]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/input/input.c
Input: joystick - use sizeof(VARIABLE) in documentation
[mirror_ubuntu-bionic-kernel.git] / drivers / input / input.c
CommitLineData
1da177e4
LT
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
da0c4901
JP
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
1da177e4 15#include <linux/init.h>
ffd0db97 16#include <linux/types.h>
7f8d4cad 17#include <linux/idr.h>
47c78e89 18#include <linux/input/mt.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
a99bbaf5 24#include <linux/sched.h>
969b21cd 25#include <linux/seq_file.h>
1da177e4
LT
26#include <linux/poll.h>
27#include <linux/device.h>
e676c232 28#include <linux/mutex.h>
8006479c 29#include <linux/rcupdate.h>
15e184af 30#include "input-compat.h"
1da177e4
LT
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
7f8d4cad
DT
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
1da177e4
LT
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
8006479c
DT
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
4369c64c
HR
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
8006479c
DT
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
1da177e4 55{
8006479c
DT
56 return code <= max && test_bit(code, bm);
57}
1da177e4 58
8006479c
DT
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
1da177e4 64
8006479c
DT
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
1da177e4 67
8006479c
DT
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
1da177e4 71
8006479c
DT
72 return value;
73}
1da177e4 74
352ac4bd
HR
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
8006479c 91/*
ef7995f4
DT
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
82ba56c2 94 * dev->event_lock held and interrupts disabled.
8006479c 95 */
4369c64c
HR
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
8006479c 98{
4369c64c
HR
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
82ba56c2 102
4369c64c
HR
103 for (v = vals; v != vals + count; v++) {
104 if (handler->filter &&
105 handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
1da177e4 111
4369c64c
HR
112 count = end - vals;
113 if (!count)
114 return 0;
ef7995f4 115
4369c64c
HR
116 if (handler->events)
117 handler->events(handle, vals, count);
118 else if (handler->event)
119 for (v = vals; v != end; v++)
120 handler->event(handle, v->type, v->code, v->value);
ef7995f4 121
4369c64c
HR
122 return count;
123}
ef7995f4 124
4369c64c
HR
125/*
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
129 */
130static void input_pass_values(struct input_dev *dev,
131 struct input_value *vals, unsigned int count)
8006479c 132{
82ba56c2 133 struct input_handle *handle;
4369c64c 134 struct input_value *v;
ef7995f4 135
4369c64c
HR
136 if (!count)
137 return;
82ba56c2
DT
138
139 rcu_read_lock();
1da177e4 140
82ba56c2 141 handle = rcu_dereference(dev->grab);
4369c64c
HR
142 if (handle) {
143 count = input_to_handler(handle, vals, count);
144 } else {
145 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 if (handle->open)
147 count = input_to_handler(handle, vals, count);
ef7995f4 148 }
ef7995f4 149
82ba56c2 150 rcu_read_unlock();
ef7995f4 151
4369c64c 152 add_input_randomness(vals->type, vals->code, vals->value);
ef7995f4 153
352ac4bd 154 /* trigger auto repeat for key events */
4369c64c
HR
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
ef7995f4
DT
161 }
162 }
4369c64c 163}
ef7995f4 164
4369c64c
HR
165static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
167{
168 struct input_value vals[] = { { type, code, value } };
169
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
8006479c 171}
1da177e4 172
8006479c
DT
173/*
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
177 */
178static void input_repeat_key(unsigned long data)
179{
180 struct input_dev *dev = (void *) data;
181 unsigned long flags;
1da177e4 182
8006479c 183 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 184
8006479c
DT
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
4369c64c
HR
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
189 input_value_sync
190 };
1da177e4 191
4369c64c 192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
31581066 193
8006479c
DT
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 }
31581066 198
8006479c
DT
199 spin_unlock_irqrestore(&dev->event_lock, flags);
200}
31581066 201
8006479c
DT
202#define INPUT_IGNORE_EVENT 0
203#define INPUT_PASS_TO_HANDLERS 1
204#define INPUT_PASS_TO_DEVICE 2
4369c64c
HR
205#define INPUT_SLOT 4
206#define INPUT_FLUSH 8
8006479c 207#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
1da177e4 208
40d007e7
HR
209static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
211{
8d18fba2 212 struct input_mt *mt = dev->mt;
40d007e7
HR
213 bool is_mt_event;
214 int *pold;
215
216 if (code == ABS_MT_SLOT) {
217 /*
218 * "Stage" the event; we'll flush it later, when we
144c0f88 219 * get actual touch data.
40d007e7 220 */
8d18fba2
HR
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
222 mt->slot = *pval;
40d007e7
HR
223
224 return INPUT_IGNORE_EVENT;
225 }
226
b89529a1 227 is_mt_event = input_is_mt_value(code);
40d007e7
HR
228
229 if (!is_mt_event) {
d31b2865 230 pold = &dev->absinfo[code].value;
8d18fba2
HR
231 } else if (mt) {
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
40d007e7
HR
233 } else {
234 /*
144c0f88 235 * Bypass filtering for multi-touch events when
40d007e7
HR
236 * not employing slots.
237 */
238 pold = NULL;
239 }
240
241 if (pold) {
242 *pval = input_defuzz_abs_event(*pval, *pold,
d31b2865 243 dev->absinfo[code].fuzz);
40d007e7
HR
244 if (*pold == *pval)
245 return INPUT_IGNORE_EVENT;
246
247 *pold = *pval;
248 }
249
250 /* Flush pending "slot" event */
8d18fba2
HR
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
4369c64c 253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
40d007e7
HR
254 }
255
256 return INPUT_PASS_TO_HANDLERS;
257}
258
4369c64c
HR
259static int input_get_disposition(struct input_dev *dev,
260 unsigned int type, unsigned int code, int value)
8006479c
DT
261{
262 int disposition = INPUT_IGNORE_EVENT;
1da177e4 263
8006479c 264 switch (type) {
1da177e4 265
8006479c
DT
266 case EV_SYN:
267 switch (code) {
268 case SYN_CONFIG:
269 disposition = INPUT_PASS_TO_ALL;
270 break;
1da177e4 271
8006479c 272 case SYN_REPORT:
4369c64c 273 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
1da177e4 274 break;
5e5ee686 275 case SYN_MT_REPORT:
5e5ee686
HR
276 disposition = INPUT_PASS_TO_HANDLERS;
277 break;
8006479c
DT
278 }
279 break;
1da177e4 280
8006479c 281 case EV_KEY:
0672120a 282 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
1da177e4 283
0672120a
HR
284 /* auto-repeat bypasses state updates */
285 if (value == 2) {
286 disposition = INPUT_PASS_TO_HANDLERS;
287 break;
8006479c 288 }
1da177e4 289
0672120a 290 if (!!test_bit(code, dev->key) != !!value) {
1da177e4 291
8006479c 292 __change_bit(code, dev->key);
0672120a 293 disposition = INPUT_PASS_TO_HANDLERS;
8006479c 294 }
8006479c
DT
295 }
296 break;
1da177e4 297
8006479c
DT
298 case EV_SW:
299 if (is_event_supported(code, dev->swbit, SW_MAX) &&
0672120a 300 !!test_bit(code, dev->sw) != !!value) {
1da177e4 301
8006479c
DT
302 __change_bit(code, dev->sw);
303 disposition = INPUT_PASS_TO_HANDLERS;
304 }
305 break;
1da177e4 306
8006479c 307 case EV_ABS:
40d007e7 308 if (is_event_supported(code, dev->absbit, ABS_MAX))
9ae4345a 309 disposition = input_handle_abs_event(dev, code, &value);
61994a61 310
8006479c 311 break;
1da177e4 312
8006479c
DT
313 case EV_REL:
314 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
315 disposition = INPUT_PASS_TO_HANDLERS;
1da177e4 316
8006479c 317 break;
1e0afb28 318
8006479c
DT
319 case EV_MSC:
320 if (is_event_supported(code, dev->mscbit, MSC_MAX))
321 disposition = INPUT_PASS_TO_ALL;
1da177e4 322
8006479c 323 break;
1da177e4 324
8006479c
DT
325 case EV_LED:
326 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
0672120a 327 !!test_bit(code, dev->led) != !!value) {
1da177e4 328
8006479c
DT
329 __change_bit(code, dev->led);
330 disposition = INPUT_PASS_TO_ALL;
331 }
332 break;
333
334 case EV_SND:
335 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
1da177e4 336
8fdc1948 337 if (!!test_bit(code, dev->snd) != !!value)
8006479c
DT
338 __change_bit(code, dev->snd);
339 disposition = INPUT_PASS_TO_ALL;
340 }
341 break;
8fdc1948 342
8006479c
DT
343 case EV_REP:
344 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
345 dev->rep[code] = value;
346 disposition = INPUT_PASS_TO_ALL;
347 }
348 break;
1da177e4 349
8006479c
DT
350 case EV_FF:
351 if (value >= 0)
352 disposition = INPUT_PASS_TO_ALL;
353 break;
ed2fa4dd
RP
354
355 case EV_PWR:
356 disposition = INPUT_PASS_TO_ALL;
357 break;
8006479c 358 }
1da177e4 359
4369c64c
HR
360 return disposition;
361}
362
363static void input_handle_event(struct input_dev *dev,
364 unsigned int type, unsigned int code, int value)
365{
366 int disposition;
367
368 disposition = input_get_disposition(dev, type, code, value);
1da177e4 369
8006479c
DT
370 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
371 dev->event(dev, type, code, value);
1da177e4 372
4369c64c
HR
373 if (!dev->vals)
374 return;
375
376 if (disposition & INPUT_PASS_TO_HANDLERS) {
377 struct input_value *v;
378
379 if (disposition & INPUT_SLOT) {
380 v = &dev->vals[dev->num_vals++];
381 v->type = EV_ABS;
382 v->code = ABS_MT_SLOT;
383 v->value = dev->mt->slot;
384 }
385
386 v = &dev->vals[dev->num_vals++];
387 v->type = type;
388 v->code = code;
389 v->value = value;
390 }
391
392 if (disposition & INPUT_FLUSH) {
393 if (dev->num_vals >= 2)
394 input_pass_values(dev, dev->vals, dev->num_vals);
395 dev->num_vals = 0;
396 } else if (dev->num_vals >= dev->max_vals - 2) {
397 dev->vals[dev->num_vals++] = input_value_sync;
398 input_pass_values(dev, dev->vals, dev->num_vals);
399 dev->num_vals = 0;
400 }
401
8006479c 402}
1da177e4 403
8006479c
DT
404/**
405 * input_event() - report new input event
406 * @dev: device that generated the event
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
410 *
411 * This function should be used by drivers implementing various input
df2d4637
DT
412 * devices to report input events. See also input_inject_event().
413 *
414 * NOTE: input_event() may be safely used right after input device was
415 * allocated with input_allocate_device(), even before it is registered
416 * with input_register_device(), but the event will not reach any of the
417 * input handlers. Such early invocation of input_event() may be used
418 * to 'seed' initial state of a switch or initial position of absolute
419 * axis, etc.
8006479c 420 */
8006479c
DT
421void input_event(struct input_dev *dev,
422 unsigned int type, unsigned int code, int value)
423{
424 unsigned long flags;
509ca1a9 425
8006479c 426 if (is_event_supported(type, dev->evbit, EV_MAX)) {
509ca1a9 427
8006479c 428 spin_lock_irqsave(&dev->event_lock, flags);
9ae4345a 429 input_handle_event(dev, type, code, value);
8006479c 430 spin_unlock_irqrestore(&dev->event_lock, flags);
1da177e4 431 }
1da177e4 432}
ca56fe07 433EXPORT_SYMBOL(input_event);
1da177e4 434
0e739d28
DT
435/**
436 * input_inject_event() - send input event from input handler
437 * @handle: input handle to send event through
438 * @type: type of the event
439 * @code: event code
440 * @value: value of the event
441 *
8006479c
DT
442 * Similar to input_event() but will ignore event if device is
443 * "grabbed" and handle injecting event is not the one that owns
444 * the device.
0e739d28 445 */
8006479c
DT
446void input_inject_event(struct input_handle *handle,
447 unsigned int type, unsigned int code, int value)
1da177e4 448{
8006479c
DT
449 struct input_dev *dev = handle->dev;
450 struct input_handle *grab;
451 unsigned long flags;
1da177e4 452
8006479c
DT
453 if (is_event_supported(type, dev->evbit, EV_MAX)) {
454 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 455
82ba56c2 456 rcu_read_lock();
8006479c
DT
457 grab = rcu_dereference(dev->grab);
458 if (!grab || grab == handle)
9ae4345a 459 input_handle_event(dev, type, code, value);
82ba56c2 460 rcu_read_unlock();
1da177e4 461
8006479c
DT
462 spin_unlock_irqrestore(&dev->event_lock, flags);
463 }
1da177e4 464}
8006479c 465EXPORT_SYMBOL(input_inject_event);
1da177e4 466
d31b2865
DM
467/**
468 * input_alloc_absinfo - allocates array of input_absinfo structs
469 * @dev: the input device emitting absolute events
470 *
471 * If the absinfo struct the caller asked for is already allocated, this
472 * functions will not do anything.
473 */
474void input_alloc_absinfo(struct input_dev *dev)
475{
476 if (!dev->absinfo)
477 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
478 GFP_KERNEL);
479
480 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
481}
482EXPORT_SYMBOL(input_alloc_absinfo);
483
484void input_set_abs_params(struct input_dev *dev, unsigned int axis,
485 int min, int max, int fuzz, int flat)
486{
487 struct input_absinfo *absinfo;
488
489 input_alloc_absinfo(dev);
490 if (!dev->absinfo)
491 return;
492
493 absinfo = &dev->absinfo[axis];
494 absinfo->minimum = min;
495 absinfo->maximum = max;
496 absinfo->fuzz = fuzz;
497 absinfo->flat = flat;
498
499 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
500}
501EXPORT_SYMBOL(input_set_abs_params);
502
503
8006479c
DT
504/**
505 * input_grab_device - grabs device for exclusive use
506 * @handle: input handle that wants to own the device
507 *
508 * When a device is grabbed by an input handle all events generated by
509 * the device are delivered only to this handle. Also events injected
510 * by other input handles are ignored while device is grabbed.
511 */
1da177e4
LT
512int input_grab_device(struct input_handle *handle)
513{
8006479c
DT
514 struct input_dev *dev = handle->dev;
515 int retval;
1da177e4 516
8006479c
DT
517 retval = mutex_lock_interruptible(&dev->mutex);
518 if (retval)
519 return retval;
520
521 if (dev->grab) {
522 retval = -EBUSY;
523 goto out;
524 }
525
526 rcu_assign_pointer(dev->grab, handle);
8006479c
DT
527
528 out:
529 mutex_unlock(&dev->mutex);
530 return retval;
1da177e4 531}
ca56fe07 532EXPORT_SYMBOL(input_grab_device);
1da177e4 533
8006479c 534static void __input_release_device(struct input_handle *handle)
1da177e4 535{
a2b2ed2c 536 struct input_dev *dev = handle->dev;
adc4633c 537 struct input_handle *grabber;
c7e8dc6e 538
adc4633c
DT
539 grabber = rcu_dereference_protected(dev->grab,
540 lockdep_is_held(&dev->mutex));
541 if (grabber == handle) {
8006479c
DT
542 rcu_assign_pointer(dev->grab, NULL);
543 /* Make sure input_pass_event() notices that grab is gone */
82ba56c2 544 synchronize_rcu();
a2b2ed2c
AM
545
546 list_for_each_entry(handle, &dev->h_list, d_node)
8006479c 547 if (handle->open && handle->handler->start)
c7e8dc6e
DT
548 handle->handler->start(handle);
549 }
1da177e4 550}
8006479c
DT
551
552/**
553 * input_release_device - release previously grabbed device
554 * @handle: input handle that owns the device
555 *
556 * Releases previously grabbed device so that other input handles can
557 * start receiving input events. Upon release all handlers attached
558 * to the device have their start() method called so they have a change
559 * to synchronize device state with the rest of the system.
560 */
561void input_release_device(struct input_handle *handle)
562{
563 struct input_dev *dev = handle->dev;
564
565 mutex_lock(&dev->mutex);
566 __input_release_device(handle);
567 mutex_unlock(&dev->mutex);
568}
ca56fe07 569EXPORT_SYMBOL(input_release_device);
1da177e4 570
8006479c
DT
571/**
572 * input_open_device - open input device
573 * @handle: handle through which device is being accessed
574 *
575 * This function should be called by input handlers when they
576 * want to start receive events from given input device.
577 */
1da177e4
LT
578int input_open_device(struct input_handle *handle)
579{
0fbf87ca 580 struct input_dev *dev = handle->dev;
8006479c 581 int retval;
0fbf87ca 582
8006479c
DT
583 retval = mutex_lock_interruptible(&dev->mutex);
584 if (retval)
585 return retval;
586
587 if (dev->going_away) {
588 retval = -ENODEV;
589 goto out;
590 }
0fbf87ca 591
1da177e4 592 handle->open++;
0fbf87ca
DT
593
594 if (!dev->users++ && dev->open)
8006479c
DT
595 retval = dev->open(dev);
596
597 if (retval) {
598 dev->users--;
599 if (!--handle->open) {
600 /*
601 * Make sure we are not delivering any more events
602 * through this handle
603 */
82ba56c2 604 synchronize_rcu();
8006479c
DT
605 }
606 }
0fbf87ca 607
8006479c 608 out:
e676c232 609 mutex_unlock(&dev->mutex);
8006479c 610 return retval;
1da177e4 611}
ca56fe07 612EXPORT_SYMBOL(input_open_device);
1da177e4 613
8006479c 614int input_flush_device(struct input_handle *handle, struct file *file)
1da177e4 615{
8006479c
DT
616 struct input_dev *dev = handle->dev;
617 int retval;
1da177e4 618
8006479c
DT
619 retval = mutex_lock_interruptible(&dev->mutex);
620 if (retval)
621 return retval;
622
623 if (dev->flush)
624 retval = dev->flush(dev, file);
625
626 mutex_unlock(&dev->mutex);
627 return retval;
1da177e4 628}
ca56fe07 629EXPORT_SYMBOL(input_flush_device);
1da177e4 630
8006479c
DT
631/**
632 * input_close_device - close input device
633 * @handle: handle through which device is being accessed
634 *
635 * This function should be called by input handlers when they
636 * want to stop receive events from given input device.
637 */
1da177e4
LT
638void input_close_device(struct input_handle *handle)
639{
0fbf87ca
DT
640 struct input_dev *dev = handle->dev;
641
e676c232 642 mutex_lock(&dev->mutex);
0fbf87ca 643
8006479c
DT
644 __input_release_device(handle);
645
0fbf87ca
DT
646 if (!--dev->users && dev->close)
647 dev->close(dev);
8006479c
DT
648
649 if (!--handle->open) {
650 /*
82ba56c2 651 * synchronize_rcu() makes sure that input_pass_event()
8006479c
DT
652 * completed and that no more input events are delivered
653 * through this handle
654 */
82ba56c2 655 synchronize_rcu();
8006479c 656 }
0fbf87ca 657
e676c232 658 mutex_unlock(&dev->mutex);
1da177e4 659}
ca56fe07 660EXPORT_SYMBOL(input_close_device);
1da177e4 661
866d7d7b
ON
662/*
663 * Simulate keyup events for all keys that are marked as pressed.
664 * The function must be called with dev->event_lock held.
665 */
666static void input_dev_release_keys(struct input_dev *dev)
667{
668 int code;
669
670 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
671 for (code = 0; code <= KEY_MAX; code++) {
672 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
673 __test_and_clear_bit(code, dev->key)) {
9ae4345a 674 input_pass_event(dev, EV_KEY, code, 0);
866d7d7b
ON
675 }
676 }
9ae4345a 677 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
866d7d7b
ON
678 }
679}
680
8006479c
DT
681/*
682 * Prepare device for unregistering
683 */
684static void input_disconnect_device(struct input_dev *dev)
685{
686 struct input_handle *handle;
8006479c
DT
687
688 /*
689 * Mark device as going away. Note that we take dev->mutex here
690 * not to protect access to dev->going_away but rather to ensure
691 * that there are no threads in the middle of input_open_device()
692 */
693 mutex_lock(&dev->mutex);
ffd0db97 694 dev->going_away = true;
8006479c
DT
695 mutex_unlock(&dev->mutex);
696
697 spin_lock_irq(&dev->event_lock);
698
699 /*
700 * Simulate keyup events for all pressed keys so that handlers
701 * are not left with "stuck" keys. The driver may continue
702 * generate events even after we done here but they will not
703 * reach any handlers.
704 */
866d7d7b 705 input_dev_release_keys(dev);
8006479c
DT
706
707 list_for_each_entry(handle, &dev->h_list, d_node)
708 handle->open = 0;
709
710 spin_unlock_irq(&dev->event_lock);
711}
712
8613e4c2
MCC
713/**
714 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
715 * @ke: keymap entry containing scancode to be converted.
716 * @scancode: pointer to the location where converted scancode should
717 * be stored.
718 *
719 * This function is used to convert scancode stored in &struct keymap_entry
720 * into scalar form understood by legacy keymap handling methods. These
721 * methods expect scancodes to be represented as 'unsigned int'.
722 */
723int input_scancode_to_scalar(const struct input_keymap_entry *ke,
724 unsigned int *scancode)
725{
726 switch (ke->len) {
727 case 1:
728 *scancode = *((u8 *)ke->scancode);
729 break;
730
731 case 2:
732 *scancode = *((u16 *)ke->scancode);
733 break;
734
735 case 4:
736 *scancode = *((u32 *)ke->scancode);
737 break;
738
739 default:
740 return -EINVAL;
741 }
742
743 return 0;
744}
745EXPORT_SYMBOL(input_scancode_to_scalar);
746
747/*
748 * Those routines handle the default case where no [gs]etkeycode() is
749 * defined. In this case, an array indexed by the scancode is used.
750 */
751
752static unsigned int input_fetch_keycode(struct input_dev *dev,
753 unsigned int index)
c8e4c772
MR
754{
755 switch (dev->keycodesize) {
8613e4c2
MCC
756 case 1:
757 return ((u8 *)dev->keycode)[index];
c8e4c772 758
8613e4c2
MCC
759 case 2:
760 return ((u16 *)dev->keycode)[index];
c8e4c772 761
8613e4c2
MCC
762 default:
763 return ((u32 *)dev->keycode)[index];
c8e4c772
MR
764 }
765}
766
767static int input_default_getkeycode(struct input_dev *dev,
8613e4c2 768 struct input_keymap_entry *ke)
c8e4c772 769{
8613e4c2
MCC
770 unsigned int index;
771 int error;
772
c8e4c772
MR
773 if (!dev->keycodesize)
774 return -EINVAL;
775
8613e4c2
MCC
776 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
777 index = ke->index;
778 else {
779 error = input_scancode_to_scalar(ke, &index);
780 if (error)
781 return error;
782 }
783
784 if (index >= dev->keycodemax)
c8e4c772
MR
785 return -EINVAL;
786
8613e4c2
MCC
787 ke->keycode = input_fetch_keycode(dev, index);
788 ke->index = index;
789 ke->len = sizeof(index);
790 memcpy(ke->scancode, &index, sizeof(index));
c8e4c772
MR
791
792 return 0;
793}
794
795static int input_default_setkeycode(struct input_dev *dev,
8613e4c2
MCC
796 const struct input_keymap_entry *ke,
797 unsigned int *old_keycode)
c8e4c772 798{
8613e4c2
MCC
799 unsigned int index;
800 int error;
c8e4c772
MR
801 int i;
802
8613e4c2 803 if (!dev->keycodesize)
c8e4c772
MR
804 return -EINVAL;
805
8613e4c2
MCC
806 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
807 index = ke->index;
808 } else {
809 error = input_scancode_to_scalar(ke, &index);
810 if (error)
811 return error;
812 }
813
814 if (index >= dev->keycodemax)
c8e4c772
MR
815 return -EINVAL;
816
de391d12 817 if (dev->keycodesize < sizeof(ke->keycode) &&
8613e4c2 818 (ke->keycode >> (dev->keycodesize * 8)))
c8e4c772
MR
819 return -EINVAL;
820
821 switch (dev->keycodesize) {
822 case 1: {
823 u8 *k = (u8 *)dev->keycode;
8613e4c2
MCC
824 *old_keycode = k[index];
825 k[index] = ke->keycode;
c8e4c772
MR
826 break;
827 }
828 case 2: {
829 u16 *k = (u16 *)dev->keycode;
8613e4c2
MCC
830 *old_keycode = k[index];
831 k[index] = ke->keycode;
c8e4c772
MR
832 break;
833 }
834 default: {
835 u32 *k = (u32 *)dev->keycode;
8613e4c2
MCC
836 *old_keycode = k[index];
837 k[index] = ke->keycode;
c8e4c772
MR
838 break;
839 }
840 }
841
8613e4c2
MCC
842 __clear_bit(*old_keycode, dev->keybit);
843 __set_bit(ke->keycode, dev->keybit);
c8e4c772
MR
844
845 for (i = 0; i < dev->keycodemax; i++) {
8613e4c2
MCC
846 if (input_fetch_keycode(dev, i) == *old_keycode) {
847 __set_bit(*old_keycode, dev->keybit);
c8e4c772
MR
848 break; /* Setting the bit twice is useless, so break */
849 }
850 }
851
852 return 0;
853}
854
f4f37c8e
DT
855/**
856 * input_get_keycode - retrieve keycode currently mapped to a given scancode
857 * @dev: input device which keymap is being queried
8613e4c2 858 * @ke: keymap entry
f4f37c8e
DT
859 *
860 * This function should be called by anyone interested in retrieving current
8613e4c2 861 * keymap. Presently evdev handlers use it.
f4f37c8e 862 */
8613e4c2 863int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
f4f37c8e 864{
2e2e3b96
DT
865 unsigned long flags;
866 int retval;
867
868 spin_lock_irqsave(&dev->event_lock, flags);
aebd636b 869 retval = dev->getkeycode(dev, ke);
8613e4c2 870 spin_unlock_irqrestore(&dev->event_lock, flags);
aebd636b 871
2e2e3b96 872 return retval;
f4f37c8e
DT
873}
874EXPORT_SYMBOL(input_get_keycode);
875
876/**
8613e4c2 877 * input_set_keycode - attribute a keycode to a given scancode
f4f37c8e 878 * @dev: input device which keymap is being updated
8613e4c2 879 * @ke: new keymap entry
f4f37c8e
DT
880 *
881 * This function should be called by anyone needing to update current
882 * keymap. Presently keyboard and evdev handlers use it.
883 */
58b93995 884int input_set_keycode(struct input_dev *dev,
8613e4c2 885 const struct input_keymap_entry *ke)
f4f37c8e
DT
886{
887 unsigned long flags;
fd6cf3dd 888 unsigned int old_keycode;
f4f37c8e
DT
889 int retval;
890
8613e4c2 891 if (ke->keycode > KEY_MAX)
f4f37c8e
DT
892 return -EINVAL;
893
894 spin_lock_irqsave(&dev->event_lock, flags);
895
aebd636b 896 retval = dev->setkeycode(dev, ke, &old_keycode);
f4f37c8e
DT
897 if (retval)
898 goto out;
899
4f93df40
DT
900 /* Make sure KEY_RESERVED did not get enabled. */
901 __clear_bit(KEY_RESERVED, dev->keybit);
902
f4f37c8e
DT
903 /*
904 * Simulate keyup event if keycode is not present
905 * in the keymap anymore
906 */
907 if (test_bit(EV_KEY, dev->evbit) &&
908 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
909 __test_and_clear_bit(old_keycode, dev->key)) {
4369c64c
HR
910 struct input_value vals[] = {
911 { EV_KEY, old_keycode, 0 },
912 input_value_sync
913 };
f4f37c8e 914
4369c64c 915 input_pass_values(dev, vals, ARRAY_SIZE(vals));
f4f37c8e
DT
916 }
917
918 out:
919 spin_unlock_irqrestore(&dev->event_lock, flags);
920
921 return retval;
922}
923EXPORT_SYMBOL(input_set_keycode);
c8e4c772 924
0b7024ac 925static const struct input_device_id *input_match_device(struct input_handler *handler,
66e66118 926 struct input_dev *dev)
1da177e4 927{
0b7024ac 928 const struct input_device_id *id;
1da177e4 929
0b7024ac 930 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1da177e4
LT
931
932 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
ddc5d341 933 if (id->bustype != dev->id.bustype)
1da177e4
LT
934 continue;
935
936 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
ddc5d341 937 if (id->vendor != dev->id.vendor)
1da177e4
LT
938 continue;
939
940 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
ddc5d341 941 if (id->product != dev->id.product)
1da177e4
LT
942 continue;
943
944 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
ddc5d341 945 if (id->version != dev->id.version)
1da177e4
LT
946 continue;
947
c0bb1f97
DT
948 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
949 continue;
950
951 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
952 continue;
953
954 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
955 continue;
956
957 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
958 continue;
959
960 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
961 continue;
962
963 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
964 continue;
965
966 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
967 continue;
968
969 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
970 continue;
971
972 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
973 continue;
1da177e4 974
0b7024ac
DT
975 if (!handler->match || handler->match(handler, dev))
976 return id;
1da177e4
LT
977 }
978
979 return NULL;
980}
981
5b2a0826
DT
982static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
983{
984 const struct input_device_id *id;
985 int error;
986
0b7024ac 987 id = input_match_device(handler, dev);
5b2a0826
DT
988 if (!id)
989 return -ENODEV;
990
991 error = handler->connect(handler, dev, id);
992 if (error && error != -ENODEV)
da0c4901
JP
993 pr_err("failed to attach handler %s to device %s, error: %d\n",
994 handler->name, kobject_name(&dev->dev.kobj), error);
5b2a0826
DT
995
996 return error;
997}
998
15e184af
DT
999#ifdef CONFIG_COMPAT
1000
1001static int input_bits_to_string(char *buf, int buf_size,
1002 unsigned long bits, bool skip_empty)
1003{
1004 int len = 0;
1005
1006 if (INPUT_COMPAT_TEST) {
1007 u32 dword = bits >> 32;
1008 if (dword || !skip_empty)
1009 len += snprintf(buf, buf_size, "%x ", dword);
1010
1011 dword = bits & 0xffffffffUL;
1012 if (dword || !skip_empty || len)
1013 len += snprintf(buf + len, max(buf_size - len, 0),
1014 "%x", dword);
1015 } else {
1016 if (bits || !skip_empty)
1017 len += snprintf(buf, buf_size, "%lx", bits);
1018 }
1019
1020 return len;
1021}
1022
1023#else /* !CONFIG_COMPAT */
1024
1025static int input_bits_to_string(char *buf, int buf_size,
1026 unsigned long bits, bool skip_empty)
1027{
1028 return bits || !skip_empty ?
1029 snprintf(buf, buf_size, "%lx", bits) : 0;
1030}
1031
1032#endif
5b2a0826 1033
f96b434d
DT
1034#ifdef CONFIG_PROC_FS
1035
1036static struct proc_dir_entry *proc_bus_input_dir;
1037static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1038static int input_devices_state;
1039
1040static inline void input_wakeup_procfs_readers(void)
1041{
1042 input_devices_state++;
1043 wake_up(&input_devices_poll_wait);
1044}
1045
969b21cd 1046static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
f96b434d 1047{
f96b434d 1048 poll_wait(file, &input_devices_poll_wait, wait);
fa886612
DT
1049 if (file->f_version != input_devices_state) {
1050 file->f_version = input_devices_state;
f96b434d 1051 return POLLIN | POLLRDNORM;
fa886612 1052 }
1e0afb28 1053
f96b434d
DT
1054 return 0;
1055}
1056
1572ca2a
DT
1057union input_seq_state {
1058 struct {
1059 unsigned short pos;
1060 bool mutex_acquired;
1061 };
1062 void *p;
1063};
1064
969b21cd
DT
1065static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1066{
1572ca2a
DT
1067 union input_seq_state *state = (union input_seq_state *)&seq->private;
1068 int error;
1069
1070 /* We need to fit into seq->private pointer */
1071 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1072
1073 error = mutex_lock_interruptible(&input_mutex);
1074 if (error) {
1075 state->mutex_acquired = false;
1076 return ERR_PTR(error);
1077 }
1078
1079 state->mutex_acquired = true;
f96b434d 1080
ad5d972c 1081 return seq_list_start(&input_dev_list, *pos);
969b21cd 1082}
051b2fea 1083
969b21cd
DT
1084static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1085{
ad5d972c 1086 return seq_list_next(v, &input_dev_list, pos);
969b21cd 1087}
f96b434d 1088
1572ca2a 1089static void input_seq_stop(struct seq_file *seq, void *v)
969b21cd 1090{
1572ca2a
DT
1091 union input_seq_state *state = (union input_seq_state *)&seq->private;
1092
1093 if (state->mutex_acquired)
1094 mutex_unlock(&input_mutex);
969b21cd 1095}
f96b434d 1096
969b21cd
DT
1097static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1098 unsigned long *bitmap, int max)
1099{
1100 int i;
15e184af
DT
1101 bool skip_empty = true;
1102 char buf[18];
f96b434d 1103
969b21cd 1104 seq_printf(seq, "B: %s=", name);
15e184af
DT
1105
1106 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1107 if (input_bits_to_string(buf, sizeof(buf),
1108 bitmap[i], skip_empty)) {
1109 skip_empty = false;
1110 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1111 }
1112 }
1113
1114 /*
1115 * If no output was produced print a single 0.
1116 */
1117 if (skip_empty)
1118 seq_puts(seq, "0");
1119
969b21cd
DT
1120 seq_putc(seq, '\n');
1121}
f96b434d 1122
969b21cd
DT
1123static int input_devices_seq_show(struct seq_file *seq, void *v)
1124{
1125 struct input_dev *dev = container_of(v, struct input_dev, node);
9657d75c 1126 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
969b21cd
DT
1127 struct input_handle *handle;
1128
1129 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1130 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1131
1132 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1133 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1134 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
15e03ae8 1135 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
969b21cd
DT
1136 seq_printf(seq, "H: Handlers=");
1137
1138 list_for_each_entry(handle, &dev->h_list, d_node)
1139 seq_printf(seq, "%s ", handle->name);
1140 seq_putc(seq, '\n');
1141
85b77200
HR
1142 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1143
969b21cd
DT
1144 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1145 if (test_bit(EV_KEY, dev->evbit))
1146 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1147 if (test_bit(EV_REL, dev->evbit))
1148 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1149 if (test_bit(EV_ABS, dev->evbit))
1150 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1151 if (test_bit(EV_MSC, dev->evbit))
1152 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1153 if (test_bit(EV_LED, dev->evbit))
1154 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1155 if (test_bit(EV_SND, dev->evbit))
1156 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1157 if (test_bit(EV_FF, dev->evbit))
1158 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1159 if (test_bit(EV_SW, dev->evbit))
1160 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1161
1162 seq_putc(seq, '\n');
1163
1164 kfree(path);
1165 return 0;
f96b434d
DT
1166}
1167
cec69c37 1168static const struct seq_operations input_devices_seq_ops = {
969b21cd
DT
1169 .start = input_devices_seq_start,
1170 .next = input_devices_seq_next,
1572ca2a 1171 .stop = input_seq_stop,
969b21cd
DT
1172 .show = input_devices_seq_show,
1173};
1174
1175static int input_proc_devices_open(struct inode *inode, struct file *file)
f96b434d 1176{
969b21cd
DT
1177 return seq_open(file, &input_devices_seq_ops);
1178}
1179
2b8693c0 1180static const struct file_operations input_devices_fileops = {
969b21cd
DT
1181 .owner = THIS_MODULE,
1182 .open = input_proc_devices_open,
1183 .poll = input_proc_devices_poll,
1184 .read = seq_read,
1185 .llseek = seq_lseek,
1186 .release = seq_release,
1187};
1188
1189static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1190{
1572ca2a
DT
1191 union input_seq_state *state = (union input_seq_state *)&seq->private;
1192 int error;
1193
1194 /* We need to fit into seq->private pointer */
1195 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1196
1197 error = mutex_lock_interruptible(&input_mutex);
1198 if (error) {
1199 state->mutex_acquired = false;
1200 return ERR_PTR(error);
1201 }
1202
1203 state->mutex_acquired = true;
1204 state->pos = *pos;
8006479c 1205
ad5d972c 1206 return seq_list_start(&input_handler_list, *pos);
969b21cd 1207}
f96b434d 1208
969b21cd
DT
1209static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1210{
1572ca2a 1211 union input_seq_state *state = (union input_seq_state *)&seq->private;
f96b434d 1212
1572ca2a
DT
1213 state->pos = *pos + 1;
1214 return seq_list_next(v, &input_handler_list, pos);
969b21cd
DT
1215}
1216
1217static int input_handlers_seq_show(struct seq_file *seq, void *v)
1218{
1219 struct input_handler *handler = container_of(v, struct input_handler, node);
1572ca2a 1220 union input_seq_state *state = (union input_seq_state *)&seq->private;
969b21cd 1221
1572ca2a 1222 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
ef7995f4
DT
1223 if (handler->filter)
1224 seq_puts(seq, " (filter)");
7f8d4cad 1225 if (handler->legacy_minors)
969b21cd
DT
1226 seq_printf(seq, " Minor=%d", handler->minor);
1227 seq_putc(seq, '\n');
1228
1229 return 0;
1230}
1572ca2a 1231
cec69c37 1232static const struct seq_operations input_handlers_seq_ops = {
969b21cd
DT
1233 .start = input_handlers_seq_start,
1234 .next = input_handlers_seq_next,
1572ca2a 1235 .stop = input_seq_stop,
969b21cd
DT
1236 .show = input_handlers_seq_show,
1237};
1238
1239static int input_proc_handlers_open(struct inode *inode, struct file *file)
1240{
1241 return seq_open(file, &input_handlers_seq_ops);
1242}
1243
2b8693c0 1244static const struct file_operations input_handlers_fileops = {
969b21cd
DT
1245 .owner = THIS_MODULE,
1246 .open = input_proc_handlers_open,
1247 .read = seq_read,
1248 .llseek = seq_lseek,
1249 .release = seq_release,
1250};
f96b434d
DT
1251
1252static int __init input_proc_init(void)
1253{
1254 struct proc_dir_entry *entry;
1255
9c37066d 1256 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
f96b434d
DT
1257 if (!proc_bus_input_dir)
1258 return -ENOMEM;
1259
c7705f34
DL
1260 entry = proc_create("devices", 0, proc_bus_input_dir,
1261 &input_devices_fileops);
f96b434d
DT
1262 if (!entry)
1263 goto fail1;
1264
c7705f34
DL
1265 entry = proc_create("handlers", 0, proc_bus_input_dir,
1266 &input_handlers_fileops);
f96b434d
DT
1267 if (!entry)
1268 goto fail2;
1269
f96b434d
DT
1270 return 0;
1271
1272 fail2: remove_proc_entry("devices", proc_bus_input_dir);
9c37066d 1273 fail1: remove_proc_entry("bus/input", NULL);
f96b434d
DT
1274 return -ENOMEM;
1275}
1276
beffbdc2 1277static void input_proc_exit(void)
f96b434d
DT
1278{
1279 remove_proc_entry("devices", proc_bus_input_dir);
1280 remove_proc_entry("handlers", proc_bus_input_dir);
9c37066d 1281 remove_proc_entry("bus/input", NULL);
f96b434d
DT
1282}
1283
1284#else /* !CONFIG_PROC_FS */
1285static inline void input_wakeup_procfs_readers(void) { }
1286static inline int input_proc_init(void) { return 0; }
1287static inline void input_proc_exit(void) { }
1288#endif
1289
9657d75c
DT
1290#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1291static ssize_t input_dev_show_##name(struct device *dev, \
1292 struct device_attribute *attr, \
1293 char *buf) \
1294{ \
1295 struct input_dev *input_dev = to_input_dev(dev); \
1296 \
1297 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1298 input_dev->name ? input_dev->name : ""); \
1299} \
1300static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
5c1e9a6a
DT
1301
1302INPUT_DEV_STRING_ATTR_SHOW(name);
1303INPUT_DEV_STRING_ATTR_SHOW(phys);
1304INPUT_DEV_STRING_ATTR_SHOW(uniq);
1305
ac648a6a
DT
1306static int input_print_modalias_bits(char *buf, int size,
1307 char name, unsigned long *bm,
1308 unsigned int min_bit, unsigned int max_bit)
1d8f430c 1309{
ac648a6a 1310 int len = 0, i;
1d8f430c 1311
ac648a6a
DT
1312 len += snprintf(buf, max(size, 0), "%c", name);
1313 for (i = min_bit; i < max_bit; i++)
7b19ada2 1314 if (bm[BIT_WORD(i)] & BIT_MASK(i))
ac648a6a 1315 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1d8f430c
RR
1316 return len;
1317}
1318
2db66876
DT
1319static int input_print_modalias(char *buf, int size, struct input_dev *id,
1320 int add_cr)
1d8f430c 1321{
bd37e5a9 1322 int len;
1d8f430c 1323
ac648a6a
DT
1324 len = snprintf(buf, max(size, 0),
1325 "input:b%04Xv%04Xp%04Xe%04X-",
1326 id->id.bustype, id->id.vendor,
1327 id->id.product, id->id.version);
1328
1329 len += input_print_modalias_bits(buf + len, size - len,
1330 'e', id->evbit, 0, EV_MAX);
1331 len += input_print_modalias_bits(buf + len, size - len,
1332 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1333 len += input_print_modalias_bits(buf + len, size - len,
1334 'r', id->relbit, 0, REL_MAX);
1335 len += input_print_modalias_bits(buf + len, size - len,
1336 'a', id->absbit, 0, ABS_MAX);
1337 len += input_print_modalias_bits(buf + len, size - len,
1338 'm', id->mscbit, 0, MSC_MAX);
1339 len += input_print_modalias_bits(buf + len, size - len,
1340 'l', id->ledbit, 0, LED_MAX);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 's', id->sndbit, 0, SND_MAX);
1343 len += input_print_modalias_bits(buf + len, size - len,
1344 'f', id->ffbit, 0, FF_MAX);
1345 len += input_print_modalias_bits(buf + len, size - len,
1346 'w', id->swbit, 0, SW_MAX);
2db66876
DT
1347
1348 if (add_cr)
ac648a6a 1349 len += snprintf(buf + len, max(size - len, 0), "\n");
2db66876 1350
bd37e5a9
KS
1351 return len;
1352}
1353
9657d75c
DT
1354static ssize_t input_dev_show_modalias(struct device *dev,
1355 struct device_attribute *attr,
1356 char *buf)
bd37e5a9
KS
1357{
1358 struct input_dev *id = to_input_dev(dev);
1359 ssize_t len;
1360
2db66876
DT
1361 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1362
8a3cf456 1363 return min_t(int, len, PAGE_SIZE);
1d8f430c 1364}
9657d75c 1365static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1d8f430c 1366
85b77200
HR
1367static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1368 int max, int add_cr);
1369
1370static ssize_t input_dev_show_properties(struct device *dev,
1371 struct device_attribute *attr,
1372 char *buf)
1373{
1374 struct input_dev *input_dev = to_input_dev(dev);
1375 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1376 INPUT_PROP_MAX, true);
1377 return min_t(int, len, PAGE_SIZE);
1378}
1379static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1380
629b77a4 1381static struct attribute *input_dev_attrs[] = {
9657d75c
DT
1382 &dev_attr_name.attr,
1383 &dev_attr_phys.attr,
1384 &dev_attr_uniq.attr,
1385 &dev_attr_modalias.attr,
85b77200 1386 &dev_attr_properties.attr,
629b77a4
GKH
1387 NULL
1388};
1389
bd0ef235 1390static struct attribute_group input_dev_attr_group = {
629b77a4 1391 .attrs = input_dev_attrs,
5c1e9a6a
DT
1392};
1393
9657d75c
DT
1394#define INPUT_DEV_ID_ATTR(name) \
1395static ssize_t input_dev_show_id_##name(struct device *dev, \
1396 struct device_attribute *attr, \
1397 char *buf) \
1398{ \
1399 struct input_dev *input_dev = to_input_dev(dev); \
1400 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1401} \
1402static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
5c1e9a6a
DT
1403
1404INPUT_DEV_ID_ATTR(bustype);
1405INPUT_DEV_ID_ATTR(vendor);
1406INPUT_DEV_ID_ATTR(product);
1407INPUT_DEV_ID_ATTR(version);
1408
1409static struct attribute *input_dev_id_attrs[] = {
9657d75c
DT
1410 &dev_attr_bustype.attr,
1411 &dev_attr_vendor.attr,
1412 &dev_attr_product.attr,
1413 &dev_attr_version.attr,
5c1e9a6a
DT
1414 NULL
1415};
1416
1417static struct attribute_group input_dev_id_attr_group = {
1418 .name = "id",
1419 .attrs = input_dev_id_attrs,
1420};
1421
969b21cd
DT
1422static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1423 int max, int add_cr)
1424{
1425 int i;
1426 int len = 0;
15e184af
DT
1427 bool skip_empty = true;
1428
1429 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1430 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1431 bitmap[i], skip_empty);
1432 if (len) {
1433 skip_empty = false;
1434 if (i > 0)
1435 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1436 }
1437 }
969b21cd 1438
15e184af
DT
1439 /*
1440 * If no output was produced print a single 0.
1441 */
1442 if (len == 0)
1443 len = snprintf(buf, buf_size, "%d", 0);
969b21cd
DT
1444
1445 if (add_cr)
1446 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1447
1448 return len;
1449}
1450
9657d75c
DT
1451#define INPUT_DEV_CAP_ATTR(ev, bm) \
1452static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1453 struct device_attribute *attr, \
1454 char *buf) \
1455{ \
1456 struct input_dev *input_dev = to_input_dev(dev); \
1457 int len = input_print_bitmap(buf, PAGE_SIZE, \
15e184af
DT
1458 input_dev->bm##bit, ev##_MAX, \
1459 true); \
9657d75c
DT
1460 return min_t(int, len, PAGE_SIZE); \
1461} \
1462static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
5c1e9a6a
DT
1463
1464INPUT_DEV_CAP_ATTR(EV, ev);
1465INPUT_DEV_CAP_ATTR(KEY, key);
1466INPUT_DEV_CAP_ATTR(REL, rel);
1467INPUT_DEV_CAP_ATTR(ABS, abs);
1468INPUT_DEV_CAP_ATTR(MSC, msc);
1469INPUT_DEV_CAP_ATTR(LED, led);
1470INPUT_DEV_CAP_ATTR(SND, snd);
1471INPUT_DEV_CAP_ATTR(FF, ff);
1472INPUT_DEV_CAP_ATTR(SW, sw);
1473
1474static struct attribute *input_dev_caps_attrs[] = {
9657d75c
DT
1475 &dev_attr_ev.attr,
1476 &dev_attr_key.attr,
1477 &dev_attr_rel.attr,
1478 &dev_attr_abs.attr,
1479 &dev_attr_msc.attr,
1480 &dev_attr_led.attr,
1481 &dev_attr_snd.attr,
1482 &dev_attr_ff.attr,
1483 &dev_attr_sw.attr,
5c1e9a6a
DT
1484 NULL
1485};
1486
1487static struct attribute_group input_dev_caps_attr_group = {
1488 .name = "capabilities",
1489 .attrs = input_dev_caps_attrs,
1490};
1491
a4dbd674 1492static const struct attribute_group *input_dev_attr_groups[] = {
cb9def4d
DT
1493 &input_dev_attr_group,
1494 &input_dev_id_attr_group,
1495 &input_dev_caps_attr_group,
1496 NULL
1497};
1498
9657d75c 1499static void input_dev_release(struct device *device)
d19fbe8a 1500{
9657d75c 1501 struct input_dev *dev = to_input_dev(device);
d19fbe8a 1502
509ca1a9 1503 input_ff_destroy(dev);
40d007e7 1504 input_mt_destroy_slots(dev);
d31b2865 1505 kfree(dev->absinfo);
4369c64c 1506 kfree(dev->vals);
d19fbe8a 1507 kfree(dev);
509ca1a9 1508
d19fbe8a
DT
1509 module_put(THIS_MODULE);
1510}
1511
a7fadbe1 1512/*
312c004d 1513 * Input uevent interface - loading event handlers based on
a7fadbe1
DT
1514 * device bitfields.
1515 */
7eff2e7a 1516static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
ac648a6a 1517 const char *name, unsigned long *bitmap, int max)
a7fadbe1 1518{
7eff2e7a 1519 int len;
a7fadbe1 1520
fcd3027a 1521 if (add_uevent_var(env, "%s", name))
a7fadbe1
DT
1522 return -ENOMEM;
1523
7eff2e7a
KS
1524 len = input_print_bitmap(&env->buf[env->buflen - 1],
1525 sizeof(env->buf) - env->buflen,
15e184af 1526 bitmap, max, false);
7eff2e7a 1527 if (len >= (sizeof(env->buf) - env->buflen))
a7fadbe1
DT
1528 return -ENOMEM;
1529
7eff2e7a 1530 env->buflen += len;
a7fadbe1
DT
1531 return 0;
1532}
1533
7eff2e7a 1534static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
ac648a6a
DT
1535 struct input_dev *dev)
1536{
7eff2e7a 1537 int len;
ac648a6a 1538
7eff2e7a 1539 if (add_uevent_var(env, "MODALIAS="))
ac648a6a
DT
1540 return -ENOMEM;
1541
7eff2e7a
KS
1542 len = input_print_modalias(&env->buf[env->buflen - 1],
1543 sizeof(env->buf) - env->buflen,
1544 dev, 0);
1545 if (len >= (sizeof(env->buf) - env->buflen))
ac648a6a
DT
1546 return -ENOMEM;
1547
7eff2e7a 1548 env->buflen += len;
ac648a6a
DT
1549 return 0;
1550}
1551
a7fadbe1
DT
1552#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1553 do { \
7eff2e7a 1554 int err = add_uevent_var(env, fmt, val); \
a7fadbe1
DT
1555 if (err) \
1556 return err; \
1557 } while (0)
1558
1559#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1560 do { \
7eff2e7a 1561 int err = input_add_uevent_bm_var(env, name, bm, max); \
a7fadbe1
DT
1562 if (err) \
1563 return err; \
1564 } while (0)
1565
ac648a6a
DT
1566#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1567 do { \
7eff2e7a 1568 int err = input_add_uevent_modalias_var(env, dev); \
ac648a6a
DT
1569 if (err) \
1570 return err; \
1571 } while (0)
1572
7eff2e7a 1573static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
a7fadbe1 1574{
9657d75c 1575 struct input_dev *dev = to_input_dev(device);
a7fadbe1
DT
1576
1577 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1578 dev->id.bustype, dev->id.vendor,
1579 dev->id.product, dev->id.version);
1580 if (dev->name)
1581 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1582 if (dev->phys)
1583 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
08de1f04 1584 if (dev->uniq)
a7fadbe1
DT
1585 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1586
85b77200
HR
1587 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1588
a7fadbe1
DT
1589 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1590 if (test_bit(EV_KEY, dev->evbit))
1591 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1592 if (test_bit(EV_REL, dev->evbit))
1593 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1594 if (test_bit(EV_ABS, dev->evbit))
1595 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1596 if (test_bit(EV_MSC, dev->evbit))
1597 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1598 if (test_bit(EV_LED, dev->evbit))
1599 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1600 if (test_bit(EV_SND, dev->evbit))
1601 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1602 if (test_bit(EV_FF, dev->evbit))
1603 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1604 if (test_bit(EV_SW, dev->evbit))
1605 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1606
ac648a6a 1607 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
a7fadbe1
DT
1608
1609 return 0;
1610}
1611
3cc96351
DT
1612#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1613 do { \
1614 int i; \
1615 bool active; \
1616 \
1617 if (!test_bit(EV_##type, dev->evbit)) \
1618 break; \
1619 \
1620 for (i = 0; i < type##_MAX; i++) { \
1621 if (!test_bit(i, dev->bits##bit)) \
1622 continue; \
1623 \
1624 active = test_bit(i, dev->bits); \
1625 if (!active && !on) \
1626 continue; \
1627 \
1628 dev->event(dev, EV_##type, i, on ? active : 0); \
1629 } \
ffd0db97
DT
1630 } while (0)
1631
b50b5216 1632static void input_dev_toggle(struct input_dev *dev, bool activate)
ffd0db97
DT
1633{
1634 if (!dev->event)
1635 return;
1636
1637 INPUT_DO_TOGGLE(dev, LED, led, activate);
1638 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1639
1640 if (activate && test_bit(EV_REP, dev->evbit)) {
1641 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1642 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1643 }
1644}
1645
b50b5216
DT
1646/**
1647 * input_reset_device() - reset/restore the state of input device
1648 * @dev: input device whose state needs to be reset
1649 *
1650 * This function tries to reset the state of an opened input device and
1651 * bring internal state and state if the hardware in sync with each other.
1652 * We mark all keys as released, restore LED state, repeat rate, etc.
1653 */
1654void input_reset_device(struct input_dev *dev)
1655{
1656 mutex_lock(&dev->mutex);
1657
1658 if (dev->users) {
1659 input_dev_toggle(dev, true);
1660
1661 /*
1662 * Keys that have been pressed at suspend time are unlikely
1663 * to be still pressed when we resume.
1664 */
1665 spin_lock_irq(&dev->event_lock);
1666 input_dev_release_keys(dev);
1667 spin_unlock_irq(&dev->event_lock);
1668 }
1669
1670 mutex_unlock(&dev->mutex);
1671}
1672EXPORT_SYMBOL(input_reset_device);
1673
1674#ifdef CONFIG_PM
ffd0db97
DT
1675static int input_dev_suspend(struct device *dev)
1676{
1677 struct input_dev *input_dev = to_input_dev(dev);
1678
1679 mutex_lock(&input_dev->mutex);
b50b5216
DT
1680
1681 if (input_dev->users)
1682 input_dev_toggle(input_dev, false);
1683
ffd0db97
DT
1684 mutex_unlock(&input_dev->mutex);
1685
1686 return 0;
1687}
1688
1689static int input_dev_resume(struct device *dev)
1690{
1691 struct input_dev *input_dev = to_input_dev(dev);
1692
b50b5216 1693 input_reset_device(input_dev);
ffd0db97
DT
1694
1695 return 0;
1696}
1697
1698static const struct dev_pm_ops input_dev_pm_ops = {
1699 .suspend = input_dev_suspend,
1700 .resume = input_dev_resume,
1701 .poweroff = input_dev_suspend,
1702 .restore = input_dev_resume,
1703};
1704#endif /* CONFIG_PM */
1705
9657d75c
DT
1706static struct device_type input_dev_type = {
1707 .groups = input_dev_attr_groups,
1708 .release = input_dev_release,
1709 .uevent = input_dev_uevent,
ffd0db97
DT
1710#ifdef CONFIG_PM
1711 .pm = &input_dev_pm_ops,
1712#endif
9657d75c
DT
1713};
1714
2c9ede55 1715static char *input_devnode(struct device *dev, umode_t *mode)
aa5ed63e
KS
1716{
1717 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1718}
1719
ea9f240b 1720struct class input_class = {
9657d75c 1721 .name = "input",
e454cea2 1722 .devnode = input_devnode,
d19fbe8a 1723};
ca56fe07 1724EXPORT_SYMBOL_GPL(input_class);
d19fbe8a 1725
1447190e
DT
1726/**
1727 * input_allocate_device - allocate memory for new input device
1728 *
2be975c6 1729 * Returns prepared struct input_dev or %NULL.
1447190e
DT
1730 *
1731 * NOTE: Use input_free_device() to free devices that have not been
1732 * registered; input_unregister_device() should be used for already
1733 * registered devices.
1734 */
d19fbe8a
DT
1735struct input_dev *input_allocate_device(void)
1736{
a60a71b0 1737 static atomic_t input_no = ATOMIC_INIT(0);
d19fbe8a
DT
1738 struct input_dev *dev;
1739
1740 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1741 if (dev) {
9657d75c
DT
1742 dev->dev.type = &input_dev_type;
1743 dev->dev.class = &input_class;
1744 device_initialize(&dev->dev);
f60d2b11 1745 mutex_init(&dev->mutex);
8006479c 1746 spin_lock_init(&dev->event_lock);
a60a71b0 1747 init_timer(&dev->timer);
d19fbe8a
DT
1748 INIT_LIST_HEAD(&dev->h_list);
1749 INIT_LIST_HEAD(&dev->node);
655816e4 1750
a60a71b0
DH
1751 dev_set_name(&dev->dev, "input%ld",
1752 (unsigned long) atomic_inc_return(&input_no) - 1);
1753
655816e4 1754 __module_get(THIS_MODULE);
d19fbe8a
DT
1755 }
1756
1757 return dev;
1758}
ca56fe07 1759EXPORT_SYMBOL(input_allocate_device);
d19fbe8a 1760
2be975c6
DT
1761struct input_devres {
1762 struct input_dev *input;
1763};
1764
1765static int devm_input_device_match(struct device *dev, void *res, void *data)
1766{
1767 struct input_devres *devres = res;
1768
1769 return devres->input == data;
1770}
1771
1772static void devm_input_device_release(struct device *dev, void *res)
1773{
1774 struct input_devres *devres = res;
1775 struct input_dev *input = devres->input;
1776
1777 dev_dbg(dev, "%s: dropping reference to %s\n",
1778 __func__, dev_name(&input->dev));
1779 input_put_device(input);
1780}
1781
1782/**
1783 * devm_input_allocate_device - allocate managed input device
1784 * @dev: device owning the input device being created
1785 *
1786 * Returns prepared struct input_dev or %NULL.
1787 *
1788 * Managed input devices do not need to be explicitly unregistered or
1789 * freed as it will be done automatically when owner device unbinds from
1790 * its driver (or binding fails). Once managed input device is allocated,
1791 * it is ready to be set up and registered in the same fashion as regular
1792 * input device. There are no special devm_input_device_[un]register()
b666263b
DT
1793 * variants, regular ones work with both managed and unmanaged devices,
1794 * should you need them. In most cases however, managed input device need
1795 * not be explicitly unregistered or freed.
2be975c6
DT
1796 *
1797 * NOTE: the owner device is set up as parent of input device and users
1798 * should not override it.
1799 */
2be975c6
DT
1800struct input_dev *devm_input_allocate_device(struct device *dev)
1801{
1802 struct input_dev *input;
1803 struct input_devres *devres;
1804
1805 devres = devres_alloc(devm_input_device_release,
1806 sizeof(struct input_devres), GFP_KERNEL);
1807 if (!devres)
1808 return NULL;
1809
1810 input = input_allocate_device();
1811 if (!input) {
1812 devres_free(devres);
1813 return NULL;
1814 }
1815
1816 input->dev.parent = dev;
1817 input->devres_managed = true;
1818
1819 devres->input = input;
1820 devres_add(dev, devres);
1821
1822 return input;
1823}
1824EXPORT_SYMBOL(devm_input_allocate_device);
1825
1447190e
DT
1826/**
1827 * input_free_device - free memory occupied by input_dev structure
1828 * @dev: input device to free
1829 *
1830 * This function should only be used if input_register_device()
1831 * was not called yet or if it failed. Once device was registered
1832 * use input_unregister_device() and memory will be freed once last
8006479c 1833 * reference to the device is dropped.
1447190e
DT
1834 *
1835 * Device should be allocated by input_allocate_device().
1836 *
1837 * NOTE: If there are references to the input device then memory
1838 * will not be freed until last reference is dropped.
1839 */
f60d2b11
DT
1840void input_free_device(struct input_dev *dev)
1841{
2be975c6
DT
1842 if (dev) {
1843 if (dev->devres_managed)
1844 WARN_ON(devres_destroy(dev->dev.parent,
1845 devm_input_device_release,
1846 devm_input_device_match,
1847 dev));
f60d2b11 1848 input_put_device(dev);
2be975c6 1849 }
f60d2b11 1850}
ca56fe07 1851EXPORT_SYMBOL(input_free_device);
f60d2b11 1852
534565f2
DT
1853/**
1854 * input_set_capability - mark device as capable of a certain event
1855 * @dev: device that is capable of emitting or accepting event
1856 * @type: type of the event (EV_KEY, EV_REL, etc...)
1857 * @code: event code
1858 *
1859 * In addition to setting up corresponding bit in appropriate capability
1860 * bitmap the function also adjusts dev->evbit.
1861 */
1862void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1863{
1864 switch (type) {
1865 case EV_KEY:
1866 __set_bit(code, dev->keybit);
1867 break;
1868
1869 case EV_REL:
1870 __set_bit(code, dev->relbit);
1871 break;
1872
1873 case EV_ABS:
1874 __set_bit(code, dev->absbit);
1875 break;
1876
1877 case EV_MSC:
1878 __set_bit(code, dev->mscbit);
1879 break;
1880
1881 case EV_SW:
1882 __set_bit(code, dev->swbit);
1883 break;
1884
1885 case EV_LED:
1886 __set_bit(code, dev->ledbit);
1887 break;
1888
1889 case EV_SND:
1890 __set_bit(code, dev->sndbit);
1891 break;
1892
1893 case EV_FF:
1894 __set_bit(code, dev->ffbit);
1895 break;
1896
22d1c398
DES
1897 case EV_PWR:
1898 /* do nothing */
1899 break;
1900
534565f2 1901 default:
da0c4901
JP
1902 pr_err("input_set_capability: unknown type %u (code %u)\n",
1903 type, code);
534565f2
DT
1904 dump_stack();
1905 return;
1906 }
1907
1908 __set_bit(type, dev->evbit);
1909}
1910EXPORT_SYMBOL(input_set_capability);
1911
80b4895a
JB
1912static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1913{
1914 int mt_slots;
1915 int i;
1916 unsigned int events;
1917
8d18fba2
HR
1918 if (dev->mt) {
1919 mt_slots = dev->mt->num_slots;
80b4895a
JB
1920 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1921 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1922 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
8c127f07 1923 mt_slots = clamp(mt_slots, 2, 32);
80b4895a
JB
1924 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1925 mt_slots = 2;
1926 } else {
1927 mt_slots = 0;
1928 }
1929
1930 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1931
1932 for (i = 0; i < ABS_CNT; i++) {
1933 if (test_bit(i, dev->absbit)) {
1934 if (input_is_mt_axis(i))
1935 events += mt_slots;
1936 else
1937 events++;
1938 }
1939 }
1940
1941 for (i = 0; i < REL_CNT; i++)
1942 if (test_bit(i, dev->relbit))
1943 events++;
1944
7c75bf99
HR
1945 /* Make room for KEY and MSC events */
1946 events += 7;
1947
80b4895a
JB
1948 return events;
1949}
1950
92a3a587
DT
1951#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1952 do { \
1953 if (!test_bit(EV_##type, dev->evbit)) \
1954 memset(dev->bits##bit, 0, \
1955 sizeof(dev->bits##bit)); \
1956 } while (0)
1957
1958static void input_cleanse_bitmasks(struct input_dev *dev)
1959{
1960 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1961 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1962 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1963 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1964 INPUT_CLEANSE_BITMASK(dev, LED, led);
1965 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1966 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1967 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1968}
1969
2be975c6
DT
1970static void __input_unregister_device(struct input_dev *dev)
1971{
1972 struct input_handle *handle, *next;
1973
1974 input_disconnect_device(dev);
1975
1976 mutex_lock(&input_mutex);
1977
1978 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1979 handle->handler->disconnect(handle);
1980 WARN_ON(!list_empty(&dev->h_list));
1981
1982 del_timer_sync(&dev->timer);
1983 list_del_init(&dev->node);
1984
1985 input_wakeup_procfs_readers();
1986
1987 mutex_unlock(&input_mutex);
1988
1989 device_del(&dev->dev);
1990}
1991
1992static void devm_input_device_unregister(struct device *dev, void *res)
1993{
1994 struct input_devres *devres = res;
1995 struct input_dev *input = devres->input;
1996
1997 dev_dbg(dev, "%s: unregistering device %s\n",
1998 __func__, dev_name(&input->dev));
1999 __input_unregister_device(input);
2000}
2001
8006479c
DT
2002/**
2003 * input_register_device - register device with input core
2004 * @dev: device to be registered
2005 *
2006 * This function registers device with input core. The device must be
2007 * allocated with input_allocate_device() and all it's capabilities
2008 * set up before registering.
2009 * If function fails the device must be freed with input_free_device().
2010 * Once device has been successfully registered it can be unregistered
2011 * with input_unregister_device(); input_free_device() should not be
2012 * called in this case.
b666263b
DT
2013 *
2014 * Note that this function is also used to register managed input devices
2015 * (ones allocated with devm_input_allocate_device()). Such managed input
2016 * devices need not be explicitly unregistered or freed, their tear down
2017 * is controlled by the devres infrastructure. It is also worth noting
2018 * that tear down of managed input devices is internally a 2-step process:
2019 * registered managed input device is first unregistered, but stays in
2020 * memory and can still handle input_event() calls (although events will
2021 * not be delivered anywhere). The freeing of managed input device will
2022 * happen later, when devres stack is unwound to the point where device
2023 * allocation was made.
8006479c 2024 */
5f945489 2025int input_register_device(struct input_dev *dev)
1da177e4 2026{
2be975c6 2027 struct input_devres *devres = NULL;
1da177e4 2028 struct input_handler *handler;
7c75bf99 2029 unsigned int packet_size;
bd0ef235
DT
2030 const char *path;
2031 int error;
1da177e4 2032
2be975c6
DT
2033 if (dev->devres_managed) {
2034 devres = devres_alloc(devm_input_device_unregister,
2035 sizeof(struct input_devres), GFP_KERNEL);
2036 if (!devres)
2037 return -ENOMEM;
2038
2039 devres->input = dev;
2040 }
2041
4f93df40 2042 /* Every input device generates EV_SYN/SYN_REPORT events. */
8006479c 2043 __set_bit(EV_SYN, dev->evbit);
0fbf87ca 2044
4f93df40
DT
2045 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2046 __clear_bit(KEY_RESERVED, dev->keybit);
2047
92a3a587
DT
2048 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2049 input_cleanse_bitmasks(dev);
2050
7c75bf99
HR
2051 packet_size = input_estimate_events_per_packet(dev);
2052 if (dev->hint_events_per_packet < packet_size)
2053 dev->hint_events_per_packet = packet_size;
80b4895a 2054
95079b8a 2055 dev->max_vals = dev->hint_events_per_packet + 2;
4369c64c 2056 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2be975c6
DT
2057 if (!dev->vals) {
2058 error = -ENOMEM;
2059 goto err_devres_free;
2060 }
80b4895a 2061
1da177e4
LT
2062 /*
2063 * If delay and period are pre-set by the driver, then autorepeating
2064 * is handled by the driver itself and we don't do it in input.c.
2065 */
1da177e4
LT
2066 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2067 dev->timer.data = (long) dev;
2068 dev->timer.function = input_repeat_key;
2069 dev->rep[REP_DELAY] = 250;
2070 dev->rep[REP_PERIOD] = 33;
2071 }
2072
aebd636b
DT
2073 if (!dev->getkeycode)
2074 dev->getkeycode = input_default_getkeycode;
c8e4c772 2075
aebd636b
DT
2076 if (!dev->setkeycode)
2077 dev->setkeycode = input_default_setkeycode;
c8e4c772 2078
9657d75c 2079 error = device_add(&dev->dev);
bd0ef235 2080 if (error)
2be975c6 2081 goto err_free_vals;
bd0ef235 2082
9657d75c 2083 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
da0c4901
JP
2084 pr_info("%s as %s\n",
2085 dev->name ? dev->name : "Unspecified device",
2086 path ? path : "N/A");
bd0ef235 2087 kfree(path);
10204020 2088
8006479c 2089 error = mutex_lock_interruptible(&input_mutex);
2be975c6
DT
2090 if (error)
2091 goto err_device_del;
8006479c
DT
2092
2093 list_add_tail(&dev->node, &input_dev_list);
2094
1da177e4 2095 list_for_each_entry(handler, &input_handler_list, node)
5b2a0826 2096 input_attach_handler(dev, handler);
1da177e4 2097
f96b434d 2098 input_wakeup_procfs_readers();
5f945489 2099
8006479c
DT
2100 mutex_unlock(&input_mutex);
2101
2be975c6
DT
2102 if (dev->devres_managed) {
2103 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2104 __func__, dev_name(&dev->dev));
2105 devres_add(dev->dev.parent, devres);
2106 }
5f945489 2107 return 0;
2be975c6
DT
2108
2109err_device_del:
2110 device_del(&dev->dev);
2111err_free_vals:
2112 kfree(dev->vals);
2113 dev->vals = NULL;
2114err_devres_free:
2115 devres_free(devres);
2116 return error;
1da177e4 2117}
ca56fe07 2118EXPORT_SYMBOL(input_register_device);
1da177e4 2119
8006479c
DT
2120/**
2121 * input_unregister_device - unregister previously registered device
2122 * @dev: device to be unregistered
2123 *
2124 * This function unregisters an input device. Once device is unregistered
2125 * the caller should not try to access it as it may get freed at any moment.
2126 */
1da177e4
LT
2127void input_unregister_device(struct input_dev *dev)
2128{
2be975c6
DT
2129 if (dev->devres_managed) {
2130 WARN_ON(devres_destroy(dev->dev.parent,
2131 devm_input_device_unregister,
2132 devm_input_device_match,
2133 dev));
2134 __input_unregister_device(dev);
2135 /*
2136 * We do not do input_put_device() here because it will be done
2137 * when 2nd devres fires up.
2138 */
2139 } else {
2140 __input_unregister_device(dev);
2141 input_put_device(dev);
2142 }
1da177e4 2143}
ca56fe07 2144EXPORT_SYMBOL(input_unregister_device);
1da177e4 2145
8006479c
DT
2146/**
2147 * input_register_handler - register a new input handler
2148 * @handler: handler to be registered
2149 *
2150 * This function registers a new input handler (interface) for input
2151 * devices in the system and attaches it to all input devices that
2152 * are compatible with the handler.
2153 */
4263cf0f 2154int input_register_handler(struct input_handler *handler)
1da177e4
LT
2155{
2156 struct input_dev *dev;
7f8d4cad 2157 int error;
8006479c 2158
7f8d4cad
DT
2159 error = mutex_lock_interruptible(&input_mutex);
2160 if (error)
2161 return error;
1da177e4 2162
1da177e4
LT
2163 INIT_LIST_HEAD(&handler->h_list);
2164
1da177e4
LT
2165 list_add_tail(&handler->node, &input_handler_list);
2166
2167 list_for_each_entry(dev, &input_dev_list, node)
5b2a0826 2168 input_attach_handler(dev, handler);
1da177e4 2169
f96b434d 2170 input_wakeup_procfs_readers();
8006479c 2171
8006479c 2172 mutex_unlock(&input_mutex);
7f8d4cad 2173 return 0;
1da177e4 2174}
ca56fe07 2175EXPORT_SYMBOL(input_register_handler);
1da177e4 2176
8006479c
DT
2177/**
2178 * input_unregister_handler - unregisters an input handler
2179 * @handler: handler to be unregistered
2180 *
2181 * This function disconnects a handler from its input devices and
2182 * removes it from lists of known handlers.
2183 */
1da177e4
LT
2184void input_unregister_handler(struct input_handler *handler)
2185{
5b2a0826 2186 struct input_handle *handle, *next;
1da177e4 2187
8006479c
DT
2188 mutex_lock(&input_mutex);
2189
5b2a0826 2190 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1da177e4 2191 handler->disconnect(handle);
5b2a0826 2192 WARN_ON(!list_empty(&handler->h_list));
1da177e4
LT
2193
2194 list_del_init(&handler->node);
2195
f96b434d 2196 input_wakeup_procfs_readers();
8006479c
DT
2197
2198 mutex_unlock(&input_mutex);
1da177e4 2199}
ca56fe07 2200EXPORT_SYMBOL(input_unregister_handler);
1da177e4 2201
66d2a595
DT
2202/**
2203 * input_handler_for_each_handle - handle iterator
2204 * @handler: input handler to iterate
2205 * @data: data for the callback
2206 * @fn: function to be called for each handle
2207 *
2208 * Iterate over @bus's list of devices, and call @fn for each, passing
2209 * it @data and stop when @fn returns a non-zero value. The function is
2210 * using RCU to traverse the list and therefore may be usind in atonic
2211 * contexts. The @fn callback is invoked from RCU critical section and
2212 * thus must not sleep.
2213 */
2214int input_handler_for_each_handle(struct input_handler *handler, void *data,
2215 int (*fn)(struct input_handle *, void *))
2216{
2217 struct input_handle *handle;
2218 int retval = 0;
2219
2220 rcu_read_lock();
2221
2222 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2223 retval = fn(handle, data);
2224 if (retval)
2225 break;
2226 }
2227
2228 rcu_read_unlock();
2229
2230 return retval;
2231}
2232EXPORT_SYMBOL(input_handler_for_each_handle);
2233
8006479c
DT
2234/**
2235 * input_register_handle - register a new input handle
2236 * @handle: handle to register
2237 *
2238 * This function puts a new input handle onto device's
2239 * and handler's lists so that events can flow through
2240 * it once it is opened using input_open_device().
2241 *
2242 * This function is supposed to be called from handler's
2243 * connect() method.
2244 */
5b2a0826
DT
2245int input_register_handle(struct input_handle *handle)
2246{
2247 struct input_handler *handler = handle->handler;
8006479c
DT
2248 struct input_dev *dev = handle->dev;
2249 int error;
2250
2251 /*
2252 * We take dev->mutex here to prevent race with
2253 * input_release_device().
2254 */
2255 error = mutex_lock_interruptible(&dev->mutex);
2256 if (error)
2257 return error;
ef7995f4
DT
2258
2259 /*
2260 * Filters go to the head of the list, normal handlers
2261 * to the tail.
2262 */
2263 if (handler->filter)
2264 list_add_rcu(&handle->d_node, &dev->h_list);
2265 else
2266 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2267
8006479c 2268 mutex_unlock(&dev->mutex);
5b2a0826 2269
8006479c
DT
2270 /*
2271 * Since we are supposed to be called from ->connect()
2272 * which is mutually exclusive with ->disconnect()
2273 * we can't be racing with input_unregister_handle()
2274 * and so separate lock is not needed here.
2275 */
66d2a595 2276 list_add_tail_rcu(&handle->h_node, &handler->h_list);
5b2a0826
DT
2277
2278 if (handler->start)
2279 handler->start(handle);
2280
2281 return 0;
2282}
2283EXPORT_SYMBOL(input_register_handle);
2284
8006479c
DT
2285/**
2286 * input_unregister_handle - unregister an input handle
2287 * @handle: handle to unregister
2288 *
2289 * This function removes input handle from device's
2290 * and handler's lists.
2291 *
2292 * This function is supposed to be called from handler's
2293 * disconnect() method.
2294 */
5b2a0826
DT
2295void input_unregister_handle(struct input_handle *handle)
2296{
8006479c
DT
2297 struct input_dev *dev = handle->dev;
2298
66d2a595 2299 list_del_rcu(&handle->h_node);
8006479c
DT
2300
2301 /*
2302 * Take dev->mutex to prevent race with input_release_device().
2303 */
2304 mutex_lock(&dev->mutex);
2305 list_del_rcu(&handle->d_node);
2306 mutex_unlock(&dev->mutex);
66d2a595 2307
82ba56c2 2308 synchronize_rcu();
5b2a0826
DT
2309}
2310EXPORT_SYMBOL(input_unregister_handle);
2311
7f8d4cad
DT
2312/**
2313 * input_get_new_minor - allocates a new input minor number
2314 * @legacy_base: beginning or the legacy range to be searched
2315 * @legacy_num: size of legacy range
2316 * @allow_dynamic: whether we can also take ID from the dynamic range
2317 *
2318 * This function allocates a new device minor for from input major namespace.
2319 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2320 * parameters and whether ID can be allocated from dynamic range if there are
2321 * no free IDs in legacy range.
2322 */
2323int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2324 bool allow_dynamic)
1da177e4 2325{
1da177e4 2326 /*
7f8d4cad
DT
2327 * This function should be called from input handler's ->connect()
2328 * methods, which are serialized with input_mutex, so no additional
2329 * locking is needed here.
1da177e4 2330 */
7f8d4cad
DT
2331 if (legacy_base >= 0) {
2332 int minor = ida_simple_get(&input_ida,
2333 legacy_base,
2334 legacy_base + legacy_num,
2335 GFP_KERNEL);
2336 if (minor >= 0 || !allow_dynamic)
2337 return minor;
1da177e4 2338 }
2f2177c8 2339
7f8d4cad
DT
2340 return ida_simple_get(&input_ida,
2341 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2342 GFP_KERNEL);
1da177e4 2343}
7f8d4cad 2344EXPORT_SYMBOL(input_get_new_minor);
1da177e4 2345
7f8d4cad
DT
2346/**
2347 * input_free_minor - release previously allocated minor
2348 * @minor: minor to be released
2349 *
2350 * This function releases previously allocated input minor so that it can be
2351 * reused later.
2352 */
2353void input_free_minor(unsigned int minor)
2354{
2355 ida_simple_remove(&input_ida, minor);
2356}
2357EXPORT_SYMBOL(input_free_minor);
1da177e4 2358
f96b434d 2359static int __init input_init(void)
1da177e4 2360{
f96b434d 2361 int err;
1da177e4 2362
ea9f240b 2363 err = class_register(&input_class);
d19fbe8a 2364 if (err) {
da0c4901 2365 pr_err("unable to register input_dev class\n");
d19fbe8a
DT
2366 return err;
2367 }
2368
f96b434d
DT
2369 err = input_proc_init();
2370 if (err)
b0fdfebb 2371 goto fail1;
1da177e4 2372
7f8d4cad
DT
2373 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2374 INPUT_MAX_CHAR_DEVICES, "input");
f96b434d 2375 if (err) {
da0c4901 2376 pr_err("unable to register char major %d", INPUT_MAJOR);
b0fdfebb 2377 goto fail2;
1da177e4 2378 }
e334016f 2379
1da177e4 2380 return 0;
1da177e4 2381
b0fdfebb 2382 fail2: input_proc_exit();
ea9f240b 2383 fail1: class_unregister(&input_class);
f96b434d 2384 return err;
1da177e4
LT
2385}
2386
2387static void __exit input_exit(void)
2388{
f96b434d 2389 input_proc_exit();
7f8d4cad
DT
2390 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2391 INPUT_MAX_CHAR_DEVICES);
ea9f240b 2392 class_unregister(&input_class);
1da177e4
LT
2393}
2394
2395subsys_initcall(input_init);
2396module_exit(input_exit);