]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Handle large pages correctly in free_pagetable
[mirror_ubuntu-eoan-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
2b324506
JR
37#include <asm/irq_remapping.h>
38#include <asm/io_apic.h>
39#include <asm/apic.h>
40#include <asm/hw_irq.h>
17f5b569 41#include <asm/msidef.h>
b6c02715 42#include <asm/proto.h>
46a7fa27 43#include <asm/iommu.h>
1d9b16d1 44#include <asm/gart.h>
27c2127a 45#include <asm/dma.h>
403f81d8
JR
46
47#include "amd_iommu_proto.h"
48#include "amd_iommu_types.h"
6b474b82 49#include "irq_remapping.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
b22f6434 84static const struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
50917e26
JR
91/*
92 * This struct contains device specific data for the IOMMU
93 */
94struct iommu_dev_data {
95 struct list_head list; /* For domain->dev_list */
96 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 97 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
98 struct iommu_dev_data *alias_data;/* The alias dev_data */
99 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
100 u16 devid; /* PCI Device ID */
101 bool iommu_v2; /* Device can make use of IOMMUv2 */
102 bool passthrough; /* Default for device is pt_domain */
103 struct {
104 bool enabled;
105 int qdep;
106 } ats; /* ATS state */
107 bool pri_tlp; /* PASID TLB required for
108 PPR completions */
109 u32 errata; /* Bitmap for errata to apply */
110};
111
431b2a20
JR
112/*
113 * general struct to manage commands send to an IOMMU
114 */
d6449536 115struct iommu_cmd {
b6c02715
JR
116 u32 data[4];
117};
118
05152a04
JR
119struct kmem_cache *amd_iommu_irq_cache;
120
04bfdd84 121static void update_domain(struct protection_domain *domain);
5abcdba4 122static int __init alloc_passthrough_domain(void);
c1eee67b 123
15898bbc
JR
124/****************************************************************************
125 *
126 * Helper functions
127 *
128 ****************************************************************************/
129
f62dda66 130static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
131{
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
f251e187
JR
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
f62dda66 141 dev_data->devid = devid;
8fa5f802
JR
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
145 spin_unlock_irqrestore(&dev_data_list_lock, flags);
146
147 return dev_data;
148}
149
150static void free_dev_data(struct iommu_dev_data *dev_data)
151{
152 unsigned long flags;
153
154 spin_lock_irqsave(&dev_data_list_lock, flags);
155 list_del(&dev_data->dev_data_list);
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 kfree(dev_data);
159}
160
3b03bb74
JR
161static struct iommu_dev_data *search_dev_data(u16 devid)
162{
163 struct iommu_dev_data *dev_data;
164 unsigned long flags;
165
166 spin_lock_irqsave(&dev_data_list_lock, flags);
167 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
168 if (dev_data->devid == devid)
169 goto out_unlock;
170 }
171
172 dev_data = NULL;
173
174out_unlock:
175 spin_unlock_irqrestore(&dev_data_list_lock, flags);
176
177 return dev_data;
178}
179
180static struct iommu_dev_data *find_dev_data(u16 devid)
181{
182 struct iommu_dev_data *dev_data;
183
184 dev_data = search_dev_data(devid);
185
186 if (dev_data == NULL)
187 dev_data = alloc_dev_data(devid);
188
189 return dev_data;
190}
191
15898bbc
JR
192static inline u16 get_device_id(struct device *dev)
193{
194 struct pci_dev *pdev = to_pci_dev(dev);
195
6f2729ba 196 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
197}
198
657cbb6b
JR
199static struct iommu_dev_data *get_dev_data(struct device *dev)
200{
201 return dev->archdata.iommu;
202}
203
5abcdba4
JR
204static bool pci_iommuv2_capable(struct pci_dev *pdev)
205{
206 static const int caps[] = {
207 PCI_EXT_CAP_ID_ATS,
46277b75
JR
208 PCI_EXT_CAP_ID_PRI,
209 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
210 };
211 int i, pos;
212
213 for (i = 0; i < 3; ++i) {
214 pos = pci_find_ext_capability(pdev, caps[i]);
215 if (pos == 0)
216 return false;
217 }
218
219 return true;
220}
221
6a113ddc
JR
222static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
223{
224 struct iommu_dev_data *dev_data;
225
226 dev_data = get_dev_data(&pdev->dev);
227
228 return dev_data->errata & (1 << erratum) ? true : false;
229}
230
71c70984
JR
231/*
232 * In this function the list of preallocated protection domains is traversed to
233 * find the domain for a specific device
234 */
235static struct dma_ops_domain *find_protection_domain(u16 devid)
236{
237 struct dma_ops_domain *entry, *ret = NULL;
238 unsigned long flags;
239 u16 alias = amd_iommu_alias_table[devid];
240
241 if (list_empty(&iommu_pd_list))
242 return NULL;
243
244 spin_lock_irqsave(&iommu_pd_list_lock, flags);
245
246 list_for_each_entry(entry, &iommu_pd_list, list) {
247 if (entry->target_dev == devid ||
248 entry->target_dev == alias) {
249 ret = entry;
250 break;
251 }
252 }
253
254 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
255
256 return ret;
257}
258
98fc5a69
JR
259/*
260 * This function checks if the driver got a valid device from the caller to
261 * avoid dereferencing invalid pointers.
262 */
263static bool check_device(struct device *dev)
264{
265 u16 devid;
266
267 if (!dev || !dev->dma_mask)
268 return false;
269
b82a2272
YW
270 /* No PCI device */
271 if (!dev_is_pci(dev))
98fc5a69
JR
272 return false;
273
274 devid = get_device_id(dev);
275
276 /* Out of our scope? */
277 if (devid > amd_iommu_last_bdf)
278 return false;
279
280 if (amd_iommu_rlookup_table[devid] == NULL)
281 return false;
282
283 return true;
284}
285
25b11ce2 286static void init_iommu_group(struct device *dev)
2851db21 287{
2851db21 288 struct iommu_group *group;
2851db21 289
65d5352f 290 group = iommu_group_get_for_dev(dev);
25b11ce2
AW
291 if (!IS_ERR(group))
292 iommu_group_put(group);
eb9c9527
AW
293}
294
c1931090
AW
295static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
296{
297 *(u16 *)data = alias;
298 return 0;
299}
300
301static u16 get_alias(struct device *dev)
302{
303 struct pci_dev *pdev = to_pci_dev(dev);
304 u16 devid, ivrs_alias, pci_alias;
305
306 devid = get_device_id(dev);
307 ivrs_alias = amd_iommu_alias_table[devid];
308 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
309
310 if (ivrs_alias == pci_alias)
311 return ivrs_alias;
312
313 /*
314 * DMA alias showdown
315 *
316 * The IVRS is fairly reliable in telling us about aliases, but it
317 * can't know about every screwy device. If we don't have an IVRS
318 * reported alias, use the PCI reported alias. In that case we may
319 * still need to initialize the rlookup and dev_table entries if the
320 * alias is to a non-existent device.
321 */
322 if (ivrs_alias == devid) {
323 if (!amd_iommu_rlookup_table[pci_alias]) {
324 amd_iommu_rlookup_table[pci_alias] =
325 amd_iommu_rlookup_table[devid];
326 memcpy(amd_iommu_dev_table[pci_alias].data,
327 amd_iommu_dev_table[devid].data,
328 sizeof(amd_iommu_dev_table[pci_alias].data));
329 }
330
331 return pci_alias;
332 }
333
334 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
335 "for device %s[%04x:%04x], kernel reported alias "
336 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
337 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
338 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
339 PCI_FUNC(pci_alias));
340
341 /*
342 * If we don't have a PCI DMA alias and the IVRS alias is on the same
343 * bus, then the IVRS table may know about a quirk that we don't.
344 */
345 if (pci_alias == devid &&
346 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
347 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
348 pdev->dma_alias_devfn = ivrs_alias & 0xff;
349 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
350 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
351 dev_name(dev));
352 }
353
354 return ivrs_alias;
355}
356
eb9c9527
AW
357static int iommu_init_device(struct device *dev)
358{
359 struct pci_dev *pdev = to_pci_dev(dev);
360 struct iommu_dev_data *dev_data;
361 u16 alias;
eb9c9527
AW
362
363 if (dev->archdata.iommu)
364 return 0;
365
366 dev_data = find_dev_data(get_device_id(dev));
367 if (!dev_data)
368 return -ENOMEM;
369
c1931090
AW
370 alias = get_alias(dev);
371
eb9c9527
AW
372 if (alias != dev_data->devid) {
373 struct iommu_dev_data *alias_data;
374
375 alias_data = find_dev_data(alias);
376 if (alias_data == NULL) {
377 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
378 dev_name(dev));
379 free_dev_data(dev_data);
380 return -ENOTSUPP;
381 }
382 dev_data->alias_data = alias_data;
eb9c9527 383
f251e187
JR
384 /* Add device to the alias_list */
385 list_add(&dev_data->alias_list, &alias_data->alias_list);
e644a013 386 }
9dcd6130 387
5abcdba4
JR
388 if (pci_iommuv2_capable(pdev)) {
389 struct amd_iommu *iommu;
390
391 iommu = amd_iommu_rlookup_table[dev_data->devid];
392 dev_data->iommu_v2 = iommu->is_iommu_v2;
393 }
394
657cbb6b
JR
395 dev->archdata.iommu = dev_data;
396
066f2e98
AW
397 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
398 dev);
399
657cbb6b
JR
400 return 0;
401}
402
26018874
JR
403static void iommu_ignore_device(struct device *dev)
404{
405 u16 devid, alias;
406
407 devid = get_device_id(dev);
408 alias = amd_iommu_alias_table[devid];
409
410 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
411 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
412
413 amd_iommu_rlookup_table[devid] = NULL;
414 amd_iommu_rlookup_table[alias] = NULL;
415}
416
657cbb6b
JR
417static void iommu_uninit_device(struct device *dev)
418{
c1931090
AW
419 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
420
421 if (!dev_data)
422 return;
423
066f2e98
AW
424 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
425 dev);
426
9dcd6130
AW
427 iommu_group_remove_device(dev);
428
c1931090
AW
429 /* Unlink from alias, it may change if another device is re-plugged */
430 dev_data->alias_data = NULL;
431
8fa5f802 432 /*
c1931090
AW
433 * We keep dev_data around for unplugged devices and reuse it when the
434 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 435 */
657cbb6b 436}
b7cc9554
JR
437
438void __init amd_iommu_uninit_devices(void)
439{
8fa5f802 440 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
441 struct pci_dev *pdev = NULL;
442
443 for_each_pci_dev(pdev) {
444
445 if (!check_device(&pdev->dev))
446 continue;
447
448 iommu_uninit_device(&pdev->dev);
449 }
8fa5f802
JR
450
451 /* Free all of our dev_data structures */
452 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
453 free_dev_data(dev_data);
b7cc9554
JR
454}
455
456int __init amd_iommu_init_devices(void)
457{
458 struct pci_dev *pdev = NULL;
459 int ret = 0;
460
461 for_each_pci_dev(pdev) {
462
463 if (!check_device(&pdev->dev))
464 continue;
465
466 ret = iommu_init_device(&pdev->dev);
26018874
JR
467 if (ret == -ENOTSUPP)
468 iommu_ignore_device(&pdev->dev);
469 else if (ret)
b7cc9554
JR
470 goto out_free;
471 }
472
25b11ce2
AW
473 /*
474 * Initialize IOMMU groups only after iommu_init_device() has
475 * had a chance to populate any IVRS defined aliases.
476 */
477 for_each_pci_dev(pdev) {
478 if (check_device(&pdev->dev))
479 init_iommu_group(&pdev->dev);
480 }
481
b7cc9554
JR
482 return 0;
483
484out_free:
485
486 amd_iommu_uninit_devices();
487
488 return ret;
489}
7f26508b
JR
490#ifdef CONFIG_AMD_IOMMU_STATS
491
492/*
493 * Initialization code for statistics collection
494 */
495
da49f6df 496DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 497DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 498DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 499DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 500DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 501DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 502DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 503DECLARE_STATS_COUNTER(cross_page);
f57d98ae 504DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 505DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 506DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 507DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
508DECLARE_STATS_COUNTER(complete_ppr);
509DECLARE_STATS_COUNTER(invalidate_iotlb);
510DECLARE_STATS_COUNTER(invalidate_iotlb_all);
511DECLARE_STATS_COUNTER(pri_requests);
512
7f26508b 513static struct dentry *stats_dir;
7f26508b
JR
514static struct dentry *de_fflush;
515
516static void amd_iommu_stats_add(struct __iommu_counter *cnt)
517{
518 if (stats_dir == NULL)
519 return;
520
521 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
522 &cnt->value);
523}
524
525static void amd_iommu_stats_init(void)
526{
527 stats_dir = debugfs_create_dir("amd-iommu", NULL);
528 if (stats_dir == NULL)
529 return;
530
7f26508b 531 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 532 &amd_iommu_unmap_flush);
da49f6df
JR
533
534 amd_iommu_stats_add(&compl_wait);
0f2a86f2 535 amd_iommu_stats_add(&cnt_map_single);
146a6917 536 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 537 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 538 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 539 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 540 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 541 amd_iommu_stats_add(&cross_page);
f57d98ae 542 amd_iommu_stats_add(&domain_flush_single);
18811f55 543 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 544 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 545 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
546 amd_iommu_stats_add(&complete_ppr);
547 amd_iommu_stats_add(&invalidate_iotlb);
548 amd_iommu_stats_add(&invalidate_iotlb_all);
549 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
550}
551
552#endif
553
a80dc3e0
JR
554/****************************************************************************
555 *
556 * Interrupt handling functions
557 *
558 ****************************************************************************/
559
e3e59876
JR
560static void dump_dte_entry(u16 devid)
561{
562 int i;
563
ee6c2868
JR
564 for (i = 0; i < 4; ++i)
565 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
566 amd_iommu_dev_table[devid].data[i]);
567}
568
945b4ac4
JR
569static void dump_command(unsigned long phys_addr)
570{
571 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
572 int i;
573
574 for (i = 0; i < 4; ++i)
575 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
576}
577
a345b23b 578static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 579{
3d06fca8
JR
580 int type, devid, domid, flags;
581 volatile u32 *event = __evt;
582 int count = 0;
583 u64 address;
584
585retry:
586 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
587 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
588 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
589 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
590 address = (u64)(((u64)event[3]) << 32) | event[2];
591
592 if (type == 0) {
593 /* Did we hit the erratum? */
594 if (++count == LOOP_TIMEOUT) {
595 pr_err("AMD-Vi: No event written to event log\n");
596 return;
597 }
598 udelay(1);
599 goto retry;
600 }
90008ee4 601
4c6f40d4 602 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
603
604 switch (type) {
605 case EVENT_TYPE_ILL_DEV:
606 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
607 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 608 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 609 address, flags);
e3e59876 610 dump_dte_entry(devid);
90008ee4
JR
611 break;
612 case EVENT_TYPE_IO_FAULT:
613 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
614 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
616 domid, address, flags);
617 break;
618 case EVENT_TYPE_DEV_TAB_ERR:
619 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
620 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
622 address, flags);
623 break;
624 case EVENT_TYPE_PAGE_TAB_ERR:
625 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
626 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
628 domid, address, flags);
629 break;
630 case EVENT_TYPE_ILL_CMD:
631 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 632 dump_command(address);
90008ee4
JR
633 break;
634 case EVENT_TYPE_CMD_HARD_ERR:
635 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
636 "flags=0x%04x]\n", address, flags);
637 break;
638 case EVENT_TYPE_IOTLB_INV_TO:
639 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
640 "address=0x%016llx]\n",
c5081cd7 641 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
642 address);
643 break;
644 case EVENT_TYPE_INV_DEV_REQ:
645 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
646 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 647 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
648 address, flags);
649 break;
650 default:
651 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
652 }
3d06fca8
JR
653
654 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
655}
656
657static void iommu_poll_events(struct amd_iommu *iommu)
658{
659 u32 head, tail;
90008ee4
JR
660
661 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
662 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
663
664 while (head != tail) {
a345b23b 665 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
666 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
667 }
668
669 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
670}
671
eee53537 672static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
673{
674 struct amd_iommu_fault fault;
72e1dcc4 675
399be2f5
JR
676 INC_STATS_COUNTER(pri_requests);
677
72e1dcc4
JR
678 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
679 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
680 return;
681 }
682
683 fault.address = raw[1];
684 fault.pasid = PPR_PASID(raw[0]);
685 fault.device_id = PPR_DEVID(raw[0]);
686 fault.tag = PPR_TAG(raw[0]);
687 fault.flags = PPR_FLAGS(raw[0]);
688
72e1dcc4
JR
689 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
690}
691
692static void iommu_poll_ppr_log(struct amd_iommu *iommu)
693{
72e1dcc4
JR
694 u32 head, tail;
695
696 if (iommu->ppr_log == NULL)
697 return;
698
72e1dcc4
JR
699 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
701
702 while (head != tail) {
eee53537
JR
703 volatile u64 *raw;
704 u64 entry[2];
705 int i;
706
707 raw = (u64 *)(iommu->ppr_log + head);
708
709 /*
710 * Hardware bug: Interrupt may arrive before the entry is
711 * written to memory. If this happens we need to wait for the
712 * entry to arrive.
713 */
714 for (i = 0; i < LOOP_TIMEOUT; ++i) {
715 if (PPR_REQ_TYPE(raw[0]) != 0)
716 break;
717 udelay(1);
718 }
72e1dcc4 719
eee53537
JR
720 /* Avoid memcpy function-call overhead */
721 entry[0] = raw[0];
722 entry[1] = raw[1];
72e1dcc4 723
eee53537
JR
724 /*
725 * To detect the hardware bug we need to clear the entry
726 * back to zero.
727 */
728 raw[0] = raw[1] = 0UL;
729
730 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
731 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
732 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 733
eee53537
JR
734 /* Handle PPR entry */
735 iommu_handle_ppr_entry(iommu, entry);
736
eee53537
JR
737 /* Refresh ring-buffer information */
738 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
739 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
740 }
72e1dcc4
JR
741}
742
72fe00f0 743irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 744{
3f398bc7
SS
745 struct amd_iommu *iommu = (struct amd_iommu *) data;
746 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 747
3f398bc7
SS
748 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
749 /* Enable EVT and PPR interrupts again */
750 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
751 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 752
3f398bc7
SS
753 if (status & MMIO_STATUS_EVT_INT_MASK) {
754 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
755 iommu_poll_events(iommu);
756 }
90008ee4 757
3f398bc7
SS
758 if (status & MMIO_STATUS_PPR_INT_MASK) {
759 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
760 iommu_poll_ppr_log(iommu);
761 }
90008ee4 762
3f398bc7
SS
763 /*
764 * Hardware bug: ERBT1312
765 * When re-enabling interrupt (by writing 1
766 * to clear the bit), the hardware might also try to set
767 * the interrupt bit in the event status register.
768 * In this scenario, the bit will be set, and disable
769 * subsequent interrupts.
770 *
771 * Workaround: The IOMMU driver should read back the
772 * status register and check if the interrupt bits are cleared.
773 * If not, driver will need to go through the interrupt handler
774 * again and re-clear the bits
775 */
776 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777 }
90008ee4 778 return IRQ_HANDLED;
a80dc3e0
JR
779}
780
72fe00f0
JR
781irqreturn_t amd_iommu_int_handler(int irq, void *data)
782{
783 return IRQ_WAKE_THREAD;
784}
785
431b2a20
JR
786/****************************************************************************
787 *
788 * IOMMU command queuing functions
789 *
790 ****************************************************************************/
791
ac0ea6e9
JR
792static int wait_on_sem(volatile u64 *sem)
793{
794 int i = 0;
795
796 while (*sem == 0 && i < LOOP_TIMEOUT) {
797 udelay(1);
798 i += 1;
799 }
800
801 if (i == LOOP_TIMEOUT) {
802 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
803 return -EIO;
804 }
805
806 return 0;
807}
808
809static void copy_cmd_to_buffer(struct amd_iommu *iommu,
810 struct iommu_cmd *cmd,
811 u32 tail)
a19ae1ec 812{
a19ae1ec
JR
813 u8 *target;
814
8a7c5ef3 815 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
816 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
817
818 /* Copy command to buffer */
819 memcpy(target, cmd, sizeof(*cmd));
820
821 /* Tell the IOMMU about it */
a19ae1ec 822 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 823}
a19ae1ec 824
815b33fd 825static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 826{
815b33fd
JR
827 WARN_ON(address & 0x7ULL);
828
ded46737 829 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
830 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
831 cmd->data[1] = upper_32_bits(__pa(address));
832 cmd->data[2] = 1;
ded46737
JR
833 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
834}
835
94fe79e2
JR
836static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
837{
838 memset(cmd, 0, sizeof(*cmd));
839 cmd->data[0] = devid;
840 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
841}
842
11b6402c
JR
843static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
844 size_t size, u16 domid, int pde)
845{
846 u64 pages;
ae0cbbb1 847 bool s;
11b6402c
JR
848
849 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 850 s = false;
11b6402c
JR
851
852 if (pages > 1) {
853 /*
854 * If we have to flush more than one page, flush all
855 * TLB entries for this domain
856 */
857 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 858 s = true;
11b6402c
JR
859 }
860
861 address &= PAGE_MASK;
862
863 memset(cmd, 0, sizeof(*cmd));
864 cmd->data[1] |= domid;
865 cmd->data[2] = lower_32_bits(address);
866 cmd->data[3] = upper_32_bits(address);
867 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
868 if (s) /* size bit - we flush more than one 4kb page */
869 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 870 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
871 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
872}
873
cb41ed85
JR
874static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
875 u64 address, size_t size)
876{
877 u64 pages;
ae0cbbb1 878 bool s;
cb41ed85
JR
879
880 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 881 s = false;
cb41ed85
JR
882
883 if (pages > 1) {
884 /*
885 * If we have to flush more than one page, flush all
886 * TLB entries for this domain
887 */
888 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 889 s = true;
cb41ed85
JR
890 }
891
892 address &= PAGE_MASK;
893
894 memset(cmd, 0, sizeof(*cmd));
895 cmd->data[0] = devid;
896 cmd->data[0] |= (qdep & 0xff) << 24;
897 cmd->data[1] = devid;
898 cmd->data[2] = lower_32_bits(address);
899 cmd->data[3] = upper_32_bits(address);
900 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
901 if (s)
902 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
903}
904
22e266c7
JR
905static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
906 u64 address, bool size)
907{
908 memset(cmd, 0, sizeof(*cmd));
909
910 address &= ~(0xfffULL);
911
a919a018 912 cmd->data[0] = pasid;
22e266c7
JR
913 cmd->data[1] = domid;
914 cmd->data[2] = lower_32_bits(address);
915 cmd->data[3] = upper_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
917 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
921}
922
923static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int qdep, u64 address, bool size)
925{
926 memset(cmd, 0, sizeof(*cmd));
927
928 address &= ~(0xfffULL);
929
930 cmd->data[0] = devid;
e8d2d82d 931 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
932 cmd->data[0] |= (qdep & 0xff) << 24;
933 cmd->data[1] = devid;
e8d2d82d 934 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
935 cmd->data[2] = lower_32_bits(address);
936 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
937 cmd->data[3] = upper_32_bits(address);
938 if (size)
939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
940 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
941}
942
c99afa25
JR
943static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
944 int status, int tag, bool gn)
945{
946 memset(cmd, 0, sizeof(*cmd));
947
948 cmd->data[0] = devid;
949 if (gn) {
a919a018 950 cmd->data[1] = pasid;
c99afa25
JR
951 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
952 }
953 cmd->data[3] = tag & 0x1ff;
954 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
955
956 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
957}
958
58fc7f14
JR
959static void build_inv_all(struct iommu_cmd *cmd)
960{
961 memset(cmd, 0, sizeof(*cmd));
962 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
963}
964
7ef2798d
JR
965static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
966{
967 memset(cmd, 0, sizeof(*cmd));
968 cmd->data[0] = devid;
969 CMD_SET_TYPE(cmd, CMD_INV_IRT);
970}
971
431b2a20 972/*
431b2a20 973 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 974 * hardware about the new command.
431b2a20 975 */
f1ca1512
JR
976static int iommu_queue_command_sync(struct amd_iommu *iommu,
977 struct iommu_cmd *cmd,
978 bool sync)
a19ae1ec 979{
ac0ea6e9 980 u32 left, tail, head, next_tail;
a19ae1ec 981 unsigned long flags;
a19ae1ec 982
549c90dc 983 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
984
985again:
a19ae1ec 986 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 987
ac0ea6e9
JR
988 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
990 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
991 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 992
ac0ea6e9
JR
993 if (left <= 2) {
994 struct iommu_cmd sync_cmd;
995 volatile u64 sem = 0;
996 int ret;
8d201968 997
ac0ea6e9
JR
998 build_completion_wait(&sync_cmd, (u64)&sem);
999 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1000
ac0ea6e9
JR
1001 spin_unlock_irqrestore(&iommu->lock, flags);
1002
1003 if ((ret = wait_on_sem(&sem)) != 0)
1004 return ret;
1005
1006 goto again;
8d201968
JR
1007 }
1008
ac0ea6e9
JR
1009 copy_cmd_to_buffer(iommu, cmd, tail);
1010
1011 /* We need to sync now to make sure all commands are processed */
f1ca1512 1012 iommu->need_sync = sync;
ac0ea6e9 1013
a19ae1ec 1014 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1015
815b33fd 1016 return 0;
8d201968
JR
1017}
1018
f1ca1512
JR
1019static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1020{
1021 return iommu_queue_command_sync(iommu, cmd, true);
1022}
1023
8d201968
JR
1024/*
1025 * This function queues a completion wait command into the command
1026 * buffer of an IOMMU
1027 */
a19ae1ec 1028static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1029{
1030 struct iommu_cmd cmd;
815b33fd 1031 volatile u64 sem = 0;
ac0ea6e9 1032 int ret;
8d201968 1033
09ee17eb 1034 if (!iommu->need_sync)
815b33fd 1035 return 0;
09ee17eb 1036
815b33fd 1037 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1038
f1ca1512 1039 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1040 if (ret)
815b33fd 1041 return ret;
8d201968 1042
ac0ea6e9 1043 return wait_on_sem(&sem);
8d201968
JR
1044}
1045
d8c13085 1046static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1047{
d8c13085 1048 struct iommu_cmd cmd;
a19ae1ec 1049
d8c13085 1050 build_inv_dte(&cmd, devid);
7e4f88da 1051
d8c13085
JR
1052 return iommu_queue_command(iommu, &cmd);
1053}
09ee17eb 1054
7d0c5cc5
JR
1055static void iommu_flush_dte_all(struct amd_iommu *iommu)
1056{
1057 u32 devid;
09ee17eb 1058
7d0c5cc5
JR
1059 for (devid = 0; devid <= 0xffff; ++devid)
1060 iommu_flush_dte(iommu, devid);
a19ae1ec 1061
7d0c5cc5
JR
1062 iommu_completion_wait(iommu);
1063}
84df8175 1064
7d0c5cc5
JR
1065/*
1066 * This function uses heavy locking and may disable irqs for some time. But
1067 * this is no issue because it is only called during resume.
1068 */
1069static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1070{
1071 u32 dom_id;
a19ae1ec 1072
7d0c5cc5
JR
1073 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1074 struct iommu_cmd cmd;
1075 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1076 dom_id, 1);
1077 iommu_queue_command(iommu, &cmd);
1078 }
8eed9833 1079
7d0c5cc5 1080 iommu_completion_wait(iommu);
a19ae1ec
JR
1081}
1082
58fc7f14 1083static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1084{
58fc7f14 1085 struct iommu_cmd cmd;
0518a3a4 1086
58fc7f14 1087 build_inv_all(&cmd);
0518a3a4 1088
58fc7f14
JR
1089 iommu_queue_command(iommu, &cmd);
1090 iommu_completion_wait(iommu);
1091}
1092
7ef2798d
JR
1093static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1094{
1095 struct iommu_cmd cmd;
1096
1097 build_inv_irt(&cmd, devid);
1098
1099 iommu_queue_command(iommu, &cmd);
1100}
1101
1102static void iommu_flush_irt_all(struct amd_iommu *iommu)
1103{
1104 u32 devid;
1105
1106 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1107 iommu_flush_irt(iommu, devid);
1108
1109 iommu_completion_wait(iommu);
1110}
1111
7d0c5cc5
JR
1112void iommu_flush_all_caches(struct amd_iommu *iommu)
1113{
58fc7f14
JR
1114 if (iommu_feature(iommu, FEATURE_IA)) {
1115 iommu_flush_all(iommu);
1116 } else {
1117 iommu_flush_dte_all(iommu);
7ef2798d 1118 iommu_flush_irt_all(iommu);
58fc7f14 1119 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1120 }
1121}
1122
431b2a20 1123/*
cb41ed85 1124 * Command send function for flushing on-device TLB
431b2a20 1125 */
6c542047
JR
1126static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1127 u64 address, size_t size)
3fa43655
JR
1128{
1129 struct amd_iommu *iommu;
b00d3bcf 1130 struct iommu_cmd cmd;
cb41ed85 1131 int qdep;
3fa43655 1132
ea61cddb
JR
1133 qdep = dev_data->ats.qdep;
1134 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1135
ea61cddb 1136 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1137
1138 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1139}
1140
431b2a20 1141/*
431b2a20 1142 * Command send function for invalidating a device table entry
431b2a20 1143 */
6c542047 1144static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1145{
3fa43655 1146 struct amd_iommu *iommu;
ee2fa743 1147 int ret;
a19ae1ec 1148
6c542047 1149 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1150
f62dda66 1151 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1152 if (ret)
1153 return ret;
1154
ea61cddb 1155 if (dev_data->ats.enabled)
6c542047 1156 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1157
ee2fa743 1158 return ret;
a19ae1ec
JR
1159}
1160
431b2a20
JR
1161/*
1162 * TLB invalidation function which is called from the mapping functions.
1163 * It invalidates a single PTE if the range to flush is within a single
1164 * page. Otherwise it flushes the whole TLB of the IOMMU.
1165 */
17b124bf
JR
1166static void __domain_flush_pages(struct protection_domain *domain,
1167 u64 address, size_t size, int pde)
a19ae1ec 1168{
cb41ed85 1169 struct iommu_dev_data *dev_data;
11b6402c
JR
1170 struct iommu_cmd cmd;
1171 int ret = 0, i;
a19ae1ec 1172
11b6402c 1173 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1174
6de8ad9b
JR
1175 for (i = 0; i < amd_iommus_present; ++i) {
1176 if (!domain->dev_iommu[i])
1177 continue;
1178
1179 /*
1180 * Devices of this domain are behind this IOMMU
1181 * We need a TLB flush
1182 */
11b6402c 1183 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1184 }
1185
cb41ed85 1186 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1187
ea61cddb 1188 if (!dev_data->ats.enabled)
cb41ed85
JR
1189 continue;
1190
6c542047 1191 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1192 }
1193
11b6402c 1194 WARN_ON(ret);
6de8ad9b
JR
1195}
1196
17b124bf
JR
1197static void domain_flush_pages(struct protection_domain *domain,
1198 u64 address, size_t size)
6de8ad9b 1199{
17b124bf 1200 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1201}
b6c02715 1202
1c655773 1203/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1204static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1205{
17b124bf 1206 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1207}
1208
42a49f96 1209/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1210static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1211{
17b124bf 1212 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1213}
1214
17b124bf 1215static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1216{
17b124bf 1217 int i;
18811f55 1218
17b124bf
JR
1219 for (i = 0; i < amd_iommus_present; ++i) {
1220 if (!domain->dev_iommu[i])
1221 continue;
bfd1be18 1222
17b124bf
JR
1223 /*
1224 * Devices of this domain are behind this IOMMU
1225 * We need to wait for completion of all commands.
1226 */
1227 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1228 }
e394d72a
JR
1229}
1230
b00d3bcf 1231
09b42804 1232/*
b00d3bcf 1233 * This function flushes the DTEs for all devices in domain
09b42804 1234 */
17b124bf 1235static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1236{
b00d3bcf 1237 struct iommu_dev_data *dev_data;
b26e81b8 1238
b00d3bcf 1239 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1240 device_flush_dte(dev_data);
a345b23b
JR
1241}
1242
431b2a20
JR
1243/****************************************************************************
1244 *
1245 * The functions below are used the create the page table mappings for
1246 * unity mapped regions.
1247 *
1248 ****************************************************************************/
1249
308973d3
JR
1250/*
1251 * This function is used to add another level to an IO page table. Adding
1252 * another level increases the size of the address space by 9 bits to a size up
1253 * to 64 bits.
1254 */
1255static bool increase_address_space(struct protection_domain *domain,
1256 gfp_t gfp)
1257{
1258 u64 *pte;
1259
1260 if (domain->mode == PAGE_MODE_6_LEVEL)
1261 /* address space already 64 bit large */
1262 return false;
1263
1264 pte = (void *)get_zeroed_page(gfp);
1265 if (!pte)
1266 return false;
1267
1268 *pte = PM_LEVEL_PDE(domain->mode,
1269 virt_to_phys(domain->pt_root));
1270 domain->pt_root = pte;
1271 domain->mode += 1;
1272 domain->updated = true;
1273
1274 return true;
1275}
1276
1277static u64 *alloc_pte(struct protection_domain *domain,
1278 unsigned long address,
cbb9d729 1279 unsigned long page_size,
308973d3
JR
1280 u64 **pte_page,
1281 gfp_t gfp)
1282{
cbb9d729 1283 int level, end_lvl;
308973d3 1284 u64 *pte, *page;
cbb9d729
JR
1285
1286 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1287
1288 while (address > PM_LEVEL_SIZE(domain->mode))
1289 increase_address_space(domain, gfp);
1290
cbb9d729
JR
1291 level = domain->mode - 1;
1292 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1293 address = PAGE_SIZE_ALIGN(address, page_size);
1294 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1295
1296 while (level > end_lvl) {
1297 if (!IOMMU_PTE_PRESENT(*pte)) {
1298 page = (u64 *)get_zeroed_page(gfp);
1299 if (!page)
1300 return NULL;
1301 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1302 }
1303
cbb9d729
JR
1304 /* No level skipping support yet */
1305 if (PM_PTE_LEVEL(*pte) != level)
1306 return NULL;
1307
308973d3
JR
1308 level -= 1;
1309
1310 pte = IOMMU_PTE_PAGE(*pte);
1311
1312 if (pte_page && level == end_lvl)
1313 *pte_page = pte;
1314
1315 pte = &pte[PM_LEVEL_INDEX(level, address)];
1316 }
1317
1318 return pte;
1319}
1320
1321/*
1322 * This function checks if there is a PTE for a given dma address. If
1323 * there is one, it returns the pointer to it.
1324 */
3039ca1b
JR
1325static u64 *fetch_pte(struct protection_domain *domain,
1326 unsigned long address,
1327 unsigned long *page_size)
308973d3
JR
1328{
1329 int level;
1330 u64 *pte;
1331
24cd7723
JR
1332 if (address > PM_LEVEL_SIZE(domain->mode))
1333 return NULL;
1334
3039ca1b
JR
1335 level = domain->mode - 1;
1336 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1337 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1338
24cd7723
JR
1339 while (level > 0) {
1340
1341 /* Not Present */
308973d3
JR
1342 if (!IOMMU_PTE_PRESENT(*pte))
1343 return NULL;
1344
24cd7723 1345 /* Large PTE */
3039ca1b
JR
1346 if (PM_PTE_LEVEL(*pte) == 7 ||
1347 PM_PTE_LEVEL(*pte) == 0)
1348 break;
24cd7723
JR
1349
1350 /* No level skipping support yet */
1351 if (PM_PTE_LEVEL(*pte) != level)
1352 return NULL;
1353
308973d3
JR
1354 level -= 1;
1355
24cd7723 1356 /* Walk to the next level */
3039ca1b
JR
1357 pte = IOMMU_PTE_PAGE(*pte);
1358 pte = &pte[PM_LEVEL_INDEX(level, address)];
1359 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1360 }
1361
1362 if (PM_PTE_LEVEL(*pte) == 0x07) {
1363 unsigned long pte_mask;
1364
1365 /*
1366 * If we have a series of large PTEs, make
1367 * sure to return a pointer to the first one.
1368 */
1369 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1370 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1371 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1372 }
1373
1374 return pte;
1375}
1376
431b2a20
JR
1377/*
1378 * Generic mapping functions. It maps a physical address into a DMA
1379 * address space. It allocates the page table pages if necessary.
1380 * In the future it can be extended to a generic mapping function
1381 * supporting all features of AMD IOMMU page tables like level skipping
1382 * and full 64 bit address spaces.
1383 */
38e817fe
JR
1384static int iommu_map_page(struct protection_domain *dom,
1385 unsigned long bus_addr,
1386 unsigned long phys_addr,
abdc5eb3 1387 int prot,
cbb9d729 1388 unsigned long page_size)
bd0e5211 1389{
8bda3092 1390 u64 __pte, *pte;
cbb9d729 1391 int i, count;
abdc5eb3 1392
d4b03664
JR
1393 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1394 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1395
bad1cac2 1396 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1397 return -EINVAL;
1398
d4b03664
JR
1399 count = PAGE_SIZE_PTE_COUNT(page_size);
1400 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1401
63eaa75e
ML
1402 if (!pte)
1403 return -ENOMEM;
1404
cbb9d729
JR
1405 for (i = 0; i < count; ++i)
1406 if (IOMMU_PTE_PRESENT(pte[i]))
1407 return -EBUSY;
bd0e5211 1408
d4b03664 1409 if (count > 1) {
cbb9d729
JR
1410 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1411 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1412 } else
1413 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1414
bd0e5211
JR
1415 if (prot & IOMMU_PROT_IR)
1416 __pte |= IOMMU_PTE_IR;
1417 if (prot & IOMMU_PROT_IW)
1418 __pte |= IOMMU_PTE_IW;
1419
cbb9d729
JR
1420 for (i = 0; i < count; ++i)
1421 pte[i] = __pte;
bd0e5211 1422
04bfdd84
JR
1423 update_domain(dom);
1424
bd0e5211
JR
1425 return 0;
1426}
1427
24cd7723
JR
1428static unsigned long iommu_unmap_page(struct protection_domain *dom,
1429 unsigned long bus_addr,
1430 unsigned long page_size)
eb74ff6c 1431{
71b390e9
JR
1432 unsigned long long unmapped;
1433 unsigned long unmap_size;
24cd7723
JR
1434 u64 *pte;
1435
1436 BUG_ON(!is_power_of_2(page_size));
1437
1438 unmapped = 0;
eb74ff6c 1439
24cd7723
JR
1440 while (unmapped < page_size) {
1441
71b390e9
JR
1442 pte = fetch_pte(dom, bus_addr, &unmap_size);
1443
1444 if (pte) {
1445 int i, count;
1446
1447 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1448 for (i = 0; i < count; i++)
1449 pte[i] = 0ULL;
1450 }
1451
1452 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1453 unmapped += unmap_size;
1454 }
1455
60d0ca3c 1456 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1457
24cd7723 1458 return unmapped;
eb74ff6c 1459}
eb74ff6c 1460
431b2a20
JR
1461/*
1462 * This function checks if a specific unity mapping entry is needed for
1463 * this specific IOMMU.
1464 */
bd0e5211
JR
1465static int iommu_for_unity_map(struct amd_iommu *iommu,
1466 struct unity_map_entry *entry)
1467{
1468 u16 bdf, i;
1469
1470 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1471 bdf = amd_iommu_alias_table[i];
1472 if (amd_iommu_rlookup_table[bdf] == iommu)
1473 return 1;
1474 }
1475
1476 return 0;
1477}
1478
431b2a20
JR
1479/*
1480 * This function actually applies the mapping to the page table of the
1481 * dma_ops domain.
1482 */
bd0e5211
JR
1483static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1484 struct unity_map_entry *e)
1485{
1486 u64 addr;
1487 int ret;
1488
1489 for (addr = e->address_start; addr < e->address_end;
1490 addr += PAGE_SIZE) {
abdc5eb3 1491 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1492 PAGE_SIZE);
bd0e5211
JR
1493 if (ret)
1494 return ret;
1495 /*
1496 * if unity mapping is in aperture range mark the page
1497 * as allocated in the aperture
1498 */
1499 if (addr < dma_dom->aperture_size)
c3239567 1500 __set_bit(addr >> PAGE_SHIFT,
384de729 1501 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1502 }
1503
1504 return 0;
1505}
1506
171e7b37
JR
1507/*
1508 * Init the unity mappings for a specific IOMMU in the system
1509 *
1510 * Basically iterates over all unity mapping entries and applies them to
1511 * the default domain DMA of that IOMMU if necessary.
1512 */
1513static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1514{
1515 struct unity_map_entry *entry;
1516 int ret;
1517
1518 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1519 if (!iommu_for_unity_map(iommu, entry))
1520 continue;
1521 ret = dma_ops_unity_map(iommu->default_dom, entry);
1522 if (ret)
1523 return ret;
1524 }
1525
1526 return 0;
1527}
1528
431b2a20
JR
1529/*
1530 * Inits the unity mappings required for a specific device
1531 */
bd0e5211
JR
1532static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1533 u16 devid)
1534{
1535 struct unity_map_entry *e;
1536 int ret;
1537
1538 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1539 if (!(devid >= e->devid_start && devid <= e->devid_end))
1540 continue;
1541 ret = dma_ops_unity_map(dma_dom, e);
1542 if (ret)
1543 return ret;
1544 }
1545
1546 return 0;
1547}
1548
431b2a20
JR
1549/****************************************************************************
1550 *
1551 * The next functions belong to the address allocator for the dma_ops
1552 * interface functions. They work like the allocators in the other IOMMU
1553 * drivers. Its basically a bitmap which marks the allocated pages in
1554 * the aperture. Maybe it could be enhanced in the future to a more
1555 * efficient allocator.
1556 *
1557 ****************************************************************************/
d3086444 1558
431b2a20 1559/*
384de729 1560 * The address allocator core functions.
431b2a20
JR
1561 *
1562 * called with domain->lock held
1563 */
384de729 1564
171e7b37
JR
1565/*
1566 * Used to reserve address ranges in the aperture (e.g. for exclusion
1567 * ranges.
1568 */
1569static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1570 unsigned long start_page,
1571 unsigned int pages)
1572{
1573 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1574
1575 if (start_page + pages > last_page)
1576 pages = last_page - start_page;
1577
1578 for (i = start_page; i < start_page + pages; ++i) {
1579 int index = i / APERTURE_RANGE_PAGES;
1580 int page = i % APERTURE_RANGE_PAGES;
1581 __set_bit(page, dom->aperture[index]->bitmap);
1582 }
1583}
1584
9cabe89b
JR
1585/*
1586 * This function is used to add a new aperture range to an existing
1587 * aperture in case of dma_ops domain allocation or address allocation
1588 * failure.
1589 */
576175c2 1590static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1591 bool populate, gfp_t gfp)
1592{
1593 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1594 struct amd_iommu *iommu;
5d7c94c3 1595 unsigned long i, old_size, pte_pgsize;
9cabe89b 1596
f5e9705c
JR
1597#ifdef CONFIG_IOMMU_STRESS
1598 populate = false;
1599#endif
1600
9cabe89b
JR
1601 if (index >= APERTURE_MAX_RANGES)
1602 return -ENOMEM;
1603
1604 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1605 if (!dma_dom->aperture[index])
1606 return -ENOMEM;
1607
1608 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1609 if (!dma_dom->aperture[index]->bitmap)
1610 goto out_free;
1611
1612 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1613
1614 if (populate) {
1615 unsigned long address = dma_dom->aperture_size;
1616 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1617 u64 *pte, *pte_page;
1618
1619 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1620 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1621 &pte_page, gfp);
1622 if (!pte)
1623 goto out_free;
1624
1625 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1626
1627 address += APERTURE_RANGE_SIZE / 64;
1628 }
1629 }
1630
17f5b569 1631 old_size = dma_dom->aperture_size;
9cabe89b
JR
1632 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1633
17f5b569
JR
1634 /* Reserve address range used for MSI messages */
1635 if (old_size < MSI_ADDR_BASE_LO &&
1636 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1637 unsigned long spage;
1638 int pages;
1639
1640 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1641 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1642
1643 dma_ops_reserve_addresses(dma_dom, spage, pages);
1644 }
1645
b595076a 1646 /* Initialize the exclusion range if necessary */
576175c2
JR
1647 for_each_iommu(iommu) {
1648 if (iommu->exclusion_start &&
1649 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1650 && iommu->exclusion_start < dma_dom->aperture_size) {
1651 unsigned long startpage;
1652 int pages = iommu_num_pages(iommu->exclusion_start,
1653 iommu->exclusion_length,
1654 PAGE_SIZE);
1655 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1656 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1657 }
00cd122a
JR
1658 }
1659
1660 /*
1661 * Check for areas already mapped as present in the new aperture
1662 * range and mark those pages as reserved in the allocator. Such
1663 * mappings may already exist as a result of requested unity
1664 * mappings for devices.
1665 */
1666 for (i = dma_dom->aperture[index]->offset;
1667 i < dma_dom->aperture_size;
5d7c94c3 1668 i += pte_pgsize) {
3039ca1b 1669 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1670 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1671 continue;
1672
5d7c94c3
JR
1673 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1674 pte_pgsize >> 12);
00cd122a
JR
1675 }
1676
04bfdd84
JR
1677 update_domain(&dma_dom->domain);
1678
9cabe89b
JR
1679 return 0;
1680
1681out_free:
04bfdd84
JR
1682 update_domain(&dma_dom->domain);
1683
9cabe89b
JR
1684 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1685
1686 kfree(dma_dom->aperture[index]);
1687 dma_dom->aperture[index] = NULL;
1688
1689 return -ENOMEM;
1690}
1691
384de729
JR
1692static unsigned long dma_ops_area_alloc(struct device *dev,
1693 struct dma_ops_domain *dom,
1694 unsigned int pages,
1695 unsigned long align_mask,
1696 u64 dma_mask,
1697 unsigned long start)
1698{
803b8cb4 1699 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1700 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1701 int i = start >> APERTURE_RANGE_SHIFT;
e6aabee0 1702 unsigned long boundary_size, mask;
384de729
JR
1703 unsigned long address = -1;
1704 unsigned long limit;
1705
803b8cb4
JR
1706 next_bit >>= PAGE_SHIFT;
1707
e6aabee0
JR
1708 mask = dma_get_seg_boundary(dev);
1709
1710 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1711 1UL << (BITS_PER_LONG - PAGE_SHIFT);
384de729
JR
1712
1713 for (;i < max_index; ++i) {
1714 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1715
1716 if (dom->aperture[i]->offset >= dma_mask)
1717 break;
1718
1719 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1720 dma_mask >> PAGE_SHIFT);
1721
1722 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1723 limit, next_bit, pages, 0,
1724 boundary_size, align_mask);
1725 if (address != -1) {
1726 address = dom->aperture[i]->offset +
1727 (address << PAGE_SHIFT);
803b8cb4 1728 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1729 break;
1730 }
1731
1732 next_bit = 0;
1733 }
1734
1735 return address;
1736}
1737
d3086444
JR
1738static unsigned long dma_ops_alloc_addresses(struct device *dev,
1739 struct dma_ops_domain *dom,
6d4f343f 1740 unsigned int pages,
832a90c3
JR
1741 unsigned long align_mask,
1742 u64 dma_mask)
d3086444 1743{
d3086444 1744 unsigned long address;
d3086444 1745
fe16f088
JR
1746#ifdef CONFIG_IOMMU_STRESS
1747 dom->next_address = 0;
1748 dom->need_flush = true;
1749#endif
d3086444 1750
384de729 1751 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1752 dma_mask, dom->next_address);
d3086444 1753
1c655773 1754 if (address == -1) {
803b8cb4 1755 dom->next_address = 0;
384de729
JR
1756 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1757 dma_mask, 0);
1c655773
JR
1758 dom->need_flush = true;
1759 }
d3086444 1760
384de729 1761 if (unlikely(address == -1))
8fd524b3 1762 address = DMA_ERROR_CODE;
d3086444
JR
1763
1764 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1765
1766 return address;
1767}
1768
431b2a20
JR
1769/*
1770 * The address free function.
1771 *
1772 * called with domain->lock held
1773 */
d3086444
JR
1774static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1775 unsigned long address,
1776 unsigned int pages)
1777{
384de729
JR
1778 unsigned i = address >> APERTURE_RANGE_SHIFT;
1779 struct aperture_range *range = dom->aperture[i];
80be308d 1780
384de729
JR
1781 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1782
47bccd6b
JR
1783#ifdef CONFIG_IOMMU_STRESS
1784 if (i < 4)
1785 return;
1786#endif
80be308d 1787
803b8cb4 1788 if (address >= dom->next_address)
80be308d 1789 dom->need_flush = true;
384de729
JR
1790
1791 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1792
a66022c4 1793 bitmap_clear(range->bitmap, address, pages);
384de729 1794
d3086444
JR
1795}
1796
431b2a20
JR
1797/****************************************************************************
1798 *
1799 * The next functions belong to the domain allocation. A domain is
1800 * allocated for every IOMMU as the default domain. If device isolation
1801 * is enabled, every device get its own domain. The most important thing
1802 * about domains is the page table mapping the DMA address space they
1803 * contain.
1804 *
1805 ****************************************************************************/
1806
aeb26f55
JR
1807/*
1808 * This function adds a protection domain to the global protection domain list
1809 */
1810static void add_domain_to_list(struct protection_domain *domain)
1811{
1812 unsigned long flags;
1813
1814 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1815 list_add(&domain->list, &amd_iommu_pd_list);
1816 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1817}
1818
1819/*
1820 * This function removes a protection domain to the global
1821 * protection domain list
1822 */
1823static void del_domain_from_list(struct protection_domain *domain)
1824{
1825 unsigned long flags;
1826
1827 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1828 list_del(&domain->list);
1829 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1830}
1831
ec487d1a
JR
1832static u16 domain_id_alloc(void)
1833{
1834 unsigned long flags;
1835 int id;
1836
1837 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1838 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1839 BUG_ON(id == 0);
1840 if (id > 0 && id < MAX_DOMAIN_ID)
1841 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1842 else
1843 id = 0;
1844 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1845
1846 return id;
1847}
1848
a2acfb75
JR
1849static void domain_id_free(int id)
1850{
1851 unsigned long flags;
1852
1853 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1854 if (id > 0 && id < MAX_DOMAIN_ID)
1855 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1856 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1857}
a2acfb75 1858
5c34c403
JR
1859#define DEFINE_FREE_PT_FN(LVL, FN) \
1860static void free_pt_##LVL (unsigned long __pt) \
1861{ \
1862 unsigned long p; \
1863 u64 *pt; \
1864 int i; \
1865 \
1866 pt = (u64 *)__pt; \
1867 \
1868 for (i = 0; i < 512; ++i) { \
0b3fff54 1869 /* PTE present? */ \
5c34c403
JR
1870 if (!IOMMU_PTE_PRESENT(pt[i])) \
1871 continue; \
1872 \
0b3fff54
JR
1873 /* Large PTE? */ \
1874 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1875 PM_PTE_LEVEL(pt[i]) == 7) \
1876 continue; \
1877 \
5c34c403
JR
1878 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1879 FN(p); \
1880 } \
1881 free_page((unsigned long)pt); \
1882}
1883
1884DEFINE_FREE_PT_FN(l2, free_page)
1885DEFINE_FREE_PT_FN(l3, free_pt_l2)
1886DEFINE_FREE_PT_FN(l4, free_pt_l3)
1887DEFINE_FREE_PT_FN(l5, free_pt_l4)
1888DEFINE_FREE_PT_FN(l6, free_pt_l5)
1889
86db2e5d 1890static void free_pagetable(struct protection_domain *domain)
ec487d1a 1891{
5c34c403 1892 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1893
5c34c403
JR
1894 switch (domain->mode) {
1895 case PAGE_MODE_NONE:
1896 break;
1897 case PAGE_MODE_1_LEVEL:
1898 free_page(root);
1899 break;
1900 case PAGE_MODE_2_LEVEL:
1901 free_pt_l2(root);
1902 break;
1903 case PAGE_MODE_3_LEVEL:
1904 free_pt_l3(root);
1905 break;
1906 case PAGE_MODE_4_LEVEL:
1907 free_pt_l4(root);
1908 break;
1909 case PAGE_MODE_5_LEVEL:
1910 free_pt_l5(root);
1911 break;
1912 case PAGE_MODE_6_LEVEL:
1913 free_pt_l6(root);
1914 break;
1915 default:
1916 BUG();
ec487d1a 1917 }
ec487d1a
JR
1918}
1919
b16137b1
JR
1920static void free_gcr3_tbl_level1(u64 *tbl)
1921{
1922 u64 *ptr;
1923 int i;
1924
1925 for (i = 0; i < 512; ++i) {
1926 if (!(tbl[i] & GCR3_VALID))
1927 continue;
1928
1929 ptr = __va(tbl[i] & PAGE_MASK);
1930
1931 free_page((unsigned long)ptr);
1932 }
1933}
1934
1935static void free_gcr3_tbl_level2(u64 *tbl)
1936{
1937 u64 *ptr;
1938 int i;
1939
1940 for (i = 0; i < 512; ++i) {
1941 if (!(tbl[i] & GCR3_VALID))
1942 continue;
1943
1944 ptr = __va(tbl[i] & PAGE_MASK);
1945
1946 free_gcr3_tbl_level1(ptr);
1947 }
1948}
1949
52815b75
JR
1950static void free_gcr3_table(struct protection_domain *domain)
1951{
b16137b1
JR
1952 if (domain->glx == 2)
1953 free_gcr3_tbl_level2(domain->gcr3_tbl);
1954 else if (domain->glx == 1)
1955 free_gcr3_tbl_level1(domain->gcr3_tbl);
1956 else if (domain->glx != 0)
1957 BUG();
1958
52815b75
JR
1959 free_page((unsigned long)domain->gcr3_tbl);
1960}
1961
431b2a20
JR
1962/*
1963 * Free a domain, only used if something went wrong in the
1964 * allocation path and we need to free an already allocated page table
1965 */
ec487d1a
JR
1966static void dma_ops_domain_free(struct dma_ops_domain *dom)
1967{
384de729
JR
1968 int i;
1969
ec487d1a
JR
1970 if (!dom)
1971 return;
1972
aeb26f55
JR
1973 del_domain_from_list(&dom->domain);
1974
86db2e5d 1975 free_pagetable(&dom->domain);
ec487d1a 1976
384de729
JR
1977 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1978 if (!dom->aperture[i])
1979 continue;
1980 free_page((unsigned long)dom->aperture[i]->bitmap);
1981 kfree(dom->aperture[i]);
1982 }
ec487d1a
JR
1983
1984 kfree(dom);
1985}
1986
431b2a20
JR
1987/*
1988 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1989 * It also initializes the page table and the address allocator data
431b2a20
JR
1990 * structures required for the dma_ops interface
1991 */
87a64d52 1992static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1993{
1994 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1995
1996 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1997 if (!dma_dom)
1998 return NULL;
1999
2000 spin_lock_init(&dma_dom->domain.lock);
2001
2002 dma_dom->domain.id = domain_id_alloc();
2003 if (dma_dom->domain.id == 0)
2004 goto free_dma_dom;
7c392cbe 2005 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2006 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2007 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2008 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2009 dma_dom->domain.priv = dma_dom;
2010 if (!dma_dom->domain.pt_root)
2011 goto free_dma_dom;
ec487d1a 2012
1c655773 2013 dma_dom->need_flush = false;
bd60b735 2014 dma_dom->target_dev = 0xffff;
1c655773 2015
aeb26f55
JR
2016 add_domain_to_list(&dma_dom->domain);
2017
576175c2 2018 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2019 goto free_dma_dom;
ec487d1a 2020
431b2a20 2021 /*
ec487d1a
JR
2022 * mark the first page as allocated so we never return 0 as
2023 * a valid dma-address. So we can use 0 as error value
431b2a20 2024 */
384de729 2025 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2026 dma_dom->next_address = 0;
ec487d1a 2027
ec487d1a
JR
2028
2029 return dma_dom;
2030
2031free_dma_dom:
2032 dma_ops_domain_free(dma_dom);
2033
2034 return NULL;
2035}
2036
5b28df6f
JR
2037/*
2038 * little helper function to check whether a given protection domain is a
2039 * dma_ops domain
2040 */
2041static bool dma_ops_domain(struct protection_domain *domain)
2042{
2043 return domain->flags & PD_DMA_OPS_MASK;
2044}
2045
fd7b5535 2046static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2047{
132bd68f 2048 u64 pte_root = 0;
ee6c2868 2049 u64 flags = 0;
863c74eb 2050
132bd68f
JR
2051 if (domain->mode != PAGE_MODE_NONE)
2052 pte_root = virt_to_phys(domain->pt_root);
2053
38ddf41b
JR
2054 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2055 << DEV_ENTRY_MODE_SHIFT;
2056 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2057
ee6c2868
JR
2058 flags = amd_iommu_dev_table[devid].data[1];
2059
fd7b5535
JR
2060 if (ats)
2061 flags |= DTE_FLAG_IOTLB;
2062
52815b75
JR
2063 if (domain->flags & PD_IOMMUV2_MASK) {
2064 u64 gcr3 = __pa(domain->gcr3_tbl);
2065 u64 glx = domain->glx;
2066 u64 tmp;
2067
2068 pte_root |= DTE_FLAG_GV;
2069 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2070
2071 /* First mask out possible old values for GCR3 table */
2072 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2073 flags &= ~tmp;
2074
2075 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2076 flags &= ~tmp;
2077
2078 /* Encode GCR3 table into DTE */
2079 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2080 pte_root |= tmp;
2081
2082 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2083 flags |= tmp;
2084
2085 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2086 flags |= tmp;
2087 }
2088
ee6c2868
JR
2089 flags &= ~(0xffffUL);
2090 flags |= domain->id;
2091
2092 amd_iommu_dev_table[devid].data[1] = flags;
2093 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2094}
2095
2096static void clear_dte_entry(u16 devid)
2097{
15898bbc
JR
2098 /* remove entry from the device table seen by the hardware */
2099 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2100 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2101
2102 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2103}
2104
ec9e79ef
JR
2105static void do_attach(struct iommu_dev_data *dev_data,
2106 struct protection_domain *domain)
7f760ddd 2107{
7f760ddd 2108 struct amd_iommu *iommu;
ec9e79ef 2109 bool ats;
fd7b5535 2110
ec9e79ef
JR
2111 iommu = amd_iommu_rlookup_table[dev_data->devid];
2112 ats = dev_data->ats.enabled;
7f760ddd
JR
2113
2114 /* Update data structures */
2115 dev_data->domain = domain;
2116 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2117 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2118
2119 /* Do reference counting */
2120 domain->dev_iommu[iommu->index] += 1;
2121 domain->dev_cnt += 1;
2122
2123 /* Flush the DTE entry */
6c542047 2124 device_flush_dte(dev_data);
7f760ddd
JR
2125}
2126
ec9e79ef 2127static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2128{
7f760ddd 2129 struct amd_iommu *iommu;
7f760ddd 2130
ec9e79ef 2131 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2132
2133 /* decrease reference counters */
7f760ddd
JR
2134 dev_data->domain->dev_iommu[iommu->index] -= 1;
2135 dev_data->domain->dev_cnt -= 1;
2136
2137 /* Update data structures */
2138 dev_data->domain = NULL;
2139 list_del(&dev_data->list);
f62dda66 2140 clear_dte_entry(dev_data->devid);
15898bbc 2141
7f760ddd 2142 /* Flush the DTE entry */
6c542047 2143 device_flush_dte(dev_data);
2b681faf
JR
2144}
2145
2146/*
2147 * If a device is not yet associated with a domain, this function does
2148 * assigns it visible for the hardware
2149 */
ec9e79ef 2150static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2151 struct protection_domain *domain)
2b681faf 2152{
397111ab 2153 struct iommu_dev_data *head, *entry;
84fe6c19 2154 int ret;
657cbb6b 2155
2b681faf
JR
2156 /* lock domain */
2157 spin_lock(&domain->lock);
2158
397111ab 2159 head = dev_data;
15898bbc 2160
397111ab
JR
2161 if (head->alias_data != NULL)
2162 head = head->alias_data;
eba6ac60 2163
397111ab 2164 /* Now we have the root of the alias group, if any */
15898bbc 2165
397111ab
JR
2166 ret = -EBUSY;
2167 if (head->domain != NULL)
2168 goto out_unlock;
15898bbc 2169
397111ab
JR
2170 /* Attach alias group root */
2171 do_attach(head, domain);
eba6ac60 2172
397111ab
JR
2173 /* Attach other devices in the alias group */
2174 list_for_each_entry(entry, &head->alias_list, alias_list)
2175 do_attach(entry, domain);
24100055 2176
84fe6c19
JL
2177 ret = 0;
2178
2179out_unlock:
2180
eba6ac60
JR
2181 /* ready */
2182 spin_unlock(&domain->lock);
15898bbc 2183
84fe6c19 2184 return ret;
0feae533 2185}
b20ac0d4 2186
52815b75
JR
2187
2188static void pdev_iommuv2_disable(struct pci_dev *pdev)
2189{
2190 pci_disable_ats(pdev);
2191 pci_disable_pri(pdev);
2192 pci_disable_pasid(pdev);
2193}
2194
6a113ddc
JR
2195/* FIXME: Change generic reset-function to do the same */
2196static int pri_reset_while_enabled(struct pci_dev *pdev)
2197{
2198 u16 control;
2199 int pos;
2200
46277b75 2201 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2202 if (!pos)
2203 return -EINVAL;
2204
46277b75
JR
2205 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2206 control |= PCI_PRI_CTRL_RESET;
2207 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2208
2209 return 0;
2210}
2211
52815b75
JR
2212static int pdev_iommuv2_enable(struct pci_dev *pdev)
2213{
6a113ddc
JR
2214 bool reset_enable;
2215 int reqs, ret;
2216
2217 /* FIXME: Hardcode number of outstanding requests for now */
2218 reqs = 32;
2219 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2220 reqs = 1;
2221 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2222
2223 /* Only allow access to user-accessible pages */
2224 ret = pci_enable_pasid(pdev, 0);
2225 if (ret)
2226 goto out_err;
2227
2228 /* First reset the PRI state of the device */
2229 ret = pci_reset_pri(pdev);
2230 if (ret)
2231 goto out_err;
2232
6a113ddc
JR
2233 /* Enable PRI */
2234 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2235 if (ret)
2236 goto out_err;
2237
6a113ddc
JR
2238 if (reset_enable) {
2239 ret = pri_reset_while_enabled(pdev);
2240 if (ret)
2241 goto out_err;
2242 }
2243
52815b75
JR
2244 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2245 if (ret)
2246 goto out_err;
2247
2248 return 0;
2249
2250out_err:
2251 pci_disable_pri(pdev);
2252 pci_disable_pasid(pdev);
2253
2254 return ret;
2255}
2256
c99afa25 2257/* FIXME: Move this to PCI code */
a3b93121 2258#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2259
98f1ad25 2260static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2261{
a3b93121 2262 u16 status;
c99afa25
JR
2263 int pos;
2264
46277b75 2265 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2266 if (!pos)
2267 return false;
2268
a3b93121 2269 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2270
a3b93121 2271 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2272}
2273
407d733e 2274/*
df805abb 2275 * If a device is not yet associated with a domain, this function
407d733e
JR
2276 * assigns it visible for the hardware
2277 */
15898bbc
JR
2278static int attach_device(struct device *dev,
2279 struct protection_domain *domain)
0feae533 2280{
fd7b5535 2281 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2282 struct iommu_dev_data *dev_data;
eba6ac60 2283 unsigned long flags;
15898bbc 2284 int ret;
eba6ac60 2285
ea61cddb
JR
2286 dev_data = get_dev_data(dev);
2287
52815b75
JR
2288 if (domain->flags & PD_IOMMUV2_MASK) {
2289 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2290 return -EINVAL;
2291
2292 if (pdev_iommuv2_enable(pdev) != 0)
2293 return -EINVAL;
2294
2295 dev_data->ats.enabled = true;
2296 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2297 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2298 } else if (amd_iommu_iotlb_sup &&
2299 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2300 dev_data->ats.enabled = true;
2301 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2302 }
fd7b5535 2303
eba6ac60 2304 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2305 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2306 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2307
0feae533
JR
2308 /*
2309 * We might boot into a crash-kernel here. The crashed kernel
2310 * left the caches in the IOMMU dirty. So we have to flush
2311 * here to evict all dirty stuff.
2312 */
17b124bf 2313 domain_flush_tlb_pde(domain);
15898bbc
JR
2314
2315 return ret;
b20ac0d4
JR
2316}
2317
355bf553
JR
2318/*
2319 * Removes a device from a protection domain (unlocked)
2320 */
ec9e79ef 2321static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2322{
397111ab 2323 struct iommu_dev_data *head, *entry;
2ca76279 2324 struct protection_domain *domain;
7c392cbe 2325 unsigned long flags;
c4596114 2326
7f760ddd 2327 BUG_ON(!dev_data->domain);
355bf553 2328
2ca76279
JR
2329 domain = dev_data->domain;
2330
2331 spin_lock_irqsave(&domain->lock, flags);
24100055 2332
397111ab
JR
2333 head = dev_data;
2334 if (head->alias_data != NULL)
2335 head = head->alias_data;
71f77580 2336
397111ab
JR
2337 list_for_each_entry(entry, &head->alias_list, alias_list)
2338 do_detach(entry);
24100055 2339
397111ab 2340 do_detach(head);
7f760ddd 2341
2ca76279 2342 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2343
2344 /*
2345 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2346 * passthrough domain if it is detached from any other domain.
2347 * Make sure we can deassign from the pt_domain itself.
21129f78 2348 */
5abcdba4 2349 if (dev_data->passthrough &&
d3ad9373 2350 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2351 __attach_device(dev_data, pt_domain);
355bf553
JR
2352}
2353
2354/*
2355 * Removes a device from a protection domain (with devtable_lock held)
2356 */
15898bbc 2357static void detach_device(struct device *dev)
355bf553 2358{
52815b75 2359 struct protection_domain *domain;
ea61cddb 2360 struct iommu_dev_data *dev_data;
355bf553
JR
2361 unsigned long flags;
2362
ec9e79ef 2363 dev_data = get_dev_data(dev);
52815b75 2364 domain = dev_data->domain;
ec9e79ef 2365
355bf553
JR
2366 /* lock device table */
2367 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2368 __detach_device(dev_data);
355bf553 2369 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2370
52815b75
JR
2371 if (domain->flags & PD_IOMMUV2_MASK)
2372 pdev_iommuv2_disable(to_pci_dev(dev));
2373 else if (dev_data->ats.enabled)
ea61cddb 2374 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2375
2376 dev_data->ats.enabled = false;
355bf553 2377}
e275a2a0 2378
15898bbc
JR
2379/*
2380 * Find out the protection domain structure for a given PCI device. This
2381 * will give us the pointer to the page table root for example.
2382 */
2383static struct protection_domain *domain_for_device(struct device *dev)
2384{
71f77580 2385 struct iommu_dev_data *dev_data;
2b02b091 2386 struct protection_domain *dom = NULL;
15898bbc 2387 unsigned long flags;
15898bbc 2388
657cbb6b 2389 dev_data = get_dev_data(dev);
15898bbc 2390
2b02b091
JR
2391 if (dev_data->domain)
2392 return dev_data->domain;
15898bbc 2393
71f77580
JR
2394 if (dev_data->alias_data != NULL) {
2395 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2396
2397 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2398 if (alias_data->domain != NULL) {
2399 __attach_device(dev_data, alias_data->domain);
2400 dom = alias_data->domain;
2401 }
2402 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2403 }
15898bbc
JR
2404
2405 return dom;
2406}
2407
e275a2a0
JR
2408static int device_change_notifier(struct notifier_block *nb,
2409 unsigned long action, void *data)
2410{
e275a2a0 2411 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2412 struct protection_domain *domain;
2413 struct iommu_dev_data *dev_data;
2414 struct device *dev = data;
e275a2a0 2415 struct amd_iommu *iommu;
1ac4cbbc 2416 unsigned long flags;
5abcdba4 2417 u16 devid;
e275a2a0 2418
98fc5a69
JR
2419 if (!check_device(dev))
2420 return 0;
e275a2a0 2421
5abcdba4
JR
2422 devid = get_device_id(dev);
2423 iommu = amd_iommu_rlookup_table[devid];
2424 dev_data = get_dev_data(dev);
e275a2a0
JR
2425
2426 switch (action) {
1ac4cbbc 2427 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2428
2429 iommu_init_device(dev);
25b11ce2 2430 init_iommu_group(dev);
657cbb6b 2431
2c9195e9
JR
2432 /*
2433 * dev_data is still NULL and
2434 * got initialized in iommu_init_device
2435 */
2436 dev_data = get_dev_data(dev);
2437
2438 if (iommu_pass_through || dev_data->iommu_v2) {
2439 dev_data->passthrough = true;
2440 attach_device(dev, pt_domain);
2441 break;
2442 }
2443
657cbb6b
JR
2444 domain = domain_for_device(dev);
2445
1ac4cbbc
JR
2446 /* allocate a protection domain if a device is added */
2447 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2448 if (!dma_domain) {
2449 dma_domain = dma_ops_domain_alloc();
2450 if (!dma_domain)
2451 goto out;
2452 dma_domain->target_dev = devid;
2453
2454 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2455 list_add_tail(&dma_domain->list, &iommu_pd_list);
2456 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2457 }
ac1534a5 2458
2c9195e9 2459 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2460
e275a2a0 2461 break;
6c5cc801 2462 case BUS_NOTIFY_REMOVED_DEVICE:
657cbb6b
JR
2463
2464 iommu_uninit_device(dev);
2465
e275a2a0
JR
2466 default:
2467 goto out;
2468 }
2469
e275a2a0
JR
2470 iommu_completion_wait(iommu);
2471
2472out:
2473 return 0;
2474}
2475
b25ae679 2476static struct notifier_block device_nb = {
e275a2a0
JR
2477 .notifier_call = device_change_notifier,
2478};
355bf553 2479
8638c491
JR
2480void amd_iommu_init_notifier(void)
2481{
2482 bus_register_notifier(&pci_bus_type, &device_nb);
2483}
2484
431b2a20
JR
2485/*****************************************************************************
2486 *
2487 * The next functions belong to the dma_ops mapping/unmapping code.
2488 *
2489 *****************************************************************************/
2490
2491/*
2492 * In the dma_ops path we only have the struct device. This function
2493 * finds the corresponding IOMMU, the protection domain and the
2494 * requestor id for a given device.
2495 * If the device is not yet associated with a domain this is also done
2496 * in this function.
2497 */
94f6d190 2498static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2499{
94f6d190 2500 struct protection_domain *domain;
b20ac0d4 2501 struct dma_ops_domain *dma_dom;
94f6d190 2502 u16 devid = get_device_id(dev);
b20ac0d4 2503
f99c0f1c 2504 if (!check_device(dev))
94f6d190 2505 return ERR_PTR(-EINVAL);
b20ac0d4 2506
94f6d190
JR
2507 domain = domain_for_device(dev);
2508 if (domain != NULL && !dma_ops_domain(domain))
2509 return ERR_PTR(-EBUSY);
f99c0f1c 2510
94f6d190
JR
2511 if (domain != NULL)
2512 return domain;
b20ac0d4 2513
df805abb 2514 /* Device not bound yet - bind it */
94f6d190 2515 dma_dom = find_protection_domain(devid);
15898bbc 2516 if (!dma_dom)
94f6d190
JR
2517 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2518 attach_device(dev, &dma_dom->domain);
15898bbc 2519 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2520 dma_dom->domain.id, dev_name(dev));
f91ba190 2521
94f6d190 2522 return &dma_dom->domain;
b20ac0d4
JR
2523}
2524
04bfdd84
JR
2525static void update_device_table(struct protection_domain *domain)
2526{
492667da 2527 struct iommu_dev_data *dev_data;
04bfdd84 2528
ea61cddb
JR
2529 list_for_each_entry(dev_data, &domain->dev_list, list)
2530 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2531}
2532
2533static void update_domain(struct protection_domain *domain)
2534{
2535 if (!domain->updated)
2536 return;
2537
2538 update_device_table(domain);
17b124bf
JR
2539
2540 domain_flush_devices(domain);
2541 domain_flush_tlb_pde(domain);
04bfdd84
JR
2542
2543 domain->updated = false;
2544}
2545
8bda3092
JR
2546/*
2547 * This function fetches the PTE for a given address in the aperture
2548 */
2549static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2550 unsigned long address)
2551{
384de729 2552 struct aperture_range *aperture;
8bda3092
JR
2553 u64 *pte, *pte_page;
2554
384de729
JR
2555 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2556 if (!aperture)
2557 return NULL;
2558
2559 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2560 if (!pte) {
cbb9d729 2561 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2562 GFP_ATOMIC);
384de729
JR
2563 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2564 } else
8c8c143c 2565 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2566
04bfdd84 2567 update_domain(&dom->domain);
8bda3092
JR
2568
2569 return pte;
2570}
2571
431b2a20
JR
2572/*
2573 * This is the generic map function. It maps one 4kb page at paddr to
2574 * the given address in the DMA address space for the domain.
2575 */
680525e0 2576static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2577 unsigned long address,
2578 phys_addr_t paddr,
2579 int direction)
2580{
2581 u64 *pte, __pte;
2582
2583 WARN_ON(address > dom->aperture_size);
2584
2585 paddr &= PAGE_MASK;
2586
8bda3092 2587 pte = dma_ops_get_pte(dom, address);
53812c11 2588 if (!pte)
8fd524b3 2589 return DMA_ERROR_CODE;
cb76c322
JR
2590
2591 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2592
2593 if (direction == DMA_TO_DEVICE)
2594 __pte |= IOMMU_PTE_IR;
2595 else if (direction == DMA_FROM_DEVICE)
2596 __pte |= IOMMU_PTE_IW;
2597 else if (direction == DMA_BIDIRECTIONAL)
2598 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2599
2600 WARN_ON(*pte);
2601
2602 *pte = __pte;
2603
2604 return (dma_addr_t)address;
2605}
2606
431b2a20
JR
2607/*
2608 * The generic unmapping function for on page in the DMA address space.
2609 */
680525e0 2610static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2611 unsigned long address)
2612{
384de729 2613 struct aperture_range *aperture;
cb76c322
JR
2614 u64 *pte;
2615
2616 if (address >= dom->aperture_size)
2617 return;
2618
384de729
JR
2619 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2620 if (!aperture)
2621 return;
2622
2623 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2624 if (!pte)
2625 return;
cb76c322 2626
8c8c143c 2627 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2628
2629 WARN_ON(!*pte);
2630
2631 *pte = 0ULL;
2632}
2633
431b2a20
JR
2634/*
2635 * This function contains common code for mapping of a physically
24f81160
JR
2636 * contiguous memory region into DMA address space. It is used by all
2637 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2638 * Must be called with the domain lock held.
2639 */
cb76c322 2640static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2641 struct dma_ops_domain *dma_dom,
2642 phys_addr_t paddr,
2643 size_t size,
6d4f343f 2644 int dir,
832a90c3
JR
2645 bool align,
2646 u64 dma_mask)
cb76c322
JR
2647{
2648 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2649 dma_addr_t address, start, ret;
cb76c322 2650 unsigned int pages;
6d4f343f 2651 unsigned long align_mask = 0;
cb76c322
JR
2652 int i;
2653
e3c449f5 2654 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2655 paddr &= PAGE_MASK;
2656
8ecaf8f1
JR
2657 INC_STATS_COUNTER(total_map_requests);
2658
c1858976
JR
2659 if (pages > 1)
2660 INC_STATS_COUNTER(cross_page);
2661
6d4f343f
JR
2662 if (align)
2663 align_mask = (1UL << get_order(size)) - 1;
2664
11b83888 2665retry:
832a90c3
JR
2666 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2667 dma_mask);
8fd524b3 2668 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2669 /*
2670 * setting next_address here will let the address
2671 * allocator only scan the new allocated range in the
2672 * first run. This is a small optimization.
2673 */
2674 dma_dom->next_address = dma_dom->aperture_size;
2675
576175c2 2676 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2677 goto out;
2678
2679 /*
af901ca1 2680 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2681 * allocation again
2682 */
2683 goto retry;
2684 }
cb76c322
JR
2685
2686 start = address;
2687 for (i = 0; i < pages; ++i) {
680525e0 2688 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2689 if (ret == DMA_ERROR_CODE)
53812c11
JR
2690 goto out_unmap;
2691
cb76c322
JR
2692 paddr += PAGE_SIZE;
2693 start += PAGE_SIZE;
2694 }
2695 address += offset;
2696
5774f7c5
JR
2697 ADD_STATS_COUNTER(alloced_io_mem, size);
2698
afa9fdc2 2699 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2700 domain_flush_tlb(&dma_dom->domain);
1c655773 2701 dma_dom->need_flush = false;
318afd41 2702 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2703 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2704
cb76c322
JR
2705out:
2706 return address;
53812c11
JR
2707
2708out_unmap:
2709
2710 for (--i; i >= 0; --i) {
2711 start -= PAGE_SIZE;
680525e0 2712 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2713 }
2714
2715 dma_ops_free_addresses(dma_dom, address, pages);
2716
8fd524b3 2717 return DMA_ERROR_CODE;
cb76c322
JR
2718}
2719
431b2a20
JR
2720/*
2721 * Does the reverse of the __map_single function. Must be called with
2722 * the domain lock held too
2723 */
cd8c82e8 2724static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2725 dma_addr_t dma_addr,
2726 size_t size,
2727 int dir)
2728{
04e0463e 2729 dma_addr_t flush_addr;
cb76c322
JR
2730 dma_addr_t i, start;
2731 unsigned int pages;
2732
8fd524b3 2733 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2734 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2735 return;
2736
04e0463e 2737 flush_addr = dma_addr;
e3c449f5 2738 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2739 dma_addr &= PAGE_MASK;
2740 start = dma_addr;
2741
2742 for (i = 0; i < pages; ++i) {
680525e0 2743 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2744 start += PAGE_SIZE;
2745 }
2746
5774f7c5
JR
2747 SUB_STATS_COUNTER(alloced_io_mem, size);
2748
cb76c322 2749 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2750
80be308d 2751 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2752 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2753 dma_dom->need_flush = false;
2754 }
cb76c322
JR
2755}
2756
431b2a20
JR
2757/*
2758 * The exported map_single function for dma_ops.
2759 */
51491367
FT
2760static dma_addr_t map_page(struct device *dev, struct page *page,
2761 unsigned long offset, size_t size,
2762 enum dma_data_direction dir,
2763 struct dma_attrs *attrs)
4da70b9e
JR
2764{
2765 unsigned long flags;
4da70b9e 2766 struct protection_domain *domain;
4da70b9e 2767 dma_addr_t addr;
832a90c3 2768 u64 dma_mask;
51491367 2769 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2770
0f2a86f2
JR
2771 INC_STATS_COUNTER(cnt_map_single);
2772
94f6d190
JR
2773 domain = get_domain(dev);
2774 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2775 return (dma_addr_t)paddr;
94f6d190
JR
2776 else if (IS_ERR(domain))
2777 return DMA_ERROR_CODE;
4da70b9e 2778
f99c0f1c
JR
2779 dma_mask = *dev->dma_mask;
2780
4da70b9e 2781 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2782
cd8c82e8 2783 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2784 dma_mask);
8fd524b3 2785 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2786 goto out;
2787
17b124bf 2788 domain_flush_complete(domain);
4da70b9e
JR
2789
2790out:
2791 spin_unlock_irqrestore(&domain->lock, flags);
2792
2793 return addr;
2794}
2795
431b2a20
JR
2796/*
2797 * The exported unmap_single function for dma_ops.
2798 */
51491367
FT
2799static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2800 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2801{
2802 unsigned long flags;
4da70b9e 2803 struct protection_domain *domain;
4da70b9e 2804
146a6917
JR
2805 INC_STATS_COUNTER(cnt_unmap_single);
2806
94f6d190
JR
2807 domain = get_domain(dev);
2808 if (IS_ERR(domain))
5b28df6f
JR
2809 return;
2810
4da70b9e
JR
2811 spin_lock_irqsave(&domain->lock, flags);
2812
cd8c82e8 2813 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2814
17b124bf 2815 domain_flush_complete(domain);
4da70b9e
JR
2816
2817 spin_unlock_irqrestore(&domain->lock, flags);
2818}
2819
431b2a20
JR
2820/*
2821 * The exported map_sg function for dma_ops (handles scatter-gather
2822 * lists).
2823 */
65b050ad 2824static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2825 int nelems, enum dma_data_direction dir,
2826 struct dma_attrs *attrs)
65b050ad
JR
2827{
2828 unsigned long flags;
65b050ad 2829 struct protection_domain *domain;
65b050ad
JR
2830 int i;
2831 struct scatterlist *s;
2832 phys_addr_t paddr;
2833 int mapped_elems = 0;
832a90c3 2834 u64 dma_mask;
65b050ad 2835
d03f067a
JR
2836 INC_STATS_COUNTER(cnt_map_sg);
2837
94f6d190 2838 domain = get_domain(dev);
a0e191b2 2839 if (IS_ERR(domain))
94f6d190 2840 return 0;
dbcc112e 2841
832a90c3 2842 dma_mask = *dev->dma_mask;
65b050ad 2843
65b050ad
JR
2844 spin_lock_irqsave(&domain->lock, flags);
2845
2846 for_each_sg(sglist, s, nelems, i) {
2847 paddr = sg_phys(s);
2848
cd8c82e8 2849 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2850 paddr, s->length, dir, false,
2851 dma_mask);
65b050ad
JR
2852
2853 if (s->dma_address) {
2854 s->dma_length = s->length;
2855 mapped_elems++;
2856 } else
2857 goto unmap;
65b050ad
JR
2858 }
2859
17b124bf 2860 domain_flush_complete(domain);
65b050ad
JR
2861
2862out:
2863 spin_unlock_irqrestore(&domain->lock, flags);
2864
2865 return mapped_elems;
2866unmap:
2867 for_each_sg(sglist, s, mapped_elems, i) {
2868 if (s->dma_address)
cd8c82e8 2869 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2870 s->dma_length, dir);
2871 s->dma_address = s->dma_length = 0;
2872 }
2873
2874 mapped_elems = 0;
2875
2876 goto out;
2877}
2878
431b2a20
JR
2879/*
2880 * The exported map_sg function for dma_ops (handles scatter-gather
2881 * lists).
2882 */
65b050ad 2883static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2884 int nelems, enum dma_data_direction dir,
2885 struct dma_attrs *attrs)
65b050ad
JR
2886{
2887 unsigned long flags;
65b050ad
JR
2888 struct protection_domain *domain;
2889 struct scatterlist *s;
65b050ad
JR
2890 int i;
2891
55877a6b
JR
2892 INC_STATS_COUNTER(cnt_unmap_sg);
2893
94f6d190
JR
2894 domain = get_domain(dev);
2895 if (IS_ERR(domain))
5b28df6f
JR
2896 return;
2897
65b050ad
JR
2898 spin_lock_irqsave(&domain->lock, flags);
2899
2900 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2901 __unmap_single(domain->priv, s->dma_address,
65b050ad 2902 s->dma_length, dir);
65b050ad
JR
2903 s->dma_address = s->dma_length = 0;
2904 }
2905
17b124bf 2906 domain_flush_complete(domain);
65b050ad
JR
2907
2908 spin_unlock_irqrestore(&domain->lock, flags);
2909}
2910
431b2a20
JR
2911/*
2912 * The exported alloc_coherent function for dma_ops.
2913 */
5d8b53cf 2914static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2915 dma_addr_t *dma_addr, gfp_t flag,
2916 struct dma_attrs *attrs)
5d8b53cf 2917{
832a90c3 2918 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2919 struct protection_domain *domain;
2920 unsigned long flags;
2921 struct page *page;
5d8b53cf 2922
c8f0fb36
JR
2923 INC_STATS_COUNTER(cnt_alloc_coherent);
2924
94f6d190
JR
2925 domain = get_domain(dev);
2926 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2927 page = alloc_pages(flag, get_order(size));
2928 *dma_addr = page_to_phys(page);
2929 return page_address(page);
94f6d190
JR
2930 } else if (IS_ERR(domain))
2931 return NULL;
5d8b53cf 2932
3b839a57 2933 size = PAGE_ALIGN(size);
f99c0f1c
JR
2934 dma_mask = dev->coherent_dma_mask;
2935 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 2936
3b839a57
JR
2937 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2938 if (!page) {
2939 if (!(flag & __GFP_WAIT))
2940 return NULL;
5d8b53cf 2941
3b839a57
JR
2942 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2943 get_order(size));
2944 if (!page)
2945 return NULL;
2946 }
5d8b53cf 2947
832a90c3
JR
2948 if (!dma_mask)
2949 dma_mask = *dev->dma_mask;
2950
5d8b53cf
JR
2951 spin_lock_irqsave(&domain->lock, flags);
2952
3b839a57 2953 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2954 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2955
8fd524b3 2956 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2957 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2958 goto out_free;
367d04c4 2959 }
5d8b53cf 2960
17b124bf 2961 domain_flush_complete(domain);
5d8b53cf 2962
5d8b53cf
JR
2963 spin_unlock_irqrestore(&domain->lock, flags);
2964
3b839a57 2965 return page_address(page);
5b28df6f
JR
2966
2967out_free:
2968
3b839a57
JR
2969 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2970 __free_pages(page, get_order(size));
5b28df6f
JR
2971
2972 return NULL;
5d8b53cf
JR
2973}
2974
431b2a20
JR
2975/*
2976 * The exported free_coherent function for dma_ops.
431b2a20 2977 */
5d8b53cf 2978static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2979 void *virt_addr, dma_addr_t dma_addr,
2980 struct dma_attrs *attrs)
5d8b53cf 2981{
5d8b53cf 2982 struct protection_domain *domain;
3b839a57
JR
2983 unsigned long flags;
2984 struct page *page;
5d8b53cf 2985
5d31ee7e
JR
2986 INC_STATS_COUNTER(cnt_free_coherent);
2987
3b839a57
JR
2988 page = virt_to_page(virt_addr);
2989 size = PAGE_ALIGN(size);
2990
94f6d190
JR
2991 domain = get_domain(dev);
2992 if (IS_ERR(domain))
5b28df6f
JR
2993 goto free_mem;
2994
5d8b53cf
JR
2995 spin_lock_irqsave(&domain->lock, flags);
2996
cd8c82e8 2997 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2998
17b124bf 2999 domain_flush_complete(domain);
5d8b53cf
JR
3000
3001 spin_unlock_irqrestore(&domain->lock, flags);
3002
3003free_mem:
3b839a57
JR
3004 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3005 __free_pages(page, get_order(size));
5d8b53cf
JR
3006}
3007
b39ba6ad
JR
3008/*
3009 * This function is called by the DMA layer to find out if we can handle a
3010 * particular device. It is part of the dma_ops.
3011 */
3012static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3013{
420aef8a 3014 return check_device(dev);
b39ba6ad
JR
3015}
3016
c432f3df 3017/*
431b2a20
JR
3018 * The function for pre-allocating protection domains.
3019 *
c432f3df
JR
3020 * If the driver core informs the DMA layer if a driver grabs a device
3021 * we don't need to preallocate the protection domains anymore.
3022 * For now we have to.
3023 */
943bc7e1 3024static void __init prealloc_protection_domains(void)
c432f3df 3025{
5abcdba4 3026 struct iommu_dev_data *dev_data;
c432f3df 3027 struct dma_ops_domain *dma_dom;
5abcdba4 3028 struct pci_dev *dev = NULL;
98fc5a69 3029 u16 devid;
c432f3df 3030
d18c69d3 3031 for_each_pci_dev(dev) {
98fc5a69
JR
3032
3033 /* Do we handle this device? */
3034 if (!check_device(&dev->dev))
c432f3df 3035 continue;
98fc5a69 3036
5abcdba4
JR
3037 dev_data = get_dev_data(&dev->dev);
3038 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3039 /* Make sure passthrough domain is allocated */
3040 alloc_passthrough_domain();
3041 dev_data->passthrough = true;
3042 attach_device(&dev->dev, pt_domain);
df805abb 3043 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3044 dev_name(&dev->dev));
3045 }
3046
98fc5a69 3047 /* Is there already any domain for it? */
15898bbc 3048 if (domain_for_device(&dev->dev))
c432f3df 3049 continue;
98fc5a69
JR
3050
3051 devid = get_device_id(&dev->dev);
3052
87a64d52 3053 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3054 if (!dma_dom)
3055 continue;
3056 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3057 dma_dom->target_dev = devid;
3058
15898bbc 3059 attach_device(&dev->dev, &dma_dom->domain);
be831297 3060
bd60b735 3061 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3062 }
3063}
3064
160c1d8e 3065static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3066 .alloc = alloc_coherent,
3067 .free = free_coherent,
51491367
FT
3068 .map_page = map_page,
3069 .unmap_page = unmap_page,
6631ee9d
JR
3070 .map_sg = map_sg,
3071 .unmap_sg = unmap_sg,
b39ba6ad 3072 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3073};
3074
27c2127a
JR
3075static unsigned device_dma_ops_init(void)
3076{
5abcdba4 3077 struct iommu_dev_data *dev_data;
27c2127a
JR
3078 struct pci_dev *pdev = NULL;
3079 unsigned unhandled = 0;
3080
3081 for_each_pci_dev(pdev) {
3082 if (!check_device(&pdev->dev)) {
af1be049
JR
3083
3084 iommu_ignore_device(&pdev->dev);
3085
27c2127a
JR
3086 unhandled += 1;
3087 continue;
3088 }
3089
5abcdba4
JR
3090 dev_data = get_dev_data(&pdev->dev);
3091
3092 if (!dev_data->passthrough)
3093 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3094 else
3095 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3096 }
3097
3098 return unhandled;
3099}
3100
431b2a20
JR
3101/*
3102 * The function which clues the AMD IOMMU driver into dma_ops.
3103 */
f5325094
JR
3104
3105void __init amd_iommu_init_api(void)
3106{
2cc21c42 3107 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3108}
3109
6631ee9d
JR
3110int __init amd_iommu_init_dma_ops(void)
3111{
3112 struct amd_iommu *iommu;
27c2127a 3113 int ret, unhandled;
6631ee9d 3114
431b2a20
JR
3115 /*
3116 * first allocate a default protection domain for every IOMMU we
3117 * found in the system. Devices not assigned to any other
3118 * protection domain will be assigned to the default one.
3119 */
3bd22172 3120 for_each_iommu(iommu) {
87a64d52 3121 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3122 if (iommu->default_dom == NULL)
3123 return -ENOMEM;
e2dc14a2 3124 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3125 ret = iommu_init_unity_mappings(iommu);
3126 if (ret)
3127 goto free_domains;
3128 }
3129
431b2a20 3130 /*
8793abeb 3131 * Pre-allocate the protection domains for each device.
431b2a20 3132 */
8793abeb 3133 prealloc_protection_domains();
6631ee9d
JR
3134
3135 iommu_detected = 1;
75f1cdf1 3136 swiotlb = 0;
6631ee9d 3137
431b2a20 3138 /* Make the driver finally visible to the drivers */
27c2127a
JR
3139 unhandled = device_dma_ops_init();
3140 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3141 /* There are unhandled devices - initialize swiotlb for them */
3142 swiotlb = 1;
3143 }
6631ee9d 3144
7f26508b
JR
3145 amd_iommu_stats_init();
3146
62410eeb
JR
3147 if (amd_iommu_unmap_flush)
3148 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3149 else
3150 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3151
6631ee9d
JR
3152 return 0;
3153
3154free_domains:
3155
3bd22172 3156 for_each_iommu(iommu) {
91457df7 3157 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3158 }
3159
3160 return ret;
3161}
6d98cd80
JR
3162
3163/*****************************************************************************
3164 *
3165 * The following functions belong to the exported interface of AMD IOMMU
3166 *
3167 * This interface allows access to lower level functions of the IOMMU
3168 * like protection domain handling and assignement of devices to domains
3169 * which is not possible with the dma_ops interface.
3170 *
3171 *****************************************************************************/
3172
6d98cd80
JR
3173static void cleanup_domain(struct protection_domain *domain)
3174{
9b29d3c6 3175 struct iommu_dev_data *entry;
6d98cd80 3176 unsigned long flags;
6d98cd80
JR
3177
3178 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3179
9b29d3c6
JR
3180 while (!list_empty(&domain->dev_list)) {
3181 entry = list_first_entry(&domain->dev_list,
3182 struct iommu_dev_data, list);
3183 __detach_device(entry);
492667da 3184 }
6d98cd80
JR
3185
3186 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3187}
3188
2650815f
JR
3189static void protection_domain_free(struct protection_domain *domain)
3190{
3191 if (!domain)
3192 return;
3193
aeb26f55
JR
3194 del_domain_from_list(domain);
3195
2650815f
JR
3196 if (domain->id)
3197 domain_id_free(domain->id);
3198
3199 kfree(domain);
3200}
3201
3202static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3203{
3204 struct protection_domain *domain;
3205
3206 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3207 if (!domain)
2650815f 3208 return NULL;
c156e347
JR
3209
3210 spin_lock_init(&domain->lock);
5d214fe6 3211 mutex_init(&domain->api_lock);
c156e347
JR
3212 domain->id = domain_id_alloc();
3213 if (!domain->id)
2650815f 3214 goto out_err;
7c392cbe 3215 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3216
aeb26f55
JR
3217 add_domain_to_list(domain);
3218
2650815f
JR
3219 return domain;
3220
3221out_err:
3222 kfree(domain);
3223
3224 return NULL;
3225}
3226
5abcdba4
JR
3227static int __init alloc_passthrough_domain(void)
3228{
3229 if (pt_domain != NULL)
3230 return 0;
3231
3232 /* allocate passthrough domain */
3233 pt_domain = protection_domain_alloc();
3234 if (!pt_domain)
3235 return -ENOMEM;
3236
3237 pt_domain->mode = PAGE_MODE_NONE;
3238
3239 return 0;
3240}
2650815f
JR
3241static int amd_iommu_domain_init(struct iommu_domain *dom)
3242{
3243 struct protection_domain *domain;
3244
3245 domain = protection_domain_alloc();
3246 if (!domain)
c156e347 3247 goto out_free;
2650815f
JR
3248
3249 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3250 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3251 if (!domain->pt_root)
3252 goto out_free;
3253
f3572db8
JR
3254 domain->iommu_domain = dom;
3255
c156e347
JR
3256 dom->priv = domain;
3257
0ff64f80
JR
3258 dom->geometry.aperture_start = 0;
3259 dom->geometry.aperture_end = ~0ULL;
3260 dom->geometry.force_aperture = true;
3261
c156e347
JR
3262 return 0;
3263
3264out_free:
2650815f 3265 protection_domain_free(domain);
c156e347
JR
3266
3267 return -ENOMEM;
3268}
3269
98383fc3
JR
3270static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3271{
3272 struct protection_domain *domain = dom->priv;
3273
3274 if (!domain)
3275 return;
3276
3277 if (domain->dev_cnt > 0)
3278 cleanup_domain(domain);
3279
3280 BUG_ON(domain->dev_cnt != 0);
3281
132bd68f
JR
3282 if (domain->mode != PAGE_MODE_NONE)
3283 free_pagetable(domain);
98383fc3 3284
52815b75
JR
3285 if (domain->flags & PD_IOMMUV2_MASK)
3286 free_gcr3_table(domain);
3287
8b408fe4 3288 protection_domain_free(domain);
98383fc3
JR
3289
3290 dom->priv = NULL;
3291}
3292
684f2888
JR
3293static void amd_iommu_detach_device(struct iommu_domain *dom,
3294 struct device *dev)
3295{
657cbb6b 3296 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3297 struct amd_iommu *iommu;
684f2888
JR
3298 u16 devid;
3299
98fc5a69 3300 if (!check_device(dev))
684f2888
JR
3301 return;
3302
98fc5a69 3303 devid = get_device_id(dev);
684f2888 3304
657cbb6b 3305 if (dev_data->domain != NULL)
15898bbc 3306 detach_device(dev);
684f2888
JR
3307
3308 iommu = amd_iommu_rlookup_table[devid];
3309 if (!iommu)
3310 return;
3311
684f2888
JR
3312 iommu_completion_wait(iommu);
3313}
3314
01106066
JR
3315static int amd_iommu_attach_device(struct iommu_domain *dom,
3316 struct device *dev)
3317{
3318 struct protection_domain *domain = dom->priv;
657cbb6b 3319 struct iommu_dev_data *dev_data;
01106066 3320 struct amd_iommu *iommu;
15898bbc 3321 int ret;
01106066 3322
98fc5a69 3323 if (!check_device(dev))
01106066
JR
3324 return -EINVAL;
3325
657cbb6b
JR
3326 dev_data = dev->archdata.iommu;
3327
f62dda66 3328 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3329 if (!iommu)
3330 return -EINVAL;
3331
657cbb6b 3332 if (dev_data->domain)
15898bbc 3333 detach_device(dev);
01106066 3334
15898bbc 3335 ret = attach_device(dev, domain);
01106066
JR
3336
3337 iommu_completion_wait(iommu);
3338
15898bbc 3339 return ret;
01106066
JR
3340}
3341
468e2366 3342static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3343 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3344{
3345 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3346 int prot = 0;
3347 int ret;
3348
132bd68f
JR
3349 if (domain->mode == PAGE_MODE_NONE)
3350 return -EINVAL;
3351
c6229ca6
JR
3352 if (iommu_prot & IOMMU_READ)
3353 prot |= IOMMU_PROT_IR;
3354 if (iommu_prot & IOMMU_WRITE)
3355 prot |= IOMMU_PROT_IW;
3356
5d214fe6 3357 mutex_lock(&domain->api_lock);
795e74f7 3358 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3359 mutex_unlock(&domain->api_lock);
3360
795e74f7 3361 return ret;
c6229ca6
JR
3362}
3363
5009065d
OBC
3364static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3365 size_t page_size)
eb74ff6c 3366{
eb74ff6c 3367 struct protection_domain *domain = dom->priv;
5009065d 3368 size_t unmap_size;
eb74ff6c 3369
132bd68f
JR
3370 if (domain->mode == PAGE_MODE_NONE)
3371 return -EINVAL;
3372
5d214fe6 3373 mutex_lock(&domain->api_lock);
468e2366 3374 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3375 mutex_unlock(&domain->api_lock);
eb74ff6c 3376
17b124bf 3377 domain_flush_tlb_pde(domain);
5d214fe6 3378
5009065d 3379 return unmap_size;
eb74ff6c
JR
3380}
3381
645c4c8d 3382static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3383 dma_addr_t iova)
645c4c8d
JR
3384{
3385 struct protection_domain *domain = dom->priv;
3039ca1b 3386 unsigned long offset_mask, pte_pgsize;
f03152bb 3387 u64 *pte, __pte;
645c4c8d 3388
132bd68f
JR
3389 if (domain->mode == PAGE_MODE_NONE)
3390 return iova;
3391
3039ca1b 3392 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3393
a6d41a40 3394 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3395 return 0;
3396
b24b1b63
JR
3397 offset_mask = pte_pgsize - 1;
3398 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3399
b24b1b63 3400 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3401}
3402
ab636481 3403static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3404{
80a506b8
JR
3405 switch (cap) {
3406 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3407 return true;
bdddadcb 3408 case IOMMU_CAP_INTR_REMAP:
ab636481 3409 return (irq_remapping_enabled == 1);
cfdeec22
WD
3410 case IOMMU_CAP_NOEXEC:
3411 return false;
80a506b8
JR
3412 }
3413
ab636481 3414 return false;
dbb9fd86
SY
3415}
3416
b22f6434 3417static const struct iommu_ops amd_iommu_ops = {
ab636481 3418 .capable = amd_iommu_capable,
26961efe
JR
3419 .domain_init = amd_iommu_domain_init,
3420 .domain_destroy = amd_iommu_domain_destroy,
3421 .attach_dev = amd_iommu_attach_device,
3422 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3423 .map = amd_iommu_map,
3424 .unmap = amd_iommu_unmap,
315786eb 3425 .map_sg = default_iommu_map_sg,
26961efe 3426 .iova_to_phys = amd_iommu_iova_to_phys,
aa3de9c0 3427 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3428};
3429
0feae533
JR
3430/*****************************************************************************
3431 *
3432 * The next functions do a basic initialization of IOMMU for pass through
3433 * mode
3434 *
3435 * In passthrough mode the IOMMU is initialized and enabled but not used for
3436 * DMA-API translation.
3437 *
3438 *****************************************************************************/
3439
3440int __init amd_iommu_init_passthrough(void)
3441{
5abcdba4 3442 struct iommu_dev_data *dev_data;
0feae533 3443 struct pci_dev *dev = NULL;
5abcdba4 3444 int ret;
0feae533 3445
5abcdba4
JR
3446 ret = alloc_passthrough_domain();
3447 if (ret)
3448 return ret;
0feae533 3449
6c54aabd 3450 for_each_pci_dev(dev) {
98fc5a69 3451 if (!check_device(&dev->dev))
0feae533
JR
3452 continue;
3453
5abcdba4
JR
3454 dev_data = get_dev_data(&dev->dev);
3455 dev_data->passthrough = true;
3456
15898bbc 3457 attach_device(&dev->dev, pt_domain);
0feae533
JR
3458 }
3459
2655d7a2
JR
3460 amd_iommu_stats_init();
3461
0feae533
JR
3462 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3463
3464 return 0;
3465}
72e1dcc4
JR
3466
3467/* IOMMUv2 specific functions */
3468int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3469{
3470 return atomic_notifier_chain_register(&ppr_notifier, nb);
3471}
3472EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3473
3474int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3475{
3476 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3477}
3478EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3479
3480void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3481{
3482 struct protection_domain *domain = dom->priv;
3483 unsigned long flags;
3484
3485 spin_lock_irqsave(&domain->lock, flags);
3486
3487 /* Update data structure */
3488 domain->mode = PAGE_MODE_NONE;
3489 domain->updated = true;
3490
3491 /* Make changes visible to IOMMUs */
3492 update_domain(domain);
3493
3494 /* Page-table is not visible to IOMMU anymore, so free it */
3495 free_pagetable(domain);
3496
3497 spin_unlock_irqrestore(&domain->lock, flags);
3498}
3499EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3500
3501int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3502{
3503 struct protection_domain *domain = dom->priv;
3504 unsigned long flags;
3505 int levels, ret;
3506
3507 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3508 return -EINVAL;
3509
3510 /* Number of GCR3 table levels required */
3511 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3512 levels += 1;
3513
3514 if (levels > amd_iommu_max_glx_val)
3515 return -EINVAL;
3516
3517 spin_lock_irqsave(&domain->lock, flags);
3518
3519 /*
3520 * Save us all sanity checks whether devices already in the
3521 * domain support IOMMUv2. Just force that the domain has no
3522 * devices attached when it is switched into IOMMUv2 mode.
3523 */
3524 ret = -EBUSY;
3525 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3526 goto out;
3527
3528 ret = -ENOMEM;
3529 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3530 if (domain->gcr3_tbl == NULL)
3531 goto out;
3532
3533 domain->glx = levels;
3534 domain->flags |= PD_IOMMUV2_MASK;
3535 domain->updated = true;
3536
3537 update_domain(domain);
3538
3539 ret = 0;
3540
3541out:
3542 spin_unlock_irqrestore(&domain->lock, flags);
3543
3544 return ret;
3545}
3546EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3547
3548static int __flush_pasid(struct protection_domain *domain, int pasid,
3549 u64 address, bool size)
3550{
3551 struct iommu_dev_data *dev_data;
3552 struct iommu_cmd cmd;
3553 int i, ret;
3554
3555 if (!(domain->flags & PD_IOMMUV2_MASK))
3556 return -EINVAL;
3557
3558 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3559
3560 /*
3561 * IOMMU TLB needs to be flushed before Device TLB to
3562 * prevent device TLB refill from IOMMU TLB
3563 */
3564 for (i = 0; i < amd_iommus_present; ++i) {
3565 if (domain->dev_iommu[i] == 0)
3566 continue;
3567
3568 ret = iommu_queue_command(amd_iommus[i], &cmd);
3569 if (ret != 0)
3570 goto out;
3571 }
3572
3573 /* Wait until IOMMU TLB flushes are complete */
3574 domain_flush_complete(domain);
3575
3576 /* Now flush device TLBs */
3577 list_for_each_entry(dev_data, &domain->dev_list, list) {
3578 struct amd_iommu *iommu;
3579 int qdep;
3580
3581 BUG_ON(!dev_data->ats.enabled);
3582
3583 qdep = dev_data->ats.qdep;
3584 iommu = amd_iommu_rlookup_table[dev_data->devid];
3585
3586 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3587 qdep, address, size);
3588
3589 ret = iommu_queue_command(iommu, &cmd);
3590 if (ret != 0)
3591 goto out;
3592 }
3593
3594 /* Wait until all device TLBs are flushed */
3595 domain_flush_complete(domain);
3596
3597 ret = 0;
3598
3599out:
3600
3601 return ret;
3602}
3603
3604static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3605 u64 address)
3606{
399be2f5
JR
3607 INC_STATS_COUNTER(invalidate_iotlb);
3608
22e266c7
JR
3609 return __flush_pasid(domain, pasid, address, false);
3610}
3611
3612int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3613 u64 address)
3614{
3615 struct protection_domain *domain = dom->priv;
3616 unsigned long flags;
3617 int ret;
3618
3619 spin_lock_irqsave(&domain->lock, flags);
3620 ret = __amd_iommu_flush_page(domain, pasid, address);
3621 spin_unlock_irqrestore(&domain->lock, flags);
3622
3623 return ret;
3624}
3625EXPORT_SYMBOL(amd_iommu_flush_page);
3626
3627static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3628{
399be2f5
JR
3629 INC_STATS_COUNTER(invalidate_iotlb_all);
3630
22e266c7
JR
3631 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3632 true);
3633}
3634
3635int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3636{
3637 struct protection_domain *domain = dom->priv;
3638 unsigned long flags;
3639 int ret;
3640
3641 spin_lock_irqsave(&domain->lock, flags);
3642 ret = __amd_iommu_flush_tlb(domain, pasid);
3643 spin_unlock_irqrestore(&domain->lock, flags);
3644
3645 return ret;
3646}
3647EXPORT_SYMBOL(amd_iommu_flush_tlb);
3648
b16137b1
JR
3649static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3650{
3651 int index;
3652 u64 *pte;
3653
3654 while (true) {
3655
3656 index = (pasid >> (9 * level)) & 0x1ff;
3657 pte = &root[index];
3658
3659 if (level == 0)
3660 break;
3661
3662 if (!(*pte & GCR3_VALID)) {
3663 if (!alloc)
3664 return NULL;
3665
3666 root = (void *)get_zeroed_page(GFP_ATOMIC);
3667 if (root == NULL)
3668 return NULL;
3669
3670 *pte = __pa(root) | GCR3_VALID;
3671 }
3672
3673 root = __va(*pte & PAGE_MASK);
3674
3675 level -= 1;
3676 }
3677
3678 return pte;
3679}
3680
3681static int __set_gcr3(struct protection_domain *domain, int pasid,
3682 unsigned long cr3)
3683{
3684 u64 *pte;
3685
3686 if (domain->mode != PAGE_MODE_NONE)
3687 return -EINVAL;
3688
3689 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3690 if (pte == NULL)
3691 return -ENOMEM;
3692
3693 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3694
3695 return __amd_iommu_flush_tlb(domain, pasid);
3696}
3697
3698static int __clear_gcr3(struct protection_domain *domain, int pasid)
3699{
3700 u64 *pte;
3701
3702 if (domain->mode != PAGE_MODE_NONE)
3703 return -EINVAL;
3704
3705 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3706 if (pte == NULL)
3707 return 0;
3708
3709 *pte = 0;
3710
3711 return __amd_iommu_flush_tlb(domain, pasid);
3712}
3713
3714int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3715 unsigned long cr3)
3716{
3717 struct protection_domain *domain = dom->priv;
3718 unsigned long flags;
3719 int ret;
3720
3721 spin_lock_irqsave(&domain->lock, flags);
3722 ret = __set_gcr3(domain, pasid, cr3);
3723 spin_unlock_irqrestore(&domain->lock, flags);
3724
3725 return ret;
3726}
3727EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3728
3729int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3730{
3731 struct protection_domain *domain = dom->priv;
3732 unsigned long flags;
3733 int ret;
3734
3735 spin_lock_irqsave(&domain->lock, flags);
3736 ret = __clear_gcr3(domain, pasid);
3737 spin_unlock_irqrestore(&domain->lock, flags);
3738
3739 return ret;
3740}
3741EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3742
3743int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3744 int status, int tag)
3745{
3746 struct iommu_dev_data *dev_data;
3747 struct amd_iommu *iommu;
3748 struct iommu_cmd cmd;
3749
399be2f5
JR
3750 INC_STATS_COUNTER(complete_ppr);
3751
c99afa25
JR
3752 dev_data = get_dev_data(&pdev->dev);
3753 iommu = amd_iommu_rlookup_table[dev_data->devid];
3754
3755 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3756 tag, dev_data->pri_tlp);
3757
3758 return iommu_queue_command(iommu, &cmd);
3759}
3760EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3761
3762struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3763{
3764 struct protection_domain *domain;
3765
3766 domain = get_domain(&pdev->dev);
3767 if (IS_ERR(domain))
3768 return NULL;
3769
3770 /* Only return IOMMUv2 domains */
3771 if (!(domain->flags & PD_IOMMUV2_MASK))
3772 return NULL;
3773
3774 return domain->iommu_domain;
3775}
3776EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3777
3778void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3779{
3780 struct iommu_dev_data *dev_data;
3781
3782 if (!amd_iommu_v2_supported())
3783 return;
3784
3785 dev_data = get_dev_data(&pdev->dev);
3786 dev_data->errata |= (1 << erratum);
3787}
3788EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3789
3790int amd_iommu_device_info(struct pci_dev *pdev,
3791 struct amd_iommu_device_info *info)
3792{
3793 int max_pasids;
3794 int pos;
3795
3796 if (pdev == NULL || info == NULL)
3797 return -EINVAL;
3798
3799 if (!amd_iommu_v2_supported())
3800 return -EINVAL;
3801
3802 memset(info, 0, sizeof(*info));
3803
3804 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3805 if (pos)
3806 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3807
3808 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3809 if (pos)
3810 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3811
3812 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3813 if (pos) {
3814 int features;
3815
3816 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3817 max_pasids = min(max_pasids, (1 << 20));
3818
3819 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3820 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3821
3822 features = pci_pasid_features(pdev);
3823 if (features & PCI_PASID_CAP_EXEC)
3824 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3825 if (features & PCI_PASID_CAP_PRIV)
3826 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3827 }
3828
3829 return 0;
3830}
3831EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3832
3833#ifdef CONFIG_IRQ_REMAP
3834
3835/*****************************************************************************
3836 *
3837 * Interrupt Remapping Implementation
3838 *
3839 *****************************************************************************/
3840
3841union irte {
3842 u32 val;
3843 struct {
3844 u32 valid : 1,
3845 no_fault : 1,
3846 int_type : 3,
3847 rq_eoi : 1,
3848 dm : 1,
3849 rsvd_1 : 1,
3850 destination : 8,
3851 vector : 8,
3852 rsvd_2 : 8;
3853 } fields;
3854};
3855
3856#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3857#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3858#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3859#define DTE_IRQ_REMAP_ENABLE 1ULL
3860
3861static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3862{
3863 u64 dte;
3864
3865 dte = amd_iommu_dev_table[devid].data[2];
3866 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3867 dte |= virt_to_phys(table->table);
3868 dte |= DTE_IRQ_REMAP_INTCTL;
3869 dte |= DTE_IRQ_TABLE_LEN;
3870 dte |= DTE_IRQ_REMAP_ENABLE;
3871
3872 amd_iommu_dev_table[devid].data[2] = dte;
3873}
3874
3875#define IRTE_ALLOCATED (~1U)
3876
3877static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3878{
3879 struct irq_remap_table *table = NULL;
3880 struct amd_iommu *iommu;
3881 unsigned long flags;
3882 u16 alias;
3883
3884 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3885
3886 iommu = amd_iommu_rlookup_table[devid];
3887 if (!iommu)
3888 goto out_unlock;
3889
3890 table = irq_lookup_table[devid];
3891 if (table)
3892 goto out;
3893
3894 alias = amd_iommu_alias_table[devid];
3895 table = irq_lookup_table[alias];
3896 if (table) {
3897 irq_lookup_table[devid] = table;
3898 set_dte_irq_entry(devid, table);
3899 iommu_flush_dte(iommu, devid);
3900 goto out;
3901 }
3902
3903 /* Nothing there yet, allocate new irq remapping table */
3904 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3905 if (!table)
3906 goto out;
3907
197887f0
JR
3908 /* Initialize table spin-lock */
3909 spin_lock_init(&table->lock);
3910
2b324506
JR
3911 if (ioapic)
3912 /* Keep the first 32 indexes free for IOAPIC interrupts */
3913 table->min_index = 32;
3914
3915 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3916 if (!table->table) {
3917 kfree(table);
821f0f68 3918 table = NULL;
2b324506
JR
3919 goto out;
3920 }
3921
3922 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3923
3924 if (ioapic) {
3925 int i;
3926
3927 for (i = 0; i < 32; ++i)
3928 table->table[i] = IRTE_ALLOCATED;
3929 }
3930
3931 irq_lookup_table[devid] = table;
3932 set_dte_irq_entry(devid, table);
3933 iommu_flush_dte(iommu, devid);
3934 if (devid != alias) {
3935 irq_lookup_table[alias] = table;
e028a9e6 3936 set_dte_irq_entry(alias, table);
2b324506
JR
3937 iommu_flush_dte(iommu, alias);
3938 }
3939
3940out:
3941 iommu_completion_wait(iommu);
3942
3943out_unlock:
3944 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3945
3946 return table;
3947}
3948
3949static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3950{
3951 struct irq_remap_table *table;
3952 unsigned long flags;
3953 int index, c;
3954
3955 table = get_irq_table(devid, false);
3956 if (!table)
3957 return -ENODEV;
3958
3959 spin_lock_irqsave(&table->lock, flags);
3960
3961 /* Scan table for free entries */
3962 for (c = 0, index = table->min_index;
3963 index < MAX_IRQS_PER_TABLE;
3964 ++index) {
3965 if (table->table[index] == 0)
3966 c += 1;
3967 else
3968 c = 0;
3969
3970 if (c == count) {
0dfedd61 3971 struct irq_2_irte *irte_info;
2b324506
JR
3972
3973 for (; c != 0; --c)
3974 table->table[index - c + 1] = IRTE_ALLOCATED;
3975
3976 index -= count - 1;
3977
9b1b0e42 3978 cfg->remapped = 1;
0dfedd61
JR
3979 irte_info = &cfg->irq_2_irte;
3980 irte_info->devid = devid;
3981 irte_info->index = index;
2b324506
JR
3982
3983 goto out;
3984 }
3985 }
3986
3987 index = -ENOSPC;
3988
3989out:
3990 spin_unlock_irqrestore(&table->lock, flags);
3991
3992 return index;
3993}
3994
3995static int get_irte(u16 devid, int index, union irte *irte)
3996{
3997 struct irq_remap_table *table;
3998 unsigned long flags;
3999
4000 table = get_irq_table(devid, false);
4001 if (!table)
4002 return -ENOMEM;
4003
4004 spin_lock_irqsave(&table->lock, flags);
4005 irte->val = table->table[index];
4006 spin_unlock_irqrestore(&table->lock, flags);
4007
4008 return 0;
4009}
4010
4011static int modify_irte(u16 devid, int index, union irte irte)
4012{
4013 struct irq_remap_table *table;
4014 struct amd_iommu *iommu;
4015 unsigned long flags;
4016
4017 iommu = amd_iommu_rlookup_table[devid];
4018 if (iommu == NULL)
4019 return -EINVAL;
4020
4021 table = get_irq_table(devid, false);
4022 if (!table)
4023 return -ENOMEM;
4024
4025 spin_lock_irqsave(&table->lock, flags);
4026 table->table[index] = irte.val;
4027 spin_unlock_irqrestore(&table->lock, flags);
4028
4029 iommu_flush_irt(iommu, devid);
4030 iommu_completion_wait(iommu);
4031
4032 return 0;
4033}
4034
4035static void free_irte(u16 devid, int index)
4036{
4037 struct irq_remap_table *table;
4038 struct amd_iommu *iommu;
4039 unsigned long flags;
4040
4041 iommu = amd_iommu_rlookup_table[devid];
4042 if (iommu == NULL)
4043 return;
4044
4045 table = get_irq_table(devid, false);
4046 if (!table)
4047 return;
4048
4049 spin_lock_irqsave(&table->lock, flags);
4050 table->table[index] = 0;
4051 spin_unlock_irqrestore(&table->lock, flags);
4052
4053 iommu_flush_irt(iommu, devid);
4054 iommu_completion_wait(iommu);
4055}
4056
5527de74
JR
4057static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4058 unsigned int destination, int vector,
4059 struct io_apic_irq_attr *attr)
4060{
4061 struct irq_remap_table *table;
0dfedd61 4062 struct irq_2_irte *irte_info;
5527de74
JR
4063 struct irq_cfg *cfg;
4064 union irte irte;
4065 int ioapic_id;
4066 int index;
4067 int devid;
4068 int ret;
4069
719b530c 4070 cfg = irq_cfg(irq);
5527de74
JR
4071 if (!cfg)
4072 return -EINVAL;
4073
0dfedd61 4074 irte_info = &cfg->irq_2_irte;
5527de74
JR
4075 ioapic_id = mpc_ioapic_id(attr->ioapic);
4076 devid = get_ioapic_devid(ioapic_id);
4077
4078 if (devid < 0)
4079 return devid;
4080
4081 table = get_irq_table(devid, true);
4082 if (table == NULL)
4083 return -ENOMEM;
4084
4085 index = attr->ioapic_pin;
4086
4087 /* Setup IRQ remapping info */
9b1b0e42 4088 cfg->remapped = 1;
0dfedd61
JR
4089 irte_info->devid = devid;
4090 irte_info->index = index;
5527de74
JR
4091
4092 /* Setup IRTE for IOMMU */
4093 irte.val = 0;
4094 irte.fields.vector = vector;
4095 irte.fields.int_type = apic->irq_delivery_mode;
4096 irte.fields.destination = destination;
4097 irte.fields.dm = apic->irq_dest_mode;
4098 irte.fields.valid = 1;
4099
4100 ret = modify_irte(devid, index, irte);
4101 if (ret)
4102 return ret;
4103
4104 /* Setup IOAPIC entry */
4105 memset(entry, 0, sizeof(*entry));
4106
4107 entry->vector = index;
4108 entry->mask = 0;
4109 entry->trigger = attr->trigger;
4110 entry->polarity = attr->polarity;
4111
4112 /*
4113 * Mask level triggered irqs.
5527de74
JR
4114 */
4115 if (attr->trigger)
4116 entry->mask = 1;
4117
4118 return 0;
4119}
4120
4121static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4122 bool force)
4123{
0dfedd61 4124 struct irq_2_irte *irte_info;
5527de74
JR
4125 unsigned int dest, irq;
4126 struct irq_cfg *cfg;
4127 union irte irte;
4128 int err;
4129
4130 if (!config_enabled(CONFIG_SMP))
4131 return -1;
4132
719b530c 4133 cfg = irqd_cfg(data);
5527de74 4134 irq = data->irq;
0dfedd61 4135 irte_info = &cfg->irq_2_irte;
5527de74
JR
4136
4137 if (!cpumask_intersects(mask, cpu_online_mask))
4138 return -EINVAL;
4139
0dfedd61 4140 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4141 return -EBUSY;
4142
4143 if (assign_irq_vector(irq, cfg, mask))
4144 return -EBUSY;
4145
4146 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4147 if (err) {
4148 if (assign_irq_vector(irq, cfg, data->affinity))
4149 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4150 return err;
4151 }
4152
4153 irte.fields.vector = cfg->vector;
4154 irte.fields.destination = dest;
4155
0dfedd61 4156 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4157
4158 if (cfg->move_in_progress)
4159 send_cleanup_vector(cfg);
4160
4161 cpumask_copy(data->affinity, mask);
4162
4163 return 0;
4164}
4165
4166static int free_irq(int irq)
4167{
0dfedd61 4168 struct irq_2_irte *irte_info;
5527de74
JR
4169 struct irq_cfg *cfg;
4170
719b530c 4171 cfg = irq_cfg(irq);
5527de74
JR
4172 if (!cfg)
4173 return -EINVAL;
4174
0dfedd61 4175 irte_info = &cfg->irq_2_irte;
5527de74 4176
0dfedd61 4177 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4178
4179 return 0;
4180}
4181
0b4d48cb
JR
4182static void compose_msi_msg(struct pci_dev *pdev,
4183 unsigned int irq, unsigned int dest,
4184 struct msi_msg *msg, u8 hpet_id)
4185{
0dfedd61 4186 struct irq_2_irte *irte_info;
0b4d48cb
JR
4187 struct irq_cfg *cfg;
4188 union irte irte;
4189
719b530c 4190 cfg = irq_cfg(irq);
0b4d48cb
JR
4191 if (!cfg)
4192 return;
4193
0dfedd61 4194 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4195
4196 irte.val = 0;
4197 irte.fields.vector = cfg->vector;
4198 irte.fields.int_type = apic->irq_delivery_mode;
4199 irte.fields.destination = dest;
4200 irte.fields.dm = apic->irq_dest_mode;
4201 irte.fields.valid = 1;
4202
0dfedd61 4203 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4204
4205 msg->address_hi = MSI_ADDR_BASE_HI;
4206 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4207 msg->data = irte_info->index;
0b4d48cb
JR
4208}
4209
4210static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4211{
4212 struct irq_cfg *cfg;
4213 int index;
4214 u16 devid;
4215
4216 if (!pdev)
4217 return -EINVAL;
4218
719b530c 4219 cfg = irq_cfg(irq);
0b4d48cb
JR
4220 if (!cfg)
4221 return -EINVAL;
4222
4223 devid = get_device_id(&pdev->dev);
4224 index = alloc_irq_index(cfg, devid, nvec);
4225
4226 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4227}
4228
4229static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4230 int index, int offset)
4231{
0dfedd61 4232 struct irq_2_irte *irte_info;
0b4d48cb
JR
4233 struct irq_cfg *cfg;
4234 u16 devid;
4235
4236 if (!pdev)
4237 return -EINVAL;
4238
719b530c 4239 cfg = irq_cfg(irq);
0b4d48cb
JR
4240 if (!cfg)
4241 return -EINVAL;
4242
4243 if (index >= MAX_IRQS_PER_TABLE)
4244 return 0;
4245
4246 devid = get_device_id(&pdev->dev);
0dfedd61 4247 irte_info = &cfg->irq_2_irte;
0b4d48cb 4248
9b1b0e42 4249 cfg->remapped = 1;
0dfedd61
JR
4250 irte_info->devid = devid;
4251 irte_info->index = index + offset;
0b4d48cb
JR
4252
4253 return 0;
4254}
4255
5fc24d8c 4256static int alloc_hpet_msi(unsigned int irq, unsigned int id)
d976195c 4257{
0dfedd61 4258 struct irq_2_irte *irte_info;
d976195c
JR
4259 struct irq_cfg *cfg;
4260 int index, devid;
4261
719b530c 4262 cfg = irq_cfg(irq);
d976195c
JR
4263 if (!cfg)
4264 return -EINVAL;
4265
0dfedd61 4266 irte_info = &cfg->irq_2_irte;
d976195c
JR
4267 devid = get_hpet_devid(id);
4268 if (devid < 0)
4269 return devid;
4270
4271 index = alloc_irq_index(cfg, devid, 1);
4272 if (index < 0)
4273 return index;
4274
9b1b0e42 4275 cfg->remapped = 1;
0dfedd61
JR
4276 irte_info->devid = devid;
4277 irte_info->index = index;
d976195c
JR
4278
4279 return 0;
4280}
4281
6b474b82 4282struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4283 .prepare = amd_iommu_prepare,
4284 .enable = amd_iommu_enable,
4285 .disable = amd_iommu_disable,
4286 .reenable = amd_iommu_reenable,
4287 .enable_faulting = amd_iommu_enable_faulting,
4288 .setup_ioapic_entry = setup_ioapic_entry,
4289 .set_affinity = set_affinity,
4290 .free_irq = free_irq,
4291 .compose_msi_msg = compose_msi_msg,
4292 .msi_alloc_irq = msi_alloc_irq,
4293 .msi_setup_irq = msi_setup_irq,
5fc24d8c 4294 .alloc_hpet_msi = alloc_hpet_msi,
6b474b82 4295};
2b324506 4296#endif