]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/interconnect/core.c
cpufreq: dt: Add support for interconnect bandwidth scaling
[mirror_ubuntu-jammy-kernel.git] / drivers / interconnect / core.c
CommitLineData
11f1ceca
GD
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
3697ff43 9#include <linux/debugfs.h>
11f1ceca
GD
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
87e3031b 19#include <linux/of.h>
11f1ceca
GD
20#include <linux/overflow.h>
21
dd018a9c
GD
22#include "internal.h"
23
c46ab9db
GD
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
11f1ceca
GD
27static DEFINE_IDR(icc_idr);
28static LIST_HEAD(icc_providers);
29static DEFINE_MUTEX(icc_lock);
3697ff43 30static struct dentry *icc_debugfs_dir;
11f1ceca 31
3697ff43
GD
32static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33{
34 if (!n)
35 return;
36
2c5127a7 37 seq_printf(s, "%-42s %12u %12u\n",
3697ff43
GD
38 n->name, n->avg_bw, n->peak_bw);
39}
40
41static int icc_summary_show(struct seq_file *s, void *data)
42{
43 struct icc_provider *provider;
44
2c5127a7
GD
45 seq_puts(s, " node tag avg peak\n");
46 seq_puts(s, "--------------------------------------------------------------------\n");
3697ff43
GD
47
48 mutex_lock(&icc_lock);
49
50 list_for_each_entry(provider, &icc_providers, provider_list) {
51 struct icc_node *n;
52
53 list_for_each_entry(n, &provider->nodes, node_list) {
54 struct icc_req *r;
55
56 icc_summary_show_one(s, n);
57 hlist_for_each_entry(r, &n->req_list, req_node) {
58 if (!r->dev)
59 continue;
60
2c5127a7
GD
61 seq_printf(s, " %-27s %12u %12u %12u\n",
62 dev_name(r->dev), r->tag, r->avg_bw,
3697ff43
GD
63 r->peak_bw);
64 }
65 }
66 }
67
68 mutex_unlock(&icc_lock);
69
70 return 0;
71}
83fdb2df 72DEFINE_SHOW_ATTRIBUTE(icc_summary);
3697ff43 73
1a0013c6
LC
74static void icc_graph_show_link(struct seq_file *s, int level,
75 struct icc_node *n, struct icc_node *m)
76{
77 seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
78 level == 2 ? "\t\t" : "\t",
79 n->id, n->name, m->id, m->name);
80}
81
82static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
83{
84 seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
85 n->id, n->name, n->id, n->name);
86 seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
87 seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
88 seq_puts(s, "\"]\n");
89}
90
91static int icc_graph_show(struct seq_file *s, void *data)
92{
93 struct icc_provider *provider;
94 struct icc_node *n;
95 int cluster_index = 0;
96 int i;
97
98 seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
99 mutex_lock(&icc_lock);
100
101 /* draw providers as cluster subgraphs */
102 cluster_index = 0;
103 list_for_each_entry(provider, &icc_providers, provider_list) {
104 seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
105 if (provider->dev)
106 seq_printf(s, "\t\tlabel = \"%s\"\n",
107 dev_name(provider->dev));
108
109 /* draw nodes */
110 list_for_each_entry(n, &provider->nodes, node_list)
111 icc_graph_show_node(s, n);
112
113 /* draw internal links */
114 list_for_each_entry(n, &provider->nodes, node_list)
115 for (i = 0; i < n->num_links; ++i)
116 if (n->provider == n->links[i]->provider)
117 icc_graph_show_link(s, 2, n,
118 n->links[i]);
119
120 seq_puts(s, "\t}\n");
121 }
122
123 /* draw external links */
124 list_for_each_entry(provider, &icc_providers, provider_list)
125 list_for_each_entry(n, &provider->nodes, node_list)
126 for (i = 0; i < n->num_links; ++i)
127 if (n->provider != n->links[i]->provider)
128 icc_graph_show_link(s, 1, n,
129 n->links[i]);
130
131 mutex_unlock(&icc_lock);
132 seq_puts(s, "}");
133
134 return 0;
135}
136DEFINE_SHOW_ATTRIBUTE(icc_graph);
137
11f1ceca
GD
138static struct icc_node *node_find(const int id)
139{
140 return idr_find(&icc_idr, id);
141}
142
143static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
144 ssize_t num_nodes)
145{
146 struct icc_node *node = dst;
147 struct icc_path *path;
148 int i;
149
150 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
151 if (!path)
152 return ERR_PTR(-ENOMEM);
153
154 path->num_nodes = num_nodes;
155
156 for (i = num_nodes - 1; i >= 0; i--) {
157 node->provider->users++;
158 hlist_add_head(&path->reqs[i].req_node, &node->req_list);
159 path->reqs[i].node = node;
160 path->reqs[i].dev = dev;
161 /* reference to previous node was saved during path traversal */
162 node = node->reverse;
163 }
164
165 return path;
166}
167
168static struct icc_path *path_find(struct device *dev, struct icc_node *src,
169 struct icc_node *dst)
170{
171 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
172 struct icc_node *n, *node = NULL;
173 struct list_head traverse_list;
174 struct list_head edge_list;
175 struct list_head visited_list;
176 size_t i, depth = 1;
177 bool found = false;
178
179 INIT_LIST_HEAD(&traverse_list);
180 INIT_LIST_HEAD(&edge_list);
181 INIT_LIST_HEAD(&visited_list);
182
183 list_add(&src->search_list, &traverse_list);
184 src->reverse = NULL;
185
186 do {
187 list_for_each_entry_safe(node, n, &traverse_list, search_list) {
188 if (node == dst) {
189 found = true;
190 list_splice_init(&edge_list, &visited_list);
191 list_splice_init(&traverse_list, &visited_list);
192 break;
193 }
194 for (i = 0; i < node->num_links; i++) {
195 struct icc_node *tmp = node->links[i];
196
197 if (!tmp) {
198 path = ERR_PTR(-ENOENT);
199 goto out;
200 }
201
202 if (tmp->is_traversed)
203 continue;
204
205 tmp->is_traversed = true;
206 tmp->reverse = node;
207 list_add_tail(&tmp->search_list, &edge_list);
208 }
209 }
210
211 if (found)
212 break;
213
214 list_splice_init(&traverse_list, &visited_list);
215 list_splice_init(&edge_list, &traverse_list);
216
217 /* count the hops including the source */
218 depth++;
219
220 } while (!list_empty(&traverse_list));
221
222out:
223
224 /* reset the traversed state */
225 list_for_each_entry_reverse(n, &visited_list, search_list)
226 n->is_traversed = false;
227
228 if (found)
229 path = path_init(dev, dst, depth);
230
231 return path;
232}
233
234/*
235 * We want the path to honor all bandwidth requests, so the average and peak
236 * bandwidth requirements from each consumer are aggregated at each node.
237 * The aggregation is platform specific, so each platform can customize it by
238 * implementing its own aggregate() function.
239 */
240
241static int aggregate_requests(struct icc_node *node)
242{
243 struct icc_provider *p = node->provider;
244 struct icc_req *r;
245
246 node->avg_bw = 0;
247 node->peak_bw = 0;
248
cbd5a9c2
GD
249 if (p->pre_aggregate)
250 p->pre_aggregate(node);
251
11f1ceca 252 hlist_for_each_entry(r, &node->req_list, req_node)
127ab2cc 253 p->aggregate(node, r->tag, r->avg_bw, r->peak_bw,
11f1ceca
GD
254 &node->avg_bw, &node->peak_bw);
255
256 return 0;
257}
258
259static int apply_constraints(struct icc_path *path)
260{
261 struct icc_node *next, *prev = NULL;
262 int ret = -EINVAL;
263 int i;
264
265 for (i = 0; i < path->num_nodes; i++) {
266 next = path->reqs[i].node;
267
268 /*
269 * Both endpoints should be valid master-slave pairs of the
270 * same interconnect provider that will be configured.
271 */
272 if (!prev || next->provider != prev->provider) {
273 prev = next;
274 continue;
275 }
276
277 /* set the constraints */
278 ret = next->provider->set(prev, next);
279 if (ret)
280 goto out;
281
282 prev = next;
283 }
284out:
285 return ret;
286}
287
3172e4d2
GD
288int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
289 u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
290{
291 *agg_avg += avg_bw;
292 *agg_peak = max(*agg_peak, peak_bw);
293
294 return 0;
295}
296EXPORT_SYMBOL_GPL(icc_std_aggregate);
297
87e3031b
GD
298/* of_icc_xlate_onecell() - Translate function using a single index.
299 * @spec: OF phandle args to map into an interconnect node.
300 * @data: private data (pointer to struct icc_onecell_data)
301 *
302 * This is a generic translate function that can be used to model simple
303 * interconnect providers that have one device tree node and provide
304 * multiple interconnect nodes. A single cell is used as an index into
305 * an array of icc nodes specified in the icc_onecell_data struct when
306 * registering the provider.
307 */
308struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
309 void *data)
310{
311 struct icc_onecell_data *icc_data = data;
312 unsigned int idx = spec->args[0];
313
314 if (idx >= icc_data->num_nodes) {
315 pr_err("%s: invalid index %u\n", __func__, idx);
316 return ERR_PTR(-EINVAL);
317 }
318
319 return icc_data->nodes[idx];
320}
321EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
322
323/**
324 * of_icc_get_from_provider() - Look-up interconnect node
325 * @spec: OF phandle args to use for look-up
326 *
327 * Looks for interconnect provider under the node specified by @spec and if
328 * found, uses xlate function of the provider to map phandle args to node.
329 *
330 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
331 * on failure.
332 */
333static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
334{
335 struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
336 struct icc_provider *provider;
337
338 if (!spec || spec->args_count != 1)
339 return ERR_PTR(-EINVAL);
340
341 mutex_lock(&icc_lock);
342 list_for_each_entry(provider, &icc_providers, provider_list) {
343 if (provider->dev->of_node == spec->np)
344 node = provider->xlate(spec, provider->data);
345 if (!IS_ERR(node))
346 break;
347 }
348 mutex_unlock(&icc_lock);
349
350 return node;
351}
352
353/**
1597d453 354 * of_icc_get_by_index() - get a path handle from a DT node based on index
87e3031b 355 * @dev: device pointer for the consumer device
1597d453 356 * @idx: interconnect path index
87e3031b
GD
357 *
358 * This function will search for a path between two endpoints and return an
359 * icc_path handle on success. Use icc_put() to release constraints when they
360 * are not needed anymore.
361 * If the interconnect API is disabled, NULL is returned and the consumer
362 * drivers will still build. Drivers are free to handle this specifically,
363 * but they don't have to.
364 *
365 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
366 * when the API is disabled or the "interconnects" DT property is missing.
367 */
1597d453 368struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
87e3031b 369{
1597d453 370 struct icc_path *path;
87e3031b 371 struct icc_node *src_node, *dst_node;
1597d453 372 struct device_node *np;
87e3031b 373 struct of_phandle_args src_args, dst_args;
87e3031b
GD
374 int ret;
375
376 if (!dev || !dev->of_node)
377 return ERR_PTR(-ENODEV);
378
379 np = dev->of_node;
380
381 /*
382 * When the consumer DT node do not have "interconnects" property
383 * return a NULL path to skip setting constraints.
384 */
385 if (!of_find_property(np, "interconnects", NULL))
386 return NULL;
387
388 /*
389 * We use a combination of phandle and specifier for endpoint. For now
390 * lets support only global ids and extend this in the future if needed
391 * without breaking DT compatibility.
392 */
87e3031b
GD
393 ret = of_parse_phandle_with_args(np, "interconnects",
394 "#interconnect-cells", idx * 2,
395 &src_args);
396 if (ret)
397 return ERR_PTR(ret);
398
399 of_node_put(src_args.np);
400
401 ret = of_parse_phandle_with_args(np, "interconnects",
402 "#interconnect-cells", idx * 2 + 1,
403 &dst_args);
404 if (ret)
405 return ERR_PTR(ret);
406
407 of_node_put(dst_args.np);
408
409 src_node = of_icc_get_from_provider(&src_args);
410
411 if (IS_ERR(src_node)) {
412 if (PTR_ERR(src_node) != -EPROBE_DEFER)
413 dev_err(dev, "error finding src node: %ld\n",
414 PTR_ERR(src_node));
415 return ERR_CAST(src_node);
416 }
417
418 dst_node = of_icc_get_from_provider(&dst_args);
419
420 if (IS_ERR(dst_node)) {
421 if (PTR_ERR(dst_node) != -EPROBE_DEFER)
422 dev_err(dev, "error finding dst node: %ld\n",
423 PTR_ERR(dst_node));
424 return ERR_CAST(dst_node);
425 }
426
427 mutex_lock(&icc_lock);
428 path = path_find(dev, src_node, dst_node);
87e3031b 429 mutex_unlock(&icc_lock);
05309830
GD
430 if (IS_ERR(path)) {
431 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
432 return path;
433 }
434
1597d453
GD
435 path->name = kasprintf(GFP_KERNEL, "%s-%s",
436 src_node->name, dst_node->name);
37911636
GD
437 if (!path->name) {
438 kfree(path);
439 return ERR_PTR(-ENOMEM);
440 }
441
87e3031b
GD
442 return path;
443}
1597d453
GD
444EXPORT_SYMBOL_GPL(of_icc_get_by_index);
445
446/**
447 * of_icc_get() - get a path handle from a DT node based on name
448 * @dev: device pointer for the consumer device
449 * @name: interconnect path name
450 *
451 * This function will search for a path between two endpoints and return an
452 * icc_path handle on success. Use icc_put() to release constraints when they
453 * are not needed anymore.
454 * If the interconnect API is disabled, NULL is returned and the consumer
455 * drivers will still build. Drivers are free to handle this specifically,
456 * but they don't have to.
457 *
458 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
459 * when the API is disabled or the "interconnects" DT property is missing.
460 */
461struct icc_path *of_icc_get(struct device *dev, const char *name)
462{
463 struct device_node *np;
464 int idx = 0;
465
466 if (!dev || !dev->of_node)
467 return ERR_PTR(-ENODEV);
468
469 np = dev->of_node;
470
471 /*
472 * When the consumer DT node do not have "interconnects" property
473 * return a NULL path to skip setting constraints.
474 */
475 if (!of_find_property(np, "interconnects", NULL))
476 return NULL;
477
478 /*
479 * We use a combination of phandle and specifier for endpoint. For now
480 * lets support only global ids and extend this in the future if needed
481 * without breaking DT compatibility.
482 */
483 if (name) {
484 idx = of_property_match_string(np, "interconnect-names", name);
485 if (idx < 0)
486 return ERR_PTR(idx);
487 }
488
489 return of_icc_get_by_index(dev, idx);
490}
87e3031b
GD
491EXPORT_SYMBOL_GPL(of_icc_get);
492
127ab2cc
GD
493/**
494 * icc_set_tag() - set an optional tag on a path
495 * @path: the path we want to tag
496 * @tag: the tag value
497 *
498 * This function allows consumers to append a tag to the requests associated
499 * with a path, so that a different aggregation could be done based on this tag.
500 */
501void icc_set_tag(struct icc_path *path, u32 tag)
502{
503 int i;
504
505 if (!path)
506 return;
507
a8dfe193
GD
508 mutex_lock(&icc_lock);
509
127ab2cc
GD
510 for (i = 0; i < path->num_nodes; i++)
511 path->reqs[i].tag = tag;
a8dfe193
GD
512
513 mutex_unlock(&icc_lock);
127ab2cc
GD
514}
515EXPORT_SYMBOL_GPL(icc_set_tag);
516
11f1ceca
GD
517/**
518 * icc_set_bw() - set bandwidth constraints on an interconnect path
519 * @path: reference to the path returned by icc_get()
520 * @avg_bw: average bandwidth in kilobytes per second
521 * @peak_bw: peak bandwidth in kilobytes per second
522 *
523 * This function is used by an interconnect consumer to express its own needs
524 * in terms of bandwidth for a previously requested path between two endpoints.
525 * The requests are aggregated and each node is updated accordingly. The entire
526 * path is locked by a mutex to ensure that the set() is completed.
527 * The @path can be NULL when the "interconnects" DT properties is missing,
528 * which will mean that no constraints will be set.
529 *
530 * Returns 0 on success, or an appropriate error code otherwise.
531 */
532int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
533{
534 struct icc_node *node;
dce6d406 535 u32 old_avg, old_peak;
11f1ceca
GD
536 size_t i;
537 int ret;
538
7d7899c5 539 if (!path)
11f1ceca
GD
540 return 0;
541
7d7899c5
GD
542 if (WARN_ON(IS_ERR(path) || !path->num_nodes))
543 return -EINVAL;
544
11f1ceca
GD
545 mutex_lock(&icc_lock);
546
dce6d406
GD
547 old_avg = path->reqs[0].avg_bw;
548 old_peak = path->reqs[0].peak_bw;
549
11f1ceca
GD
550 for (i = 0; i < path->num_nodes; i++) {
551 node = path->reqs[i].node;
552
553 /* update the consumer request for this path */
554 path->reqs[i].avg_bw = avg_bw;
555 path->reqs[i].peak_bw = peak_bw;
556
557 /* aggregate requests for this node */
558 aggregate_requests(node);
c46ab9db
GD
559
560 trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
11f1ceca
GD
561 }
562
563 ret = apply_constraints(path);
dce6d406 564 if (ret) {
11f1ceca
GD
565 pr_debug("interconnect: error applying constraints (%d)\n",
566 ret);
567
dce6d406
GD
568 for (i = 0; i < path->num_nodes; i++) {
569 node = path->reqs[i].node;
570 path->reqs[i].avg_bw = old_avg;
571 path->reqs[i].peak_bw = old_peak;
572 aggregate_requests(node);
573 }
574 apply_constraints(path);
575 }
576
11f1ceca
GD
577 mutex_unlock(&icc_lock);
578
c46ab9db
GD
579 trace_icc_set_bw_end(path, ret);
580
11f1ceca
GD
581 return ret;
582}
583EXPORT_SYMBOL_GPL(icc_set_bw);
584
585/**
586 * icc_get() - return a handle for path between two endpoints
587 * @dev: the device requesting the path
588 * @src_id: source device port id
589 * @dst_id: destination device port id
590 *
591 * This function will search for a path between two endpoints and return an
592 * icc_path handle on success. Use icc_put() to release
593 * constraints when they are not needed anymore.
594 * If the interconnect API is disabled, NULL is returned and the consumer
595 * drivers will still build. Drivers are free to handle this specifically,
596 * but they don't have to.
597 *
598 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
599 * interconnect API is disabled.
600 */
601struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
602{
603 struct icc_node *src, *dst;
604 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
605
606 mutex_lock(&icc_lock);
607
608 src = node_find(src_id);
609 if (!src)
610 goto out;
611
612 dst = node_find(dst_id);
613 if (!dst)
614 goto out;
615
616 path = path_find(dev, src, dst);
05309830 617 if (IS_ERR(path)) {
11f1ceca 618 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
05309830
GD
619 goto out;
620 }
11f1ceca 621
05309830 622 path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
37911636
GD
623 if (!path->name) {
624 kfree(path);
625 path = ERR_PTR(-ENOMEM);
626 }
11f1ceca
GD
627out:
628 mutex_unlock(&icc_lock);
629 return path;
630}
631EXPORT_SYMBOL_GPL(icc_get);
632
633/**
634 * icc_put() - release the reference to the icc_path
635 * @path: interconnect path
636 *
637 * Use this function to release the constraints on a path when the path is
638 * no longer needed. The constraints will be re-aggregated.
639 */
640void icc_put(struct icc_path *path)
641{
642 struct icc_node *node;
643 size_t i;
644 int ret;
645
646 if (!path || WARN_ON(IS_ERR(path)))
647 return;
648
649 ret = icc_set_bw(path, 0, 0);
650 if (ret)
651 pr_err("%s: error (%d)\n", __func__, ret);
652
653 mutex_lock(&icc_lock);
654 for (i = 0; i < path->num_nodes; i++) {
655 node = path->reqs[i].node;
656 hlist_del(&path->reqs[i].req_node);
657 if (!WARN_ON(!node->provider->users))
658 node->provider->users--;
659 }
660 mutex_unlock(&icc_lock);
661
05309830 662 kfree_const(path->name);
11f1ceca
GD
663 kfree(path);
664}
665EXPORT_SYMBOL_GPL(icc_put);
666
667static struct icc_node *icc_node_create_nolock(int id)
668{
669 struct icc_node *node;
670
671 /* check if node already exists */
672 node = node_find(id);
673 if (node)
674 return node;
675
676 node = kzalloc(sizeof(*node), GFP_KERNEL);
677 if (!node)
678 return ERR_PTR(-ENOMEM);
679
680 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
681 if (id < 0) {
682 WARN(1, "%s: couldn't get idr\n", __func__);
683 kfree(node);
684 return ERR_PTR(id);
685 }
686
687 node->id = id;
688
689 return node;
690}
691
692/**
693 * icc_node_create() - create a node
694 * @id: node id
695 *
696 * Return: icc_node pointer on success, or ERR_PTR() on error
697 */
698struct icc_node *icc_node_create(int id)
699{
700 struct icc_node *node;
701
702 mutex_lock(&icc_lock);
703
704 node = icc_node_create_nolock(id);
705
706 mutex_unlock(&icc_lock);
707
708 return node;
709}
710EXPORT_SYMBOL_GPL(icc_node_create);
711
712/**
713 * icc_node_destroy() - destroy a node
714 * @id: node id
715 */
716void icc_node_destroy(int id)
717{
718 struct icc_node *node;
719
720 mutex_lock(&icc_lock);
721
722 node = node_find(id);
723 if (node) {
724 idr_remove(&icc_idr, node->id);
725 WARN_ON(!hlist_empty(&node->req_list));
726 }
727
728 mutex_unlock(&icc_lock);
729
730 kfree(node);
731}
732EXPORT_SYMBOL_GPL(icc_node_destroy);
733
734/**
735 * icc_link_create() - create a link between two nodes
736 * @node: source node id
737 * @dst_id: destination node id
738 *
739 * Create a link between two nodes. The nodes might belong to different
740 * interconnect providers and the @dst_id node might not exist (if the
741 * provider driver has not probed yet). So just create the @dst_id node
742 * and when the actual provider driver is probed, the rest of the node
743 * data is filled.
744 *
745 * Return: 0 on success, or an error code otherwise
746 */
747int icc_link_create(struct icc_node *node, const int dst_id)
748{
749 struct icc_node *dst;
750 struct icc_node **new;
751 int ret = 0;
752
753 if (!node->provider)
754 return -EINVAL;
755
756 mutex_lock(&icc_lock);
757
758 dst = node_find(dst_id);
759 if (!dst) {
760 dst = icc_node_create_nolock(dst_id);
761
762 if (IS_ERR(dst)) {
763 ret = PTR_ERR(dst);
764 goto out;
765 }
766 }
767
768 new = krealloc(node->links,
769 (node->num_links + 1) * sizeof(*node->links),
770 GFP_KERNEL);
771 if (!new) {
772 ret = -ENOMEM;
773 goto out;
774 }
775
776 node->links = new;
777 node->links[node->num_links++] = dst;
778
779out:
780 mutex_unlock(&icc_lock);
781
782 return ret;
783}
784EXPORT_SYMBOL_GPL(icc_link_create);
785
786/**
787 * icc_link_destroy() - destroy a link between two nodes
788 * @src: pointer to source node
789 * @dst: pointer to destination node
790 *
791 * Return: 0 on success, or an error code otherwise
792 */
793int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
794{
795 struct icc_node **new;
796 size_t slot;
797 int ret = 0;
798
799 if (IS_ERR_OR_NULL(src))
800 return -EINVAL;
801
802 if (IS_ERR_OR_NULL(dst))
803 return -EINVAL;
804
805 mutex_lock(&icc_lock);
806
807 for (slot = 0; slot < src->num_links; slot++)
808 if (src->links[slot] == dst)
809 break;
810
811 if (WARN_ON(slot == src->num_links)) {
812 ret = -ENXIO;
813 goto out;
814 }
815
816 src->links[slot] = src->links[--src->num_links];
817
818 new = krealloc(src->links, src->num_links * sizeof(*src->links),
819 GFP_KERNEL);
820 if (new)
821 src->links = new;
822
823out:
824 mutex_unlock(&icc_lock);
825
826 return ret;
827}
828EXPORT_SYMBOL_GPL(icc_link_destroy);
829
830/**
831 * icc_node_add() - add interconnect node to interconnect provider
832 * @node: pointer to the interconnect node
833 * @provider: pointer to the interconnect provider
834 */
835void icc_node_add(struct icc_node *node, struct icc_provider *provider)
836{
837 mutex_lock(&icc_lock);
838
839 node->provider = provider;
840 list_add_tail(&node->node_list, &provider->nodes);
841
842 mutex_unlock(&icc_lock);
843}
844EXPORT_SYMBOL_GPL(icc_node_add);
845
846/**
847 * icc_node_del() - delete interconnect node from interconnect provider
848 * @node: pointer to the interconnect node
849 */
850void icc_node_del(struct icc_node *node)
851{
852 mutex_lock(&icc_lock);
853
854 list_del(&node->node_list);
855
856 mutex_unlock(&icc_lock);
857}
858EXPORT_SYMBOL_GPL(icc_node_del);
859
3cce2c6f
GD
860/**
861 * icc_nodes_remove() - remove all previously added nodes from provider
862 * @provider: the interconnect provider we are removing nodes from
863 *
864 * Return: 0 on success, or an error code otherwise
865 */
866int icc_nodes_remove(struct icc_provider *provider)
867{
868 struct icc_node *n, *tmp;
869
870 if (WARN_ON(IS_ERR_OR_NULL(provider)))
871 return -EINVAL;
872
873 list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
874 icc_node_del(n);
875 icc_node_destroy(n->id);
876 }
877
878 return 0;
879}
880EXPORT_SYMBOL_GPL(icc_nodes_remove);
881
11f1ceca
GD
882/**
883 * icc_provider_add() - add a new interconnect provider
884 * @provider: the interconnect provider that will be added into topology
885 *
886 * Return: 0 on success, or an error code otherwise
887 */
888int icc_provider_add(struct icc_provider *provider)
889{
890 if (WARN_ON(!provider->set))
891 return -EINVAL;
87e3031b
GD
892 if (WARN_ON(!provider->xlate))
893 return -EINVAL;
11f1ceca
GD
894
895 mutex_lock(&icc_lock);
896
897 INIT_LIST_HEAD(&provider->nodes);
898 list_add_tail(&provider->provider_list, &icc_providers);
899
900 mutex_unlock(&icc_lock);
901
902 dev_dbg(provider->dev, "interconnect provider added to topology\n");
903
904 return 0;
905}
906EXPORT_SYMBOL_GPL(icc_provider_add);
907
908/**
909 * icc_provider_del() - delete previously added interconnect provider
910 * @provider: the interconnect provider that will be removed from topology
911 *
912 * Return: 0 on success, or an error code otherwise
913 */
914int icc_provider_del(struct icc_provider *provider)
915{
916 mutex_lock(&icc_lock);
917 if (provider->users) {
918 pr_warn("interconnect provider still has %d users\n",
919 provider->users);
920 mutex_unlock(&icc_lock);
921 return -EBUSY;
922 }
923
924 if (!list_empty(&provider->nodes)) {
925 pr_warn("interconnect provider still has nodes\n");
926 mutex_unlock(&icc_lock);
927 return -EBUSY;
928 }
929
930 list_del(&provider->provider_list);
931 mutex_unlock(&icc_lock);
932
933 return 0;
934}
935EXPORT_SYMBOL_GPL(icc_provider_del);
936
3697ff43
GD
937static int __init icc_init(void)
938{
939 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
940 debugfs_create_file("interconnect_summary", 0444,
941 icc_debugfs_dir, NULL, &icc_summary_fops);
1a0013c6
LC
942 debugfs_create_file("interconnect_graph", 0444,
943 icc_debugfs_dir, NULL, &icc_graph_fops);
3697ff43
GD
944 return 0;
945}
946
8fd3574b 947device_initcall(icc_init);
3697ff43 948
11f1ceca
GD
949MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
950MODULE_DESCRIPTION("Interconnect Driver Core");
951MODULE_LICENSE("GPL v2");