]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Support IOMMU_DOMAIN_DMA type allocation
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
2b324506
JR
37#include <asm/irq_remapping.h>
38#include <asm/io_apic.h>
39#include <asm/apic.h>
40#include <asm/hw_irq.h>
17f5b569 41#include <asm/msidef.h>
b6c02715 42#include <asm/proto.h>
46a7fa27 43#include <asm/iommu.h>
1d9b16d1 44#include <asm/gart.h>
27c2127a 45#include <asm/dma.h>
403f81d8
JR
46
47#include "amd_iommu_proto.h"
48#include "amd_iommu_types.h"
6b474b82 49#include "irq_remapping.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
8fa5f802
JR
67/* List of all available dev_data structures */
68static LIST_HEAD(dev_data_list);
69static DEFINE_SPINLOCK(dev_data_list_lock);
70
6efed63b
JR
71LIST_HEAD(ioapic_map);
72LIST_HEAD(hpet_map);
73
0feae533
JR
74/*
75 * Domain for untranslated devices - only allocated
76 * if iommu=pt passed on kernel cmd line.
77 */
78static struct protection_domain *pt_domain;
79
b22f6434 80static const struct iommu_ops amd_iommu_ops;
26961efe 81
72e1dcc4 82static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 83int amd_iommu_max_glx_val = -1;
72e1dcc4 84
ac1534a5
JR
85static struct dma_map_ops amd_iommu_dma_ops;
86
50917e26
JR
87/*
88 * This struct contains device specific data for the IOMMU
89 */
90struct iommu_dev_data {
91 struct list_head list; /* For domain->dev_list */
92 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 93 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
94 struct iommu_dev_data *alias_data;/* The alias dev_data */
95 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
96 u16 devid; /* PCI Device ID */
97 bool iommu_v2; /* Device can make use of IOMMUv2 */
98 bool passthrough; /* Default for device is pt_domain */
99 struct {
100 bool enabled;
101 int qdep;
102 } ats; /* ATS state */
103 bool pri_tlp; /* PASID TLB required for
104 PPR completions */
105 u32 errata; /* Bitmap for errata to apply */
106};
107
431b2a20
JR
108/*
109 * general struct to manage commands send to an IOMMU
110 */
d6449536 111struct iommu_cmd {
b6c02715
JR
112 u32 data[4];
113};
114
05152a04
JR
115struct kmem_cache *amd_iommu_irq_cache;
116
04bfdd84 117static void update_domain(struct protection_domain *domain);
aafd8ba0 118static int alloc_passthrough_domain(void);
c1eee67b 119
15898bbc
JR
120/****************************************************************************
121 *
122 * Helper functions
123 *
124 ****************************************************************************/
125
3f4b87b9
JR
126static struct protection_domain *to_pdomain(struct iommu_domain *dom)
127{
128 return container_of(dom, struct protection_domain, domain);
129}
130
f62dda66 131static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
132{
133 struct iommu_dev_data *dev_data;
134 unsigned long flags;
135
136 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
137 if (!dev_data)
138 return NULL;
139
f251e187
JR
140 INIT_LIST_HEAD(&dev_data->alias_list);
141
f62dda66 142 dev_data->devid = devid;
8fa5f802
JR
143
144 spin_lock_irqsave(&dev_data_list_lock, flags);
145 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
146 spin_unlock_irqrestore(&dev_data_list_lock, flags);
147
148 return dev_data;
149}
150
151static void free_dev_data(struct iommu_dev_data *dev_data)
152{
153 unsigned long flags;
154
155 spin_lock_irqsave(&dev_data_list_lock, flags);
156 list_del(&dev_data->dev_data_list);
157 spin_unlock_irqrestore(&dev_data_list_lock, flags);
158
159 kfree(dev_data);
160}
161
3b03bb74
JR
162static struct iommu_dev_data *search_dev_data(u16 devid)
163{
164 struct iommu_dev_data *dev_data;
165 unsigned long flags;
166
167 spin_lock_irqsave(&dev_data_list_lock, flags);
168 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
169 if (dev_data->devid == devid)
170 goto out_unlock;
171 }
172
173 dev_data = NULL;
174
175out_unlock:
176 spin_unlock_irqrestore(&dev_data_list_lock, flags);
177
178 return dev_data;
179}
180
181static struct iommu_dev_data *find_dev_data(u16 devid)
182{
183 struct iommu_dev_data *dev_data;
184
185 dev_data = search_dev_data(devid);
186
187 if (dev_data == NULL)
188 dev_data = alloc_dev_data(devid);
189
190 return dev_data;
191}
192
15898bbc
JR
193static inline u16 get_device_id(struct device *dev)
194{
195 struct pci_dev *pdev = to_pci_dev(dev);
196
6f2729ba 197 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
198}
199
657cbb6b
JR
200static struct iommu_dev_data *get_dev_data(struct device *dev)
201{
202 return dev->archdata.iommu;
203}
204
5abcdba4
JR
205static bool pci_iommuv2_capable(struct pci_dev *pdev)
206{
207 static const int caps[] = {
208 PCI_EXT_CAP_ID_ATS,
46277b75
JR
209 PCI_EXT_CAP_ID_PRI,
210 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
211 };
212 int i, pos;
213
214 for (i = 0; i < 3; ++i) {
215 pos = pci_find_ext_capability(pdev, caps[i]);
216 if (pos == 0)
217 return false;
218 }
219
220 return true;
221}
222
6a113ddc
JR
223static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
224{
225 struct iommu_dev_data *dev_data;
226
227 dev_data = get_dev_data(&pdev->dev);
228
229 return dev_data->errata & (1 << erratum) ? true : false;
230}
231
71c70984 232/*
0bb6e243
JR
233 * This function actually applies the mapping to the page table of the
234 * dma_ops domain.
71c70984 235 */
0bb6e243
JR
236static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
237 struct unity_map_entry *e)
71c70984 238{
0bb6e243 239 u64 addr;
71c70984 240
0bb6e243
JR
241 for (addr = e->address_start; addr < e->address_end;
242 addr += PAGE_SIZE) {
243 if (addr < dma_dom->aperture_size)
244 __set_bit(addr >> PAGE_SHIFT,
245 dma_dom->aperture[0]->bitmap);
71c70984 246 }
0bb6e243 247}
71c70984 248
0bb6e243
JR
249/*
250 * Inits the unity mappings required for a specific device
251 */
252static void init_unity_mappings_for_device(struct device *dev,
253 struct dma_ops_domain *dma_dom)
254{
255 struct unity_map_entry *e;
256 u16 devid;
71c70984 257
0bb6e243
JR
258 devid = get_device_id(dev);
259
260 list_for_each_entry(e, &amd_iommu_unity_map, list) {
261 if (!(devid >= e->devid_start && devid <= e->devid_end))
262 continue;
263 alloc_unity_mapping(dma_dom, e);
264 }
71c70984
JR
265}
266
98fc5a69
JR
267/*
268 * This function checks if the driver got a valid device from the caller to
269 * avoid dereferencing invalid pointers.
270 */
271static bool check_device(struct device *dev)
272{
273 u16 devid;
274
275 if (!dev || !dev->dma_mask)
276 return false;
277
b82a2272
YW
278 /* No PCI device */
279 if (!dev_is_pci(dev))
98fc5a69
JR
280 return false;
281
282 devid = get_device_id(dev);
283
284 /* Out of our scope? */
285 if (devid > amd_iommu_last_bdf)
286 return false;
287
288 if (amd_iommu_rlookup_table[devid] == NULL)
289 return false;
290
291 return true;
292}
293
25b11ce2 294static void init_iommu_group(struct device *dev)
2851db21 295{
0bb6e243
JR
296 struct dma_ops_domain *dma_domain;
297 struct iommu_domain *domain;
2851db21 298 struct iommu_group *group;
2851db21 299
65d5352f 300 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
301 if (IS_ERR(group))
302 return;
303
304 domain = iommu_group_default_domain(group);
305 if (!domain)
306 goto out;
307
308 dma_domain = to_pdomain(domain)->priv;
309
310 init_unity_mappings_for_device(dev, dma_domain);
311out:
312 iommu_group_put(group);
eb9c9527
AW
313}
314
c1931090
AW
315static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
316{
317 *(u16 *)data = alias;
318 return 0;
319}
320
321static u16 get_alias(struct device *dev)
322{
323 struct pci_dev *pdev = to_pci_dev(dev);
324 u16 devid, ivrs_alias, pci_alias;
325
326 devid = get_device_id(dev);
327 ivrs_alias = amd_iommu_alias_table[devid];
328 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
329
330 if (ivrs_alias == pci_alias)
331 return ivrs_alias;
332
333 /*
334 * DMA alias showdown
335 *
336 * The IVRS is fairly reliable in telling us about aliases, but it
337 * can't know about every screwy device. If we don't have an IVRS
338 * reported alias, use the PCI reported alias. In that case we may
339 * still need to initialize the rlookup and dev_table entries if the
340 * alias is to a non-existent device.
341 */
342 if (ivrs_alias == devid) {
343 if (!amd_iommu_rlookup_table[pci_alias]) {
344 amd_iommu_rlookup_table[pci_alias] =
345 amd_iommu_rlookup_table[devid];
346 memcpy(amd_iommu_dev_table[pci_alias].data,
347 amd_iommu_dev_table[devid].data,
348 sizeof(amd_iommu_dev_table[pci_alias].data));
349 }
350
351 return pci_alias;
352 }
353
354 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
355 "for device %s[%04x:%04x], kernel reported alias "
356 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
357 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
358 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
359 PCI_FUNC(pci_alias));
360
361 /*
362 * If we don't have a PCI DMA alias and the IVRS alias is on the same
363 * bus, then the IVRS table may know about a quirk that we don't.
364 */
365 if (pci_alias == devid &&
366 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
367 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
368 pdev->dma_alias_devfn = ivrs_alias & 0xff;
369 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
370 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
371 dev_name(dev));
372 }
373
374 return ivrs_alias;
375}
376
eb9c9527
AW
377static int iommu_init_device(struct device *dev)
378{
379 struct pci_dev *pdev = to_pci_dev(dev);
380 struct iommu_dev_data *dev_data;
381 u16 alias;
eb9c9527
AW
382
383 if (dev->archdata.iommu)
384 return 0;
385
386 dev_data = find_dev_data(get_device_id(dev));
387 if (!dev_data)
388 return -ENOMEM;
389
c1931090
AW
390 alias = get_alias(dev);
391
eb9c9527
AW
392 if (alias != dev_data->devid) {
393 struct iommu_dev_data *alias_data;
394
395 alias_data = find_dev_data(alias);
396 if (alias_data == NULL) {
397 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
398 dev_name(dev));
399 free_dev_data(dev_data);
400 return -ENOTSUPP;
401 }
402 dev_data->alias_data = alias_data;
eb9c9527 403
f251e187
JR
404 /* Add device to the alias_list */
405 list_add(&dev_data->alias_list, &alias_data->alias_list);
e644a013 406 }
9dcd6130 407
5abcdba4
JR
408 if (pci_iommuv2_capable(pdev)) {
409 struct amd_iommu *iommu;
410
411 iommu = amd_iommu_rlookup_table[dev_data->devid];
412 dev_data->iommu_v2 = iommu->is_iommu_v2;
413 }
414
657cbb6b
JR
415 dev->archdata.iommu = dev_data;
416
066f2e98
AW
417 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
418 dev);
419
657cbb6b
JR
420 return 0;
421}
422
26018874
JR
423static void iommu_ignore_device(struct device *dev)
424{
425 u16 devid, alias;
426
427 devid = get_device_id(dev);
428 alias = amd_iommu_alias_table[devid];
429
430 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
431 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
432
433 amd_iommu_rlookup_table[devid] = NULL;
434 amd_iommu_rlookup_table[alias] = NULL;
435}
436
657cbb6b
JR
437static void iommu_uninit_device(struct device *dev)
438{
c1931090
AW
439 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
440
441 if (!dev_data)
442 return;
443
066f2e98
AW
444 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
445 dev);
446
9dcd6130
AW
447 iommu_group_remove_device(dev);
448
c1931090
AW
449 /* Unlink from alias, it may change if another device is re-plugged */
450 dev_data->alias_data = NULL;
451
aafd8ba0
JR
452 /* Remove dma-ops */
453 dev->archdata.dma_ops = NULL;
454
8fa5f802 455 /*
c1931090
AW
456 * We keep dev_data around for unplugged devices and reuse it when the
457 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 458 */
657cbb6b 459}
b7cc9554 460
7f26508b
JR
461#ifdef CONFIG_AMD_IOMMU_STATS
462
463/*
464 * Initialization code for statistics collection
465 */
466
da49f6df 467DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 468DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 469DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 470DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 471DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 472DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 473DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 474DECLARE_STATS_COUNTER(cross_page);
f57d98ae 475DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 476DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 477DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 478DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
479DECLARE_STATS_COUNTER(complete_ppr);
480DECLARE_STATS_COUNTER(invalidate_iotlb);
481DECLARE_STATS_COUNTER(invalidate_iotlb_all);
482DECLARE_STATS_COUNTER(pri_requests);
483
7f26508b 484static struct dentry *stats_dir;
7f26508b
JR
485static struct dentry *de_fflush;
486
487static void amd_iommu_stats_add(struct __iommu_counter *cnt)
488{
489 if (stats_dir == NULL)
490 return;
491
492 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
493 &cnt->value);
494}
495
496static void amd_iommu_stats_init(void)
497{
498 stats_dir = debugfs_create_dir("amd-iommu", NULL);
499 if (stats_dir == NULL)
500 return;
501
7f26508b 502 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 503 &amd_iommu_unmap_flush);
da49f6df
JR
504
505 amd_iommu_stats_add(&compl_wait);
0f2a86f2 506 amd_iommu_stats_add(&cnt_map_single);
146a6917 507 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 508 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 509 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 510 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 511 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 512 amd_iommu_stats_add(&cross_page);
f57d98ae 513 amd_iommu_stats_add(&domain_flush_single);
18811f55 514 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 515 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 516 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
517 amd_iommu_stats_add(&complete_ppr);
518 amd_iommu_stats_add(&invalidate_iotlb);
519 amd_iommu_stats_add(&invalidate_iotlb_all);
520 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
521}
522
523#endif
524
a80dc3e0
JR
525/****************************************************************************
526 *
527 * Interrupt handling functions
528 *
529 ****************************************************************************/
530
e3e59876
JR
531static void dump_dte_entry(u16 devid)
532{
533 int i;
534
ee6c2868
JR
535 for (i = 0; i < 4; ++i)
536 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
537 amd_iommu_dev_table[devid].data[i]);
538}
539
945b4ac4
JR
540static void dump_command(unsigned long phys_addr)
541{
542 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
543 int i;
544
545 for (i = 0; i < 4; ++i)
546 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
547}
548
a345b23b 549static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 550{
3d06fca8
JR
551 int type, devid, domid, flags;
552 volatile u32 *event = __evt;
553 int count = 0;
554 u64 address;
555
556retry:
557 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
558 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
559 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
560 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
561 address = (u64)(((u64)event[3]) << 32) | event[2];
562
563 if (type == 0) {
564 /* Did we hit the erratum? */
565 if (++count == LOOP_TIMEOUT) {
566 pr_err("AMD-Vi: No event written to event log\n");
567 return;
568 }
569 udelay(1);
570 goto retry;
571 }
90008ee4 572
4c6f40d4 573 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
574
575 switch (type) {
576 case EVENT_TYPE_ILL_DEV:
577 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
578 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 579 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 580 address, flags);
e3e59876 581 dump_dte_entry(devid);
90008ee4
JR
582 break;
583 case EVENT_TYPE_IO_FAULT:
584 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
585 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 586 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
587 domid, address, flags);
588 break;
589 case EVENT_TYPE_DEV_TAB_ERR:
590 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
591 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 592 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
593 address, flags);
594 break;
595 case EVENT_TYPE_PAGE_TAB_ERR:
596 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
597 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 598 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
599 domid, address, flags);
600 break;
601 case EVENT_TYPE_ILL_CMD:
602 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 603 dump_command(address);
90008ee4
JR
604 break;
605 case EVENT_TYPE_CMD_HARD_ERR:
606 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
607 "flags=0x%04x]\n", address, flags);
608 break;
609 case EVENT_TYPE_IOTLB_INV_TO:
610 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
611 "address=0x%016llx]\n",
c5081cd7 612 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
613 address);
614 break;
615 case EVENT_TYPE_INV_DEV_REQ:
616 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
617 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 618 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
619 address, flags);
620 break;
621 default:
622 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
623 }
3d06fca8
JR
624
625 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
626}
627
628static void iommu_poll_events(struct amd_iommu *iommu)
629{
630 u32 head, tail;
90008ee4
JR
631
632 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
633 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
634
635 while (head != tail) {
a345b23b 636 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
637 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
638 }
639
640 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
641}
642
eee53537 643static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
644{
645 struct amd_iommu_fault fault;
72e1dcc4 646
399be2f5
JR
647 INC_STATS_COUNTER(pri_requests);
648
72e1dcc4
JR
649 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
650 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
651 return;
652 }
653
654 fault.address = raw[1];
655 fault.pasid = PPR_PASID(raw[0]);
656 fault.device_id = PPR_DEVID(raw[0]);
657 fault.tag = PPR_TAG(raw[0]);
658 fault.flags = PPR_FLAGS(raw[0]);
659
72e1dcc4
JR
660 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
661}
662
663static void iommu_poll_ppr_log(struct amd_iommu *iommu)
664{
72e1dcc4
JR
665 u32 head, tail;
666
667 if (iommu->ppr_log == NULL)
668 return;
669
72e1dcc4
JR
670 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
671 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
672
673 while (head != tail) {
eee53537
JR
674 volatile u64 *raw;
675 u64 entry[2];
676 int i;
677
678 raw = (u64 *)(iommu->ppr_log + head);
679
680 /*
681 * Hardware bug: Interrupt may arrive before the entry is
682 * written to memory. If this happens we need to wait for the
683 * entry to arrive.
684 */
685 for (i = 0; i < LOOP_TIMEOUT; ++i) {
686 if (PPR_REQ_TYPE(raw[0]) != 0)
687 break;
688 udelay(1);
689 }
72e1dcc4 690
eee53537
JR
691 /* Avoid memcpy function-call overhead */
692 entry[0] = raw[0];
693 entry[1] = raw[1];
72e1dcc4 694
eee53537
JR
695 /*
696 * To detect the hardware bug we need to clear the entry
697 * back to zero.
698 */
699 raw[0] = raw[1] = 0UL;
700
701 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
702 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
703 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 704
eee53537
JR
705 /* Handle PPR entry */
706 iommu_handle_ppr_entry(iommu, entry);
707
eee53537
JR
708 /* Refresh ring-buffer information */
709 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
710 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
711 }
72e1dcc4
JR
712}
713
72fe00f0 714irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 715{
3f398bc7
SS
716 struct amd_iommu *iommu = (struct amd_iommu *) data;
717 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 718
3f398bc7
SS
719 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
720 /* Enable EVT and PPR interrupts again */
721 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
722 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 723
3f398bc7
SS
724 if (status & MMIO_STATUS_EVT_INT_MASK) {
725 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
726 iommu_poll_events(iommu);
727 }
90008ee4 728
3f398bc7
SS
729 if (status & MMIO_STATUS_PPR_INT_MASK) {
730 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
731 iommu_poll_ppr_log(iommu);
732 }
90008ee4 733
3f398bc7
SS
734 /*
735 * Hardware bug: ERBT1312
736 * When re-enabling interrupt (by writing 1
737 * to clear the bit), the hardware might also try to set
738 * the interrupt bit in the event status register.
739 * In this scenario, the bit will be set, and disable
740 * subsequent interrupts.
741 *
742 * Workaround: The IOMMU driver should read back the
743 * status register and check if the interrupt bits are cleared.
744 * If not, driver will need to go through the interrupt handler
745 * again and re-clear the bits
746 */
747 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
748 }
90008ee4 749 return IRQ_HANDLED;
a80dc3e0
JR
750}
751
72fe00f0
JR
752irqreturn_t amd_iommu_int_handler(int irq, void *data)
753{
754 return IRQ_WAKE_THREAD;
755}
756
431b2a20
JR
757/****************************************************************************
758 *
759 * IOMMU command queuing functions
760 *
761 ****************************************************************************/
762
ac0ea6e9
JR
763static int wait_on_sem(volatile u64 *sem)
764{
765 int i = 0;
766
767 while (*sem == 0 && i < LOOP_TIMEOUT) {
768 udelay(1);
769 i += 1;
770 }
771
772 if (i == LOOP_TIMEOUT) {
773 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
774 return -EIO;
775 }
776
777 return 0;
778}
779
780static void copy_cmd_to_buffer(struct amd_iommu *iommu,
781 struct iommu_cmd *cmd,
782 u32 tail)
a19ae1ec 783{
a19ae1ec
JR
784 u8 *target;
785
8a7c5ef3 786 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
787 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
788
789 /* Copy command to buffer */
790 memcpy(target, cmd, sizeof(*cmd));
791
792 /* Tell the IOMMU about it */
a19ae1ec 793 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 794}
a19ae1ec 795
815b33fd 796static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 797{
815b33fd
JR
798 WARN_ON(address & 0x7ULL);
799
ded46737 800 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
801 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
802 cmd->data[1] = upper_32_bits(__pa(address));
803 cmd->data[2] = 1;
ded46737
JR
804 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
805}
806
94fe79e2
JR
807static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
808{
809 memset(cmd, 0, sizeof(*cmd));
810 cmd->data[0] = devid;
811 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
812}
813
11b6402c
JR
814static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
815 size_t size, u16 domid, int pde)
816{
817 u64 pages;
ae0cbbb1 818 bool s;
11b6402c
JR
819
820 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 821 s = false;
11b6402c
JR
822
823 if (pages > 1) {
824 /*
825 * If we have to flush more than one page, flush all
826 * TLB entries for this domain
827 */
828 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 829 s = true;
11b6402c
JR
830 }
831
832 address &= PAGE_MASK;
833
834 memset(cmd, 0, sizeof(*cmd));
835 cmd->data[1] |= domid;
836 cmd->data[2] = lower_32_bits(address);
837 cmd->data[3] = upper_32_bits(address);
838 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
839 if (s) /* size bit - we flush more than one 4kb page */
840 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 841 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
842 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
843}
844
cb41ed85
JR
845static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
846 u64 address, size_t size)
847{
848 u64 pages;
ae0cbbb1 849 bool s;
cb41ed85
JR
850
851 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 852 s = false;
cb41ed85
JR
853
854 if (pages > 1) {
855 /*
856 * If we have to flush more than one page, flush all
857 * TLB entries for this domain
858 */
859 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 860 s = true;
cb41ed85
JR
861 }
862
863 address &= PAGE_MASK;
864
865 memset(cmd, 0, sizeof(*cmd));
866 cmd->data[0] = devid;
867 cmd->data[0] |= (qdep & 0xff) << 24;
868 cmd->data[1] = devid;
869 cmd->data[2] = lower_32_bits(address);
870 cmd->data[3] = upper_32_bits(address);
871 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
872 if (s)
873 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
874}
875
22e266c7
JR
876static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
877 u64 address, bool size)
878{
879 memset(cmd, 0, sizeof(*cmd));
880
881 address &= ~(0xfffULL);
882
a919a018 883 cmd->data[0] = pasid;
22e266c7
JR
884 cmd->data[1] = domid;
885 cmd->data[2] = lower_32_bits(address);
886 cmd->data[3] = upper_32_bits(address);
887 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
888 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
889 if (size)
890 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
891 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
892}
893
894static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
895 int qdep, u64 address, bool size)
896{
897 memset(cmd, 0, sizeof(*cmd));
898
899 address &= ~(0xfffULL);
900
901 cmd->data[0] = devid;
e8d2d82d 902 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
903 cmd->data[0] |= (qdep & 0xff) << 24;
904 cmd->data[1] = devid;
e8d2d82d 905 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
906 cmd->data[2] = lower_32_bits(address);
907 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
908 cmd->data[3] = upper_32_bits(address);
909 if (size)
910 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
911 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
912}
913
c99afa25
JR
914static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
915 int status, int tag, bool gn)
916{
917 memset(cmd, 0, sizeof(*cmd));
918
919 cmd->data[0] = devid;
920 if (gn) {
a919a018 921 cmd->data[1] = pasid;
c99afa25
JR
922 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
923 }
924 cmd->data[3] = tag & 0x1ff;
925 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
926
927 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
928}
929
58fc7f14
JR
930static void build_inv_all(struct iommu_cmd *cmd)
931{
932 memset(cmd, 0, sizeof(*cmd));
933 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
934}
935
7ef2798d
JR
936static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
937{
938 memset(cmd, 0, sizeof(*cmd));
939 cmd->data[0] = devid;
940 CMD_SET_TYPE(cmd, CMD_INV_IRT);
941}
942
431b2a20 943/*
431b2a20 944 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 945 * hardware about the new command.
431b2a20 946 */
f1ca1512
JR
947static int iommu_queue_command_sync(struct amd_iommu *iommu,
948 struct iommu_cmd *cmd,
949 bool sync)
a19ae1ec 950{
ac0ea6e9 951 u32 left, tail, head, next_tail;
a19ae1ec 952 unsigned long flags;
a19ae1ec 953
549c90dc 954 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
955
956again:
a19ae1ec 957 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 958
ac0ea6e9
JR
959 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
960 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
961 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
962 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 963
ac0ea6e9
JR
964 if (left <= 2) {
965 struct iommu_cmd sync_cmd;
966 volatile u64 sem = 0;
967 int ret;
8d201968 968
ac0ea6e9
JR
969 build_completion_wait(&sync_cmd, (u64)&sem);
970 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 971
ac0ea6e9
JR
972 spin_unlock_irqrestore(&iommu->lock, flags);
973
974 if ((ret = wait_on_sem(&sem)) != 0)
975 return ret;
976
977 goto again;
8d201968
JR
978 }
979
ac0ea6e9
JR
980 copy_cmd_to_buffer(iommu, cmd, tail);
981
982 /* We need to sync now to make sure all commands are processed */
f1ca1512 983 iommu->need_sync = sync;
ac0ea6e9 984
a19ae1ec 985 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 986
815b33fd 987 return 0;
8d201968
JR
988}
989
f1ca1512
JR
990static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
991{
992 return iommu_queue_command_sync(iommu, cmd, true);
993}
994
8d201968
JR
995/*
996 * This function queues a completion wait command into the command
997 * buffer of an IOMMU
998 */
a19ae1ec 999static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1000{
1001 struct iommu_cmd cmd;
815b33fd 1002 volatile u64 sem = 0;
ac0ea6e9 1003 int ret;
8d201968 1004
09ee17eb 1005 if (!iommu->need_sync)
815b33fd 1006 return 0;
09ee17eb 1007
815b33fd 1008 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1009
f1ca1512 1010 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1011 if (ret)
815b33fd 1012 return ret;
8d201968 1013
ac0ea6e9 1014 return wait_on_sem(&sem);
8d201968
JR
1015}
1016
d8c13085 1017static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1018{
d8c13085 1019 struct iommu_cmd cmd;
a19ae1ec 1020
d8c13085 1021 build_inv_dte(&cmd, devid);
7e4f88da 1022
d8c13085
JR
1023 return iommu_queue_command(iommu, &cmd);
1024}
09ee17eb 1025
7d0c5cc5
JR
1026static void iommu_flush_dte_all(struct amd_iommu *iommu)
1027{
1028 u32 devid;
09ee17eb 1029
7d0c5cc5
JR
1030 for (devid = 0; devid <= 0xffff; ++devid)
1031 iommu_flush_dte(iommu, devid);
a19ae1ec 1032
7d0c5cc5
JR
1033 iommu_completion_wait(iommu);
1034}
84df8175 1035
7d0c5cc5
JR
1036/*
1037 * This function uses heavy locking and may disable irqs for some time. But
1038 * this is no issue because it is only called during resume.
1039 */
1040static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1041{
1042 u32 dom_id;
a19ae1ec 1043
7d0c5cc5
JR
1044 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1045 struct iommu_cmd cmd;
1046 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1047 dom_id, 1);
1048 iommu_queue_command(iommu, &cmd);
1049 }
8eed9833 1050
7d0c5cc5 1051 iommu_completion_wait(iommu);
a19ae1ec
JR
1052}
1053
58fc7f14 1054static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1055{
58fc7f14 1056 struct iommu_cmd cmd;
0518a3a4 1057
58fc7f14 1058 build_inv_all(&cmd);
0518a3a4 1059
58fc7f14
JR
1060 iommu_queue_command(iommu, &cmd);
1061 iommu_completion_wait(iommu);
1062}
1063
7ef2798d
JR
1064static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1065{
1066 struct iommu_cmd cmd;
1067
1068 build_inv_irt(&cmd, devid);
1069
1070 iommu_queue_command(iommu, &cmd);
1071}
1072
1073static void iommu_flush_irt_all(struct amd_iommu *iommu)
1074{
1075 u32 devid;
1076
1077 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1078 iommu_flush_irt(iommu, devid);
1079
1080 iommu_completion_wait(iommu);
1081}
1082
7d0c5cc5
JR
1083void iommu_flush_all_caches(struct amd_iommu *iommu)
1084{
58fc7f14
JR
1085 if (iommu_feature(iommu, FEATURE_IA)) {
1086 iommu_flush_all(iommu);
1087 } else {
1088 iommu_flush_dte_all(iommu);
7ef2798d 1089 iommu_flush_irt_all(iommu);
58fc7f14 1090 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1091 }
1092}
1093
431b2a20 1094/*
cb41ed85 1095 * Command send function for flushing on-device TLB
431b2a20 1096 */
6c542047
JR
1097static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1098 u64 address, size_t size)
3fa43655
JR
1099{
1100 struct amd_iommu *iommu;
b00d3bcf 1101 struct iommu_cmd cmd;
cb41ed85 1102 int qdep;
3fa43655 1103
ea61cddb
JR
1104 qdep = dev_data->ats.qdep;
1105 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1106
ea61cddb 1107 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1108
1109 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1110}
1111
431b2a20 1112/*
431b2a20 1113 * Command send function for invalidating a device table entry
431b2a20 1114 */
6c542047 1115static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1116{
3fa43655 1117 struct amd_iommu *iommu;
ee2fa743 1118 int ret;
a19ae1ec 1119
6c542047 1120 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1121
f62dda66 1122 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1123 if (ret)
1124 return ret;
1125
ea61cddb 1126 if (dev_data->ats.enabled)
6c542047 1127 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1128
ee2fa743 1129 return ret;
a19ae1ec
JR
1130}
1131
431b2a20
JR
1132/*
1133 * TLB invalidation function which is called from the mapping functions.
1134 * It invalidates a single PTE if the range to flush is within a single
1135 * page. Otherwise it flushes the whole TLB of the IOMMU.
1136 */
17b124bf
JR
1137static void __domain_flush_pages(struct protection_domain *domain,
1138 u64 address, size_t size, int pde)
a19ae1ec 1139{
cb41ed85 1140 struct iommu_dev_data *dev_data;
11b6402c
JR
1141 struct iommu_cmd cmd;
1142 int ret = 0, i;
a19ae1ec 1143
11b6402c 1144 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1145
6de8ad9b
JR
1146 for (i = 0; i < amd_iommus_present; ++i) {
1147 if (!domain->dev_iommu[i])
1148 continue;
1149
1150 /*
1151 * Devices of this domain are behind this IOMMU
1152 * We need a TLB flush
1153 */
11b6402c 1154 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1155 }
1156
cb41ed85 1157 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1158
ea61cddb 1159 if (!dev_data->ats.enabled)
cb41ed85
JR
1160 continue;
1161
6c542047 1162 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1163 }
1164
11b6402c 1165 WARN_ON(ret);
6de8ad9b
JR
1166}
1167
17b124bf
JR
1168static void domain_flush_pages(struct protection_domain *domain,
1169 u64 address, size_t size)
6de8ad9b 1170{
17b124bf 1171 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1172}
b6c02715 1173
1c655773 1174/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1175static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1176{
17b124bf 1177 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1178}
1179
42a49f96 1180/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1181static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1182{
17b124bf 1183 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1184}
1185
17b124bf 1186static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1187{
17b124bf 1188 int i;
18811f55 1189
17b124bf
JR
1190 for (i = 0; i < amd_iommus_present; ++i) {
1191 if (!domain->dev_iommu[i])
1192 continue;
bfd1be18 1193
17b124bf
JR
1194 /*
1195 * Devices of this domain are behind this IOMMU
1196 * We need to wait for completion of all commands.
1197 */
1198 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1199 }
e394d72a
JR
1200}
1201
b00d3bcf 1202
09b42804 1203/*
b00d3bcf 1204 * This function flushes the DTEs for all devices in domain
09b42804 1205 */
17b124bf 1206static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1207{
b00d3bcf 1208 struct iommu_dev_data *dev_data;
b26e81b8 1209
b00d3bcf 1210 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1211 device_flush_dte(dev_data);
a345b23b
JR
1212}
1213
431b2a20
JR
1214/****************************************************************************
1215 *
1216 * The functions below are used the create the page table mappings for
1217 * unity mapped regions.
1218 *
1219 ****************************************************************************/
1220
308973d3
JR
1221/*
1222 * This function is used to add another level to an IO page table. Adding
1223 * another level increases the size of the address space by 9 bits to a size up
1224 * to 64 bits.
1225 */
1226static bool increase_address_space(struct protection_domain *domain,
1227 gfp_t gfp)
1228{
1229 u64 *pte;
1230
1231 if (domain->mode == PAGE_MODE_6_LEVEL)
1232 /* address space already 64 bit large */
1233 return false;
1234
1235 pte = (void *)get_zeroed_page(gfp);
1236 if (!pte)
1237 return false;
1238
1239 *pte = PM_LEVEL_PDE(domain->mode,
1240 virt_to_phys(domain->pt_root));
1241 domain->pt_root = pte;
1242 domain->mode += 1;
1243 domain->updated = true;
1244
1245 return true;
1246}
1247
1248static u64 *alloc_pte(struct protection_domain *domain,
1249 unsigned long address,
cbb9d729 1250 unsigned long page_size,
308973d3
JR
1251 u64 **pte_page,
1252 gfp_t gfp)
1253{
cbb9d729 1254 int level, end_lvl;
308973d3 1255 u64 *pte, *page;
cbb9d729
JR
1256
1257 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1258
1259 while (address > PM_LEVEL_SIZE(domain->mode))
1260 increase_address_space(domain, gfp);
1261
cbb9d729
JR
1262 level = domain->mode - 1;
1263 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1264 address = PAGE_SIZE_ALIGN(address, page_size);
1265 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1266
1267 while (level > end_lvl) {
1268 if (!IOMMU_PTE_PRESENT(*pte)) {
1269 page = (u64 *)get_zeroed_page(gfp);
1270 if (!page)
1271 return NULL;
1272 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1273 }
1274
cbb9d729
JR
1275 /* No level skipping support yet */
1276 if (PM_PTE_LEVEL(*pte) != level)
1277 return NULL;
1278
308973d3
JR
1279 level -= 1;
1280
1281 pte = IOMMU_PTE_PAGE(*pte);
1282
1283 if (pte_page && level == end_lvl)
1284 *pte_page = pte;
1285
1286 pte = &pte[PM_LEVEL_INDEX(level, address)];
1287 }
1288
1289 return pte;
1290}
1291
1292/*
1293 * This function checks if there is a PTE for a given dma address. If
1294 * there is one, it returns the pointer to it.
1295 */
3039ca1b
JR
1296static u64 *fetch_pte(struct protection_domain *domain,
1297 unsigned long address,
1298 unsigned long *page_size)
308973d3
JR
1299{
1300 int level;
1301 u64 *pte;
1302
24cd7723
JR
1303 if (address > PM_LEVEL_SIZE(domain->mode))
1304 return NULL;
1305
3039ca1b
JR
1306 level = domain->mode - 1;
1307 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1308 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1309
24cd7723
JR
1310 while (level > 0) {
1311
1312 /* Not Present */
308973d3
JR
1313 if (!IOMMU_PTE_PRESENT(*pte))
1314 return NULL;
1315
24cd7723 1316 /* Large PTE */
3039ca1b
JR
1317 if (PM_PTE_LEVEL(*pte) == 7 ||
1318 PM_PTE_LEVEL(*pte) == 0)
1319 break;
24cd7723
JR
1320
1321 /* No level skipping support yet */
1322 if (PM_PTE_LEVEL(*pte) != level)
1323 return NULL;
1324
308973d3
JR
1325 level -= 1;
1326
24cd7723 1327 /* Walk to the next level */
3039ca1b
JR
1328 pte = IOMMU_PTE_PAGE(*pte);
1329 pte = &pte[PM_LEVEL_INDEX(level, address)];
1330 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1331 }
1332
1333 if (PM_PTE_LEVEL(*pte) == 0x07) {
1334 unsigned long pte_mask;
1335
1336 /*
1337 * If we have a series of large PTEs, make
1338 * sure to return a pointer to the first one.
1339 */
1340 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1341 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1342 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1343 }
1344
1345 return pte;
1346}
1347
431b2a20
JR
1348/*
1349 * Generic mapping functions. It maps a physical address into a DMA
1350 * address space. It allocates the page table pages if necessary.
1351 * In the future it can be extended to a generic mapping function
1352 * supporting all features of AMD IOMMU page tables like level skipping
1353 * and full 64 bit address spaces.
1354 */
38e817fe
JR
1355static int iommu_map_page(struct protection_domain *dom,
1356 unsigned long bus_addr,
1357 unsigned long phys_addr,
abdc5eb3 1358 int prot,
cbb9d729 1359 unsigned long page_size)
bd0e5211 1360{
8bda3092 1361 u64 __pte, *pte;
cbb9d729 1362 int i, count;
abdc5eb3 1363
d4b03664
JR
1364 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1365 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1366
bad1cac2 1367 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1368 return -EINVAL;
1369
d4b03664
JR
1370 count = PAGE_SIZE_PTE_COUNT(page_size);
1371 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1372
63eaa75e
ML
1373 if (!pte)
1374 return -ENOMEM;
1375
cbb9d729
JR
1376 for (i = 0; i < count; ++i)
1377 if (IOMMU_PTE_PRESENT(pte[i]))
1378 return -EBUSY;
bd0e5211 1379
d4b03664 1380 if (count > 1) {
cbb9d729
JR
1381 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1382 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1383 } else
1384 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1385
bd0e5211
JR
1386 if (prot & IOMMU_PROT_IR)
1387 __pte |= IOMMU_PTE_IR;
1388 if (prot & IOMMU_PROT_IW)
1389 __pte |= IOMMU_PTE_IW;
1390
cbb9d729
JR
1391 for (i = 0; i < count; ++i)
1392 pte[i] = __pte;
bd0e5211 1393
04bfdd84
JR
1394 update_domain(dom);
1395
bd0e5211
JR
1396 return 0;
1397}
1398
24cd7723
JR
1399static unsigned long iommu_unmap_page(struct protection_domain *dom,
1400 unsigned long bus_addr,
1401 unsigned long page_size)
eb74ff6c 1402{
71b390e9
JR
1403 unsigned long long unmapped;
1404 unsigned long unmap_size;
24cd7723
JR
1405 u64 *pte;
1406
1407 BUG_ON(!is_power_of_2(page_size));
1408
1409 unmapped = 0;
eb74ff6c 1410
24cd7723
JR
1411 while (unmapped < page_size) {
1412
71b390e9
JR
1413 pte = fetch_pte(dom, bus_addr, &unmap_size);
1414
1415 if (pte) {
1416 int i, count;
1417
1418 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1419 for (i = 0; i < count; i++)
1420 pte[i] = 0ULL;
1421 }
1422
1423 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1424 unmapped += unmap_size;
1425 }
1426
60d0ca3c 1427 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1428
24cd7723 1429 return unmapped;
eb74ff6c 1430}
eb74ff6c 1431
431b2a20
JR
1432/****************************************************************************
1433 *
1434 * The next functions belong to the address allocator for the dma_ops
1435 * interface functions. They work like the allocators in the other IOMMU
1436 * drivers. Its basically a bitmap which marks the allocated pages in
1437 * the aperture. Maybe it could be enhanced in the future to a more
1438 * efficient allocator.
1439 *
1440 ****************************************************************************/
d3086444 1441
431b2a20 1442/*
384de729 1443 * The address allocator core functions.
431b2a20
JR
1444 *
1445 * called with domain->lock held
1446 */
384de729 1447
171e7b37
JR
1448/*
1449 * Used to reserve address ranges in the aperture (e.g. for exclusion
1450 * ranges.
1451 */
1452static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1453 unsigned long start_page,
1454 unsigned int pages)
1455{
1456 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1457
1458 if (start_page + pages > last_page)
1459 pages = last_page - start_page;
1460
1461 for (i = start_page; i < start_page + pages; ++i) {
1462 int index = i / APERTURE_RANGE_PAGES;
1463 int page = i % APERTURE_RANGE_PAGES;
1464 __set_bit(page, dom->aperture[index]->bitmap);
1465 }
1466}
1467
9cabe89b
JR
1468/*
1469 * This function is used to add a new aperture range to an existing
1470 * aperture in case of dma_ops domain allocation or address allocation
1471 * failure.
1472 */
576175c2 1473static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1474 bool populate, gfp_t gfp)
1475{
1476 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1477 struct amd_iommu *iommu;
5d7c94c3 1478 unsigned long i, old_size, pte_pgsize;
9cabe89b 1479
f5e9705c
JR
1480#ifdef CONFIG_IOMMU_STRESS
1481 populate = false;
1482#endif
1483
9cabe89b
JR
1484 if (index >= APERTURE_MAX_RANGES)
1485 return -ENOMEM;
1486
1487 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1488 if (!dma_dom->aperture[index])
1489 return -ENOMEM;
1490
1491 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1492 if (!dma_dom->aperture[index]->bitmap)
1493 goto out_free;
1494
1495 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1496
1497 if (populate) {
1498 unsigned long address = dma_dom->aperture_size;
1499 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1500 u64 *pte, *pte_page;
1501
1502 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1503 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1504 &pte_page, gfp);
1505 if (!pte)
1506 goto out_free;
1507
1508 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1509
1510 address += APERTURE_RANGE_SIZE / 64;
1511 }
1512 }
1513
17f5b569 1514 old_size = dma_dom->aperture_size;
9cabe89b
JR
1515 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1516
17f5b569
JR
1517 /* Reserve address range used for MSI messages */
1518 if (old_size < MSI_ADDR_BASE_LO &&
1519 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1520 unsigned long spage;
1521 int pages;
1522
1523 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1524 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1525
1526 dma_ops_reserve_addresses(dma_dom, spage, pages);
1527 }
1528
b595076a 1529 /* Initialize the exclusion range if necessary */
576175c2
JR
1530 for_each_iommu(iommu) {
1531 if (iommu->exclusion_start &&
1532 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1533 && iommu->exclusion_start < dma_dom->aperture_size) {
1534 unsigned long startpage;
1535 int pages = iommu_num_pages(iommu->exclusion_start,
1536 iommu->exclusion_length,
1537 PAGE_SIZE);
1538 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1539 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1540 }
00cd122a
JR
1541 }
1542
1543 /*
1544 * Check for areas already mapped as present in the new aperture
1545 * range and mark those pages as reserved in the allocator. Such
1546 * mappings may already exist as a result of requested unity
1547 * mappings for devices.
1548 */
1549 for (i = dma_dom->aperture[index]->offset;
1550 i < dma_dom->aperture_size;
5d7c94c3 1551 i += pte_pgsize) {
3039ca1b 1552 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1553 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1554 continue;
1555
5d7c94c3
JR
1556 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1557 pte_pgsize >> 12);
00cd122a
JR
1558 }
1559
04bfdd84
JR
1560 update_domain(&dma_dom->domain);
1561
9cabe89b
JR
1562 return 0;
1563
1564out_free:
04bfdd84
JR
1565 update_domain(&dma_dom->domain);
1566
9cabe89b
JR
1567 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1568
1569 kfree(dma_dom->aperture[index]);
1570 dma_dom->aperture[index] = NULL;
1571
1572 return -ENOMEM;
1573}
1574
384de729
JR
1575static unsigned long dma_ops_area_alloc(struct device *dev,
1576 struct dma_ops_domain *dom,
1577 unsigned int pages,
1578 unsigned long align_mask,
1579 u64 dma_mask,
1580 unsigned long start)
1581{
803b8cb4 1582 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1583 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1584 int i = start >> APERTURE_RANGE_SHIFT;
1585 unsigned long boundary_size;
1586 unsigned long address = -1;
1587 unsigned long limit;
1588
803b8cb4
JR
1589 next_bit >>= PAGE_SHIFT;
1590
384de729
JR
1591 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1592 PAGE_SIZE) >> PAGE_SHIFT;
1593
1594 for (;i < max_index; ++i) {
1595 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1596
1597 if (dom->aperture[i]->offset >= dma_mask)
1598 break;
1599
1600 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1601 dma_mask >> PAGE_SHIFT);
1602
1603 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1604 limit, next_bit, pages, 0,
1605 boundary_size, align_mask);
1606 if (address != -1) {
1607 address = dom->aperture[i]->offset +
1608 (address << PAGE_SHIFT);
803b8cb4 1609 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1610 break;
1611 }
1612
1613 next_bit = 0;
1614 }
1615
1616 return address;
1617}
1618
d3086444
JR
1619static unsigned long dma_ops_alloc_addresses(struct device *dev,
1620 struct dma_ops_domain *dom,
6d4f343f 1621 unsigned int pages,
832a90c3
JR
1622 unsigned long align_mask,
1623 u64 dma_mask)
d3086444 1624{
d3086444 1625 unsigned long address;
d3086444 1626
fe16f088
JR
1627#ifdef CONFIG_IOMMU_STRESS
1628 dom->next_address = 0;
1629 dom->need_flush = true;
1630#endif
d3086444 1631
384de729 1632 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1633 dma_mask, dom->next_address);
d3086444 1634
1c655773 1635 if (address == -1) {
803b8cb4 1636 dom->next_address = 0;
384de729
JR
1637 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1638 dma_mask, 0);
1c655773
JR
1639 dom->need_flush = true;
1640 }
d3086444 1641
384de729 1642 if (unlikely(address == -1))
8fd524b3 1643 address = DMA_ERROR_CODE;
d3086444
JR
1644
1645 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1646
1647 return address;
1648}
1649
431b2a20
JR
1650/*
1651 * The address free function.
1652 *
1653 * called with domain->lock held
1654 */
d3086444
JR
1655static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1656 unsigned long address,
1657 unsigned int pages)
1658{
384de729
JR
1659 unsigned i = address >> APERTURE_RANGE_SHIFT;
1660 struct aperture_range *range = dom->aperture[i];
80be308d 1661
384de729
JR
1662 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1663
47bccd6b
JR
1664#ifdef CONFIG_IOMMU_STRESS
1665 if (i < 4)
1666 return;
1667#endif
80be308d 1668
803b8cb4 1669 if (address >= dom->next_address)
80be308d 1670 dom->need_flush = true;
384de729
JR
1671
1672 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1673
a66022c4 1674 bitmap_clear(range->bitmap, address, pages);
384de729 1675
d3086444
JR
1676}
1677
431b2a20
JR
1678/****************************************************************************
1679 *
1680 * The next functions belong to the domain allocation. A domain is
1681 * allocated for every IOMMU as the default domain. If device isolation
1682 * is enabled, every device get its own domain. The most important thing
1683 * about domains is the page table mapping the DMA address space they
1684 * contain.
1685 *
1686 ****************************************************************************/
1687
aeb26f55
JR
1688/*
1689 * This function adds a protection domain to the global protection domain list
1690 */
1691static void add_domain_to_list(struct protection_domain *domain)
1692{
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1696 list_add(&domain->list, &amd_iommu_pd_list);
1697 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1698}
1699
1700/*
1701 * This function removes a protection domain to the global
1702 * protection domain list
1703 */
1704static void del_domain_from_list(struct protection_domain *domain)
1705{
1706 unsigned long flags;
1707
1708 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1709 list_del(&domain->list);
1710 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1711}
1712
ec487d1a
JR
1713static u16 domain_id_alloc(void)
1714{
1715 unsigned long flags;
1716 int id;
1717
1718 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1720 BUG_ON(id == 0);
1721 if (id > 0 && id < MAX_DOMAIN_ID)
1722 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1723 else
1724 id = 0;
1725 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1726
1727 return id;
1728}
1729
a2acfb75
JR
1730static void domain_id_free(int id)
1731{
1732 unsigned long flags;
1733
1734 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1735 if (id > 0 && id < MAX_DOMAIN_ID)
1736 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1737 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1738}
a2acfb75 1739
5c34c403
JR
1740#define DEFINE_FREE_PT_FN(LVL, FN) \
1741static void free_pt_##LVL (unsigned long __pt) \
1742{ \
1743 unsigned long p; \
1744 u64 *pt; \
1745 int i; \
1746 \
1747 pt = (u64 *)__pt; \
1748 \
1749 for (i = 0; i < 512; ++i) { \
1750 if (!IOMMU_PTE_PRESENT(pt[i])) \
1751 continue; \
1752 \
1753 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1754 FN(p); \
1755 } \
1756 free_page((unsigned long)pt); \
1757}
1758
1759DEFINE_FREE_PT_FN(l2, free_page)
1760DEFINE_FREE_PT_FN(l3, free_pt_l2)
1761DEFINE_FREE_PT_FN(l4, free_pt_l3)
1762DEFINE_FREE_PT_FN(l5, free_pt_l4)
1763DEFINE_FREE_PT_FN(l6, free_pt_l5)
1764
86db2e5d 1765static void free_pagetable(struct protection_domain *domain)
ec487d1a 1766{
5c34c403 1767 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1768
5c34c403
JR
1769 switch (domain->mode) {
1770 case PAGE_MODE_NONE:
1771 break;
1772 case PAGE_MODE_1_LEVEL:
1773 free_page(root);
1774 break;
1775 case PAGE_MODE_2_LEVEL:
1776 free_pt_l2(root);
1777 break;
1778 case PAGE_MODE_3_LEVEL:
1779 free_pt_l3(root);
1780 break;
1781 case PAGE_MODE_4_LEVEL:
1782 free_pt_l4(root);
1783 break;
1784 case PAGE_MODE_5_LEVEL:
1785 free_pt_l5(root);
1786 break;
1787 case PAGE_MODE_6_LEVEL:
1788 free_pt_l6(root);
1789 break;
1790 default:
1791 BUG();
ec487d1a 1792 }
ec487d1a
JR
1793}
1794
b16137b1
JR
1795static void free_gcr3_tbl_level1(u64 *tbl)
1796{
1797 u64 *ptr;
1798 int i;
1799
1800 for (i = 0; i < 512; ++i) {
1801 if (!(tbl[i] & GCR3_VALID))
1802 continue;
1803
1804 ptr = __va(tbl[i] & PAGE_MASK);
1805
1806 free_page((unsigned long)ptr);
1807 }
1808}
1809
1810static void free_gcr3_tbl_level2(u64 *tbl)
1811{
1812 u64 *ptr;
1813 int i;
1814
1815 for (i = 0; i < 512; ++i) {
1816 if (!(tbl[i] & GCR3_VALID))
1817 continue;
1818
1819 ptr = __va(tbl[i] & PAGE_MASK);
1820
1821 free_gcr3_tbl_level1(ptr);
1822 }
1823}
1824
52815b75
JR
1825static void free_gcr3_table(struct protection_domain *domain)
1826{
b16137b1
JR
1827 if (domain->glx == 2)
1828 free_gcr3_tbl_level2(domain->gcr3_tbl);
1829 else if (domain->glx == 1)
1830 free_gcr3_tbl_level1(domain->gcr3_tbl);
1831 else if (domain->glx != 0)
1832 BUG();
1833
52815b75
JR
1834 free_page((unsigned long)domain->gcr3_tbl);
1835}
1836
431b2a20
JR
1837/*
1838 * Free a domain, only used if something went wrong in the
1839 * allocation path and we need to free an already allocated page table
1840 */
ec487d1a
JR
1841static void dma_ops_domain_free(struct dma_ops_domain *dom)
1842{
384de729
JR
1843 int i;
1844
ec487d1a
JR
1845 if (!dom)
1846 return;
1847
aeb26f55
JR
1848 del_domain_from_list(&dom->domain);
1849
86db2e5d 1850 free_pagetable(&dom->domain);
ec487d1a 1851
384de729
JR
1852 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1853 if (!dom->aperture[i])
1854 continue;
1855 free_page((unsigned long)dom->aperture[i]->bitmap);
1856 kfree(dom->aperture[i]);
1857 }
ec487d1a
JR
1858
1859 kfree(dom);
1860}
1861
431b2a20
JR
1862/*
1863 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1864 * It also initializes the page table and the address allocator data
431b2a20
JR
1865 * structures required for the dma_ops interface
1866 */
87a64d52 1867static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1868{
1869 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1870
1871 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1872 if (!dma_dom)
1873 return NULL;
1874
1875 spin_lock_init(&dma_dom->domain.lock);
1876
1877 dma_dom->domain.id = domain_id_alloc();
1878 if (dma_dom->domain.id == 0)
1879 goto free_dma_dom;
7c392cbe 1880 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1881 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1882 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1883 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1884 dma_dom->domain.priv = dma_dom;
1885 if (!dma_dom->domain.pt_root)
1886 goto free_dma_dom;
ec487d1a 1887
1c655773 1888 dma_dom->need_flush = false;
bd60b735 1889 dma_dom->target_dev = 0xffff;
1c655773 1890
aeb26f55
JR
1891 add_domain_to_list(&dma_dom->domain);
1892
576175c2 1893 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1894 goto free_dma_dom;
ec487d1a 1895
431b2a20 1896 /*
ec487d1a
JR
1897 * mark the first page as allocated so we never return 0 as
1898 * a valid dma-address. So we can use 0 as error value
431b2a20 1899 */
384de729 1900 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1901 dma_dom->next_address = 0;
ec487d1a 1902
ec487d1a
JR
1903
1904 return dma_dom;
1905
1906free_dma_dom:
1907 dma_ops_domain_free(dma_dom);
1908
1909 return NULL;
1910}
1911
5b28df6f
JR
1912/*
1913 * little helper function to check whether a given protection domain is a
1914 * dma_ops domain
1915 */
1916static bool dma_ops_domain(struct protection_domain *domain)
1917{
1918 return domain->flags & PD_DMA_OPS_MASK;
1919}
1920
fd7b5535 1921static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1922{
132bd68f 1923 u64 pte_root = 0;
ee6c2868 1924 u64 flags = 0;
863c74eb 1925
132bd68f
JR
1926 if (domain->mode != PAGE_MODE_NONE)
1927 pte_root = virt_to_phys(domain->pt_root);
1928
38ddf41b
JR
1929 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1930 << DEV_ENTRY_MODE_SHIFT;
1931 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1932
ee6c2868
JR
1933 flags = amd_iommu_dev_table[devid].data[1];
1934
fd7b5535
JR
1935 if (ats)
1936 flags |= DTE_FLAG_IOTLB;
1937
52815b75
JR
1938 if (domain->flags & PD_IOMMUV2_MASK) {
1939 u64 gcr3 = __pa(domain->gcr3_tbl);
1940 u64 glx = domain->glx;
1941 u64 tmp;
1942
1943 pte_root |= DTE_FLAG_GV;
1944 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1945
1946 /* First mask out possible old values for GCR3 table */
1947 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1948 flags &= ~tmp;
1949
1950 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1951 flags &= ~tmp;
1952
1953 /* Encode GCR3 table into DTE */
1954 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1955 pte_root |= tmp;
1956
1957 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1958 flags |= tmp;
1959
1960 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1961 flags |= tmp;
1962 }
1963
ee6c2868
JR
1964 flags &= ~(0xffffUL);
1965 flags |= domain->id;
1966
1967 amd_iommu_dev_table[devid].data[1] = flags;
1968 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1969}
1970
1971static void clear_dte_entry(u16 devid)
1972{
15898bbc
JR
1973 /* remove entry from the device table seen by the hardware */
1974 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1975 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1976
1977 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1978}
1979
ec9e79ef
JR
1980static void do_attach(struct iommu_dev_data *dev_data,
1981 struct protection_domain *domain)
7f760ddd 1982{
7f760ddd 1983 struct amd_iommu *iommu;
ec9e79ef 1984 bool ats;
fd7b5535 1985
ec9e79ef
JR
1986 iommu = amd_iommu_rlookup_table[dev_data->devid];
1987 ats = dev_data->ats.enabled;
7f760ddd
JR
1988
1989 /* Update data structures */
1990 dev_data->domain = domain;
1991 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1992 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1993
1994 /* Do reference counting */
1995 domain->dev_iommu[iommu->index] += 1;
1996 domain->dev_cnt += 1;
1997
1998 /* Flush the DTE entry */
6c542047 1999 device_flush_dte(dev_data);
7f760ddd
JR
2000}
2001
ec9e79ef 2002static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2003{
7f760ddd 2004 struct amd_iommu *iommu;
7f760ddd 2005
ec9e79ef 2006 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2007
2008 /* decrease reference counters */
7f760ddd
JR
2009 dev_data->domain->dev_iommu[iommu->index] -= 1;
2010 dev_data->domain->dev_cnt -= 1;
2011
2012 /* Update data structures */
2013 dev_data->domain = NULL;
2014 list_del(&dev_data->list);
f62dda66 2015 clear_dte_entry(dev_data->devid);
15898bbc 2016
7f760ddd 2017 /* Flush the DTE entry */
6c542047 2018 device_flush_dte(dev_data);
2b681faf
JR
2019}
2020
2021/*
2022 * If a device is not yet associated with a domain, this function does
2023 * assigns it visible for the hardware
2024 */
ec9e79ef 2025static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2026 struct protection_domain *domain)
2b681faf 2027{
397111ab 2028 struct iommu_dev_data *head, *entry;
84fe6c19 2029 int ret;
657cbb6b 2030
2b681faf
JR
2031 /* lock domain */
2032 spin_lock(&domain->lock);
2033
397111ab 2034 head = dev_data;
15898bbc 2035
397111ab
JR
2036 if (head->alias_data != NULL)
2037 head = head->alias_data;
eba6ac60 2038
397111ab 2039 /* Now we have the root of the alias group, if any */
15898bbc 2040
397111ab
JR
2041 ret = -EBUSY;
2042 if (head->domain != NULL)
2043 goto out_unlock;
15898bbc 2044
397111ab
JR
2045 /* Attach alias group root */
2046 do_attach(head, domain);
eba6ac60 2047
397111ab
JR
2048 /* Attach other devices in the alias group */
2049 list_for_each_entry(entry, &head->alias_list, alias_list)
2050 do_attach(entry, domain);
24100055 2051
84fe6c19
JL
2052 ret = 0;
2053
2054out_unlock:
2055
eba6ac60
JR
2056 /* ready */
2057 spin_unlock(&domain->lock);
15898bbc 2058
84fe6c19 2059 return ret;
0feae533 2060}
b20ac0d4 2061
52815b75
JR
2062
2063static void pdev_iommuv2_disable(struct pci_dev *pdev)
2064{
2065 pci_disable_ats(pdev);
2066 pci_disable_pri(pdev);
2067 pci_disable_pasid(pdev);
2068}
2069
6a113ddc
JR
2070/* FIXME: Change generic reset-function to do the same */
2071static int pri_reset_while_enabled(struct pci_dev *pdev)
2072{
2073 u16 control;
2074 int pos;
2075
46277b75 2076 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2077 if (!pos)
2078 return -EINVAL;
2079
46277b75
JR
2080 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2081 control |= PCI_PRI_CTRL_RESET;
2082 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2083
2084 return 0;
2085}
2086
52815b75
JR
2087static int pdev_iommuv2_enable(struct pci_dev *pdev)
2088{
6a113ddc
JR
2089 bool reset_enable;
2090 int reqs, ret;
2091
2092 /* FIXME: Hardcode number of outstanding requests for now */
2093 reqs = 32;
2094 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2095 reqs = 1;
2096 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2097
2098 /* Only allow access to user-accessible pages */
2099 ret = pci_enable_pasid(pdev, 0);
2100 if (ret)
2101 goto out_err;
2102
2103 /* First reset the PRI state of the device */
2104 ret = pci_reset_pri(pdev);
2105 if (ret)
2106 goto out_err;
2107
6a113ddc
JR
2108 /* Enable PRI */
2109 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2110 if (ret)
2111 goto out_err;
2112
6a113ddc
JR
2113 if (reset_enable) {
2114 ret = pri_reset_while_enabled(pdev);
2115 if (ret)
2116 goto out_err;
2117 }
2118
52815b75
JR
2119 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2120 if (ret)
2121 goto out_err;
2122
2123 return 0;
2124
2125out_err:
2126 pci_disable_pri(pdev);
2127 pci_disable_pasid(pdev);
2128
2129 return ret;
2130}
2131
c99afa25 2132/* FIXME: Move this to PCI code */
a3b93121 2133#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2134
98f1ad25 2135static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2136{
a3b93121 2137 u16 status;
c99afa25
JR
2138 int pos;
2139
46277b75 2140 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2141 if (!pos)
2142 return false;
2143
a3b93121 2144 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2145
a3b93121 2146 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2147}
2148
407d733e 2149/*
df805abb 2150 * If a device is not yet associated with a domain, this function
407d733e
JR
2151 * assigns it visible for the hardware
2152 */
15898bbc
JR
2153static int attach_device(struct device *dev,
2154 struct protection_domain *domain)
0feae533 2155{
fd7b5535 2156 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2157 struct iommu_dev_data *dev_data;
eba6ac60 2158 unsigned long flags;
15898bbc 2159 int ret;
eba6ac60 2160
ea61cddb
JR
2161 dev_data = get_dev_data(dev);
2162
52815b75
JR
2163 if (domain->flags & PD_IOMMUV2_MASK) {
2164 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2165 return -EINVAL;
2166
2167 if (pdev_iommuv2_enable(pdev) != 0)
2168 return -EINVAL;
2169
2170 dev_data->ats.enabled = true;
2171 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2172 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2173 } else if (amd_iommu_iotlb_sup &&
2174 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2175 dev_data->ats.enabled = true;
2176 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2177 }
fd7b5535 2178
eba6ac60 2179 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2180 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2181 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2182
0feae533
JR
2183 /*
2184 * We might boot into a crash-kernel here. The crashed kernel
2185 * left the caches in the IOMMU dirty. So we have to flush
2186 * here to evict all dirty stuff.
2187 */
17b124bf 2188 domain_flush_tlb_pde(domain);
15898bbc
JR
2189
2190 return ret;
b20ac0d4
JR
2191}
2192
355bf553
JR
2193/*
2194 * Removes a device from a protection domain (unlocked)
2195 */
ec9e79ef 2196static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2197{
397111ab 2198 struct iommu_dev_data *head, *entry;
2ca76279 2199 struct protection_domain *domain;
7c392cbe 2200 unsigned long flags;
c4596114 2201
7f760ddd 2202 BUG_ON(!dev_data->domain);
355bf553 2203
2ca76279
JR
2204 domain = dev_data->domain;
2205
2206 spin_lock_irqsave(&domain->lock, flags);
24100055 2207
397111ab
JR
2208 head = dev_data;
2209 if (head->alias_data != NULL)
2210 head = head->alias_data;
71f77580 2211
397111ab
JR
2212 list_for_each_entry(entry, &head->alias_list, alias_list)
2213 do_detach(entry);
24100055 2214
397111ab 2215 do_detach(head);
7f760ddd 2216
2ca76279 2217 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2218
2219 /*
2220 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2221 * passthrough domain if it is detached from any other domain.
2222 * Make sure we can deassign from the pt_domain itself.
21129f78 2223 */
5abcdba4 2224 if (dev_data->passthrough &&
d3ad9373 2225 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2226 __attach_device(dev_data, pt_domain);
355bf553
JR
2227}
2228
2229/*
2230 * Removes a device from a protection domain (with devtable_lock held)
2231 */
15898bbc 2232static void detach_device(struct device *dev)
355bf553 2233{
52815b75 2234 struct protection_domain *domain;
ea61cddb 2235 struct iommu_dev_data *dev_data;
355bf553
JR
2236 unsigned long flags;
2237
ec9e79ef 2238 dev_data = get_dev_data(dev);
52815b75 2239 domain = dev_data->domain;
ec9e79ef 2240
355bf553
JR
2241 /* lock device table */
2242 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2243 __detach_device(dev_data);
355bf553 2244 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2245
52815b75
JR
2246 if (domain->flags & PD_IOMMUV2_MASK)
2247 pdev_iommuv2_disable(to_pci_dev(dev));
2248 else if (dev_data->ats.enabled)
ea61cddb 2249 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2250
2251 dev_data->ats.enabled = false;
355bf553 2252}
e275a2a0 2253
aafd8ba0 2254static int amd_iommu_add_device(struct device *dev)
e275a2a0 2255{
e275a2a0 2256 struct amd_iommu *iommu;
5abcdba4 2257 u16 devid;
aafd8ba0 2258 int ret;
e275a2a0 2259
aafd8ba0 2260 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2261 return 0;
e275a2a0 2262
aafd8ba0
JR
2263 devid = get_device_id(dev);
2264 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2265
aafd8ba0
JR
2266 ret = iommu_init_device(dev);
2267 if (ret == -ENOTSUPP) {
2268 iommu_ignore_device(dev);
2269 goto out;
2270 }
2271 init_iommu_group(dev);
2c9195e9 2272
aafd8ba0 2273 dev->archdata.dma_ops = &amd_iommu_dma_ops;
e275a2a0 2274
aafd8ba0 2275out:
e275a2a0
JR
2276 iommu_completion_wait(iommu);
2277
e275a2a0
JR
2278 return 0;
2279}
2280
aafd8ba0 2281static void amd_iommu_remove_device(struct device *dev)
8638c491 2282{
aafd8ba0
JR
2283 struct amd_iommu *iommu;
2284 u16 devid;
2285
2286 if (!check_device(dev))
2287 return;
2288
2289 devid = get_device_id(dev);
2290 iommu = amd_iommu_rlookup_table[devid];
2291
2292 iommu_uninit_device(dev);
2293 iommu_completion_wait(iommu);
8638c491
JR
2294}
2295
431b2a20
JR
2296/*****************************************************************************
2297 *
2298 * The next functions belong to the dma_ops mapping/unmapping code.
2299 *
2300 *****************************************************************************/
2301
2302/*
2303 * In the dma_ops path we only have the struct device. This function
2304 * finds the corresponding IOMMU, the protection domain and the
2305 * requestor id for a given device.
2306 * If the device is not yet associated with a domain this is also done
2307 * in this function.
2308 */
94f6d190 2309static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2310{
94f6d190 2311 struct protection_domain *domain;
063071df 2312 struct iommu_domain *io_domain;
b20ac0d4 2313
f99c0f1c 2314 if (!check_device(dev))
94f6d190 2315 return ERR_PTR(-EINVAL);
b20ac0d4 2316
063071df 2317 io_domain = iommu_get_domain_for_dev(dev);
0bb6e243
JR
2318 if (!io_domain)
2319 return NULL;
063071df 2320
0bb6e243
JR
2321 domain = to_pdomain(io_domain);
2322 if (!dma_ops_domain(domain))
94f6d190 2323 return ERR_PTR(-EBUSY);
f99c0f1c 2324
0bb6e243 2325 return domain;
b20ac0d4
JR
2326}
2327
04bfdd84
JR
2328static void update_device_table(struct protection_domain *domain)
2329{
492667da 2330 struct iommu_dev_data *dev_data;
04bfdd84 2331
ea61cddb
JR
2332 list_for_each_entry(dev_data, &domain->dev_list, list)
2333 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2334}
2335
2336static void update_domain(struct protection_domain *domain)
2337{
2338 if (!domain->updated)
2339 return;
2340
2341 update_device_table(domain);
17b124bf
JR
2342
2343 domain_flush_devices(domain);
2344 domain_flush_tlb_pde(domain);
04bfdd84
JR
2345
2346 domain->updated = false;
2347}
2348
8bda3092
JR
2349/*
2350 * This function fetches the PTE for a given address in the aperture
2351 */
2352static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2353 unsigned long address)
2354{
384de729 2355 struct aperture_range *aperture;
8bda3092
JR
2356 u64 *pte, *pte_page;
2357
384de729
JR
2358 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2359 if (!aperture)
2360 return NULL;
2361
2362 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2363 if (!pte) {
cbb9d729 2364 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2365 GFP_ATOMIC);
384de729
JR
2366 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2367 } else
8c8c143c 2368 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2369
04bfdd84 2370 update_domain(&dom->domain);
8bda3092
JR
2371
2372 return pte;
2373}
2374
431b2a20
JR
2375/*
2376 * This is the generic map function. It maps one 4kb page at paddr to
2377 * the given address in the DMA address space for the domain.
2378 */
680525e0 2379static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2380 unsigned long address,
2381 phys_addr_t paddr,
2382 int direction)
2383{
2384 u64 *pte, __pte;
2385
2386 WARN_ON(address > dom->aperture_size);
2387
2388 paddr &= PAGE_MASK;
2389
8bda3092 2390 pte = dma_ops_get_pte(dom, address);
53812c11 2391 if (!pte)
8fd524b3 2392 return DMA_ERROR_CODE;
cb76c322
JR
2393
2394 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2395
2396 if (direction == DMA_TO_DEVICE)
2397 __pte |= IOMMU_PTE_IR;
2398 else if (direction == DMA_FROM_DEVICE)
2399 __pte |= IOMMU_PTE_IW;
2400 else if (direction == DMA_BIDIRECTIONAL)
2401 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2402
2403 WARN_ON(*pte);
2404
2405 *pte = __pte;
2406
2407 return (dma_addr_t)address;
2408}
2409
431b2a20
JR
2410/*
2411 * The generic unmapping function for on page in the DMA address space.
2412 */
680525e0 2413static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2414 unsigned long address)
2415{
384de729 2416 struct aperture_range *aperture;
cb76c322
JR
2417 u64 *pte;
2418
2419 if (address >= dom->aperture_size)
2420 return;
2421
384de729
JR
2422 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2423 if (!aperture)
2424 return;
2425
2426 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2427 if (!pte)
2428 return;
cb76c322 2429
8c8c143c 2430 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2431
2432 WARN_ON(!*pte);
2433
2434 *pte = 0ULL;
2435}
2436
431b2a20
JR
2437/*
2438 * This function contains common code for mapping of a physically
24f81160
JR
2439 * contiguous memory region into DMA address space. It is used by all
2440 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2441 * Must be called with the domain lock held.
2442 */
cb76c322 2443static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2444 struct dma_ops_domain *dma_dom,
2445 phys_addr_t paddr,
2446 size_t size,
6d4f343f 2447 int dir,
832a90c3
JR
2448 bool align,
2449 u64 dma_mask)
cb76c322
JR
2450{
2451 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2452 dma_addr_t address, start, ret;
cb76c322 2453 unsigned int pages;
6d4f343f 2454 unsigned long align_mask = 0;
cb76c322
JR
2455 int i;
2456
e3c449f5 2457 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2458 paddr &= PAGE_MASK;
2459
8ecaf8f1
JR
2460 INC_STATS_COUNTER(total_map_requests);
2461
c1858976
JR
2462 if (pages > 1)
2463 INC_STATS_COUNTER(cross_page);
2464
6d4f343f
JR
2465 if (align)
2466 align_mask = (1UL << get_order(size)) - 1;
2467
11b83888 2468retry:
832a90c3
JR
2469 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2470 dma_mask);
8fd524b3 2471 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2472 /*
2473 * setting next_address here will let the address
2474 * allocator only scan the new allocated range in the
2475 * first run. This is a small optimization.
2476 */
2477 dma_dom->next_address = dma_dom->aperture_size;
2478
576175c2 2479 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2480 goto out;
2481
2482 /*
af901ca1 2483 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2484 * allocation again
2485 */
2486 goto retry;
2487 }
cb76c322
JR
2488
2489 start = address;
2490 for (i = 0; i < pages; ++i) {
680525e0 2491 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2492 if (ret == DMA_ERROR_CODE)
53812c11
JR
2493 goto out_unmap;
2494
cb76c322
JR
2495 paddr += PAGE_SIZE;
2496 start += PAGE_SIZE;
2497 }
2498 address += offset;
2499
5774f7c5
JR
2500 ADD_STATS_COUNTER(alloced_io_mem, size);
2501
afa9fdc2 2502 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2503 domain_flush_tlb(&dma_dom->domain);
1c655773 2504 dma_dom->need_flush = false;
318afd41 2505 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2506 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2507
cb76c322
JR
2508out:
2509 return address;
53812c11
JR
2510
2511out_unmap:
2512
2513 for (--i; i >= 0; --i) {
2514 start -= PAGE_SIZE;
680525e0 2515 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2516 }
2517
2518 dma_ops_free_addresses(dma_dom, address, pages);
2519
8fd524b3 2520 return DMA_ERROR_CODE;
cb76c322
JR
2521}
2522
431b2a20
JR
2523/*
2524 * Does the reverse of the __map_single function. Must be called with
2525 * the domain lock held too
2526 */
cd8c82e8 2527static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2528 dma_addr_t dma_addr,
2529 size_t size,
2530 int dir)
2531{
04e0463e 2532 dma_addr_t flush_addr;
cb76c322
JR
2533 dma_addr_t i, start;
2534 unsigned int pages;
2535
8fd524b3 2536 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2537 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2538 return;
2539
04e0463e 2540 flush_addr = dma_addr;
e3c449f5 2541 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2542 dma_addr &= PAGE_MASK;
2543 start = dma_addr;
2544
2545 for (i = 0; i < pages; ++i) {
680525e0 2546 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2547 start += PAGE_SIZE;
2548 }
2549
5774f7c5
JR
2550 SUB_STATS_COUNTER(alloced_io_mem, size);
2551
cb76c322 2552 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2553
80be308d 2554 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2555 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2556 dma_dom->need_flush = false;
2557 }
cb76c322
JR
2558}
2559
431b2a20
JR
2560/*
2561 * The exported map_single function for dma_ops.
2562 */
51491367
FT
2563static dma_addr_t map_page(struct device *dev, struct page *page,
2564 unsigned long offset, size_t size,
2565 enum dma_data_direction dir,
2566 struct dma_attrs *attrs)
4da70b9e
JR
2567{
2568 unsigned long flags;
4da70b9e 2569 struct protection_domain *domain;
4da70b9e 2570 dma_addr_t addr;
832a90c3 2571 u64 dma_mask;
51491367 2572 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2573
0f2a86f2
JR
2574 INC_STATS_COUNTER(cnt_map_single);
2575
94f6d190
JR
2576 domain = get_domain(dev);
2577 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2578 return (dma_addr_t)paddr;
94f6d190
JR
2579 else if (IS_ERR(domain))
2580 return DMA_ERROR_CODE;
4da70b9e 2581
f99c0f1c
JR
2582 dma_mask = *dev->dma_mask;
2583
4da70b9e 2584 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2585
cd8c82e8 2586 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2587 dma_mask);
8fd524b3 2588 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2589 goto out;
2590
17b124bf 2591 domain_flush_complete(domain);
4da70b9e
JR
2592
2593out:
2594 spin_unlock_irqrestore(&domain->lock, flags);
2595
2596 return addr;
2597}
2598
431b2a20
JR
2599/*
2600 * The exported unmap_single function for dma_ops.
2601 */
51491367
FT
2602static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2603 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2604{
2605 unsigned long flags;
4da70b9e 2606 struct protection_domain *domain;
4da70b9e 2607
146a6917
JR
2608 INC_STATS_COUNTER(cnt_unmap_single);
2609
94f6d190
JR
2610 domain = get_domain(dev);
2611 if (IS_ERR(domain))
5b28df6f
JR
2612 return;
2613
4da70b9e
JR
2614 spin_lock_irqsave(&domain->lock, flags);
2615
cd8c82e8 2616 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2617
17b124bf 2618 domain_flush_complete(domain);
4da70b9e
JR
2619
2620 spin_unlock_irqrestore(&domain->lock, flags);
2621}
2622
431b2a20
JR
2623/*
2624 * The exported map_sg function for dma_ops (handles scatter-gather
2625 * lists).
2626 */
65b050ad 2627static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2628 int nelems, enum dma_data_direction dir,
2629 struct dma_attrs *attrs)
65b050ad
JR
2630{
2631 unsigned long flags;
65b050ad 2632 struct protection_domain *domain;
65b050ad
JR
2633 int i;
2634 struct scatterlist *s;
2635 phys_addr_t paddr;
2636 int mapped_elems = 0;
832a90c3 2637 u64 dma_mask;
65b050ad 2638
d03f067a
JR
2639 INC_STATS_COUNTER(cnt_map_sg);
2640
94f6d190 2641 domain = get_domain(dev);
a0e191b2 2642 if (IS_ERR(domain))
94f6d190 2643 return 0;
dbcc112e 2644
832a90c3 2645 dma_mask = *dev->dma_mask;
65b050ad 2646
65b050ad
JR
2647 spin_lock_irqsave(&domain->lock, flags);
2648
2649 for_each_sg(sglist, s, nelems, i) {
2650 paddr = sg_phys(s);
2651
cd8c82e8 2652 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2653 paddr, s->length, dir, false,
2654 dma_mask);
65b050ad
JR
2655
2656 if (s->dma_address) {
2657 s->dma_length = s->length;
2658 mapped_elems++;
2659 } else
2660 goto unmap;
65b050ad
JR
2661 }
2662
17b124bf 2663 domain_flush_complete(domain);
65b050ad
JR
2664
2665out:
2666 spin_unlock_irqrestore(&domain->lock, flags);
2667
2668 return mapped_elems;
2669unmap:
2670 for_each_sg(sglist, s, mapped_elems, i) {
2671 if (s->dma_address)
cd8c82e8 2672 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2673 s->dma_length, dir);
2674 s->dma_address = s->dma_length = 0;
2675 }
2676
2677 mapped_elems = 0;
2678
2679 goto out;
2680}
2681
431b2a20
JR
2682/*
2683 * The exported map_sg function for dma_ops (handles scatter-gather
2684 * lists).
2685 */
65b050ad 2686static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2687 int nelems, enum dma_data_direction dir,
2688 struct dma_attrs *attrs)
65b050ad
JR
2689{
2690 unsigned long flags;
65b050ad
JR
2691 struct protection_domain *domain;
2692 struct scatterlist *s;
65b050ad
JR
2693 int i;
2694
55877a6b
JR
2695 INC_STATS_COUNTER(cnt_unmap_sg);
2696
94f6d190
JR
2697 domain = get_domain(dev);
2698 if (IS_ERR(domain))
5b28df6f
JR
2699 return;
2700
65b050ad
JR
2701 spin_lock_irqsave(&domain->lock, flags);
2702
2703 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2704 __unmap_single(domain->priv, s->dma_address,
65b050ad 2705 s->dma_length, dir);
65b050ad
JR
2706 s->dma_address = s->dma_length = 0;
2707 }
2708
17b124bf 2709 domain_flush_complete(domain);
65b050ad
JR
2710
2711 spin_unlock_irqrestore(&domain->lock, flags);
2712}
2713
431b2a20
JR
2714/*
2715 * The exported alloc_coherent function for dma_ops.
2716 */
5d8b53cf 2717static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2718 dma_addr_t *dma_addr, gfp_t flag,
2719 struct dma_attrs *attrs)
5d8b53cf 2720{
832a90c3 2721 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2722 struct protection_domain *domain;
2723 unsigned long flags;
2724 struct page *page;
5d8b53cf 2725
c8f0fb36
JR
2726 INC_STATS_COUNTER(cnt_alloc_coherent);
2727
94f6d190
JR
2728 domain = get_domain(dev);
2729 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2730 page = alloc_pages(flag, get_order(size));
2731 *dma_addr = page_to_phys(page);
2732 return page_address(page);
94f6d190
JR
2733 } else if (IS_ERR(domain))
2734 return NULL;
5d8b53cf 2735
3b839a57 2736 size = PAGE_ALIGN(size);
f99c0f1c
JR
2737 dma_mask = dev->coherent_dma_mask;
2738 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 2739
3b839a57
JR
2740 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2741 if (!page) {
2742 if (!(flag & __GFP_WAIT))
2743 return NULL;
5d8b53cf 2744
3b839a57
JR
2745 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2746 get_order(size));
2747 if (!page)
2748 return NULL;
2749 }
5d8b53cf 2750
832a90c3
JR
2751 if (!dma_mask)
2752 dma_mask = *dev->dma_mask;
2753
5d8b53cf
JR
2754 spin_lock_irqsave(&domain->lock, flags);
2755
3b839a57 2756 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2757 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2758
8fd524b3 2759 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2760 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2761 goto out_free;
367d04c4 2762 }
5d8b53cf 2763
17b124bf 2764 domain_flush_complete(domain);
5d8b53cf 2765
5d8b53cf
JR
2766 spin_unlock_irqrestore(&domain->lock, flags);
2767
3b839a57 2768 return page_address(page);
5b28df6f
JR
2769
2770out_free:
2771
3b839a57
JR
2772 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2773 __free_pages(page, get_order(size));
5b28df6f
JR
2774
2775 return NULL;
5d8b53cf
JR
2776}
2777
431b2a20
JR
2778/*
2779 * The exported free_coherent function for dma_ops.
431b2a20 2780 */
5d8b53cf 2781static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2782 void *virt_addr, dma_addr_t dma_addr,
2783 struct dma_attrs *attrs)
5d8b53cf 2784{
5d8b53cf 2785 struct protection_domain *domain;
3b839a57
JR
2786 unsigned long flags;
2787 struct page *page;
5d8b53cf 2788
5d31ee7e
JR
2789 INC_STATS_COUNTER(cnt_free_coherent);
2790
3b839a57
JR
2791 page = virt_to_page(virt_addr);
2792 size = PAGE_ALIGN(size);
2793
94f6d190
JR
2794 domain = get_domain(dev);
2795 if (IS_ERR(domain))
5b28df6f
JR
2796 goto free_mem;
2797
5d8b53cf
JR
2798 spin_lock_irqsave(&domain->lock, flags);
2799
cd8c82e8 2800 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2801
17b124bf 2802 domain_flush_complete(domain);
5d8b53cf
JR
2803
2804 spin_unlock_irqrestore(&domain->lock, flags);
2805
2806free_mem:
3b839a57
JR
2807 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2808 __free_pages(page, get_order(size));
5d8b53cf
JR
2809}
2810
b39ba6ad
JR
2811/*
2812 * This function is called by the DMA layer to find out if we can handle a
2813 * particular device. It is part of the dma_ops.
2814 */
2815static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2816{
420aef8a 2817 return check_device(dev);
b39ba6ad
JR
2818}
2819
160c1d8e 2820static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
2821 .alloc = alloc_coherent,
2822 .free = free_coherent,
51491367
FT
2823 .map_page = map_page,
2824 .unmap_page = unmap_page,
6631ee9d
JR
2825 .map_sg = map_sg,
2826 .unmap_sg = unmap_sg,
b39ba6ad 2827 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2828};
2829
27c2127a
JR
2830static unsigned device_dma_ops_init(void)
2831{
5abcdba4 2832 struct iommu_dev_data *dev_data;
27c2127a
JR
2833 struct pci_dev *pdev = NULL;
2834 unsigned unhandled = 0;
2835
2836 for_each_pci_dev(pdev) {
2837 if (!check_device(&pdev->dev)) {
af1be049
JR
2838
2839 iommu_ignore_device(&pdev->dev);
2840
27c2127a
JR
2841 unhandled += 1;
2842 continue;
2843 }
2844
5abcdba4
JR
2845 dev_data = get_dev_data(&pdev->dev);
2846
2847 if (!dev_data->passthrough)
2848 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2849 else
2850 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
2851 }
2852
2853 return unhandled;
2854}
2855
431b2a20
JR
2856/*
2857 * The function which clues the AMD IOMMU driver into dma_ops.
2858 */
f5325094
JR
2859
2860void __init amd_iommu_init_api(void)
2861{
2cc21c42 2862 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2863}
2864
6631ee9d
JR
2865int __init amd_iommu_init_dma_ops(void)
2866{
0bb6e243 2867 int unhandled;
6631ee9d 2868
6631ee9d 2869 iommu_detected = 1;
75f1cdf1 2870 swiotlb = 0;
6631ee9d 2871
431b2a20 2872 /* Make the driver finally visible to the drivers */
27c2127a
JR
2873 unhandled = device_dma_ops_init();
2874 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2875 /* There are unhandled devices - initialize swiotlb for them */
2876 swiotlb = 1;
2877 }
6631ee9d 2878
7f26508b
JR
2879 amd_iommu_stats_init();
2880
62410eeb
JR
2881 if (amd_iommu_unmap_flush)
2882 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2883 else
2884 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2885
6631ee9d 2886 return 0;
6631ee9d 2887}
6d98cd80
JR
2888
2889/*****************************************************************************
2890 *
2891 * The following functions belong to the exported interface of AMD IOMMU
2892 *
2893 * This interface allows access to lower level functions of the IOMMU
2894 * like protection domain handling and assignement of devices to domains
2895 * which is not possible with the dma_ops interface.
2896 *
2897 *****************************************************************************/
2898
6d98cd80
JR
2899static void cleanup_domain(struct protection_domain *domain)
2900{
9b29d3c6 2901 struct iommu_dev_data *entry;
6d98cd80 2902 unsigned long flags;
6d98cd80
JR
2903
2904 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2905
9b29d3c6
JR
2906 while (!list_empty(&domain->dev_list)) {
2907 entry = list_first_entry(&domain->dev_list,
2908 struct iommu_dev_data, list);
2909 __detach_device(entry);
492667da 2910 }
6d98cd80
JR
2911
2912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2913}
2914
2650815f
JR
2915static void protection_domain_free(struct protection_domain *domain)
2916{
2917 if (!domain)
2918 return;
2919
aeb26f55
JR
2920 del_domain_from_list(domain);
2921
2650815f
JR
2922 if (domain->id)
2923 domain_id_free(domain->id);
2924
2925 kfree(domain);
2926}
2927
2928static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2929{
2930 struct protection_domain *domain;
2931
2932 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2933 if (!domain)
2650815f 2934 return NULL;
c156e347
JR
2935
2936 spin_lock_init(&domain->lock);
5d214fe6 2937 mutex_init(&domain->api_lock);
c156e347
JR
2938 domain->id = domain_id_alloc();
2939 if (!domain->id)
2650815f 2940 goto out_err;
7c392cbe 2941 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2942
aeb26f55
JR
2943 add_domain_to_list(domain);
2944
2650815f
JR
2945 return domain;
2946
2947out_err:
2948 kfree(domain);
2949
2950 return NULL;
2951}
2952
aafd8ba0 2953static int alloc_passthrough_domain(void)
5abcdba4
JR
2954{
2955 if (pt_domain != NULL)
2956 return 0;
2957
2958 /* allocate passthrough domain */
2959 pt_domain = protection_domain_alloc();
2960 if (!pt_domain)
2961 return -ENOMEM;
2962
2963 pt_domain->mode = PAGE_MODE_NONE;
2964
2965 return 0;
2966}
3f4b87b9
JR
2967
2968static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 2969{
3f4b87b9 2970 struct protection_domain *pdomain;
0bb6e243 2971 struct dma_ops_domain *dma_domain;
2650815f 2972
0bb6e243
JR
2973 switch (type) {
2974 case IOMMU_DOMAIN_UNMANAGED:
2975 pdomain = protection_domain_alloc();
2976 if (!pdomain)
2977 return NULL;
2650815f 2978
0bb6e243
JR
2979 pdomain->mode = PAGE_MODE_3_LEVEL;
2980 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2981 if (!pdomain->pt_root) {
2982 protection_domain_free(pdomain);
2983 return NULL;
2984 }
c156e347 2985
0bb6e243
JR
2986 pdomain->domain.geometry.aperture_start = 0;
2987 pdomain->domain.geometry.aperture_end = ~0ULL;
2988 pdomain->domain.geometry.force_aperture = true;
c156e347 2989
0bb6e243
JR
2990 break;
2991 case IOMMU_DOMAIN_DMA:
2992 dma_domain = dma_ops_domain_alloc();
2993 if (!dma_domain) {
2994 pr_err("AMD-Vi: Failed to allocate\n");
2995 return NULL;
2996 }
2997 pdomain = &dma_domain->domain;
2998 break;
2999 default:
3000 return NULL;
3001 }
0ff64f80 3002
3f4b87b9 3003 return &pdomain->domain;
c156e347
JR
3004}
3005
3f4b87b9 3006static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3007{
3f4b87b9 3008 struct protection_domain *domain;
98383fc3 3009
3f4b87b9 3010 if (!dom)
98383fc3
JR
3011 return;
3012
3f4b87b9
JR
3013 domain = to_pdomain(dom);
3014
98383fc3
JR
3015 if (domain->dev_cnt > 0)
3016 cleanup_domain(domain);
3017
3018 BUG_ON(domain->dev_cnt != 0);
3019
132bd68f
JR
3020 if (domain->mode != PAGE_MODE_NONE)
3021 free_pagetable(domain);
98383fc3 3022
52815b75
JR
3023 if (domain->flags & PD_IOMMUV2_MASK)
3024 free_gcr3_table(domain);
3025
8b408fe4 3026 protection_domain_free(domain);
98383fc3
JR
3027}
3028
684f2888
JR
3029static void amd_iommu_detach_device(struct iommu_domain *dom,
3030 struct device *dev)
3031{
657cbb6b 3032 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3033 struct amd_iommu *iommu;
684f2888
JR
3034 u16 devid;
3035
98fc5a69 3036 if (!check_device(dev))
684f2888
JR
3037 return;
3038
98fc5a69 3039 devid = get_device_id(dev);
684f2888 3040
657cbb6b 3041 if (dev_data->domain != NULL)
15898bbc 3042 detach_device(dev);
684f2888
JR
3043
3044 iommu = amd_iommu_rlookup_table[devid];
3045 if (!iommu)
3046 return;
3047
684f2888
JR
3048 iommu_completion_wait(iommu);
3049}
3050
01106066
JR
3051static int amd_iommu_attach_device(struct iommu_domain *dom,
3052 struct device *dev)
3053{
3f4b87b9 3054 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3055 struct iommu_dev_data *dev_data;
01106066 3056 struct amd_iommu *iommu;
15898bbc 3057 int ret;
01106066 3058
98fc5a69 3059 if (!check_device(dev))
01106066
JR
3060 return -EINVAL;
3061
657cbb6b
JR
3062 dev_data = dev->archdata.iommu;
3063
f62dda66 3064 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3065 if (!iommu)
3066 return -EINVAL;
3067
657cbb6b 3068 if (dev_data->domain)
15898bbc 3069 detach_device(dev);
01106066 3070
15898bbc 3071 ret = attach_device(dev, domain);
01106066
JR
3072
3073 iommu_completion_wait(iommu);
3074
15898bbc 3075 return ret;
01106066
JR
3076}
3077
468e2366 3078static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3079 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3080{
3f4b87b9 3081 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3082 int prot = 0;
3083 int ret;
3084
132bd68f
JR
3085 if (domain->mode == PAGE_MODE_NONE)
3086 return -EINVAL;
3087
c6229ca6
JR
3088 if (iommu_prot & IOMMU_READ)
3089 prot |= IOMMU_PROT_IR;
3090 if (iommu_prot & IOMMU_WRITE)
3091 prot |= IOMMU_PROT_IW;
3092
5d214fe6 3093 mutex_lock(&domain->api_lock);
795e74f7 3094 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3095 mutex_unlock(&domain->api_lock);
3096
795e74f7 3097 return ret;
c6229ca6
JR
3098}
3099
5009065d
OBC
3100static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3101 size_t page_size)
eb74ff6c 3102{
3f4b87b9 3103 struct protection_domain *domain = to_pdomain(dom);
5009065d 3104 size_t unmap_size;
eb74ff6c 3105
132bd68f
JR
3106 if (domain->mode == PAGE_MODE_NONE)
3107 return -EINVAL;
3108
5d214fe6 3109 mutex_lock(&domain->api_lock);
468e2366 3110 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3111 mutex_unlock(&domain->api_lock);
eb74ff6c 3112
17b124bf 3113 domain_flush_tlb_pde(domain);
5d214fe6 3114
5009065d 3115 return unmap_size;
eb74ff6c
JR
3116}
3117
645c4c8d 3118static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3119 dma_addr_t iova)
645c4c8d 3120{
3f4b87b9 3121 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3122 unsigned long offset_mask, pte_pgsize;
f03152bb 3123 u64 *pte, __pte;
645c4c8d 3124
132bd68f
JR
3125 if (domain->mode == PAGE_MODE_NONE)
3126 return iova;
3127
3039ca1b 3128 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3129
a6d41a40 3130 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3131 return 0;
3132
b24b1b63
JR
3133 offset_mask = pte_pgsize - 1;
3134 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3135
b24b1b63 3136 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3137}
3138
ab636481 3139static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3140{
80a506b8
JR
3141 switch (cap) {
3142 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3143 return true;
bdddadcb 3144 case IOMMU_CAP_INTR_REMAP:
ab636481 3145 return (irq_remapping_enabled == 1);
cfdeec22
WD
3146 case IOMMU_CAP_NOEXEC:
3147 return false;
80a506b8
JR
3148 }
3149
ab636481 3150 return false;
dbb9fd86
SY
3151}
3152
35cf248f
JR
3153static void amd_iommu_get_dm_regions(struct device *dev,
3154 struct list_head *head)
3155{
3156 struct unity_map_entry *entry;
3157 u16 devid;
3158
3159 devid = get_device_id(dev);
3160
3161 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3162 struct iommu_dm_region *region;
3163
3164 if (devid < entry->devid_start || devid > entry->devid_end)
3165 continue;
3166
3167 region = kzalloc(sizeof(*region), GFP_KERNEL);
3168 if (!region) {
3169 pr_err("Out of memory allocating dm-regions for %s\n",
3170 dev_name(dev));
3171 return;
3172 }
3173
3174 region->start = entry->address_start;
3175 region->length = entry->address_end - entry->address_start;
3176 if (entry->prot & IOMMU_PROT_IR)
3177 region->prot |= IOMMU_READ;
3178 if (entry->prot & IOMMU_PROT_IW)
3179 region->prot |= IOMMU_WRITE;
3180
3181 list_add_tail(&region->list, head);
3182 }
3183}
3184
3185static void amd_iommu_put_dm_regions(struct device *dev,
3186 struct list_head *head)
3187{
3188 struct iommu_dm_region *entry, *next;
3189
3190 list_for_each_entry_safe(entry, next, head, list)
3191 kfree(entry);
3192}
3193
b22f6434 3194static const struct iommu_ops amd_iommu_ops = {
ab636481 3195 .capable = amd_iommu_capable,
3f4b87b9
JR
3196 .domain_alloc = amd_iommu_domain_alloc,
3197 .domain_free = amd_iommu_domain_free,
26961efe
JR
3198 .attach_dev = amd_iommu_attach_device,
3199 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3200 .map = amd_iommu_map,
3201 .unmap = amd_iommu_unmap,
315786eb 3202 .map_sg = default_iommu_map_sg,
26961efe 3203 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3204 .add_device = amd_iommu_add_device,
3205 .remove_device = amd_iommu_remove_device,
35cf248f
JR
3206 .get_dm_regions = amd_iommu_get_dm_regions,
3207 .put_dm_regions = amd_iommu_put_dm_regions,
aa3de9c0 3208 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3209};
3210
0feae533
JR
3211/*****************************************************************************
3212 *
3213 * The next functions do a basic initialization of IOMMU for pass through
3214 * mode
3215 *
3216 * In passthrough mode the IOMMU is initialized and enabled but not used for
3217 * DMA-API translation.
3218 *
3219 *****************************************************************************/
3220
3221int __init amd_iommu_init_passthrough(void)
3222{
5abcdba4 3223 struct iommu_dev_data *dev_data;
0feae533 3224 struct pci_dev *dev = NULL;
5abcdba4 3225 int ret;
0feae533 3226
5abcdba4
JR
3227 ret = alloc_passthrough_domain();
3228 if (ret)
3229 return ret;
0feae533 3230
6c54aabd 3231 for_each_pci_dev(dev) {
98fc5a69 3232 if (!check_device(&dev->dev))
0feae533
JR
3233 continue;
3234
5abcdba4
JR
3235 dev_data = get_dev_data(&dev->dev);
3236 dev_data->passthrough = true;
3237
15898bbc 3238 attach_device(&dev->dev, pt_domain);
0feae533
JR
3239 }
3240
2655d7a2
JR
3241 amd_iommu_stats_init();
3242
0feae533
JR
3243 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3244
3245 return 0;
3246}
72e1dcc4
JR
3247
3248/* IOMMUv2 specific functions */
3249int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3250{
3251 return atomic_notifier_chain_register(&ppr_notifier, nb);
3252}
3253EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3254
3255int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3256{
3257 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3258}
3259EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3260
3261void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3262{
3f4b87b9 3263 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3264 unsigned long flags;
3265
3266 spin_lock_irqsave(&domain->lock, flags);
3267
3268 /* Update data structure */
3269 domain->mode = PAGE_MODE_NONE;
3270 domain->updated = true;
3271
3272 /* Make changes visible to IOMMUs */
3273 update_domain(domain);
3274
3275 /* Page-table is not visible to IOMMU anymore, so free it */
3276 free_pagetable(domain);
3277
3278 spin_unlock_irqrestore(&domain->lock, flags);
3279}
3280EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3281
3282int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3283{
3f4b87b9 3284 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3285 unsigned long flags;
3286 int levels, ret;
3287
3288 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3289 return -EINVAL;
3290
3291 /* Number of GCR3 table levels required */
3292 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3293 levels += 1;
3294
3295 if (levels > amd_iommu_max_glx_val)
3296 return -EINVAL;
3297
3298 spin_lock_irqsave(&domain->lock, flags);
3299
3300 /*
3301 * Save us all sanity checks whether devices already in the
3302 * domain support IOMMUv2. Just force that the domain has no
3303 * devices attached when it is switched into IOMMUv2 mode.
3304 */
3305 ret = -EBUSY;
3306 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3307 goto out;
3308
3309 ret = -ENOMEM;
3310 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3311 if (domain->gcr3_tbl == NULL)
3312 goto out;
3313
3314 domain->glx = levels;
3315 domain->flags |= PD_IOMMUV2_MASK;
3316 domain->updated = true;
3317
3318 update_domain(domain);
3319
3320 ret = 0;
3321
3322out:
3323 spin_unlock_irqrestore(&domain->lock, flags);
3324
3325 return ret;
3326}
3327EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3328
3329static int __flush_pasid(struct protection_domain *domain, int pasid,
3330 u64 address, bool size)
3331{
3332 struct iommu_dev_data *dev_data;
3333 struct iommu_cmd cmd;
3334 int i, ret;
3335
3336 if (!(domain->flags & PD_IOMMUV2_MASK))
3337 return -EINVAL;
3338
3339 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3340
3341 /*
3342 * IOMMU TLB needs to be flushed before Device TLB to
3343 * prevent device TLB refill from IOMMU TLB
3344 */
3345 for (i = 0; i < amd_iommus_present; ++i) {
3346 if (domain->dev_iommu[i] == 0)
3347 continue;
3348
3349 ret = iommu_queue_command(amd_iommus[i], &cmd);
3350 if (ret != 0)
3351 goto out;
3352 }
3353
3354 /* Wait until IOMMU TLB flushes are complete */
3355 domain_flush_complete(domain);
3356
3357 /* Now flush device TLBs */
3358 list_for_each_entry(dev_data, &domain->dev_list, list) {
3359 struct amd_iommu *iommu;
3360 int qdep;
3361
3362 BUG_ON(!dev_data->ats.enabled);
3363
3364 qdep = dev_data->ats.qdep;
3365 iommu = amd_iommu_rlookup_table[dev_data->devid];
3366
3367 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3368 qdep, address, size);
3369
3370 ret = iommu_queue_command(iommu, &cmd);
3371 if (ret != 0)
3372 goto out;
3373 }
3374
3375 /* Wait until all device TLBs are flushed */
3376 domain_flush_complete(domain);
3377
3378 ret = 0;
3379
3380out:
3381
3382 return ret;
3383}
3384
3385static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3386 u64 address)
3387{
399be2f5
JR
3388 INC_STATS_COUNTER(invalidate_iotlb);
3389
22e266c7
JR
3390 return __flush_pasid(domain, pasid, address, false);
3391}
3392
3393int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3394 u64 address)
3395{
3f4b87b9 3396 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3397 unsigned long flags;
3398 int ret;
3399
3400 spin_lock_irqsave(&domain->lock, flags);
3401 ret = __amd_iommu_flush_page(domain, pasid, address);
3402 spin_unlock_irqrestore(&domain->lock, flags);
3403
3404 return ret;
3405}
3406EXPORT_SYMBOL(amd_iommu_flush_page);
3407
3408static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3409{
399be2f5
JR
3410 INC_STATS_COUNTER(invalidate_iotlb_all);
3411
22e266c7
JR
3412 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3413 true);
3414}
3415
3416int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3417{
3f4b87b9 3418 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3419 unsigned long flags;
3420 int ret;
3421
3422 spin_lock_irqsave(&domain->lock, flags);
3423 ret = __amd_iommu_flush_tlb(domain, pasid);
3424 spin_unlock_irqrestore(&domain->lock, flags);
3425
3426 return ret;
3427}
3428EXPORT_SYMBOL(amd_iommu_flush_tlb);
3429
b16137b1
JR
3430static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3431{
3432 int index;
3433 u64 *pte;
3434
3435 while (true) {
3436
3437 index = (pasid >> (9 * level)) & 0x1ff;
3438 pte = &root[index];
3439
3440 if (level == 0)
3441 break;
3442
3443 if (!(*pte & GCR3_VALID)) {
3444 if (!alloc)
3445 return NULL;
3446
3447 root = (void *)get_zeroed_page(GFP_ATOMIC);
3448 if (root == NULL)
3449 return NULL;
3450
3451 *pte = __pa(root) | GCR3_VALID;
3452 }
3453
3454 root = __va(*pte & PAGE_MASK);
3455
3456 level -= 1;
3457 }
3458
3459 return pte;
3460}
3461
3462static int __set_gcr3(struct protection_domain *domain, int pasid,
3463 unsigned long cr3)
3464{
3465 u64 *pte;
3466
3467 if (domain->mode != PAGE_MODE_NONE)
3468 return -EINVAL;
3469
3470 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3471 if (pte == NULL)
3472 return -ENOMEM;
3473
3474 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3475
3476 return __amd_iommu_flush_tlb(domain, pasid);
3477}
3478
3479static int __clear_gcr3(struct protection_domain *domain, int pasid)
3480{
3481 u64 *pte;
3482
3483 if (domain->mode != PAGE_MODE_NONE)
3484 return -EINVAL;
3485
3486 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3487 if (pte == NULL)
3488 return 0;
3489
3490 *pte = 0;
3491
3492 return __amd_iommu_flush_tlb(domain, pasid);
3493}
3494
3495int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3496 unsigned long cr3)
3497{
3f4b87b9 3498 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3499 unsigned long flags;
3500 int ret;
3501
3502 spin_lock_irqsave(&domain->lock, flags);
3503 ret = __set_gcr3(domain, pasid, cr3);
3504 spin_unlock_irqrestore(&domain->lock, flags);
3505
3506 return ret;
3507}
3508EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3509
3510int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3511{
3f4b87b9 3512 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3513 unsigned long flags;
3514 int ret;
3515
3516 spin_lock_irqsave(&domain->lock, flags);
3517 ret = __clear_gcr3(domain, pasid);
3518 spin_unlock_irqrestore(&domain->lock, flags);
3519
3520 return ret;
3521}
3522EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3523
3524int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3525 int status, int tag)
3526{
3527 struct iommu_dev_data *dev_data;
3528 struct amd_iommu *iommu;
3529 struct iommu_cmd cmd;
3530
399be2f5
JR
3531 INC_STATS_COUNTER(complete_ppr);
3532
c99afa25
JR
3533 dev_data = get_dev_data(&pdev->dev);
3534 iommu = amd_iommu_rlookup_table[dev_data->devid];
3535
3536 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3537 tag, dev_data->pri_tlp);
3538
3539 return iommu_queue_command(iommu, &cmd);
3540}
3541EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3542
3543struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3544{
3f4b87b9 3545 struct protection_domain *pdomain;
f3572db8 3546
3f4b87b9
JR
3547 pdomain = get_domain(&pdev->dev);
3548 if (IS_ERR(pdomain))
f3572db8
JR
3549 return NULL;
3550
3551 /* Only return IOMMUv2 domains */
3f4b87b9 3552 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3553 return NULL;
3554
3f4b87b9 3555 return &pdomain->domain;
f3572db8
JR
3556}
3557EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3558
3559void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3560{
3561 struct iommu_dev_data *dev_data;
3562
3563 if (!amd_iommu_v2_supported())
3564 return;
3565
3566 dev_data = get_dev_data(&pdev->dev);
3567 dev_data->errata |= (1 << erratum);
3568}
3569EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3570
3571int amd_iommu_device_info(struct pci_dev *pdev,
3572 struct amd_iommu_device_info *info)
3573{
3574 int max_pasids;
3575 int pos;
3576
3577 if (pdev == NULL || info == NULL)
3578 return -EINVAL;
3579
3580 if (!amd_iommu_v2_supported())
3581 return -EINVAL;
3582
3583 memset(info, 0, sizeof(*info));
3584
3585 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3586 if (pos)
3587 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3588
3589 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3590 if (pos)
3591 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3592
3593 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3594 if (pos) {
3595 int features;
3596
3597 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3598 max_pasids = min(max_pasids, (1 << 20));
3599
3600 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3601 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3602
3603 features = pci_pasid_features(pdev);
3604 if (features & PCI_PASID_CAP_EXEC)
3605 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3606 if (features & PCI_PASID_CAP_PRIV)
3607 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3608 }
3609
3610 return 0;
3611}
3612EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3613
3614#ifdef CONFIG_IRQ_REMAP
3615
3616/*****************************************************************************
3617 *
3618 * Interrupt Remapping Implementation
3619 *
3620 *****************************************************************************/
3621
3622union irte {
3623 u32 val;
3624 struct {
3625 u32 valid : 1,
3626 no_fault : 1,
3627 int_type : 3,
3628 rq_eoi : 1,
3629 dm : 1,
3630 rsvd_1 : 1,
3631 destination : 8,
3632 vector : 8,
3633 rsvd_2 : 8;
3634 } fields;
3635};
3636
3637#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3638#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3639#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3640#define DTE_IRQ_REMAP_ENABLE 1ULL
3641
3642static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3643{
3644 u64 dte;
3645
3646 dte = amd_iommu_dev_table[devid].data[2];
3647 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3648 dte |= virt_to_phys(table->table);
3649 dte |= DTE_IRQ_REMAP_INTCTL;
3650 dte |= DTE_IRQ_TABLE_LEN;
3651 dte |= DTE_IRQ_REMAP_ENABLE;
3652
3653 amd_iommu_dev_table[devid].data[2] = dte;
3654}
3655
3656#define IRTE_ALLOCATED (~1U)
3657
3658static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3659{
3660 struct irq_remap_table *table = NULL;
3661 struct amd_iommu *iommu;
3662 unsigned long flags;
3663 u16 alias;
3664
3665 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3666
3667 iommu = amd_iommu_rlookup_table[devid];
3668 if (!iommu)
3669 goto out_unlock;
3670
3671 table = irq_lookup_table[devid];
3672 if (table)
3673 goto out;
3674
3675 alias = amd_iommu_alias_table[devid];
3676 table = irq_lookup_table[alias];
3677 if (table) {
3678 irq_lookup_table[devid] = table;
3679 set_dte_irq_entry(devid, table);
3680 iommu_flush_dte(iommu, devid);
3681 goto out;
3682 }
3683
3684 /* Nothing there yet, allocate new irq remapping table */
3685 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3686 if (!table)
3687 goto out;
3688
197887f0
JR
3689 /* Initialize table spin-lock */
3690 spin_lock_init(&table->lock);
3691
2b324506
JR
3692 if (ioapic)
3693 /* Keep the first 32 indexes free for IOAPIC interrupts */
3694 table->min_index = 32;
3695
3696 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3697 if (!table->table) {
3698 kfree(table);
821f0f68 3699 table = NULL;
2b324506
JR
3700 goto out;
3701 }
3702
3703 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3704
3705 if (ioapic) {
3706 int i;
3707
3708 for (i = 0; i < 32; ++i)
3709 table->table[i] = IRTE_ALLOCATED;
3710 }
3711
3712 irq_lookup_table[devid] = table;
3713 set_dte_irq_entry(devid, table);
3714 iommu_flush_dte(iommu, devid);
3715 if (devid != alias) {
3716 irq_lookup_table[alias] = table;
e028a9e6 3717 set_dte_irq_entry(alias, table);
2b324506
JR
3718 iommu_flush_dte(iommu, alias);
3719 }
3720
3721out:
3722 iommu_completion_wait(iommu);
3723
3724out_unlock:
3725 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3726
3727 return table;
3728}
3729
3730static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3731{
3732 struct irq_remap_table *table;
3733 unsigned long flags;
3734 int index, c;
3735
3736 table = get_irq_table(devid, false);
3737 if (!table)
3738 return -ENODEV;
3739
3740 spin_lock_irqsave(&table->lock, flags);
3741
3742 /* Scan table for free entries */
3743 for (c = 0, index = table->min_index;
3744 index < MAX_IRQS_PER_TABLE;
3745 ++index) {
3746 if (table->table[index] == 0)
3747 c += 1;
3748 else
3749 c = 0;
3750
3751 if (c == count) {
0dfedd61 3752 struct irq_2_irte *irte_info;
2b324506
JR
3753
3754 for (; c != 0; --c)
3755 table->table[index - c + 1] = IRTE_ALLOCATED;
3756
3757 index -= count - 1;
3758
9b1b0e42 3759 cfg->remapped = 1;
0dfedd61
JR
3760 irte_info = &cfg->irq_2_irte;
3761 irte_info->devid = devid;
3762 irte_info->index = index;
2b324506
JR
3763
3764 goto out;
3765 }
3766 }
3767
3768 index = -ENOSPC;
3769
3770out:
3771 spin_unlock_irqrestore(&table->lock, flags);
3772
3773 return index;
3774}
3775
3776static int get_irte(u16 devid, int index, union irte *irte)
3777{
3778 struct irq_remap_table *table;
3779 unsigned long flags;
3780
3781 table = get_irq_table(devid, false);
3782 if (!table)
3783 return -ENOMEM;
3784
3785 spin_lock_irqsave(&table->lock, flags);
3786 irte->val = table->table[index];
3787 spin_unlock_irqrestore(&table->lock, flags);
3788
3789 return 0;
3790}
3791
3792static int modify_irte(u16 devid, int index, union irte irte)
3793{
3794 struct irq_remap_table *table;
3795 struct amd_iommu *iommu;
3796 unsigned long flags;
3797
3798 iommu = amd_iommu_rlookup_table[devid];
3799 if (iommu == NULL)
3800 return -EINVAL;
3801
3802 table = get_irq_table(devid, false);
3803 if (!table)
3804 return -ENOMEM;
3805
3806 spin_lock_irqsave(&table->lock, flags);
3807 table->table[index] = irte.val;
3808 spin_unlock_irqrestore(&table->lock, flags);
3809
3810 iommu_flush_irt(iommu, devid);
3811 iommu_completion_wait(iommu);
3812
3813 return 0;
3814}
3815
3816static void free_irte(u16 devid, int index)
3817{
3818 struct irq_remap_table *table;
3819 struct amd_iommu *iommu;
3820 unsigned long flags;
3821
3822 iommu = amd_iommu_rlookup_table[devid];
3823 if (iommu == NULL)
3824 return;
3825
3826 table = get_irq_table(devid, false);
3827 if (!table)
3828 return;
3829
3830 spin_lock_irqsave(&table->lock, flags);
3831 table->table[index] = 0;
3832 spin_unlock_irqrestore(&table->lock, flags);
3833
3834 iommu_flush_irt(iommu, devid);
3835 iommu_completion_wait(iommu);
3836}
3837
5527de74
JR
3838static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
3839 unsigned int destination, int vector,
3840 struct io_apic_irq_attr *attr)
3841{
3842 struct irq_remap_table *table;
0dfedd61 3843 struct irq_2_irte *irte_info;
5527de74
JR
3844 struct irq_cfg *cfg;
3845 union irte irte;
3846 int ioapic_id;
3847 int index;
3848 int devid;
3849 int ret;
3850
719b530c 3851 cfg = irq_cfg(irq);
5527de74
JR
3852 if (!cfg)
3853 return -EINVAL;
3854
0dfedd61 3855 irte_info = &cfg->irq_2_irte;
5527de74
JR
3856 ioapic_id = mpc_ioapic_id(attr->ioapic);
3857 devid = get_ioapic_devid(ioapic_id);
3858
3859 if (devid < 0)
3860 return devid;
3861
3862 table = get_irq_table(devid, true);
3863 if (table == NULL)
3864 return -ENOMEM;
3865
3866 index = attr->ioapic_pin;
3867
3868 /* Setup IRQ remapping info */
9b1b0e42 3869 cfg->remapped = 1;
0dfedd61
JR
3870 irte_info->devid = devid;
3871 irte_info->index = index;
5527de74
JR
3872
3873 /* Setup IRTE for IOMMU */
3874 irte.val = 0;
3875 irte.fields.vector = vector;
3876 irte.fields.int_type = apic->irq_delivery_mode;
3877 irte.fields.destination = destination;
3878 irte.fields.dm = apic->irq_dest_mode;
3879 irte.fields.valid = 1;
3880
3881 ret = modify_irte(devid, index, irte);
3882 if (ret)
3883 return ret;
3884
3885 /* Setup IOAPIC entry */
3886 memset(entry, 0, sizeof(*entry));
3887
3888 entry->vector = index;
3889 entry->mask = 0;
3890 entry->trigger = attr->trigger;
3891 entry->polarity = attr->polarity;
3892
3893 /*
3894 * Mask level triggered irqs.
5527de74
JR
3895 */
3896 if (attr->trigger)
3897 entry->mask = 1;
3898
3899 return 0;
3900}
3901
3902static int set_affinity(struct irq_data *data, const struct cpumask *mask,
3903 bool force)
3904{
0dfedd61 3905 struct irq_2_irte *irte_info;
5527de74
JR
3906 unsigned int dest, irq;
3907 struct irq_cfg *cfg;
3908 union irte irte;
3909 int err;
3910
3911 if (!config_enabled(CONFIG_SMP))
3912 return -1;
3913
719b530c 3914 cfg = irqd_cfg(data);
5527de74 3915 irq = data->irq;
0dfedd61 3916 irte_info = &cfg->irq_2_irte;
5527de74
JR
3917
3918 if (!cpumask_intersects(mask, cpu_online_mask))
3919 return -EINVAL;
3920
0dfedd61 3921 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
3922 return -EBUSY;
3923
3924 if (assign_irq_vector(irq, cfg, mask))
3925 return -EBUSY;
3926
3927 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
3928 if (err) {
3929 if (assign_irq_vector(irq, cfg, data->affinity))
3930 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
3931 return err;
3932 }
3933
3934 irte.fields.vector = cfg->vector;
3935 irte.fields.destination = dest;
3936
0dfedd61 3937 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
3938
3939 if (cfg->move_in_progress)
3940 send_cleanup_vector(cfg);
3941
3942 cpumask_copy(data->affinity, mask);
3943
3944 return 0;
3945}
3946
3947static int free_irq(int irq)
3948{
0dfedd61 3949 struct irq_2_irte *irte_info;
5527de74
JR
3950 struct irq_cfg *cfg;
3951
719b530c 3952 cfg = irq_cfg(irq);
5527de74
JR
3953 if (!cfg)
3954 return -EINVAL;
3955
0dfedd61 3956 irte_info = &cfg->irq_2_irte;
5527de74 3957
0dfedd61 3958 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
3959
3960 return 0;
3961}
3962
0b4d48cb
JR
3963static void compose_msi_msg(struct pci_dev *pdev,
3964 unsigned int irq, unsigned int dest,
3965 struct msi_msg *msg, u8 hpet_id)
3966{
0dfedd61 3967 struct irq_2_irte *irte_info;
0b4d48cb
JR
3968 struct irq_cfg *cfg;
3969 union irte irte;
3970
719b530c 3971 cfg = irq_cfg(irq);
0b4d48cb
JR
3972 if (!cfg)
3973 return;
3974
0dfedd61 3975 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
3976
3977 irte.val = 0;
3978 irte.fields.vector = cfg->vector;
3979 irte.fields.int_type = apic->irq_delivery_mode;
3980 irte.fields.destination = dest;
3981 irte.fields.dm = apic->irq_dest_mode;
3982 irte.fields.valid = 1;
3983
0dfedd61 3984 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
3985
3986 msg->address_hi = MSI_ADDR_BASE_HI;
3987 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 3988 msg->data = irte_info->index;
0b4d48cb
JR
3989}
3990
3991static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
3992{
3993 struct irq_cfg *cfg;
3994 int index;
3995 u16 devid;
3996
3997 if (!pdev)
3998 return -EINVAL;
3999
719b530c 4000 cfg = irq_cfg(irq);
0b4d48cb
JR
4001 if (!cfg)
4002 return -EINVAL;
4003
4004 devid = get_device_id(&pdev->dev);
4005 index = alloc_irq_index(cfg, devid, nvec);
4006
4007 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4008}
4009
4010static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4011 int index, int offset)
4012{
0dfedd61 4013 struct irq_2_irte *irte_info;
0b4d48cb
JR
4014 struct irq_cfg *cfg;
4015 u16 devid;
4016
4017 if (!pdev)
4018 return -EINVAL;
4019
719b530c 4020 cfg = irq_cfg(irq);
0b4d48cb
JR
4021 if (!cfg)
4022 return -EINVAL;
4023
4024 if (index >= MAX_IRQS_PER_TABLE)
4025 return 0;
4026
4027 devid = get_device_id(&pdev->dev);
0dfedd61 4028 irte_info = &cfg->irq_2_irte;
0b4d48cb 4029
9b1b0e42 4030 cfg->remapped = 1;
0dfedd61
JR
4031 irte_info->devid = devid;
4032 irte_info->index = index + offset;
0b4d48cb
JR
4033
4034 return 0;
4035}
4036
5fc24d8c 4037static int alloc_hpet_msi(unsigned int irq, unsigned int id)
d976195c 4038{
0dfedd61 4039 struct irq_2_irte *irte_info;
d976195c
JR
4040 struct irq_cfg *cfg;
4041 int index, devid;
4042
719b530c 4043 cfg = irq_cfg(irq);
d976195c
JR
4044 if (!cfg)
4045 return -EINVAL;
4046
0dfedd61 4047 irte_info = &cfg->irq_2_irte;
d976195c
JR
4048 devid = get_hpet_devid(id);
4049 if (devid < 0)
4050 return devid;
4051
4052 index = alloc_irq_index(cfg, devid, 1);
4053 if (index < 0)
4054 return index;
4055
9b1b0e42 4056 cfg->remapped = 1;
0dfedd61
JR
4057 irte_info->devid = devid;
4058 irte_info->index = index;
d976195c
JR
4059
4060 return 0;
4061}
4062
6b474b82 4063struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4064 .prepare = amd_iommu_prepare,
4065 .enable = amd_iommu_enable,
4066 .disable = amd_iommu_disable,
4067 .reenable = amd_iommu_reenable,
4068 .enable_faulting = amd_iommu_enable_faulting,
4069 .setup_ioapic_entry = setup_ioapic_entry,
4070 .set_affinity = set_affinity,
4071 .free_irq = free_irq,
4072 .compose_msi_msg = compose_msi_msg,
4073 .msi_alloc_irq = msi_alloc_irq,
4074 .msi_setup_irq = msi_setup_irq,
5fc24d8c 4075 .alloc_hpet_msi = alloc_hpet_msi,
6b474b82 4076};
2b324506 4077#endif