]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/input/input.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / input / input.c
CommitLineData
1da177e4
LT
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
da0c4901
JP
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
1da177e4 15#include <linux/init.h>
ffd0db97 16#include <linux/types.h>
7f8d4cad 17#include <linux/idr.h>
47c78e89 18#include <linux/input/mt.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
a99bbaf5 24#include <linux/sched.h>
969b21cd 25#include <linux/seq_file.h>
1da177e4
LT
26#include <linux/poll.h>
27#include <linux/device.h>
e676c232 28#include <linux/mutex.h>
8006479c 29#include <linux/rcupdate.h>
15e184af 30#include "input-compat.h"
1da177e4
LT
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
7f8d4cad
DT
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
1da177e4
LT
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
8006479c
DT
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
4369c64c
HR
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
8006479c
DT
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
1da177e4 55{
8006479c
DT
56 return code <= max && test_bit(code, bm);
57}
1da177e4 58
8006479c
DT
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
1da177e4 64
8006479c
DT
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
1da177e4 67
8006479c
DT
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
1da177e4 71
8006479c
DT
72 return value;
73}
1da177e4 74
352ac4bd
HR
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
4e974c12 79 dev->timer.function) {
352ac4bd
HR
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
8006479c 91/*
ef7995f4
DT
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
82ba56c2 94 * dev->event_lock held and interrupts disabled.
8006479c 95 */
4369c64c
HR
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
8006479c 98{
4369c64c
HR
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
82ba56c2 102
2c50ad34
AG
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
4369c64c 112 }
1da177e4 113
4369c64c
HR
114 if (!count)
115 return 0;
ef7995f4 116
4369c64c
HR
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
2c50ad34 120 for (v = vals; v != vals + count; v++)
4369c64c 121 handler->event(handle, v->type, v->code, v->value);
ef7995f4 122
4369c64c
HR
123 return count;
124}
ef7995f4 125
4369c64c
HR
126/*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
8006479c 133{
82ba56c2 134 struct input_handle *handle;
4369c64c 135 struct input_value *v;
ef7995f4 136
4369c64c
HR
137 if (!count)
138 return;
82ba56c2
DT
139
140 rcu_read_lock();
1da177e4 141
82ba56c2 142 handle = rcu_dereference(dev->grab);
4369c64c
HR
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
2c50ad34 147 if (handle->open) {
4369c64c 148 count = input_to_handler(handle, vals, count);
2c50ad34
AG
149 if (!count)
150 break;
151 }
ef7995f4 152 }
ef7995f4 153
82ba56c2 154 rcu_read_unlock();
ef7995f4 155
352ac4bd 156 /* trigger auto repeat for key events */
5ab17145
AG
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
ef7995f4
DT
165 }
166 }
4369c64c 167}
ef7995f4 168
4369c64c
HR
169static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171{
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
8006479c 175}
1da177e4 176
8006479c
DT
177/*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
4e974c12 182static void input_repeat_key(struct timer_list *t)
8006479c 183{
4e974c12 184 struct input_dev *dev = from_timer(dev, t, timer);
8006479c 185 unsigned long flags;
1da177e4 186
8006479c 187 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 188
8006479c
DT
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
4369c64c
HR
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
1da177e4 195
4369c64c 196 input_pass_values(dev, vals, ARRAY_SIZE(vals));
31581066 197
8006479c
DT
198 if (dev->rep[REP_PERIOD])
199 mod_timer(&dev->timer, jiffies +
200 msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 }
31581066 202
8006479c
DT
203 spin_unlock_irqrestore(&dev->event_lock, flags);
204}
31581066 205
8006479c
DT
206#define INPUT_IGNORE_EVENT 0
207#define INPUT_PASS_TO_HANDLERS 1
208#define INPUT_PASS_TO_DEVICE 2
4369c64c
HR
209#define INPUT_SLOT 4
210#define INPUT_FLUSH 8
8006479c 211#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
1da177e4 212
40d007e7
HR
213static int input_handle_abs_event(struct input_dev *dev,
214 unsigned int code, int *pval)
215{
8d18fba2 216 struct input_mt *mt = dev->mt;
40d007e7
HR
217 bool is_mt_event;
218 int *pold;
219
220 if (code == ABS_MT_SLOT) {
221 /*
222 * "Stage" the event; we'll flush it later, when we
144c0f88 223 * get actual touch data.
40d007e7 224 */
8d18fba2
HR
225 if (mt && *pval >= 0 && *pval < mt->num_slots)
226 mt->slot = *pval;
40d007e7
HR
227
228 return INPUT_IGNORE_EVENT;
229 }
230
b89529a1 231 is_mt_event = input_is_mt_value(code);
40d007e7
HR
232
233 if (!is_mt_event) {
d31b2865 234 pold = &dev->absinfo[code].value;
8d18fba2
HR
235 } else if (mt) {
236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
40d007e7
HR
237 } else {
238 /*
144c0f88 239 * Bypass filtering for multi-touch events when
40d007e7
HR
240 * not employing slots.
241 */
242 pold = NULL;
243 }
244
245 if (pold) {
246 *pval = input_defuzz_abs_event(*pval, *pold,
d31b2865 247 dev->absinfo[code].fuzz);
40d007e7
HR
248 if (*pold == *pval)
249 return INPUT_IGNORE_EVENT;
250
251 *pold = *pval;
252 }
253
254 /* Flush pending "slot" event */
8d18fba2
HR
255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
4369c64c 257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
40d007e7
HR
258 }
259
260 return INPUT_PASS_TO_HANDLERS;
261}
262
4369c64c 263static int input_get_disposition(struct input_dev *dev,
50c5d36d 264 unsigned int type, unsigned int code, int *pval)
8006479c
DT
265{
266 int disposition = INPUT_IGNORE_EVENT;
50c5d36d 267 int value = *pval;
1da177e4 268
8006479c 269 switch (type) {
1da177e4 270
8006479c
DT
271 case EV_SYN:
272 switch (code) {
273 case SYN_CONFIG:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
1da177e4 276
8006479c 277 case SYN_REPORT:
4369c64c 278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
1da177e4 279 break;
5e5ee686 280 case SYN_MT_REPORT:
5e5ee686
HR
281 disposition = INPUT_PASS_TO_HANDLERS;
282 break;
8006479c
DT
283 }
284 break;
1da177e4 285
8006479c 286 case EV_KEY:
0672120a 287 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
1da177e4 288
0672120a
HR
289 /* auto-repeat bypasses state updates */
290 if (value == 2) {
291 disposition = INPUT_PASS_TO_HANDLERS;
292 break;
8006479c 293 }
1da177e4 294
0672120a 295 if (!!test_bit(code, dev->key) != !!value) {
1da177e4 296
8006479c 297 __change_bit(code, dev->key);
0672120a 298 disposition = INPUT_PASS_TO_HANDLERS;
8006479c 299 }
8006479c
DT
300 }
301 break;
1da177e4 302
8006479c
DT
303 case EV_SW:
304 if (is_event_supported(code, dev->swbit, SW_MAX) &&
0672120a 305 !!test_bit(code, dev->sw) != !!value) {
1da177e4 306
8006479c
DT
307 __change_bit(code, dev->sw);
308 disposition = INPUT_PASS_TO_HANDLERS;
309 }
310 break;
1da177e4 311
8006479c 312 case EV_ABS:
40d007e7 313 if (is_event_supported(code, dev->absbit, ABS_MAX))
9ae4345a 314 disposition = input_handle_abs_event(dev, code, &value);
61994a61 315
8006479c 316 break;
1da177e4 317
8006479c
DT
318 case EV_REL:
319 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 disposition = INPUT_PASS_TO_HANDLERS;
1da177e4 321
8006479c 322 break;
1e0afb28 323
8006479c
DT
324 case EV_MSC:
325 if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 disposition = INPUT_PASS_TO_ALL;
1da177e4 327
8006479c 328 break;
1da177e4 329
8006479c
DT
330 case EV_LED:
331 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
0672120a 332 !!test_bit(code, dev->led) != !!value) {
1da177e4 333
8006479c
DT
334 __change_bit(code, dev->led);
335 disposition = INPUT_PASS_TO_ALL;
336 }
337 break;
338
339 case EV_SND:
340 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
1da177e4 341
8fdc1948 342 if (!!test_bit(code, dev->snd) != !!value)
8006479c
DT
343 __change_bit(code, dev->snd);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
8fdc1948 347
8006479c
DT
348 case EV_REP:
349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 dev->rep[code] = value;
351 disposition = INPUT_PASS_TO_ALL;
352 }
353 break;
1da177e4 354
8006479c
DT
355 case EV_FF:
356 if (value >= 0)
357 disposition = INPUT_PASS_TO_ALL;
358 break;
ed2fa4dd
RP
359
360 case EV_PWR:
361 disposition = INPUT_PASS_TO_ALL;
362 break;
8006479c 363 }
1da177e4 364
50c5d36d 365 *pval = value;
4369c64c
HR
366 return disposition;
367}
368
369static void input_handle_event(struct input_dev *dev,
370 unsigned int type, unsigned int code, int value)
371{
b55eb298 372 int disposition = input_get_disposition(dev, type, code, &value);
4369c64c 373
b55eb298
DT
374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 add_input_randomness(type, code, value);
1da177e4 376
8006479c
DT
377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 dev->event(dev, type, code, value);
1da177e4 379
4369c64c
HR
380 if (!dev->vals)
381 return;
382
383 if (disposition & INPUT_PASS_TO_HANDLERS) {
384 struct input_value *v;
385
386 if (disposition & INPUT_SLOT) {
387 v = &dev->vals[dev->num_vals++];
388 v->type = EV_ABS;
389 v->code = ABS_MT_SLOT;
390 v->value = dev->mt->slot;
391 }
392
393 v = &dev->vals[dev->num_vals++];
394 v->type = type;
395 v->code = code;
396 v->value = value;
397 }
398
399 if (disposition & INPUT_FLUSH) {
400 if (dev->num_vals >= 2)
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
403 } else if (dev->num_vals >= dev->max_vals - 2) {
404 dev->vals[dev->num_vals++] = input_value_sync;
405 input_pass_values(dev, dev->vals, dev->num_vals);
406 dev->num_vals = 0;
407 }
408
8006479c 409}
1da177e4 410
8006479c
DT
411/**
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
415 * @code: event code
416 * @value: value of the event
417 *
418 * This function should be used by drivers implementing various input
df2d4637
DT
419 * devices to report input events. See also input_inject_event().
420 *
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
426 * axis, etc.
8006479c 427 */
8006479c
DT
428void input_event(struct input_dev *dev,
429 unsigned int type, unsigned int code, int value)
430{
431 unsigned long flags;
509ca1a9 432
8006479c 433 if (is_event_supported(type, dev->evbit, EV_MAX)) {
509ca1a9 434
8006479c 435 spin_lock_irqsave(&dev->event_lock, flags);
9ae4345a 436 input_handle_event(dev, type, code, value);
8006479c 437 spin_unlock_irqrestore(&dev->event_lock, flags);
1da177e4 438 }
1da177e4 439}
ca56fe07 440EXPORT_SYMBOL(input_event);
1da177e4 441
0e739d28
DT
442/**
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
446 * @code: event code
447 * @value: value of the event
448 *
8006479c
DT
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
451 * the device.
0e739d28 452 */
8006479c
DT
453void input_inject_event(struct input_handle *handle,
454 unsigned int type, unsigned int code, int value)
1da177e4 455{
8006479c
DT
456 struct input_dev *dev = handle->dev;
457 struct input_handle *grab;
458 unsigned long flags;
1da177e4 459
8006479c
DT
460 if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 462
82ba56c2 463 rcu_read_lock();
8006479c
DT
464 grab = rcu_dereference(dev->grab);
465 if (!grab || grab == handle)
9ae4345a 466 input_handle_event(dev, type, code, value);
82ba56c2 467 rcu_read_unlock();
1da177e4 468
8006479c
DT
469 spin_unlock_irqrestore(&dev->event_lock, flags);
470 }
1da177e4 471}
8006479c 472EXPORT_SYMBOL(input_inject_event);
1da177e4 473
d31b2865
DM
474/**
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
477 *
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
480 */
481void input_alloc_absinfo(struct input_dev *dev)
482{
483 if (!dev->absinfo)
c3f6f861 484 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo),
d31b2865
DM
485 GFP_KERNEL);
486
487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488}
489EXPORT_SYMBOL(input_alloc_absinfo);
490
491void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 int min, int max, int fuzz, int flat)
493{
494 struct input_absinfo *absinfo;
495
496 input_alloc_absinfo(dev);
497 if (!dev->absinfo)
498 return;
499
500 absinfo = &dev->absinfo[axis];
501 absinfo->minimum = min;
502 absinfo->maximum = max;
503 absinfo->fuzz = fuzz;
504 absinfo->flat = flat;
505
2c9a9cfe
DT
506 __set_bit(EV_ABS, dev->evbit);
507 __set_bit(axis, dev->absbit);
d31b2865
DM
508}
509EXPORT_SYMBOL(input_set_abs_params);
510
511
8006479c
DT
512/**
513 * input_grab_device - grabs device for exclusive use
514 * @handle: input handle that wants to own the device
515 *
516 * When a device is grabbed by an input handle all events generated by
517 * the device are delivered only to this handle. Also events injected
518 * by other input handles are ignored while device is grabbed.
519 */
1da177e4
LT
520int input_grab_device(struct input_handle *handle)
521{
8006479c
DT
522 struct input_dev *dev = handle->dev;
523 int retval;
1da177e4 524
8006479c
DT
525 retval = mutex_lock_interruptible(&dev->mutex);
526 if (retval)
527 return retval;
528
529 if (dev->grab) {
530 retval = -EBUSY;
531 goto out;
532 }
533
534 rcu_assign_pointer(dev->grab, handle);
8006479c
DT
535
536 out:
537 mutex_unlock(&dev->mutex);
538 return retval;
1da177e4 539}
ca56fe07 540EXPORT_SYMBOL(input_grab_device);
1da177e4 541
8006479c 542static void __input_release_device(struct input_handle *handle)
1da177e4 543{
a2b2ed2c 544 struct input_dev *dev = handle->dev;
adc4633c 545 struct input_handle *grabber;
c7e8dc6e 546
adc4633c
DT
547 grabber = rcu_dereference_protected(dev->grab,
548 lockdep_is_held(&dev->mutex));
549 if (grabber == handle) {
8006479c
DT
550 rcu_assign_pointer(dev->grab, NULL);
551 /* Make sure input_pass_event() notices that grab is gone */
82ba56c2 552 synchronize_rcu();
a2b2ed2c
AM
553
554 list_for_each_entry(handle, &dev->h_list, d_node)
8006479c 555 if (handle->open && handle->handler->start)
c7e8dc6e
DT
556 handle->handler->start(handle);
557 }
1da177e4 558}
8006479c
DT
559
560/**
561 * input_release_device - release previously grabbed device
562 * @handle: input handle that owns the device
563 *
564 * Releases previously grabbed device so that other input handles can
565 * start receiving input events. Upon release all handlers attached
566 * to the device have their start() method called so they have a change
567 * to synchronize device state with the rest of the system.
568 */
569void input_release_device(struct input_handle *handle)
570{
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574 __input_release_device(handle);
575 mutex_unlock(&dev->mutex);
576}
ca56fe07 577EXPORT_SYMBOL(input_release_device);
1da177e4 578
8006479c
DT
579/**
580 * input_open_device - open input device
581 * @handle: handle through which device is being accessed
582 *
583 * This function should be called by input handlers when they
584 * want to start receive events from given input device.
585 */
1da177e4
LT
586int input_open_device(struct input_handle *handle)
587{
0fbf87ca 588 struct input_dev *dev = handle->dev;
8006479c 589 int retval;
0fbf87ca 590
8006479c
DT
591 retval = mutex_lock_interruptible(&dev->mutex);
592 if (retval)
593 return retval;
594
595 if (dev->going_away) {
596 retval = -ENODEV;
597 goto out;
598 }
0fbf87ca 599
1da177e4 600 handle->open++;
0fbf87ca
DT
601
602 if (!dev->users++ && dev->open)
8006479c
DT
603 retval = dev->open(dev);
604
605 if (retval) {
606 dev->users--;
607 if (!--handle->open) {
608 /*
609 * Make sure we are not delivering any more events
610 * through this handle
611 */
82ba56c2 612 synchronize_rcu();
8006479c
DT
613 }
614 }
0fbf87ca 615
8006479c 616 out:
e676c232 617 mutex_unlock(&dev->mutex);
8006479c 618 return retval;
1da177e4 619}
ca56fe07 620EXPORT_SYMBOL(input_open_device);
1da177e4 621
8006479c 622int input_flush_device(struct input_handle *handle, struct file *file)
1da177e4 623{
8006479c
DT
624 struct input_dev *dev = handle->dev;
625 int retval;
1da177e4 626
8006479c
DT
627 retval = mutex_lock_interruptible(&dev->mutex);
628 if (retval)
629 return retval;
630
631 if (dev->flush)
632 retval = dev->flush(dev, file);
633
634 mutex_unlock(&dev->mutex);
635 return retval;
1da177e4 636}
ca56fe07 637EXPORT_SYMBOL(input_flush_device);
1da177e4 638
8006479c
DT
639/**
640 * input_close_device - close input device
641 * @handle: handle through which device is being accessed
642 *
643 * This function should be called by input handlers when they
644 * want to stop receive events from given input device.
645 */
1da177e4
LT
646void input_close_device(struct input_handle *handle)
647{
0fbf87ca
DT
648 struct input_dev *dev = handle->dev;
649
e676c232 650 mutex_lock(&dev->mutex);
0fbf87ca 651
8006479c
DT
652 __input_release_device(handle);
653
0fbf87ca
DT
654 if (!--dev->users && dev->close)
655 dev->close(dev);
8006479c
DT
656
657 if (!--handle->open) {
658 /*
82ba56c2 659 * synchronize_rcu() makes sure that input_pass_event()
8006479c
DT
660 * completed and that no more input events are delivered
661 * through this handle
662 */
82ba56c2 663 synchronize_rcu();
8006479c 664 }
0fbf87ca 665
e676c232 666 mutex_unlock(&dev->mutex);
1da177e4 667}
ca56fe07 668EXPORT_SYMBOL(input_close_device);
1da177e4 669
866d7d7b
ON
670/*
671 * Simulate keyup events for all keys that are marked as pressed.
672 * The function must be called with dev->event_lock held.
673 */
674static void input_dev_release_keys(struct input_dev *dev)
675{
00159f19 676 bool need_sync = false;
866d7d7b
ON
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
00159f19 680 for_each_set_bit(code, dev->key, KEY_CNT) {
3e2b03da 681 input_pass_event(dev, EV_KEY, code, 0);
00159f19
DT
682 need_sync = true;
683 }
684
685 if (need_sync)
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687
3e2b03da 688 memset(dev->key, 0, sizeof(dev->key));
866d7d7b
ON
689 }
690}
691
8006479c
DT
692/*
693 * Prepare device for unregistering
694 */
695static void input_disconnect_device(struct input_dev *dev)
696{
697 struct input_handle *handle;
8006479c
DT
698
699 /*
700 * Mark device as going away. Note that we take dev->mutex here
701 * not to protect access to dev->going_away but rather to ensure
702 * that there are no threads in the middle of input_open_device()
703 */
704 mutex_lock(&dev->mutex);
ffd0db97 705 dev->going_away = true;
8006479c
DT
706 mutex_unlock(&dev->mutex);
707
708 spin_lock_irq(&dev->event_lock);
709
710 /*
711 * Simulate keyup events for all pressed keys so that handlers
712 * are not left with "stuck" keys. The driver may continue
713 * generate events even after we done here but they will not
714 * reach any handlers.
715 */
866d7d7b 716 input_dev_release_keys(dev);
8006479c
DT
717
718 list_for_each_entry(handle, &dev->h_list, d_node)
719 handle->open = 0;
720
721 spin_unlock_irq(&dev->event_lock);
722}
723
8613e4c2
MCC
724/**
725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726 * @ke: keymap entry containing scancode to be converted.
727 * @scancode: pointer to the location where converted scancode should
728 * be stored.
729 *
730 * This function is used to convert scancode stored in &struct keymap_entry
731 * into scalar form understood by legacy keymap handling methods. These
732 * methods expect scancodes to be represented as 'unsigned int'.
733 */
734int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 unsigned int *scancode)
736{
737 switch (ke->len) {
738 case 1:
739 *scancode = *((u8 *)ke->scancode);
740 break;
741
742 case 2:
743 *scancode = *((u16 *)ke->scancode);
744 break;
745
746 case 4:
747 *scancode = *((u32 *)ke->scancode);
748 break;
749
750 default:
751 return -EINVAL;
752 }
753
754 return 0;
755}
756EXPORT_SYMBOL(input_scancode_to_scalar);
757
758/*
759 * Those routines handle the default case where no [gs]etkeycode() is
760 * defined. In this case, an array indexed by the scancode is used.
761 */
762
763static unsigned int input_fetch_keycode(struct input_dev *dev,
764 unsigned int index)
c8e4c772
MR
765{
766 switch (dev->keycodesize) {
8613e4c2
MCC
767 case 1:
768 return ((u8 *)dev->keycode)[index];
c8e4c772 769
8613e4c2
MCC
770 case 2:
771 return ((u16 *)dev->keycode)[index];
c8e4c772 772
8613e4c2
MCC
773 default:
774 return ((u32 *)dev->keycode)[index];
c8e4c772
MR
775 }
776}
777
778static int input_default_getkeycode(struct input_dev *dev,
8613e4c2 779 struct input_keymap_entry *ke)
c8e4c772 780{
8613e4c2
MCC
781 unsigned int index;
782 int error;
783
c8e4c772
MR
784 if (!dev->keycodesize)
785 return -EINVAL;
786
8613e4c2
MCC
787 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 index = ke->index;
789 else {
790 error = input_scancode_to_scalar(ke, &index);
791 if (error)
792 return error;
793 }
794
795 if (index >= dev->keycodemax)
c8e4c772
MR
796 return -EINVAL;
797
8613e4c2
MCC
798 ke->keycode = input_fetch_keycode(dev, index);
799 ke->index = index;
800 ke->len = sizeof(index);
801 memcpy(ke->scancode, &index, sizeof(index));
c8e4c772
MR
802
803 return 0;
804}
805
806static int input_default_setkeycode(struct input_dev *dev,
8613e4c2
MCC
807 const struct input_keymap_entry *ke,
808 unsigned int *old_keycode)
c8e4c772 809{
8613e4c2
MCC
810 unsigned int index;
811 int error;
c8e4c772
MR
812 int i;
813
8613e4c2 814 if (!dev->keycodesize)
c8e4c772
MR
815 return -EINVAL;
816
8613e4c2
MCC
817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 index = ke->index;
819 } else {
820 error = input_scancode_to_scalar(ke, &index);
821 if (error)
822 return error;
823 }
824
825 if (index >= dev->keycodemax)
c8e4c772
MR
826 return -EINVAL;
827
de391d12 828 if (dev->keycodesize < sizeof(ke->keycode) &&
8613e4c2 829 (ke->keycode >> (dev->keycodesize * 8)))
c8e4c772
MR
830 return -EINVAL;
831
832 switch (dev->keycodesize) {
833 case 1: {
834 u8 *k = (u8 *)dev->keycode;
8613e4c2
MCC
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
c8e4c772
MR
837 break;
838 }
839 case 2: {
840 u16 *k = (u16 *)dev->keycode;
8613e4c2
MCC
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
c8e4c772
MR
843 break;
844 }
845 default: {
846 u32 *k = (u32 *)dev->keycode;
8613e4c2
MCC
847 *old_keycode = k[index];
848 k[index] = ke->keycode;
c8e4c772
MR
849 break;
850 }
851 }
852
8613e4c2
MCC
853 __clear_bit(*old_keycode, dev->keybit);
854 __set_bit(ke->keycode, dev->keybit);
c8e4c772
MR
855
856 for (i = 0; i < dev->keycodemax; i++) {
8613e4c2
MCC
857 if (input_fetch_keycode(dev, i) == *old_keycode) {
858 __set_bit(*old_keycode, dev->keybit);
c8e4c772
MR
859 break; /* Setting the bit twice is useless, so break */
860 }
861 }
862
863 return 0;
864}
865
f4f37c8e
DT
866/**
867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
868 * @dev: input device which keymap is being queried
8613e4c2 869 * @ke: keymap entry
f4f37c8e
DT
870 *
871 * This function should be called by anyone interested in retrieving current
8613e4c2 872 * keymap. Presently evdev handlers use it.
f4f37c8e 873 */
8613e4c2 874int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
f4f37c8e 875{
2e2e3b96
DT
876 unsigned long flags;
877 int retval;
878
879 spin_lock_irqsave(&dev->event_lock, flags);
aebd636b 880 retval = dev->getkeycode(dev, ke);
8613e4c2 881 spin_unlock_irqrestore(&dev->event_lock, flags);
aebd636b 882
2e2e3b96 883 return retval;
f4f37c8e
DT
884}
885EXPORT_SYMBOL(input_get_keycode);
886
887/**
8613e4c2 888 * input_set_keycode - attribute a keycode to a given scancode
f4f37c8e 889 * @dev: input device which keymap is being updated
8613e4c2 890 * @ke: new keymap entry
f4f37c8e
DT
891 *
892 * This function should be called by anyone needing to update current
893 * keymap. Presently keyboard and evdev handlers use it.
894 */
58b93995 895int input_set_keycode(struct input_dev *dev,
8613e4c2 896 const struct input_keymap_entry *ke)
f4f37c8e
DT
897{
898 unsigned long flags;
fd6cf3dd 899 unsigned int old_keycode;
f4f37c8e
DT
900 int retval;
901
8613e4c2 902 if (ke->keycode > KEY_MAX)
f4f37c8e
DT
903 return -EINVAL;
904
905 spin_lock_irqsave(&dev->event_lock, flags);
906
aebd636b 907 retval = dev->setkeycode(dev, ke, &old_keycode);
f4f37c8e
DT
908 if (retval)
909 goto out;
910
4f93df40
DT
911 /* Make sure KEY_RESERVED did not get enabled. */
912 __clear_bit(KEY_RESERVED, dev->keybit);
913
f4f37c8e
DT
914 /*
915 * Simulate keyup event if keycode is not present
916 * in the keymap anymore
917 */
918 if (test_bit(EV_KEY, dev->evbit) &&
919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 __test_and_clear_bit(old_keycode, dev->key)) {
4369c64c
HR
921 struct input_value vals[] = {
922 { EV_KEY, old_keycode, 0 },
923 input_value_sync
924 };
f4f37c8e 925
4369c64c 926 input_pass_values(dev, vals, ARRAY_SIZE(vals));
f4f37c8e
DT
927 }
928
929 out:
930 spin_unlock_irqrestore(&dev->event_lock, flags);
931
932 return retval;
933}
934EXPORT_SYMBOL(input_set_keycode);
c8e4c772 935
55dfce87
DT
936bool input_match_device_id(const struct input_dev *dev,
937 const struct input_device_id *id)
938{
939 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
940 if (id->bustype != dev->id.bustype)
941 return false;
942
943 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
944 if (id->vendor != dev->id.vendor)
945 return false;
946
947 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
948 if (id->product != dev->id.product)
949 return false;
950
951 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
952 if (id->version != dev->id.version)
953 return false;
954
955 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
956 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
957 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
958 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
959 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
960 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
961 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
962 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
8724ecb0
DT
963 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
964 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
55dfce87
DT
965 return false;
966 }
967
968 return true;
969}
970EXPORT_SYMBOL(input_match_device_id);
971
0b7024ac 972static const struct input_device_id *input_match_device(struct input_handler *handler,
66e66118 973 struct input_dev *dev)
1da177e4 974{
0b7024ac 975 const struct input_device_id *id;
1da177e4 976
0b7024ac 977 for (id = handler->id_table; id->flags || id->driver_info; id++) {
55dfce87
DT
978 if (input_match_device_id(dev, id) &&
979 (!handler->match || handler->match(handler, dev))) {
0b7024ac 980 return id;
55dfce87 981 }
1da177e4
LT
982 }
983
984 return NULL;
985}
986
5b2a0826
DT
987static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
988{
989 const struct input_device_id *id;
990 int error;
991
0b7024ac 992 id = input_match_device(handler, dev);
5b2a0826
DT
993 if (!id)
994 return -ENODEV;
995
996 error = handler->connect(handler, dev, id);
997 if (error && error != -ENODEV)
da0c4901
JP
998 pr_err("failed to attach handler %s to device %s, error: %d\n",
999 handler->name, kobject_name(&dev->dev.kobj), error);
5b2a0826
DT
1000
1001 return error;
1002}
1003
15e184af
DT
1004#ifdef CONFIG_COMPAT
1005
1006static int input_bits_to_string(char *buf, int buf_size,
1007 unsigned long bits, bool skip_empty)
1008{
1009 int len = 0;
1010
b8b4ead1 1011 if (in_compat_syscall()) {
15e184af
DT
1012 u32 dword = bits >> 32;
1013 if (dword || !skip_empty)
1014 len += snprintf(buf, buf_size, "%x ", dword);
1015
1016 dword = bits & 0xffffffffUL;
1017 if (dword || !skip_empty || len)
1018 len += snprintf(buf + len, max(buf_size - len, 0),
1019 "%x", dword);
1020 } else {
1021 if (bits || !skip_empty)
1022 len += snprintf(buf, buf_size, "%lx", bits);
1023 }
1024
1025 return len;
1026}
1027
1028#else /* !CONFIG_COMPAT */
1029
1030static int input_bits_to_string(char *buf, int buf_size,
1031 unsigned long bits, bool skip_empty)
1032{
1033 return bits || !skip_empty ?
1034 snprintf(buf, buf_size, "%lx", bits) : 0;
1035}
1036
1037#endif
5b2a0826 1038
f96b434d
DT
1039#ifdef CONFIG_PROC_FS
1040
1041static struct proc_dir_entry *proc_bus_input_dir;
1042static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1043static int input_devices_state;
1044
1045static inline void input_wakeup_procfs_readers(void)
1046{
1047 input_devices_state++;
1048 wake_up(&input_devices_poll_wait);
1049}
1050
969b21cd 1051static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
f96b434d 1052{
f96b434d 1053 poll_wait(file, &input_devices_poll_wait, wait);
fa886612
DT
1054 if (file->f_version != input_devices_state) {
1055 file->f_version = input_devices_state;
f96b434d 1056 return POLLIN | POLLRDNORM;
fa886612 1057 }
1e0afb28 1058
f96b434d
DT
1059 return 0;
1060}
1061
1572ca2a
DT
1062union input_seq_state {
1063 struct {
1064 unsigned short pos;
1065 bool mutex_acquired;
1066 };
1067 void *p;
1068};
1069
969b21cd
DT
1070static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1071{
1572ca2a
DT
1072 union input_seq_state *state = (union input_seq_state *)&seq->private;
1073 int error;
1074
1075 /* We need to fit into seq->private pointer */
1076 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1077
1078 error = mutex_lock_interruptible(&input_mutex);
1079 if (error) {
1080 state->mutex_acquired = false;
1081 return ERR_PTR(error);
1082 }
1083
1084 state->mutex_acquired = true;
f96b434d 1085
ad5d972c 1086 return seq_list_start(&input_dev_list, *pos);
969b21cd 1087}
051b2fea 1088
969b21cd
DT
1089static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1090{
ad5d972c 1091 return seq_list_next(v, &input_dev_list, pos);
969b21cd 1092}
f96b434d 1093
1572ca2a 1094static void input_seq_stop(struct seq_file *seq, void *v)
969b21cd 1095{
1572ca2a
DT
1096 union input_seq_state *state = (union input_seq_state *)&seq->private;
1097
1098 if (state->mutex_acquired)
1099 mutex_unlock(&input_mutex);
969b21cd 1100}
f96b434d 1101
969b21cd
DT
1102static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1103 unsigned long *bitmap, int max)
1104{
1105 int i;
15e184af
DT
1106 bool skip_empty = true;
1107 char buf[18];
f96b434d 1108
969b21cd 1109 seq_printf(seq, "B: %s=", name);
15e184af
DT
1110
1111 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1112 if (input_bits_to_string(buf, sizeof(buf),
1113 bitmap[i], skip_empty)) {
1114 skip_empty = false;
1115 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1116 }
1117 }
1118
1119 /*
1120 * If no output was produced print a single 0.
1121 */
1122 if (skip_empty)
bb546136 1123 seq_putc(seq, '0');
15e184af 1124
969b21cd
DT
1125 seq_putc(seq, '\n');
1126}
f96b434d 1127
969b21cd
DT
1128static int input_devices_seq_show(struct seq_file *seq, void *v)
1129{
1130 struct input_dev *dev = container_of(v, struct input_dev, node);
9657d75c 1131 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
969b21cd
DT
1132 struct input_handle *handle;
1133
1134 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1135 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1136
1137 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1138 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1139 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
15e03ae8 1140 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
63c95765 1141 seq_puts(seq, "H: Handlers=");
969b21cd
DT
1142
1143 list_for_each_entry(handle, &dev->h_list, d_node)
1144 seq_printf(seq, "%s ", handle->name);
1145 seq_putc(seq, '\n');
1146
85b77200
HR
1147 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1148
969b21cd
DT
1149 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1150 if (test_bit(EV_KEY, dev->evbit))
1151 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1152 if (test_bit(EV_REL, dev->evbit))
1153 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1154 if (test_bit(EV_ABS, dev->evbit))
1155 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1156 if (test_bit(EV_MSC, dev->evbit))
1157 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1158 if (test_bit(EV_LED, dev->evbit))
1159 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1160 if (test_bit(EV_SND, dev->evbit))
1161 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1162 if (test_bit(EV_FF, dev->evbit))
1163 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1164 if (test_bit(EV_SW, dev->evbit))
1165 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1166
1167 seq_putc(seq, '\n');
1168
1169 kfree(path);
1170 return 0;
f96b434d
DT
1171}
1172
cec69c37 1173static const struct seq_operations input_devices_seq_ops = {
969b21cd
DT
1174 .start = input_devices_seq_start,
1175 .next = input_devices_seq_next,
1572ca2a 1176 .stop = input_seq_stop,
969b21cd
DT
1177 .show = input_devices_seq_show,
1178};
1179
1180static int input_proc_devices_open(struct inode *inode, struct file *file)
f96b434d 1181{
969b21cd
DT
1182 return seq_open(file, &input_devices_seq_ops);
1183}
1184
2b8693c0 1185static const struct file_operations input_devices_fileops = {
969b21cd
DT
1186 .owner = THIS_MODULE,
1187 .open = input_proc_devices_open,
1188 .poll = input_proc_devices_poll,
1189 .read = seq_read,
1190 .llseek = seq_lseek,
1191 .release = seq_release,
1192};
1193
1194static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1195{
1572ca2a
DT
1196 union input_seq_state *state = (union input_seq_state *)&seq->private;
1197 int error;
1198
1199 /* We need to fit into seq->private pointer */
1200 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1201
1202 error = mutex_lock_interruptible(&input_mutex);
1203 if (error) {
1204 state->mutex_acquired = false;
1205 return ERR_PTR(error);
1206 }
1207
1208 state->mutex_acquired = true;
1209 state->pos = *pos;
8006479c 1210
ad5d972c 1211 return seq_list_start(&input_handler_list, *pos);
969b21cd 1212}
f96b434d 1213
969b21cd
DT
1214static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1215{
1572ca2a 1216 union input_seq_state *state = (union input_seq_state *)&seq->private;
f96b434d 1217
1572ca2a
DT
1218 state->pos = *pos + 1;
1219 return seq_list_next(v, &input_handler_list, pos);
969b21cd
DT
1220}
1221
1222static int input_handlers_seq_show(struct seq_file *seq, void *v)
1223{
1224 struct input_handler *handler = container_of(v, struct input_handler, node);
1572ca2a 1225 union input_seq_state *state = (union input_seq_state *)&seq->private;
969b21cd 1226
1572ca2a 1227 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
ef7995f4
DT
1228 if (handler->filter)
1229 seq_puts(seq, " (filter)");
7f8d4cad 1230 if (handler->legacy_minors)
969b21cd
DT
1231 seq_printf(seq, " Minor=%d", handler->minor);
1232 seq_putc(seq, '\n');
1233
1234 return 0;
1235}
1572ca2a 1236
cec69c37 1237static const struct seq_operations input_handlers_seq_ops = {
969b21cd
DT
1238 .start = input_handlers_seq_start,
1239 .next = input_handlers_seq_next,
1572ca2a 1240 .stop = input_seq_stop,
969b21cd
DT
1241 .show = input_handlers_seq_show,
1242};
1243
1244static int input_proc_handlers_open(struct inode *inode, struct file *file)
1245{
1246 return seq_open(file, &input_handlers_seq_ops);
1247}
1248
2b8693c0 1249static const struct file_operations input_handlers_fileops = {
969b21cd
DT
1250 .owner = THIS_MODULE,
1251 .open = input_proc_handlers_open,
1252 .read = seq_read,
1253 .llseek = seq_lseek,
1254 .release = seq_release,
1255};
f96b434d
DT
1256
1257static int __init input_proc_init(void)
1258{
1259 struct proc_dir_entry *entry;
1260
9c37066d 1261 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
f96b434d
DT
1262 if (!proc_bus_input_dir)
1263 return -ENOMEM;
1264
c7705f34
DL
1265 entry = proc_create("devices", 0, proc_bus_input_dir,
1266 &input_devices_fileops);
f96b434d
DT
1267 if (!entry)
1268 goto fail1;
1269
c7705f34
DL
1270 entry = proc_create("handlers", 0, proc_bus_input_dir,
1271 &input_handlers_fileops);
f96b434d
DT
1272 if (!entry)
1273 goto fail2;
1274
f96b434d
DT
1275 return 0;
1276
1277 fail2: remove_proc_entry("devices", proc_bus_input_dir);
9c37066d 1278 fail1: remove_proc_entry("bus/input", NULL);
f96b434d
DT
1279 return -ENOMEM;
1280}
1281
beffbdc2 1282static void input_proc_exit(void)
f96b434d
DT
1283{
1284 remove_proc_entry("devices", proc_bus_input_dir);
1285 remove_proc_entry("handlers", proc_bus_input_dir);
9c37066d 1286 remove_proc_entry("bus/input", NULL);
f96b434d
DT
1287}
1288
1289#else /* !CONFIG_PROC_FS */
1290static inline void input_wakeup_procfs_readers(void) { }
1291static inline int input_proc_init(void) { return 0; }
1292static inline void input_proc_exit(void) { }
1293#endif
1294
9657d75c
DT
1295#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1296static ssize_t input_dev_show_##name(struct device *dev, \
1297 struct device_attribute *attr, \
1298 char *buf) \
1299{ \
1300 struct input_dev *input_dev = to_input_dev(dev); \
1301 \
1302 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1303 input_dev->name ? input_dev->name : ""); \
1304} \
1305static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
5c1e9a6a
DT
1306
1307INPUT_DEV_STRING_ATTR_SHOW(name);
1308INPUT_DEV_STRING_ATTR_SHOW(phys);
1309INPUT_DEV_STRING_ATTR_SHOW(uniq);
1310
ac648a6a
DT
1311static int input_print_modalias_bits(char *buf, int size,
1312 char name, unsigned long *bm,
1313 unsigned int min_bit, unsigned int max_bit)
1d8f430c 1314{
ac648a6a 1315 int len = 0, i;
1d8f430c 1316
ac648a6a
DT
1317 len += snprintf(buf, max(size, 0), "%c", name);
1318 for (i = min_bit; i < max_bit; i++)
7b19ada2 1319 if (bm[BIT_WORD(i)] & BIT_MASK(i))
ac648a6a 1320 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1d8f430c
RR
1321 return len;
1322}
1323
2db66876
DT
1324static int input_print_modalias(char *buf, int size, struct input_dev *id,
1325 int add_cr)
1d8f430c 1326{
bd37e5a9 1327 int len;
1d8f430c 1328
ac648a6a
DT
1329 len = snprintf(buf, max(size, 0),
1330 "input:b%04Xv%04Xp%04Xe%04X-",
1331 id->id.bustype, id->id.vendor,
1332 id->id.product, id->id.version);
1333
1334 len += input_print_modalias_bits(buf + len, size - len,
1335 'e', id->evbit, 0, EV_MAX);
1336 len += input_print_modalias_bits(buf + len, size - len,
1337 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'r', id->relbit, 0, REL_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'a', id->absbit, 0, ABS_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'm', id->mscbit, 0, MSC_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'l', id->ledbit, 0, LED_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 's', id->sndbit, 0, SND_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'f', id->ffbit, 0, FF_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'w', id->swbit, 0, SW_MAX);
2db66876
DT
1352
1353 if (add_cr)
ac648a6a 1354 len += snprintf(buf + len, max(size - len, 0), "\n");
2db66876 1355
bd37e5a9
KS
1356 return len;
1357}
1358
9657d75c
DT
1359static ssize_t input_dev_show_modalias(struct device *dev,
1360 struct device_attribute *attr,
1361 char *buf)
bd37e5a9
KS
1362{
1363 struct input_dev *id = to_input_dev(dev);
1364 ssize_t len;
1365
2db66876
DT
1366 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1367
8a3cf456 1368 return min_t(int, len, PAGE_SIZE);
1d8f430c 1369}
9657d75c 1370static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1d8f430c 1371
85b77200
HR
1372static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1373 int max, int add_cr);
1374
1375static ssize_t input_dev_show_properties(struct device *dev,
1376 struct device_attribute *attr,
1377 char *buf)
1378{
1379 struct input_dev *input_dev = to_input_dev(dev);
1380 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1381 INPUT_PROP_MAX, true);
1382 return min_t(int, len, PAGE_SIZE);
1383}
1384static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1385
629b77a4 1386static struct attribute *input_dev_attrs[] = {
9657d75c
DT
1387 &dev_attr_name.attr,
1388 &dev_attr_phys.attr,
1389 &dev_attr_uniq.attr,
1390 &dev_attr_modalias.attr,
85b77200 1391 &dev_attr_properties.attr,
629b77a4
GKH
1392 NULL
1393};
1394
5e895b74 1395static const struct attribute_group input_dev_attr_group = {
629b77a4 1396 .attrs = input_dev_attrs,
5c1e9a6a
DT
1397};
1398
9657d75c
DT
1399#define INPUT_DEV_ID_ATTR(name) \
1400static ssize_t input_dev_show_id_##name(struct device *dev, \
1401 struct device_attribute *attr, \
1402 char *buf) \
1403{ \
1404 struct input_dev *input_dev = to_input_dev(dev); \
1405 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1406} \
1407static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
5c1e9a6a
DT
1408
1409INPUT_DEV_ID_ATTR(bustype);
1410INPUT_DEV_ID_ATTR(vendor);
1411INPUT_DEV_ID_ATTR(product);
1412INPUT_DEV_ID_ATTR(version);
1413
1414static struct attribute *input_dev_id_attrs[] = {
9657d75c
DT
1415 &dev_attr_bustype.attr,
1416 &dev_attr_vendor.attr,
1417 &dev_attr_product.attr,
1418 &dev_attr_version.attr,
5c1e9a6a
DT
1419 NULL
1420};
1421
5e895b74 1422static const struct attribute_group input_dev_id_attr_group = {
5c1e9a6a
DT
1423 .name = "id",
1424 .attrs = input_dev_id_attrs,
1425};
1426
969b21cd
DT
1427static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1428 int max, int add_cr)
1429{
1430 int i;
1431 int len = 0;
15e184af
DT
1432 bool skip_empty = true;
1433
1434 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1435 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1436 bitmap[i], skip_empty);
1437 if (len) {
1438 skip_empty = false;
1439 if (i > 0)
1440 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1441 }
1442 }
969b21cd 1443
15e184af
DT
1444 /*
1445 * If no output was produced print a single 0.
1446 */
1447 if (len == 0)
1448 len = snprintf(buf, buf_size, "%d", 0);
969b21cd
DT
1449
1450 if (add_cr)
1451 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1452
1453 return len;
1454}
1455
9657d75c
DT
1456#define INPUT_DEV_CAP_ATTR(ev, bm) \
1457static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1458 struct device_attribute *attr, \
1459 char *buf) \
1460{ \
1461 struct input_dev *input_dev = to_input_dev(dev); \
1462 int len = input_print_bitmap(buf, PAGE_SIZE, \
15e184af
DT
1463 input_dev->bm##bit, ev##_MAX, \
1464 true); \
9657d75c
DT
1465 return min_t(int, len, PAGE_SIZE); \
1466} \
1467static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
5c1e9a6a
DT
1468
1469INPUT_DEV_CAP_ATTR(EV, ev);
1470INPUT_DEV_CAP_ATTR(KEY, key);
1471INPUT_DEV_CAP_ATTR(REL, rel);
1472INPUT_DEV_CAP_ATTR(ABS, abs);
1473INPUT_DEV_CAP_ATTR(MSC, msc);
1474INPUT_DEV_CAP_ATTR(LED, led);
1475INPUT_DEV_CAP_ATTR(SND, snd);
1476INPUT_DEV_CAP_ATTR(FF, ff);
1477INPUT_DEV_CAP_ATTR(SW, sw);
1478
1479static struct attribute *input_dev_caps_attrs[] = {
9657d75c
DT
1480 &dev_attr_ev.attr,
1481 &dev_attr_key.attr,
1482 &dev_attr_rel.attr,
1483 &dev_attr_abs.attr,
1484 &dev_attr_msc.attr,
1485 &dev_attr_led.attr,
1486 &dev_attr_snd.attr,
1487 &dev_attr_ff.attr,
1488 &dev_attr_sw.attr,
5c1e9a6a
DT
1489 NULL
1490};
1491
5e895b74 1492static const struct attribute_group input_dev_caps_attr_group = {
5c1e9a6a
DT
1493 .name = "capabilities",
1494 .attrs = input_dev_caps_attrs,
1495};
1496
a4dbd674 1497static const struct attribute_group *input_dev_attr_groups[] = {
cb9def4d
DT
1498 &input_dev_attr_group,
1499 &input_dev_id_attr_group,
1500 &input_dev_caps_attr_group,
1501 NULL
1502};
1503
9657d75c 1504static void input_dev_release(struct device *device)
d19fbe8a 1505{
9657d75c 1506 struct input_dev *dev = to_input_dev(device);
d19fbe8a 1507
509ca1a9 1508 input_ff_destroy(dev);
40d007e7 1509 input_mt_destroy_slots(dev);
d31b2865 1510 kfree(dev->absinfo);
4369c64c 1511 kfree(dev->vals);
d19fbe8a 1512 kfree(dev);
509ca1a9 1513
d19fbe8a
DT
1514 module_put(THIS_MODULE);
1515}
1516
a7fadbe1 1517/*
312c004d 1518 * Input uevent interface - loading event handlers based on
a7fadbe1
DT
1519 * device bitfields.
1520 */
7eff2e7a 1521static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
ac648a6a 1522 const char *name, unsigned long *bitmap, int max)
a7fadbe1 1523{
7eff2e7a 1524 int len;
a7fadbe1 1525
fcd3027a 1526 if (add_uevent_var(env, "%s", name))
a7fadbe1
DT
1527 return -ENOMEM;
1528
7eff2e7a
KS
1529 len = input_print_bitmap(&env->buf[env->buflen - 1],
1530 sizeof(env->buf) - env->buflen,
15e184af 1531 bitmap, max, false);
7eff2e7a 1532 if (len >= (sizeof(env->buf) - env->buflen))
a7fadbe1
DT
1533 return -ENOMEM;
1534
7eff2e7a 1535 env->buflen += len;
a7fadbe1
DT
1536 return 0;
1537}
1538
7eff2e7a 1539static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
ac648a6a
DT
1540 struct input_dev *dev)
1541{
7eff2e7a 1542 int len;
ac648a6a 1543
7eff2e7a 1544 if (add_uevent_var(env, "MODALIAS="))
ac648a6a
DT
1545 return -ENOMEM;
1546
7eff2e7a
KS
1547 len = input_print_modalias(&env->buf[env->buflen - 1],
1548 sizeof(env->buf) - env->buflen,
1549 dev, 0);
1550 if (len >= (sizeof(env->buf) - env->buflen))
ac648a6a
DT
1551 return -ENOMEM;
1552
7eff2e7a 1553 env->buflen += len;
ac648a6a
DT
1554 return 0;
1555}
1556
a7fadbe1
DT
1557#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1558 do { \
7eff2e7a 1559 int err = add_uevent_var(env, fmt, val); \
a7fadbe1
DT
1560 if (err) \
1561 return err; \
1562 } while (0)
1563
1564#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1565 do { \
7eff2e7a 1566 int err = input_add_uevent_bm_var(env, name, bm, max); \
a7fadbe1
DT
1567 if (err) \
1568 return err; \
1569 } while (0)
1570
ac648a6a
DT
1571#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1572 do { \
7eff2e7a 1573 int err = input_add_uevent_modalias_var(env, dev); \
ac648a6a
DT
1574 if (err) \
1575 return err; \
1576 } while (0)
1577
7eff2e7a 1578static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
a7fadbe1 1579{
9657d75c 1580 struct input_dev *dev = to_input_dev(device);
a7fadbe1
DT
1581
1582 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1583 dev->id.bustype, dev->id.vendor,
1584 dev->id.product, dev->id.version);
1585 if (dev->name)
1586 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1587 if (dev->phys)
1588 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
08de1f04 1589 if (dev->uniq)
a7fadbe1
DT
1590 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1591
85b77200
HR
1592 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1593
a7fadbe1
DT
1594 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1595 if (test_bit(EV_KEY, dev->evbit))
1596 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1597 if (test_bit(EV_REL, dev->evbit))
1598 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1599 if (test_bit(EV_ABS, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1601 if (test_bit(EV_MSC, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1603 if (test_bit(EV_LED, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1605 if (test_bit(EV_SND, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1607 if (test_bit(EV_FF, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1609 if (test_bit(EV_SW, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1611
ac648a6a 1612 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
a7fadbe1
DT
1613
1614 return 0;
1615}
1616
3cc96351
DT
1617#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1618 do { \
1619 int i; \
1620 bool active; \
1621 \
1622 if (!test_bit(EV_##type, dev->evbit)) \
1623 break; \
1624 \
3e2b03da 1625 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
3cc96351
DT
1626 active = test_bit(i, dev->bits); \
1627 if (!active && !on) \
1628 continue; \
1629 \
1630 dev->event(dev, EV_##type, i, on ? active : 0); \
1631 } \
ffd0db97
DT
1632 } while (0)
1633
b50b5216 1634static void input_dev_toggle(struct input_dev *dev, bool activate)
ffd0db97
DT
1635{
1636 if (!dev->event)
1637 return;
1638
1639 INPUT_DO_TOGGLE(dev, LED, led, activate);
1640 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1641
1642 if (activate && test_bit(EV_REP, dev->evbit)) {
1643 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1644 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1645 }
1646}
1647
b50b5216
DT
1648/**
1649 * input_reset_device() - reset/restore the state of input device
1650 * @dev: input device whose state needs to be reset
1651 *
1652 * This function tries to reset the state of an opened input device and
1653 * bring internal state and state if the hardware in sync with each other.
1654 * We mark all keys as released, restore LED state, repeat rate, etc.
1655 */
1656void input_reset_device(struct input_dev *dev)
1657{
768d9aa5 1658 unsigned long flags;
b50b5216 1659
768d9aa5
AM
1660 mutex_lock(&dev->mutex);
1661 spin_lock_irqsave(&dev->event_lock, flags);
b50b5216 1662
768d9aa5
AM
1663 input_dev_toggle(dev, true);
1664 input_dev_release_keys(dev);
b50b5216 1665
768d9aa5 1666 spin_unlock_irqrestore(&dev->event_lock, flags);
b50b5216
DT
1667 mutex_unlock(&dev->mutex);
1668}
1669EXPORT_SYMBOL(input_reset_device);
1670
768d9aa5 1671#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1672static int input_dev_suspend(struct device *dev)
1673{
1674 struct input_dev *input_dev = to_input_dev(dev);
1675
768d9aa5 1676 spin_lock_irq(&input_dev->event_lock);
b50b5216 1677
768d9aa5
AM
1678 /*
1679 * Keys that are pressed now are unlikely to be
1680 * still pressed when we resume.
1681 */
1682 input_dev_release_keys(input_dev);
b50b5216 1683
768d9aa5
AM
1684 /* Turn off LEDs and sounds, if any are active. */
1685 input_dev_toggle(input_dev, false);
1686
1687 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1688
1689 return 0;
1690}
1691
1692static int input_dev_resume(struct device *dev)
1693{
1694 struct input_dev *input_dev = to_input_dev(dev);
1695
768d9aa5
AM
1696 spin_lock_irq(&input_dev->event_lock);
1697
1698 /* Restore state of LEDs and sounds, if any were active. */
1699 input_dev_toggle(input_dev, true);
1700
1701 spin_unlock_irq(&input_dev->event_lock);
1702
1703 return 0;
1704}
1705
1706static int input_dev_freeze(struct device *dev)
1707{
1708 struct input_dev *input_dev = to_input_dev(dev);
1709
1710 spin_lock_irq(&input_dev->event_lock);
1711
1712 /*
1713 * Keys that are pressed now are unlikely to be
1714 * still pressed when we resume.
1715 */
1716 input_dev_release_keys(input_dev);
1717
1718 spin_unlock_irq(&input_dev->event_lock);
1719
1720 return 0;
1721}
1722
1723static int input_dev_poweroff(struct device *dev)
1724{
1725 struct input_dev *input_dev = to_input_dev(dev);
1726
1727 spin_lock_irq(&input_dev->event_lock);
1728
1729 /* Turn off LEDs and sounds, if any are active. */
1730 input_dev_toggle(input_dev, false);
1731
1732 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1733
1734 return 0;
1735}
1736
1737static const struct dev_pm_ops input_dev_pm_ops = {
1738 .suspend = input_dev_suspend,
1739 .resume = input_dev_resume,
768d9aa5
AM
1740 .freeze = input_dev_freeze,
1741 .poweroff = input_dev_poweroff,
ffd0db97
DT
1742 .restore = input_dev_resume,
1743};
1744#endif /* CONFIG_PM */
1745
f719315b 1746static const struct device_type input_dev_type = {
9657d75c
DT
1747 .groups = input_dev_attr_groups,
1748 .release = input_dev_release,
1749 .uevent = input_dev_uevent,
768d9aa5 1750#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1751 .pm = &input_dev_pm_ops,
1752#endif
9657d75c
DT
1753};
1754
2c9ede55 1755static char *input_devnode(struct device *dev, umode_t *mode)
aa5ed63e
KS
1756{
1757 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1758}
1759
ea9f240b 1760struct class input_class = {
9657d75c 1761 .name = "input",
e454cea2 1762 .devnode = input_devnode,
d19fbe8a 1763};
ca56fe07 1764EXPORT_SYMBOL_GPL(input_class);
d19fbe8a 1765
1447190e
DT
1766/**
1767 * input_allocate_device - allocate memory for new input device
1768 *
2be975c6 1769 * Returns prepared struct input_dev or %NULL.
1447190e
DT
1770 *
1771 * NOTE: Use input_free_device() to free devices that have not been
1772 * registered; input_unregister_device() should be used for already
1773 * registered devices.
1774 */
d19fbe8a
DT
1775struct input_dev *input_allocate_device(void)
1776{
9c7d66fa 1777 static atomic_t input_no = ATOMIC_INIT(-1);
d19fbe8a
DT
1778 struct input_dev *dev;
1779
c3f6f861 1780 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
d19fbe8a 1781 if (dev) {
9657d75c
DT
1782 dev->dev.type = &input_dev_type;
1783 dev->dev.class = &input_class;
1784 device_initialize(&dev->dev);
f60d2b11 1785 mutex_init(&dev->mutex);
8006479c 1786 spin_lock_init(&dev->event_lock);
4e974c12 1787 timer_setup(&dev->timer, NULL, 0);
d19fbe8a
DT
1788 INIT_LIST_HEAD(&dev->h_list);
1789 INIT_LIST_HEAD(&dev->node);
655816e4 1790
bf1d50fa 1791 dev_set_name(&dev->dev, "input%lu",
9c7d66fa 1792 (unsigned long)atomic_inc_return(&input_no));
a60a71b0 1793
655816e4 1794 __module_get(THIS_MODULE);
d19fbe8a
DT
1795 }
1796
1797 return dev;
1798}
ca56fe07 1799EXPORT_SYMBOL(input_allocate_device);
d19fbe8a 1800
2be975c6
DT
1801struct input_devres {
1802 struct input_dev *input;
1803};
1804
1805static int devm_input_device_match(struct device *dev, void *res, void *data)
1806{
1807 struct input_devres *devres = res;
1808
1809 return devres->input == data;
1810}
1811
1812static void devm_input_device_release(struct device *dev, void *res)
1813{
1814 struct input_devres *devres = res;
1815 struct input_dev *input = devres->input;
1816
1817 dev_dbg(dev, "%s: dropping reference to %s\n",
1818 __func__, dev_name(&input->dev));
1819 input_put_device(input);
1820}
1821
1822/**
1823 * devm_input_allocate_device - allocate managed input device
1824 * @dev: device owning the input device being created
1825 *
1826 * Returns prepared struct input_dev or %NULL.
1827 *
1828 * Managed input devices do not need to be explicitly unregistered or
1829 * freed as it will be done automatically when owner device unbinds from
1830 * its driver (or binding fails). Once managed input device is allocated,
1831 * it is ready to be set up and registered in the same fashion as regular
1832 * input device. There are no special devm_input_device_[un]register()
b666263b
DT
1833 * variants, regular ones work with both managed and unmanaged devices,
1834 * should you need them. In most cases however, managed input device need
1835 * not be explicitly unregistered or freed.
2be975c6
DT
1836 *
1837 * NOTE: the owner device is set up as parent of input device and users
1838 * should not override it.
1839 */
2be975c6
DT
1840struct input_dev *devm_input_allocate_device(struct device *dev)
1841{
1842 struct input_dev *input;
1843 struct input_devres *devres;
1844
1845 devres = devres_alloc(devm_input_device_release,
c3f6f861 1846 sizeof(*devres), GFP_KERNEL);
2be975c6
DT
1847 if (!devres)
1848 return NULL;
1849
1850 input = input_allocate_device();
1851 if (!input) {
1852 devres_free(devres);
1853 return NULL;
1854 }
1855
1856 input->dev.parent = dev;
1857 input->devres_managed = true;
1858
1859 devres->input = input;
1860 devres_add(dev, devres);
1861
1862 return input;
1863}
1864EXPORT_SYMBOL(devm_input_allocate_device);
1865
1447190e
DT
1866/**
1867 * input_free_device - free memory occupied by input_dev structure
1868 * @dev: input device to free
1869 *
1870 * This function should only be used if input_register_device()
1871 * was not called yet or if it failed. Once device was registered
1872 * use input_unregister_device() and memory will be freed once last
8006479c 1873 * reference to the device is dropped.
1447190e
DT
1874 *
1875 * Device should be allocated by input_allocate_device().
1876 *
1877 * NOTE: If there are references to the input device then memory
1878 * will not be freed until last reference is dropped.
1879 */
f60d2b11
DT
1880void input_free_device(struct input_dev *dev)
1881{
2be975c6
DT
1882 if (dev) {
1883 if (dev->devres_managed)
1884 WARN_ON(devres_destroy(dev->dev.parent,
1885 devm_input_device_release,
1886 devm_input_device_match,
1887 dev));
f60d2b11 1888 input_put_device(dev);
2be975c6 1889 }
f60d2b11 1890}
ca56fe07 1891EXPORT_SYMBOL(input_free_device);
f60d2b11 1892
534565f2
DT
1893/**
1894 * input_set_capability - mark device as capable of a certain event
1895 * @dev: device that is capable of emitting or accepting event
1896 * @type: type of the event (EV_KEY, EV_REL, etc...)
1897 * @code: event code
1898 *
1899 * In addition to setting up corresponding bit in appropriate capability
1900 * bitmap the function also adjusts dev->evbit.
1901 */
1902void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1903{
1904 switch (type) {
1905 case EV_KEY:
1906 __set_bit(code, dev->keybit);
1907 break;
1908
1909 case EV_REL:
1910 __set_bit(code, dev->relbit);
1911 break;
1912
1913 case EV_ABS:
28a2a2e1
DT
1914 input_alloc_absinfo(dev);
1915 if (!dev->absinfo)
1916 return;
1917
534565f2
DT
1918 __set_bit(code, dev->absbit);
1919 break;
1920
1921 case EV_MSC:
1922 __set_bit(code, dev->mscbit);
1923 break;
1924
1925 case EV_SW:
1926 __set_bit(code, dev->swbit);
1927 break;
1928
1929 case EV_LED:
1930 __set_bit(code, dev->ledbit);
1931 break;
1932
1933 case EV_SND:
1934 __set_bit(code, dev->sndbit);
1935 break;
1936
1937 case EV_FF:
1938 __set_bit(code, dev->ffbit);
1939 break;
1940
22d1c398
DES
1941 case EV_PWR:
1942 /* do nothing */
1943 break;
1944
534565f2 1945 default:
da0c4901
JP
1946 pr_err("input_set_capability: unknown type %u (code %u)\n",
1947 type, code);
534565f2
DT
1948 dump_stack();
1949 return;
1950 }
1951
1952 __set_bit(type, dev->evbit);
1953}
1954EXPORT_SYMBOL(input_set_capability);
1955
80b4895a
JB
1956static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1957{
1958 int mt_slots;
1959 int i;
1960 unsigned int events;
1961
8d18fba2
HR
1962 if (dev->mt) {
1963 mt_slots = dev->mt->num_slots;
80b4895a
JB
1964 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1965 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1966 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
8c127f07 1967 mt_slots = clamp(mt_slots, 2, 32);
80b4895a
JB
1968 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1969 mt_slots = 2;
1970 } else {
1971 mt_slots = 0;
1972 }
1973
1974 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1975
3e2b03da
AG
1976 if (test_bit(EV_ABS, dev->evbit))
1977 for_each_set_bit(i, dev->absbit, ABS_CNT)
1978 events += input_is_mt_axis(i) ? mt_slots : 1;
80b4895a 1979
3e2b03da
AG
1980 if (test_bit(EV_REL, dev->evbit))
1981 events += bitmap_weight(dev->relbit, REL_CNT);
80b4895a 1982
7c75bf99
HR
1983 /* Make room for KEY and MSC events */
1984 events += 7;
1985
80b4895a
JB
1986 return events;
1987}
1988
92a3a587
DT
1989#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1990 do { \
1991 if (!test_bit(EV_##type, dev->evbit)) \
1992 memset(dev->bits##bit, 0, \
1993 sizeof(dev->bits##bit)); \
1994 } while (0)
1995
1996static void input_cleanse_bitmasks(struct input_dev *dev)
1997{
1998 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1999 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2000 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2001 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2002 INPUT_CLEANSE_BITMASK(dev, LED, led);
2003 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2004 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2005 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2006}
2007
2be975c6
DT
2008static void __input_unregister_device(struct input_dev *dev)
2009{
2010 struct input_handle *handle, *next;
2011
2012 input_disconnect_device(dev);
2013
2014 mutex_lock(&input_mutex);
2015
2016 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2017 handle->handler->disconnect(handle);
2018 WARN_ON(!list_empty(&dev->h_list));
2019
2020 del_timer_sync(&dev->timer);
2021 list_del_init(&dev->node);
2022
2023 input_wakeup_procfs_readers();
2024
2025 mutex_unlock(&input_mutex);
2026
2027 device_del(&dev->dev);
2028}
2029
2030static void devm_input_device_unregister(struct device *dev, void *res)
2031{
2032 struct input_devres *devres = res;
2033 struct input_dev *input = devres->input;
2034
2035 dev_dbg(dev, "%s: unregistering device %s\n",
2036 __func__, dev_name(&input->dev));
2037 __input_unregister_device(input);
2038}
2039
027c71bb
PG
2040/**
2041 * input_enable_softrepeat - enable software autorepeat
2042 * @dev: input device
2043 * @delay: repeat delay
2044 * @period: repeat period
2045 *
2046 * Enable software autorepeat on the input device.
2047 */
2048void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2049{
841b86f3 2050 dev->timer.function = input_repeat_key;
027c71bb
PG
2051 dev->rep[REP_DELAY] = delay;
2052 dev->rep[REP_PERIOD] = period;
2053}
2054EXPORT_SYMBOL(input_enable_softrepeat);
2055
8006479c
DT
2056/**
2057 * input_register_device - register device with input core
2058 * @dev: device to be registered
2059 *
2060 * This function registers device with input core. The device must be
2061 * allocated with input_allocate_device() and all it's capabilities
2062 * set up before registering.
2063 * If function fails the device must be freed with input_free_device().
2064 * Once device has been successfully registered it can be unregistered
2065 * with input_unregister_device(); input_free_device() should not be
2066 * called in this case.
b666263b
DT
2067 *
2068 * Note that this function is also used to register managed input devices
2069 * (ones allocated with devm_input_allocate_device()). Such managed input
2070 * devices need not be explicitly unregistered or freed, their tear down
2071 * is controlled by the devres infrastructure. It is also worth noting
2072 * that tear down of managed input devices is internally a 2-step process:
2073 * registered managed input device is first unregistered, but stays in
2074 * memory and can still handle input_event() calls (although events will
2075 * not be delivered anywhere). The freeing of managed input device will
2076 * happen later, when devres stack is unwound to the point where device
2077 * allocation was made.
8006479c 2078 */
5f945489 2079int input_register_device(struct input_dev *dev)
1da177e4 2080{
2be975c6 2081 struct input_devres *devres = NULL;
1da177e4 2082 struct input_handler *handler;
7c75bf99 2083 unsigned int packet_size;
bd0ef235
DT
2084 const char *path;
2085 int error;
1da177e4 2086
6ecfe51b
DT
2087 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2088 dev_err(&dev->dev,
2089 "Absolute device without dev->absinfo, refusing to register\n");
2090 return -EINVAL;
2091 }
2092
2be975c6
DT
2093 if (dev->devres_managed) {
2094 devres = devres_alloc(devm_input_device_unregister,
c3f6f861 2095 sizeof(*devres), GFP_KERNEL);
2be975c6
DT
2096 if (!devres)
2097 return -ENOMEM;
2098
2099 devres->input = dev;
2100 }
2101
4f93df40 2102 /* Every input device generates EV_SYN/SYN_REPORT events. */
8006479c 2103 __set_bit(EV_SYN, dev->evbit);
0fbf87ca 2104
4f93df40
DT
2105 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2106 __clear_bit(KEY_RESERVED, dev->keybit);
2107
92a3a587
DT
2108 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2109 input_cleanse_bitmasks(dev);
2110
7c75bf99
HR
2111 packet_size = input_estimate_events_per_packet(dev);
2112 if (dev->hint_events_per_packet < packet_size)
2113 dev->hint_events_per_packet = packet_size;
80b4895a 2114
95079b8a 2115 dev->max_vals = dev->hint_events_per_packet + 2;
4369c64c 2116 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2be975c6
DT
2117 if (!dev->vals) {
2118 error = -ENOMEM;
2119 goto err_devres_free;
2120 }
80b4895a 2121
1da177e4
LT
2122 /*
2123 * If delay and period are pre-set by the driver, then autorepeating
2124 * is handled by the driver itself and we don't do it in input.c.
2125 */
027c71bb
PG
2126 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2127 input_enable_softrepeat(dev, 250, 33);
1da177e4 2128
aebd636b
DT
2129 if (!dev->getkeycode)
2130 dev->getkeycode = input_default_getkeycode;
c8e4c772 2131
aebd636b
DT
2132 if (!dev->setkeycode)
2133 dev->setkeycode = input_default_setkeycode;
c8e4c772 2134
9657d75c 2135 error = device_add(&dev->dev);
bd0ef235 2136 if (error)
2be975c6 2137 goto err_free_vals;
bd0ef235 2138
9657d75c 2139 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
da0c4901
JP
2140 pr_info("%s as %s\n",
2141 dev->name ? dev->name : "Unspecified device",
2142 path ? path : "N/A");
bd0ef235 2143 kfree(path);
10204020 2144
8006479c 2145 error = mutex_lock_interruptible(&input_mutex);
2be975c6
DT
2146 if (error)
2147 goto err_device_del;
8006479c
DT
2148
2149 list_add_tail(&dev->node, &input_dev_list);
2150
1da177e4 2151 list_for_each_entry(handler, &input_handler_list, node)
5b2a0826 2152 input_attach_handler(dev, handler);
1da177e4 2153
f96b434d 2154 input_wakeup_procfs_readers();
5f945489 2155
8006479c
DT
2156 mutex_unlock(&input_mutex);
2157
2be975c6
DT
2158 if (dev->devres_managed) {
2159 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2160 __func__, dev_name(&dev->dev));
2161 devres_add(dev->dev.parent, devres);
2162 }
5f945489 2163 return 0;
2be975c6
DT
2164
2165err_device_del:
2166 device_del(&dev->dev);
2167err_free_vals:
2168 kfree(dev->vals);
2169 dev->vals = NULL;
2170err_devres_free:
2171 devres_free(devres);
2172 return error;
1da177e4 2173}
ca56fe07 2174EXPORT_SYMBOL(input_register_device);
1da177e4 2175
8006479c
DT
2176/**
2177 * input_unregister_device - unregister previously registered device
2178 * @dev: device to be unregistered
2179 *
2180 * This function unregisters an input device. Once device is unregistered
2181 * the caller should not try to access it as it may get freed at any moment.
2182 */
1da177e4
LT
2183void input_unregister_device(struct input_dev *dev)
2184{
2be975c6
DT
2185 if (dev->devres_managed) {
2186 WARN_ON(devres_destroy(dev->dev.parent,
2187 devm_input_device_unregister,
2188 devm_input_device_match,
2189 dev));
2190 __input_unregister_device(dev);
2191 /*
2192 * We do not do input_put_device() here because it will be done
2193 * when 2nd devres fires up.
2194 */
2195 } else {
2196 __input_unregister_device(dev);
2197 input_put_device(dev);
2198 }
1da177e4 2199}
ca56fe07 2200EXPORT_SYMBOL(input_unregister_device);
1da177e4 2201
8006479c
DT
2202/**
2203 * input_register_handler - register a new input handler
2204 * @handler: handler to be registered
2205 *
2206 * This function registers a new input handler (interface) for input
2207 * devices in the system and attaches it to all input devices that
2208 * are compatible with the handler.
2209 */
4263cf0f 2210int input_register_handler(struct input_handler *handler)
1da177e4
LT
2211{
2212 struct input_dev *dev;
7f8d4cad 2213 int error;
8006479c 2214
7f8d4cad
DT
2215 error = mutex_lock_interruptible(&input_mutex);
2216 if (error)
2217 return error;
1da177e4 2218
1da177e4
LT
2219 INIT_LIST_HEAD(&handler->h_list);
2220
1da177e4
LT
2221 list_add_tail(&handler->node, &input_handler_list);
2222
2223 list_for_each_entry(dev, &input_dev_list, node)
5b2a0826 2224 input_attach_handler(dev, handler);
1da177e4 2225
f96b434d 2226 input_wakeup_procfs_readers();
8006479c 2227
8006479c 2228 mutex_unlock(&input_mutex);
7f8d4cad 2229 return 0;
1da177e4 2230}
ca56fe07 2231EXPORT_SYMBOL(input_register_handler);
1da177e4 2232
8006479c
DT
2233/**
2234 * input_unregister_handler - unregisters an input handler
2235 * @handler: handler to be unregistered
2236 *
2237 * This function disconnects a handler from its input devices and
2238 * removes it from lists of known handlers.
2239 */
1da177e4
LT
2240void input_unregister_handler(struct input_handler *handler)
2241{
5b2a0826 2242 struct input_handle *handle, *next;
1da177e4 2243
8006479c
DT
2244 mutex_lock(&input_mutex);
2245
5b2a0826 2246 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1da177e4 2247 handler->disconnect(handle);
5b2a0826 2248 WARN_ON(!list_empty(&handler->h_list));
1da177e4
LT
2249
2250 list_del_init(&handler->node);
2251
f96b434d 2252 input_wakeup_procfs_readers();
8006479c
DT
2253
2254 mutex_unlock(&input_mutex);
1da177e4 2255}
ca56fe07 2256EXPORT_SYMBOL(input_unregister_handler);
1da177e4 2257
66d2a595
DT
2258/**
2259 * input_handler_for_each_handle - handle iterator
2260 * @handler: input handler to iterate
2261 * @data: data for the callback
2262 * @fn: function to be called for each handle
2263 *
2264 * Iterate over @bus's list of devices, and call @fn for each, passing
2265 * it @data and stop when @fn returns a non-zero value. The function is
ec8beff9 2266 * using RCU to traverse the list and therefore may be using in atomic
66d2a595
DT
2267 * contexts. The @fn callback is invoked from RCU critical section and
2268 * thus must not sleep.
2269 */
2270int input_handler_for_each_handle(struct input_handler *handler, void *data,
2271 int (*fn)(struct input_handle *, void *))
2272{
2273 struct input_handle *handle;
2274 int retval = 0;
2275
2276 rcu_read_lock();
2277
2278 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2279 retval = fn(handle, data);
2280 if (retval)
2281 break;
2282 }
2283
2284 rcu_read_unlock();
2285
2286 return retval;
2287}
2288EXPORT_SYMBOL(input_handler_for_each_handle);
2289
8006479c
DT
2290/**
2291 * input_register_handle - register a new input handle
2292 * @handle: handle to register
2293 *
2294 * This function puts a new input handle onto device's
2295 * and handler's lists so that events can flow through
2296 * it once it is opened using input_open_device().
2297 *
2298 * This function is supposed to be called from handler's
2299 * connect() method.
2300 */
5b2a0826
DT
2301int input_register_handle(struct input_handle *handle)
2302{
2303 struct input_handler *handler = handle->handler;
8006479c
DT
2304 struct input_dev *dev = handle->dev;
2305 int error;
2306
2307 /*
2308 * We take dev->mutex here to prevent race with
2309 * input_release_device().
2310 */
2311 error = mutex_lock_interruptible(&dev->mutex);
2312 if (error)
2313 return error;
ef7995f4
DT
2314
2315 /*
2316 * Filters go to the head of the list, normal handlers
2317 * to the tail.
2318 */
2319 if (handler->filter)
2320 list_add_rcu(&handle->d_node, &dev->h_list);
2321 else
2322 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2323
8006479c 2324 mutex_unlock(&dev->mutex);
5b2a0826 2325
8006479c
DT
2326 /*
2327 * Since we are supposed to be called from ->connect()
2328 * which is mutually exclusive with ->disconnect()
2329 * we can't be racing with input_unregister_handle()
2330 * and so separate lock is not needed here.
2331 */
66d2a595 2332 list_add_tail_rcu(&handle->h_node, &handler->h_list);
5b2a0826
DT
2333
2334 if (handler->start)
2335 handler->start(handle);
2336
2337 return 0;
2338}
2339EXPORT_SYMBOL(input_register_handle);
2340
8006479c
DT
2341/**
2342 * input_unregister_handle - unregister an input handle
2343 * @handle: handle to unregister
2344 *
2345 * This function removes input handle from device's
2346 * and handler's lists.
2347 *
2348 * This function is supposed to be called from handler's
2349 * disconnect() method.
2350 */
5b2a0826
DT
2351void input_unregister_handle(struct input_handle *handle)
2352{
8006479c
DT
2353 struct input_dev *dev = handle->dev;
2354
66d2a595 2355 list_del_rcu(&handle->h_node);
8006479c
DT
2356
2357 /*
2358 * Take dev->mutex to prevent race with input_release_device().
2359 */
2360 mutex_lock(&dev->mutex);
2361 list_del_rcu(&handle->d_node);
2362 mutex_unlock(&dev->mutex);
66d2a595 2363
82ba56c2 2364 synchronize_rcu();
5b2a0826
DT
2365}
2366EXPORT_SYMBOL(input_unregister_handle);
2367
7f8d4cad
DT
2368/**
2369 * input_get_new_minor - allocates a new input minor number
2370 * @legacy_base: beginning or the legacy range to be searched
2371 * @legacy_num: size of legacy range
2372 * @allow_dynamic: whether we can also take ID from the dynamic range
2373 *
2374 * This function allocates a new device minor for from input major namespace.
2375 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2376 * parameters and whether ID can be allocated from dynamic range if there are
2377 * no free IDs in legacy range.
2378 */
2379int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2380 bool allow_dynamic)
1da177e4 2381{
1da177e4 2382 /*
7f8d4cad
DT
2383 * This function should be called from input handler's ->connect()
2384 * methods, which are serialized with input_mutex, so no additional
2385 * locking is needed here.
1da177e4 2386 */
7f8d4cad
DT
2387 if (legacy_base >= 0) {
2388 int minor = ida_simple_get(&input_ida,
2389 legacy_base,
2390 legacy_base + legacy_num,
2391 GFP_KERNEL);
2392 if (minor >= 0 || !allow_dynamic)
2393 return minor;
1da177e4 2394 }
2f2177c8 2395
7f8d4cad
DT
2396 return ida_simple_get(&input_ida,
2397 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2398 GFP_KERNEL);
1da177e4 2399}
7f8d4cad 2400EXPORT_SYMBOL(input_get_new_minor);
1da177e4 2401
7f8d4cad
DT
2402/**
2403 * input_free_minor - release previously allocated minor
2404 * @minor: minor to be released
2405 *
2406 * This function releases previously allocated input minor so that it can be
2407 * reused later.
2408 */
2409void input_free_minor(unsigned int minor)
2410{
2411 ida_simple_remove(&input_ida, minor);
2412}
2413EXPORT_SYMBOL(input_free_minor);
1da177e4 2414
f96b434d 2415static int __init input_init(void)
1da177e4 2416{
f96b434d 2417 int err;
1da177e4 2418
ea9f240b 2419 err = class_register(&input_class);
d19fbe8a 2420 if (err) {
da0c4901 2421 pr_err("unable to register input_dev class\n");
d19fbe8a
DT
2422 return err;
2423 }
2424
f96b434d
DT
2425 err = input_proc_init();
2426 if (err)
b0fdfebb 2427 goto fail1;
1da177e4 2428
7f8d4cad
DT
2429 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2430 INPUT_MAX_CHAR_DEVICES, "input");
f96b434d 2431 if (err) {
da0c4901 2432 pr_err("unable to register char major %d", INPUT_MAJOR);
b0fdfebb 2433 goto fail2;
1da177e4 2434 }
e334016f 2435
1da177e4 2436 return 0;
1da177e4 2437
b0fdfebb 2438 fail2: input_proc_exit();
ea9f240b 2439 fail1: class_unregister(&input_class);
f96b434d 2440 return err;
1da177e4
LT
2441}
2442
2443static void __exit input_exit(void)
2444{
f96b434d 2445 input_proc_exit();
7f8d4cad
DT
2446 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2447 INPUT_MAX_CHAR_DEVICES);
ea9f240b 2448 class_unregister(&input_class);
1da177e4
LT
2449}
2450
2451subsys_initcall(input_init);
2452module_exit(input_exit);