dev->node);
655816e4 1825
bf1d50fa 1826 dev_set_name(&dev->dev, "input%lu",
9c7d66fa 1827 (unsigned long)atomic_inc_return(&input_no));
a60a71b0 1828
655816e4 1829 __module_get(THIS_MODULE);
d19fbe8a
DT
1830 }
1831
1832 return dev;
1833}
ca56fe07 1834EXPORT_SYMBOL(input_allocate_device);
d19fbe8a 1835
2be975c6
DT
1836struct input_devres {
1837 struct input_dev *input;
1838};
1839
1840static int devm_input_device_match(struct device *dev, void *res, void *data)
1841{
1842 struct input_devres *devres = res;
1843
1844 return devres->input == data;
1845}
1846
1847static void devm_input_device_release(struct device *dev, void *res)
1848{
1849 struct input_devres *devres = res;
1850 struct input_dev *input = devres->input;
1851
1852 dev_dbg(dev, "%s: dropping reference to %s\n",
1853 __func__, dev_name(&input->dev));
1854 input_put_device(input);
1855}
1856
1857/**
1858 * devm_input_allocate_device - allocate managed input device
1859 * @dev: device owning the input device being created
1860 *
1861 * Returns prepared struct input_dev or %NULL.
1862 *
1863 * Managed input devices do not need to be explicitly unregistered or
1864 * freed as it will be done automatically when owner device unbinds from
1865 * its driver (or binding fails). Once managed input device is allocated,
1866 * it is ready to be set up and registered in the same fashion as regular
1867 * input device. There are no special devm_input_device_[un]register()
b666263b
DT
1868 * variants, regular ones work with both managed and unmanaged devices,
1869 * should you need them. In most cases however, managed input device need
1870 * not be explicitly unregistered or freed.
2be975c6
DT
1871 *
1872 * NOTE: the owner device is set up as parent of input device and users
1873 * should not override it.
1874 */
2be975c6
DT
1875struct input_dev *devm_input_allocate_device(struct device *dev)
1876{
1877 struct input_dev *input;
1878 struct input_devres *devres;
1879
1880 devres = devres_alloc(devm_input_device_release,
c3f6f861 1881 sizeof(*devres), GFP_KERNEL);
2be975c6
DT
1882 if (!devres)
1883 return NULL;
1884
1885 input = input_allocate_device();
1886 if (!input) {
1887 devres_free(devres);
1888 return NULL;
1889 }
1890
1891 input->dev.parent = dev;
1892 input->devres_managed = true;
1893
1894 devres->input = input;
1895 devres_add(dev, devres);
1896
1897 return input;
1898}
1899EXPORT_SYMBOL(devm_input_allocate_device);
1900
1447190e
DT
1901/**
1902 * input_free_device - free memory occupied by input_dev structure
1903 * @dev: input device to free
1904 *
1905 * This function should only be used if input_register_device()
1906 * was not called yet or if it failed. Once device was registered
1907 * use input_unregister_device() and memory will be freed once last
8006479c 1908 * reference to the device is dropped.
1447190e
DT
1909 *
1910 * Device should be allocated by input_allocate_device().
1911 *
1912 * NOTE: If there are references to the input device then memory
1913 * will not be freed until last reference is dropped.
1914 */
f60d2b11
DT
1915void input_free_device(struct input_dev *dev)
1916{
2be975c6
DT
1917 if (dev) {
1918 if (dev->devres_managed)
1919 WARN_ON(devres_destroy(dev->dev.parent,
1920 devm_input_device_release,
1921 devm_input_device_match,
1922 dev));
f60d2b11 1923 input_put_device(dev);
2be975c6 1924 }
f60d2b11 1925}
ca56fe07 1926EXPORT_SYMBOL(input_free_device);
f60d2b11 1927
3b51c44b
AN
1928/**
1929 * input_set_timestamp - set timestamp for input events
1930 * @dev: input device to set timestamp for
1931 * @timestamp: the time at which the event has occurred
1932 * in CLOCK_MONOTONIC
1933 *
1934 * This function is intended to provide to the input system a more
1935 * accurate time of when an event actually occurred. The driver should
1936 * call this function as soon as a timestamp is acquired ensuring
1937 * clock conversions in input_set_timestamp are done correctly.
1938 *
1939 * The system entering suspend state between timestamp acquisition and
1940 * calling input_set_timestamp can result in inaccurate conversions.
1941 */
1942void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1943{
1944 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1945 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1946 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1947 TK_OFFS_BOOT);
1948}
1949EXPORT_SYMBOL(input_set_timestamp);
1950
1951/**
1952 * input_get_timestamp - get timestamp for input events
1953 * @dev: input device to get timestamp from
1954 *
1955 * A valid timestamp is a timestamp of non-zero value.
1956 */
1957ktime_t *input_get_timestamp(struct input_dev *dev)
1958{
1959 const ktime_t invalid_timestamp = ktime_set(0, 0);
1960
1961 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1962 input_set_timestamp(dev, ktime_get());
1963
1964 return dev->timestamp;
1965}
1966EXPORT_SYMBOL(input_get_timestamp);
1967
534565f2
DT
1968/**
1969 * input_set_capability - mark device as capable of a certain event
1970 * @dev: device that is capable of emitting or accepting event
1971 * @type: type of the event (EV_KEY, EV_REL, etc...)
1972 * @code: event code
1973 *
1974 * In addition to setting up corresponding bit in appropriate capability
1975 * bitmap the function also adjusts dev->evbit.
1976 */
1977void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1978{
1979 switch (type) {
1980 case EV_KEY:
1981 __set_bit(code, dev->keybit);
1982 break;
1983
1984 case EV_REL:
1985 __set_bit(code, dev->relbit);
1986 break;
1987
1988 case EV_ABS:
28a2a2e1
DT
1989 input_alloc_absinfo(dev);
1990 if (!dev->absinfo)
1991 return;
1992
534565f2
DT
1993 __set_bit(code, dev->absbit);
1994 break;
1995
1996 case EV_MSC:
1997 __set_bit(code, dev->mscbit);
1998 break;
1999
2000 case EV_SW:
2001 __set_bit(code, dev->swbit);
2002 break;
2003
2004 case EV_LED:
2005 __set_bit(code, dev->ledbit);
2006 break;
2007
2008 case EV_SND:
2009 __set_bit(code, dev->sndbit);
2010 break;
2011
2012 case EV_FF:
2013 __set_bit(code, dev->ffbit);
2014 break;
2015
22d1c398
DB
2016 case EV_PWR:
2017 /* do nothing */
2018 break;
2019
534565f2 2020 default:
67043f41 2021 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
534565f2
DT
2022 dump_stack();
2023 return;
2024 }
2025
2026 __set_bit(type, dev->evbit);
2027}
2028EXPORT_SYMBOL(input_set_capability);
2029
80b4895a
JB
2030static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2031{
2032 int mt_slots;
2033 int i;
2034 unsigned int events;
2035
8d18fba2
HR
2036 if (dev->mt) {
2037 mt_slots = dev->mt->num_slots;
80b4895a
JB
2038 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2039 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2040 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
8c127f07 2041 mt_slots = clamp(mt_slots, 2, 32);
80b4895a
JB
2042 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2043 mt_slots = 2;
2044 } else {
2045 mt_slots = 0;
2046 }
2047
2048 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2049
3e2b03da
AG
2050 if (test_bit(EV_ABS, dev->evbit))
2051 for_each_set_bit(i, dev->absbit, ABS_CNT)
2052 events += input_is_mt_axis(i) ? mt_slots : 1;
80b4895a 2053
3e2b03da
AG
2054 if (test_bit(EV_REL, dev->evbit))
2055 events += bitmap_weight(dev->relbit, REL_CNT);
80b4895a 2056
7c75bf99
HR
2057 /* Make room for KEY and MSC events */
2058 events += 7;
2059
80b4895a
JB
2060 return events;
2061}
2062
92a3a587
DT
2063#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2064 do { \
2065 if (!test_bit(EV_##type, dev->evbit)) \
2066 memset(dev->bits##bit, 0, \
2067 sizeof(dev->bits##bit)); \
2068 } while (0)
2069
2070static void input_cleanse_bitmasks(struct input_dev *dev)
2071{
2072 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2073 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2074 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2075 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2076 INPUT_CLEANSE_BITMASK(dev, LED, led);
2077 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2078 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2079 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2080}
2081
2be975c6
DT
2082static void __input_unregister_device(struct input_dev *dev)
2083{
2084 struct input_handle *handle, *next;
2085
2086 input_disconnect_device(dev);
2087
2088 mutex_lock(&input_mutex);
2089
2090 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2091 handle->handler->disconnect(handle);
2092 WARN_ON(!list_empty(&dev->h_list));
2093
2094 del_timer_sync(&dev->timer);
2095 list_del_init(&dev->node);
2096
2097 input_wakeup_procfs_readers();
2098
2099 mutex_unlock(&input_mutex);
2100
2101 device_del(&dev->dev);
2102}
2103
2104static void devm_input_device_unregister(struct device *dev, void *res)
2105{
2106 struct input_devres *devres = res;
2107 struct input_dev *input = devres->input;
2108
2109 dev_dbg(dev, "%s: unregistering device %s\n",
2110 __func__, dev_name(&input->dev));
2111 __input_unregister_device(input);
2112}
2113
027c71bb
PG
2114/**
2115 * input_enable_softrepeat - enable software autorepeat
2116 * @dev: input device
2117 * @delay: repeat delay
2118 * @period: repeat period
2119 *
2120 * Enable software autorepeat on the input device.
2121 */
2122void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2123{
841b86f3 2124 dev->timer.function = input_repeat_key;
027c71bb
PG
2125 dev->rep[REP_DELAY] = delay;
2126 dev->rep[REP_PERIOD] = period;
2127}
2128EXPORT_SYMBOL(input_enable_softrepeat);
2129
8006479c
DT
2130/**
2131 * input_register_device - register device with input core
2132 * @dev: device to be registered
2133 *
2134 * This function registers device with input core. The device must be
2135 * allocated with input_allocate_device() and all it's capabilities
2136 * set up before registering.
2137 * If function fails the device must be freed with input_free_device().
2138 * Once device has been successfully registered it can be unregistered
2139 * with input_unregister_device(); input_free_device() should not be
2140 * called in this case.
b666263b
DT
2141 *
2142 * Note that this function is also used to register managed input devices
2143 * (ones allocated with devm_input_allocate_device()). Such managed input
2144 * devices need not be explicitly unregistered or freed, their tear down
2145 * is controlled by the devres infrastructure. It is also worth noting
2146 * that tear down of managed input devices is internally a 2-step process:
2147 * registered managed input device is first unregistered, but stays in
2148 * memory and can still handle input_event() calls (although events will
2149 * not be delivered anywhere). The freeing of managed input device will
2150 * happen later, when devres stack is unwound to the point where device
2151 * allocation was made.
8006479c 2152 */
5f945489 2153int input_register_device(struct input_dev *dev)
1da177e4 2154{
2be975c6 2155 struct input_devres *devres = NULL;
1da177e4 2156 struct input_handler *handler;
7c75bf99 2157 unsigned int packet_size;
bd0ef235
DT
2158 const char *path;
2159 int error;
1da177e4 2160
6ecfe51b
DT
2161 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2162 dev_err(&dev->dev,
2163 "Absolute device without dev->absinfo, refusing to register\n");
2164 return -EINVAL;
2165 }
2166
2be975c6
DT
2167 if (dev->devres_managed) {
2168 devres = devres_alloc(devm_input_device_unregister,
c3f6f861 2169 sizeof(*devres), GFP_KERNEL);
2be975c6
DT
2170 if (!devres)
2171 return -ENOMEM;
2172
2173 devres->input = dev;
2174 }
2175
4f93df40 2176 /* Every input device generates EV_SYN/SYN_REPORT events. */
8006479c 2177 __set_bit(EV_SYN, dev->evbit);
0fbf87ca 2178
4f93df40
DT
2179 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2180 __clear_bit(KEY_RESERVED, dev->keybit);
2181
92a3a587
DT
2182 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2183 input_cleanse_bitmasks(dev);
2184
7c75bf99
HR
2185 packet_size = input_estimate_events_per_packet(dev);
2186 if (dev->hint_events_per_packet < packet_size)
2187 dev->hint_events_per_packet = packet_size;
80b4895a 2188
95079b8a 2189 dev->max_vals = dev->hint_events_per_packet + 2;
4369c64c 2190 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2be975c6
DT
2191 if (!dev->vals) {
2192 error = -ENOMEM;
2193 goto err_devres_free;
2194 }
80b4895a 2195
1da177e4
LT
2196 /*
2197 * If delay and period are pre-set by the driver, then autorepeating
2198 * is handled by the driver itself and we don't do it in input.c.
2199 */
027c71bb
PG
2200 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2201 input_enable_softrepeat(dev, 250, 33);
1da177e4 2202
aebd636b
DT
2203 if (!dev->getkeycode)
2204 dev->getkeycode = input_default_getkeycode;
c8e4c772 2205
aebd636b
DT
2206 if (!dev->setkeycode)
2207 dev->setkeycode = input_default_setkeycode;
c8e4c772 2208
e95656ea
DT
2209 if (dev->poller)
2210 input_dev_poller_finalize(dev->poller);
2211
9657d75c 2212 error = device_add(&dev->dev);
bd0ef235 2213 if (error)
2be975c6 2214 goto err_free_vals;
bd0ef235 2215
9657d75c 2216 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
da0c4901
JP
2217 pr_info("%s as %s\n",
2218 dev->name ? dev->name : "Unspecified device",
2219 path ? path : "N/A");
bd0ef235 2220 kfree(path);
10204020 2221
8006479c 2222 error = mutex_lock_interruptible(&input_mutex);
2be975c6
DT
2223 if (error)
2224 goto err_device_del;
8006479c
DT
2225
2226 list_add_tail(&dev->node, &input_dev_list);
2227
1da177e4 2228 list_for_each_entry(handler, &input_handler_list, node)
5b2a0826 2229 input_attach_handler(dev, handler);
1da177e4 2230
f96b434d 2231 input_wakeup_procfs_readers();
5f945489 2232
8006479c
DT
2233 mutex_unlock(&input_mutex);
2234
2be975c6
DT
2235 if (dev->devres_managed) {
2236 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2237 __func__, dev_name(&dev->dev));
2238 devres_add(dev->dev.parent, devres);
2239 }
5f945489 2240 return 0;
2be975c6
DT
2241
2242err_device_del:
2243 device_del(&dev->dev);
2244err_free_vals:
2245 kfree(dev->vals);
2246 dev->vals = NULL;
2247err_devres_free:
2248 devres_free(devres);
2249 return error;
1da177e4 2250}
ca56fe07 2251EXPORT_SYMBOL(input_register_device);
1da177e4 2252
8006479c
DT
2253/**
2254 * input_unregister_device - unregister previously registered device
2255 * @dev: device to be unregistered
2256 *
2257 * This function unregisters an input device. Once device is unregistered
2258 * the caller should not try to access it as it may get freed at any moment.
2259 */
1da177e4
LT
2260void input_unregister_device(struct input_dev *dev)
2261{
2be975c6
DT
2262 if (dev->devres_managed) {
2263 WARN_ON(devres_destroy(dev->dev.parent,
2264 devm_input_device_unregister,
2265 devm_input_device_match,
2266 dev));
2267 __input_unregister_device(dev);
2268 /*
2269 * We do not do input_put_device() here because it will be done
2270 * when 2nd devres fires up.
2271 */
2272 } else {
2273 __input_unregister_device(dev);
2274 input_put_device(dev);
2275 }
1da177e4 2276}
ca56fe07 2277EXPORT_SYMBOL(input_unregister_device);
1da177e4 2278
8006479c
DT
2279/**
2280 * input_register_handler - register a new input handler
2281 * @handler: handler to be registered
2282 *
2283 * This function registers a new input handler (interface) for input
2284 * devices in the system and attaches it to all input devices that
2285 * are compatible with the handler.
2286 */
4263cf0f 2287int input_register_handler(struct input_handler *handler)
1da177e4
LT
2288{
2289 struct input_dev *dev;
7f8d4cad 2290 int error;
8006479c 2291
7f8d4cad
DT
2292 error = mutex_lock_interruptible(&input_mutex);
2293 if (error)
2294 return error;
1da177e4 2295
1da177e4
LT
2296 INIT_LIST_HEAD(&handler->h_list);
2297
1da177e4
LT
2298 list_add_tail(&handler->node, &input_handler_list);
2299
2300 list_for_each_entry(dev, &input_dev_list, node)
5b2a0826 2301 input_attach_handler(dev, handler);
1da177e4 2302
f96b434d 2303 input_wakeup_procfs_readers();
8006479c 2304
8006479c 2305 mutex_unlock(&input_mutex);
7f8d4cad 2306 return 0;
1da177e4 2307}
ca56fe07 2308EXPORT_SYMBOL(input_register_handler);
1da177e4 2309
8006479c
DT
2310/**
2311 * input_unregister_handler - unregisters an input handler
2312 * @handler: handler to be unregistered
2313 *
2314 * This function disconnects a handler from its input devices and
2315 * removes it from lists of known handlers.
2316 */
1da177e4
LT
2317void input_unregister_handler(struct input_handler *handler)
2318{
5b2a0826 2319 struct input_handle *handle, *next;
1da177e4 2320
8006479c
DT
2321 mutex_lock(&input_mutex);
2322
5b2a0826 2323 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1da177e4 2324 handler->disconnect(handle);
5b2a0826 2325 WARN_ON(!list_empty(&handler->h_list));
1da177e4
LT
2326
2327 list_del_init(&handler->node);
2328
f96b434d 2329 input_wakeup_procfs_readers();
8006479c
DT
2330
2331 mutex_unlock(&input_mutex);
1da177e4 2332}
ca56fe07 2333EXPORT_SYMBOL(input_unregister_handler);
1da177e4 2334
66d2a595
DT
2335/**
2336 * input_handler_for_each_handle - handle iterator
2337 * @handler: input handler to iterate
2338 * @data: data for the callback
2339 * @fn: function to be called for each handle
2340 *
2341 * Iterate over @bus's list of devices, and call @fn for each, passing
2342 * it @data and stop when @fn returns a non-zero value. The function is
ec8beff9 2343 * using RCU to traverse the list and therefore may be using in atomic
66d2a595
DT
2344 * contexts. The @fn callback is invoked from RCU critical section and
2345 * thus must not sleep.
2346 */
2347int input_handler_for_each_handle(struct input_handler *handler, void *data,
2348 int (*fn)(struct input_handle *, void *))
2349{
2350 struct input_handle *handle;
2351 int retval = 0;
2352
2353 rcu_read_lock();
2354
2355 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2356 retval = fn(handle, data);
2357 if (retval)
2358 break;
2359 }
2360
2361 rcu_read_unlock();
2362
2363 return retval;
2364}
2365EXPORT_SYMBOL(input_handler_for_each_handle);
2366
8006479c
DT
2367/**
2368 * input_register_handle - register a new input handle
2369 * @handle: handle to register
2370 *
2371 * This function puts a new input handle onto device's
2372 * and handler's lists so that events can flow through
2373 * it once it is opened using input_open_device().
2374 *
2375 * This function is supposed to be called from handler's
2376 * connect() method.
2377 */
5b2a0826
DT
2378int input_register_handle(struct input_handle *handle)
2379{
2380 struct input_handler *handler = handle->handler;
8006479c
DT
2381 struct input_dev *dev = handle->dev;
2382 int error;
2383
2384 /*
2385 * We take dev->mutex here to prevent race with
2386 * input_release_device().
2387 */
2388 error = mutex_lock_interruptible(&dev->mutex);
2389 if (error)
2390 return error;
ef7995f4
DT
2391
2392 /*
2393 * Filters go to the head of the list, normal handlers
2394 * to the tail.
2395 */
2396 if (handler->filter)
2397 list_add_rcu(&handle->d_node, &dev->h_list);
2398 else
2399 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2400
8006479c 2401 mutex_unlock(&dev->mutex);
5b2a0826 2402
8006479c
DT
2403 /*
2404 * Since we are supposed to be called from ->connect()
2405 * which is mutually exclusive with ->disconnect()
2406 * we can't be racing with input_unregister_handle()
2407 * and so separate lock is not needed here.
2408 */
66d2a595 2409 list_add_tail_rcu(&handle->h_node, &handler->h_list);
5b2a0826
DT
2410
2411 if (handler->start)
2412 handler->start(handle);
2413
2414 return 0;
2415}
2416EXPORT_SYMBOL(input_register_handle);
2417
8006479c
DT
2418/**
2419 * input_unregister_handle - unregister an input handle
2420 * @handle: handle to unregister
2421 *
2422 * This function removes input handle from device's
2423 * and handler's lists.
2424 *
2425 * This function is supposed to be called from handler's
2426 * disconnect() method.
2427 */
5b2a0826
DT
2428void input_unregister_handle(struct input_handle *handle)
2429{
8006479c
DT
2430 struct input_dev *dev = handle->dev;
2431
66d2a595 2432 list_del_rcu(&handle->h_node);
8006479c
DT
2433
2434 /*
2435 * Take dev->mutex to prevent race with input_release_device().
2436 */
2437 mutex_lock(&dev->mutex);
2438 list_del_rcu(&handle->d_node);
2439 mutex_unlock(&dev->mutex);
66d2a595 2440
82ba56c2 2441 synchronize_rcu();
5b2a0826
DT
2442}
2443EXPORT_SYMBOL(input_unregister_handle);
2444
7f8d4cad
DT
2445/**
2446 * input_get_new_minor - allocates a new input minor number
2447 * @legacy_base: beginning or the legacy range to be searched
2448 * @legacy_num: size of legacy range
2449 * @allow_dynamic: whether we can also take ID from the dynamic range
2450 *
2451 * This function allocates a new device minor for from input major namespace.
2452 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2453 * parameters and whether ID can be allocated from dynamic range if there are
2454 * no free IDs in legacy range.
2455 */
2456int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2457 bool allow_dynamic)
1da177e4 2458{
1da177e4 2459 /*
7f8d4cad
DT
2460 * This function should be called from input handler's ->connect()
2461 * methods, which are serialized with input_mutex, so no additional
2462 * locking is needed here.
1da177e4 2463 */
7f8d4cad
DT
2464 if (legacy_base >= 0) {
2465 int minor = ida_simple_get(&input_ida,
2466 legacy_base,
2467 legacy_base + legacy_num,
2468 GFP_KERNEL);
2469 if (minor >= 0 || !allow_dynamic)
2470 return minor;
1da177e4 2471 }
2f2177c8 2472
7f8d4cad
DT
2473 return ida_simple_get(&input_ida,
2474 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2475 GFP_KERNEL);
1da177e4 2476}
7f8d4cad 2477EXPORT_SYMBOL(input_get_new_minor);
1da177e4 2478
7f8d4cad
DT
2479/**
2480 * input_free_minor - release previously allocated minor
2481 * @minor: minor to be released
2482 *
2483 * This function releases previously allocated input minor so that it can be
2484 * reused later.
2485 */
2486void input_free_minor(unsigned int minor)
2487{
2488 ida_simple_remove(&input_ida, minor);
2489}
2490EXPORT_SYMBOL(input_free_minor);
1da177e4 2491
f96b434d 2492static int __init input_init(void)
1da177e4 2493{
f96b434d 2494 int err;
1da177e4 2495
ea9f240b 2496 err = class_register(&input_class);
d19fbe8a 2497 if (err) {
da0c4901 2498 pr_err("unable to register input_dev class\n");
d19fbe8a
DT
2499 return err;
2500 }
2501
f96b434d
DT
2502 err = input_proc_init();
2503 if (err)
b0fdfebb 2504 goto fail1;
1da177e4 2505
7f8d4cad
DT
2506 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2507 INPUT_MAX_CHAR_DEVICES, "input");
f96b434d 2508 if (err) {
da0c4901 2509 pr_err("unable to register char major %d", INPUT_MAJOR);
b0fdfebb 2510 goto fail2;
1da177e4 2511 }
e334016f 2512
1da177e4 2513 return 0;
1da177e4 2514
b0fdfebb 2515 fail2: input_proc_exit();
ea9f240b 2516 fail1: class_unregister(&input_class);
f96b434d 2517 return err;
1da177e4
LT
2518}
2519
2520static void __exit input_exit(void)
2521{
f96b434d 2522 input_proc_exit();
7f8d4cad
DT
2523 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2524 INPUT_MAX_CHAR_DEVICES);
ea9f240b 2525 class_unregister(&input_class);
1da177e4
LT
2526}
2527
2528subsys_initcall(input_init);
2529module_exit(input_exit);