]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Signedness bug in acpihid_device_group()
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
2bf9a0a1 22#include <linux/acpi.h>
9a4d3bf5 23#include <linux/amba/bus.h>
cb41ed85 24#include <linux/pci-ats.h>
a66022c4 25#include <linux/bitmap.h>
5a0e3ad6 26#include <linux/slab.h>
7f26508b 27#include <linux/debugfs.h>
b6c02715 28#include <linux/scatterlist.h>
51491367 29#include <linux/dma-mapping.h>
b6c02715 30#include <linux/iommu-helper.h>
c156e347 31#include <linux/iommu.h>
815b33fd 32#include <linux/delay.h>
403f81d8 33#include <linux/amd-iommu.h>
72e1dcc4
JR
34#include <linux/notifier.h>
35#include <linux/export.h>
2b324506
JR
36#include <linux/irq.h>
37#include <linux/msi.h>
3b839a57 38#include <linux/dma-contiguous.h>
7c71d306 39#include <linux/irqdomain.h>
5f6bed50 40#include <linux/percpu.h>
2b324506
JR
41#include <asm/irq_remapping.h>
42#include <asm/io_apic.h>
43#include <asm/apic.h>
44#include <asm/hw_irq.h>
17f5b569 45#include <asm/msidef.h>
b6c02715 46#include <asm/proto.h>
46a7fa27 47#include <asm/iommu.h>
1d9b16d1 48#include <asm/gart.h>
27c2127a 49#include <asm/dma.h>
403f81d8
JR
50
51#include "amd_iommu_proto.h"
52#include "amd_iommu_types.h"
6b474b82 53#include "irq_remapping.h"
b6c02715
JR
54
55#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
56
815b33fd 57#define LOOP_TIMEOUT 100000
136f78a1 58
aa3de9c0
OBC
59/*
60 * This bitmap is used to advertise the page sizes our hardware support
61 * to the IOMMU core, which will then use this information to split
62 * physically contiguous memory regions it is mapping into page sizes
63 * that we support.
64 *
954e3dd8 65 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 66 */
954e3dd8 67#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 68
b6c02715
JR
69static DEFINE_RWLOCK(amd_iommu_devtable_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
2a0cb4e2 77LIST_HEAD(acpihid_map);
6efed63b 78
0feae533
JR
79/*
80 * Domain for untranslated devices - only allocated
81 * if iommu=pt passed on kernel cmd line.
82 */
b22f6434 83static const struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
50917e26
JR
90/*
91 * This struct contains device specific data for the IOMMU
92 */
93struct iommu_dev_data {
94 struct list_head list; /* For domain->dev_list */
95 struct list_head dev_data_list; /* For global dev_data_list */
50917e26 96 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
97 u16 devid; /* PCI Device ID */
98 bool iommu_v2; /* Device can make use of IOMMUv2 */
1e6a7b04 99 bool passthrough; /* Device is identity mapped */
50917e26
JR
100 struct {
101 bool enabled;
102 int qdep;
103 } ats; /* ATS state */
104 bool pri_tlp; /* PASID TLB required for
105 PPR completions */
106 u32 errata; /* Bitmap for errata to apply */
107};
108
431b2a20
JR
109/*
110 * general struct to manage commands send to an IOMMU
111 */
d6449536 112struct iommu_cmd {
b6c02715
JR
113 u32 data[4];
114};
115
05152a04
JR
116struct kmem_cache *amd_iommu_irq_cache;
117
04bfdd84 118static void update_domain(struct protection_domain *domain);
7a5a566e 119static int protection_domain_init(struct protection_domain *domain);
b6809ee5 120static void detach_device(struct device *dev);
c1eee67b 121
007b74ba
JR
122/*
123 * For dynamic growth the aperture size is split into ranges of 128MB of
124 * DMA address space each. This struct represents one such range.
125 */
126struct aperture_range {
127
08c5fb93
JR
128 spinlock_t bitmap_lock;
129
007b74ba
JR
130 /* address allocation bitmap */
131 unsigned long *bitmap;
ae62d49c 132 unsigned long offset;
60e6a7cb 133 unsigned long next_bit;
007b74ba
JR
134
135 /*
136 * Array of PTE pages for the aperture. In this array we save all the
137 * leaf pages of the domain page table used for the aperture. This way
138 * we don't need to walk the page table to find a specific PTE. We can
139 * just calculate its address in constant time.
140 */
141 u64 *pte_pages[64];
007b74ba
JR
142};
143
144/*
145 * Data container for a dma_ops specific protection domain
146 */
147struct dma_ops_domain {
148 /* generic protection domain information */
149 struct protection_domain domain;
150
151 /* size of the aperture for the mappings */
152 unsigned long aperture_size;
153
ebaecb42 154 /* aperture index we start searching for free addresses */
5f6bed50 155 u32 __percpu *next_index;
007b74ba
JR
156
157 /* address space relevant data */
158 struct aperture_range *aperture[APERTURE_MAX_RANGES];
007b74ba
JR
159};
160
15898bbc
JR
161/****************************************************************************
162 *
163 * Helper functions
164 *
165 ****************************************************************************/
166
3f4b87b9
JR
167static struct protection_domain *to_pdomain(struct iommu_domain *dom)
168{
169 return container_of(dom, struct protection_domain, domain);
170}
171
f62dda66 172static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
173{
174 struct iommu_dev_data *dev_data;
175 unsigned long flags;
176
177 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
178 if (!dev_data)
179 return NULL;
180
f62dda66 181 dev_data->devid = devid;
8fa5f802
JR
182
183 spin_lock_irqsave(&dev_data_list_lock, flags);
184 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
185 spin_unlock_irqrestore(&dev_data_list_lock, flags);
186
187 return dev_data;
188}
189
3b03bb74
JR
190static struct iommu_dev_data *search_dev_data(u16 devid)
191{
192 struct iommu_dev_data *dev_data;
193 unsigned long flags;
194
195 spin_lock_irqsave(&dev_data_list_lock, flags);
196 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
197 if (dev_data->devid == devid)
198 goto out_unlock;
199 }
200
201 dev_data = NULL;
202
203out_unlock:
204 spin_unlock_irqrestore(&dev_data_list_lock, flags);
205
206 return dev_data;
207}
208
209static struct iommu_dev_data *find_dev_data(u16 devid)
210{
211 struct iommu_dev_data *dev_data;
212
213 dev_data = search_dev_data(devid);
214
215 if (dev_data == NULL)
216 dev_data = alloc_dev_data(devid);
217
218 return dev_data;
219}
220
2bf9a0a1
WZ
221static inline int match_hid_uid(struct device *dev,
222 struct acpihid_map_entry *entry)
223{
224 const char *hid, *uid;
225
226 hid = acpi_device_hid(ACPI_COMPANION(dev));
227 uid = acpi_device_uid(ACPI_COMPANION(dev));
228
229 if (!hid || !(*hid))
230 return -ENODEV;
231
232 if (!uid || !(*uid))
233 return strcmp(hid, entry->hid);
234
235 if (!(*entry->uid))
236 return strcmp(hid, entry->hid);
237
238 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
239}
240
241static inline u16 get_pci_device_id(struct device *dev)
15898bbc
JR
242{
243 struct pci_dev *pdev = to_pci_dev(dev);
244
6f2729ba 245 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
246}
247
2bf9a0a1
WZ
248static inline int get_acpihid_device_id(struct device *dev,
249 struct acpihid_map_entry **entry)
250{
251 struct acpihid_map_entry *p;
252
253 list_for_each_entry(p, &acpihid_map, list) {
254 if (!match_hid_uid(dev, p)) {
255 if (entry)
256 *entry = p;
257 return p->devid;
258 }
259 }
260 return -EINVAL;
261}
262
263static inline int get_device_id(struct device *dev)
264{
265 int devid;
266
267 if (dev_is_pci(dev))
268 devid = get_pci_device_id(dev);
269 else
270 devid = get_acpihid_device_id(dev, NULL);
271
272 return devid;
273}
274
657cbb6b
JR
275static struct iommu_dev_data *get_dev_data(struct device *dev)
276{
277 return dev->archdata.iommu;
278}
279
b097d11a
WZ
280/*
281* Find or create an IOMMU group for a acpihid device.
282*/
283static struct iommu_group *acpihid_device_group(struct device *dev)
284{
285 struct acpihid_map_entry *p, *entry = NULL;
2d8e1f03 286 int devid;
b097d11a
WZ
287
288 devid = get_acpihid_device_id(dev, &entry);
289 if (devid < 0)
290 return ERR_PTR(devid);
291
292 list_for_each_entry(p, &acpihid_map, list) {
293 if ((devid == p->devid) && p->group)
294 entry->group = p->group;
295 }
296
297 if (!entry->group)
298 entry->group = generic_device_group(dev);
299
300 return entry->group;
301}
302
5abcdba4
JR
303static bool pci_iommuv2_capable(struct pci_dev *pdev)
304{
305 static const int caps[] = {
306 PCI_EXT_CAP_ID_ATS,
46277b75
JR
307 PCI_EXT_CAP_ID_PRI,
308 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
309 };
310 int i, pos;
311
312 for (i = 0; i < 3; ++i) {
313 pos = pci_find_ext_capability(pdev, caps[i]);
314 if (pos == 0)
315 return false;
316 }
317
318 return true;
319}
320
6a113ddc
JR
321static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
322{
323 struct iommu_dev_data *dev_data;
324
325 dev_data = get_dev_data(&pdev->dev);
326
327 return dev_data->errata & (1 << erratum) ? true : false;
328}
329
71c70984 330/*
0bb6e243
JR
331 * This function actually applies the mapping to the page table of the
332 * dma_ops domain.
71c70984 333 */
0bb6e243
JR
334static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
335 struct unity_map_entry *e)
71c70984 336{
0bb6e243 337 u64 addr;
71c70984 338
0bb6e243
JR
339 for (addr = e->address_start; addr < e->address_end;
340 addr += PAGE_SIZE) {
341 if (addr < dma_dom->aperture_size)
342 __set_bit(addr >> PAGE_SHIFT,
343 dma_dom->aperture[0]->bitmap);
71c70984 344 }
0bb6e243 345}
71c70984 346
0bb6e243
JR
347/*
348 * Inits the unity mappings required for a specific device
349 */
350static void init_unity_mappings_for_device(struct device *dev,
351 struct dma_ops_domain *dma_dom)
352{
353 struct unity_map_entry *e;
7aba6cb9 354 int devid;
71c70984 355
0bb6e243 356 devid = get_device_id(dev);
7aba6cb9
WZ
357 if (IS_ERR_VALUE(devid))
358 return;
71c70984 359
0bb6e243
JR
360 list_for_each_entry(e, &amd_iommu_unity_map, list) {
361 if (!(devid >= e->devid_start && devid <= e->devid_end))
362 continue;
363 alloc_unity_mapping(dma_dom, e);
364 }
71c70984
JR
365}
366
98fc5a69
JR
367/*
368 * This function checks if the driver got a valid device from the caller to
369 * avoid dereferencing invalid pointers.
370 */
371static bool check_device(struct device *dev)
372{
7aba6cb9 373 int devid;
98fc5a69
JR
374
375 if (!dev || !dev->dma_mask)
376 return false;
377
98fc5a69 378 devid = get_device_id(dev);
7aba6cb9
WZ
379 if (IS_ERR_VALUE(devid))
380 return false;
98fc5a69
JR
381
382 /* Out of our scope? */
383 if (devid > amd_iommu_last_bdf)
384 return false;
385
386 if (amd_iommu_rlookup_table[devid] == NULL)
387 return false;
388
389 return true;
390}
391
25b11ce2 392static void init_iommu_group(struct device *dev)
2851db21 393{
0bb6e243
JR
394 struct dma_ops_domain *dma_domain;
395 struct iommu_domain *domain;
2851db21 396 struct iommu_group *group;
2851db21 397
65d5352f 398 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
399 if (IS_ERR(group))
400 return;
401
402 domain = iommu_group_default_domain(group);
403 if (!domain)
404 goto out;
405
406 dma_domain = to_pdomain(domain)->priv;
407
408 init_unity_mappings_for_device(dev, dma_domain);
409out:
410 iommu_group_put(group);
eb9c9527
AW
411}
412
413static int iommu_init_device(struct device *dev)
414{
eb9c9527 415 struct iommu_dev_data *dev_data;
7aba6cb9 416 int devid;
eb9c9527
AW
417
418 if (dev->archdata.iommu)
419 return 0;
420
7aba6cb9
WZ
421 devid = get_device_id(dev);
422 if (IS_ERR_VALUE(devid))
423 return devid;
424
425 dev_data = find_dev_data(devid);
eb9c9527
AW
426 if (!dev_data)
427 return -ENOMEM;
428
2bf9a0a1 429 if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
5abcdba4
JR
430 struct amd_iommu *iommu;
431
2bf9a0a1 432 iommu = amd_iommu_rlookup_table[dev_data->devid];
5abcdba4
JR
433 dev_data->iommu_v2 = iommu->is_iommu_v2;
434 }
435
657cbb6b
JR
436 dev->archdata.iommu = dev_data;
437
066f2e98
AW
438 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
439 dev);
440
657cbb6b
JR
441 return 0;
442}
443
26018874
JR
444static void iommu_ignore_device(struct device *dev)
445{
7aba6cb9
WZ
446 u16 alias;
447 int devid;
26018874
JR
448
449 devid = get_device_id(dev);
7aba6cb9
WZ
450 if (IS_ERR_VALUE(devid))
451 return;
452
26018874
JR
453 alias = amd_iommu_alias_table[devid];
454
455 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
456 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
457
458 amd_iommu_rlookup_table[devid] = NULL;
459 amd_iommu_rlookup_table[alias] = NULL;
460}
461
657cbb6b
JR
462static void iommu_uninit_device(struct device *dev)
463{
7aba6cb9
WZ
464 int devid;
465 struct iommu_dev_data *dev_data;
466
467 devid = get_device_id(dev);
468 if (IS_ERR_VALUE(devid))
469 return;
c1931090 470
7aba6cb9 471 dev_data = search_dev_data(devid);
c1931090
AW
472 if (!dev_data)
473 return;
474
b6809ee5
JR
475 if (dev_data->domain)
476 detach_device(dev);
477
066f2e98
AW
478 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
479 dev);
480
9dcd6130
AW
481 iommu_group_remove_device(dev);
482
aafd8ba0
JR
483 /* Remove dma-ops */
484 dev->archdata.dma_ops = NULL;
485
8fa5f802 486 /*
c1931090
AW
487 * We keep dev_data around for unplugged devices and reuse it when the
488 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 489 */
657cbb6b 490}
b7cc9554 491
7f26508b
JR
492#ifdef CONFIG_AMD_IOMMU_STATS
493
494/*
495 * Initialization code for statistics collection
496 */
497
da49f6df 498DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 499DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 500DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 501DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 502DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 503DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 504DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 505DECLARE_STATS_COUNTER(cross_page);
f57d98ae 506DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 507DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 508DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 509DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
510DECLARE_STATS_COUNTER(complete_ppr);
511DECLARE_STATS_COUNTER(invalidate_iotlb);
512DECLARE_STATS_COUNTER(invalidate_iotlb_all);
513DECLARE_STATS_COUNTER(pri_requests);
514
7f26508b 515static struct dentry *stats_dir;
7f26508b
JR
516static struct dentry *de_fflush;
517
518static void amd_iommu_stats_add(struct __iommu_counter *cnt)
519{
520 if (stats_dir == NULL)
521 return;
522
523 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
524 &cnt->value);
525}
526
527static void amd_iommu_stats_init(void)
528{
529 stats_dir = debugfs_create_dir("amd-iommu", NULL);
530 if (stats_dir == NULL)
531 return;
532
7f26508b 533 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 534 &amd_iommu_unmap_flush);
da49f6df
JR
535
536 amd_iommu_stats_add(&compl_wait);
0f2a86f2 537 amd_iommu_stats_add(&cnt_map_single);
146a6917 538 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 539 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 540 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 541 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 542 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 543 amd_iommu_stats_add(&cross_page);
f57d98ae 544 amd_iommu_stats_add(&domain_flush_single);
18811f55 545 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 546 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 547 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
548 amd_iommu_stats_add(&complete_ppr);
549 amd_iommu_stats_add(&invalidate_iotlb);
550 amd_iommu_stats_add(&invalidate_iotlb_all);
551 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
552}
553
554#endif
555
a80dc3e0
JR
556/****************************************************************************
557 *
558 * Interrupt handling functions
559 *
560 ****************************************************************************/
561
e3e59876
JR
562static void dump_dte_entry(u16 devid)
563{
564 int i;
565
ee6c2868
JR
566 for (i = 0; i < 4; ++i)
567 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
568 amd_iommu_dev_table[devid].data[i]);
569}
570
945b4ac4
JR
571static void dump_command(unsigned long phys_addr)
572{
573 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
574 int i;
575
576 for (i = 0; i < 4; ++i)
577 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
578}
579
a345b23b 580static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 581{
3d06fca8
JR
582 int type, devid, domid, flags;
583 volatile u32 *event = __evt;
584 int count = 0;
585 u64 address;
586
587retry:
588 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
589 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
590 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
591 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
592 address = (u64)(((u64)event[3]) << 32) | event[2];
593
594 if (type == 0) {
595 /* Did we hit the erratum? */
596 if (++count == LOOP_TIMEOUT) {
597 pr_err("AMD-Vi: No event written to event log\n");
598 return;
599 }
600 udelay(1);
601 goto retry;
602 }
90008ee4 603
4c6f40d4 604 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
605
606 switch (type) {
607 case EVENT_TYPE_ILL_DEV:
608 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
609 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 610 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 611 address, flags);
e3e59876 612 dump_dte_entry(devid);
90008ee4
JR
613 break;
614 case EVENT_TYPE_IO_FAULT:
615 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
616 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 617 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
618 domid, address, flags);
619 break;
620 case EVENT_TYPE_DEV_TAB_ERR:
621 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
622 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 623 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
624 address, flags);
625 break;
626 case EVENT_TYPE_PAGE_TAB_ERR:
627 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
628 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 629 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
630 domid, address, flags);
631 break;
632 case EVENT_TYPE_ILL_CMD:
633 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 634 dump_command(address);
90008ee4
JR
635 break;
636 case EVENT_TYPE_CMD_HARD_ERR:
637 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
638 "flags=0x%04x]\n", address, flags);
639 break;
640 case EVENT_TYPE_IOTLB_INV_TO:
641 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
642 "address=0x%016llx]\n",
c5081cd7 643 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
644 address);
645 break;
646 case EVENT_TYPE_INV_DEV_REQ:
647 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
648 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 649 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
650 address, flags);
651 break;
652 default:
653 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
654 }
3d06fca8
JR
655
656 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
657}
658
659static void iommu_poll_events(struct amd_iommu *iommu)
660{
661 u32 head, tail;
90008ee4
JR
662
663 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
664 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
665
666 while (head != tail) {
a345b23b 667 iommu_print_event(iommu, iommu->evt_buf + head);
deba4bce 668 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
90008ee4
JR
669 }
670
671 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
672}
673
eee53537 674static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
675{
676 struct amd_iommu_fault fault;
72e1dcc4 677
399be2f5
JR
678 INC_STATS_COUNTER(pri_requests);
679
72e1dcc4
JR
680 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
681 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
682 return;
683 }
684
685 fault.address = raw[1];
686 fault.pasid = PPR_PASID(raw[0]);
687 fault.device_id = PPR_DEVID(raw[0]);
688 fault.tag = PPR_TAG(raw[0]);
689 fault.flags = PPR_FLAGS(raw[0]);
690
72e1dcc4
JR
691 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
692}
693
694static void iommu_poll_ppr_log(struct amd_iommu *iommu)
695{
72e1dcc4
JR
696 u32 head, tail;
697
698 if (iommu->ppr_log == NULL)
699 return;
700
72e1dcc4
JR
701 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
702 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
703
704 while (head != tail) {
eee53537
JR
705 volatile u64 *raw;
706 u64 entry[2];
707 int i;
708
709 raw = (u64 *)(iommu->ppr_log + head);
710
711 /*
712 * Hardware bug: Interrupt may arrive before the entry is
713 * written to memory. If this happens we need to wait for the
714 * entry to arrive.
715 */
716 for (i = 0; i < LOOP_TIMEOUT; ++i) {
717 if (PPR_REQ_TYPE(raw[0]) != 0)
718 break;
719 udelay(1);
720 }
72e1dcc4 721
eee53537
JR
722 /* Avoid memcpy function-call overhead */
723 entry[0] = raw[0];
724 entry[1] = raw[1];
72e1dcc4 725
eee53537
JR
726 /*
727 * To detect the hardware bug we need to clear the entry
728 * back to zero.
729 */
730 raw[0] = raw[1] = 0UL;
731
732 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
733 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
734 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 735
eee53537
JR
736 /* Handle PPR entry */
737 iommu_handle_ppr_entry(iommu, entry);
738
eee53537
JR
739 /* Refresh ring-buffer information */
740 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
741 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
742 }
72e1dcc4
JR
743}
744
72fe00f0 745irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 746{
3f398bc7
SS
747 struct amd_iommu *iommu = (struct amd_iommu *) data;
748 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 749
3f398bc7
SS
750 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
751 /* Enable EVT and PPR interrupts again */
752 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
753 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 754
3f398bc7
SS
755 if (status & MMIO_STATUS_EVT_INT_MASK) {
756 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
757 iommu_poll_events(iommu);
758 }
90008ee4 759
3f398bc7
SS
760 if (status & MMIO_STATUS_PPR_INT_MASK) {
761 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
762 iommu_poll_ppr_log(iommu);
763 }
90008ee4 764
3f398bc7
SS
765 /*
766 * Hardware bug: ERBT1312
767 * When re-enabling interrupt (by writing 1
768 * to clear the bit), the hardware might also try to set
769 * the interrupt bit in the event status register.
770 * In this scenario, the bit will be set, and disable
771 * subsequent interrupts.
772 *
773 * Workaround: The IOMMU driver should read back the
774 * status register and check if the interrupt bits are cleared.
775 * If not, driver will need to go through the interrupt handler
776 * again and re-clear the bits
777 */
778 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
779 }
90008ee4 780 return IRQ_HANDLED;
a80dc3e0
JR
781}
782
72fe00f0
JR
783irqreturn_t amd_iommu_int_handler(int irq, void *data)
784{
785 return IRQ_WAKE_THREAD;
786}
787
431b2a20
JR
788/****************************************************************************
789 *
790 * IOMMU command queuing functions
791 *
792 ****************************************************************************/
793
ac0ea6e9
JR
794static int wait_on_sem(volatile u64 *sem)
795{
796 int i = 0;
797
798 while (*sem == 0 && i < LOOP_TIMEOUT) {
799 udelay(1);
800 i += 1;
801 }
802
803 if (i == LOOP_TIMEOUT) {
804 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
805 return -EIO;
806 }
807
808 return 0;
809}
810
811static void copy_cmd_to_buffer(struct amd_iommu *iommu,
812 struct iommu_cmd *cmd,
813 u32 tail)
a19ae1ec 814{
a19ae1ec
JR
815 u8 *target;
816
8a7c5ef3 817 target = iommu->cmd_buf + tail;
deba4bce 818 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
ac0ea6e9
JR
819
820 /* Copy command to buffer */
821 memcpy(target, cmd, sizeof(*cmd));
822
823 /* Tell the IOMMU about it */
a19ae1ec 824 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 825}
a19ae1ec 826
815b33fd 827static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 828{
815b33fd
JR
829 WARN_ON(address & 0x7ULL);
830
ded46737 831 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
832 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
833 cmd->data[1] = upper_32_bits(__pa(address));
834 cmd->data[2] = 1;
ded46737
JR
835 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
836}
837
94fe79e2
JR
838static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
839{
840 memset(cmd, 0, sizeof(*cmd));
841 cmd->data[0] = devid;
842 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
843}
844
11b6402c
JR
845static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
846 size_t size, u16 domid, int pde)
847{
848 u64 pages;
ae0cbbb1 849 bool s;
11b6402c
JR
850
851 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 852 s = false;
11b6402c
JR
853
854 if (pages > 1) {
855 /*
856 * If we have to flush more than one page, flush all
857 * TLB entries for this domain
858 */
859 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 860 s = true;
11b6402c
JR
861 }
862
863 address &= PAGE_MASK;
864
865 memset(cmd, 0, sizeof(*cmd));
866 cmd->data[1] |= domid;
867 cmd->data[2] = lower_32_bits(address);
868 cmd->data[3] = upper_32_bits(address);
869 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
870 if (s) /* size bit - we flush more than one 4kb page */
871 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 872 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
873 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
874}
875
cb41ed85
JR
876static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
877 u64 address, size_t size)
878{
879 u64 pages;
ae0cbbb1 880 bool s;
cb41ed85
JR
881
882 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 883 s = false;
cb41ed85
JR
884
885 if (pages > 1) {
886 /*
887 * If we have to flush more than one page, flush all
888 * TLB entries for this domain
889 */
890 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 891 s = true;
cb41ed85
JR
892 }
893
894 address &= PAGE_MASK;
895
896 memset(cmd, 0, sizeof(*cmd));
897 cmd->data[0] = devid;
898 cmd->data[0] |= (qdep & 0xff) << 24;
899 cmd->data[1] = devid;
900 cmd->data[2] = lower_32_bits(address);
901 cmd->data[3] = upper_32_bits(address);
902 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
903 if (s)
904 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
905}
906
22e266c7
JR
907static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
908 u64 address, bool size)
909{
910 memset(cmd, 0, sizeof(*cmd));
911
912 address &= ~(0xfffULL);
913
a919a018 914 cmd->data[0] = pasid;
22e266c7
JR
915 cmd->data[1] = domid;
916 cmd->data[2] = lower_32_bits(address);
917 cmd->data[3] = upper_32_bits(address);
918 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
920 if (size)
921 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
922 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
923}
924
925static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
926 int qdep, u64 address, bool size)
927{
928 memset(cmd, 0, sizeof(*cmd));
929
930 address &= ~(0xfffULL);
931
932 cmd->data[0] = devid;
e8d2d82d 933 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
934 cmd->data[0] |= (qdep & 0xff) << 24;
935 cmd->data[1] = devid;
e8d2d82d 936 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
937 cmd->data[2] = lower_32_bits(address);
938 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
939 cmd->data[3] = upper_32_bits(address);
940 if (size)
941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
943}
944
c99afa25
JR
945static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
946 int status, int tag, bool gn)
947{
948 memset(cmd, 0, sizeof(*cmd));
949
950 cmd->data[0] = devid;
951 if (gn) {
a919a018 952 cmd->data[1] = pasid;
c99afa25
JR
953 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
954 }
955 cmd->data[3] = tag & 0x1ff;
956 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
957
958 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
959}
960
58fc7f14
JR
961static void build_inv_all(struct iommu_cmd *cmd)
962{
963 memset(cmd, 0, sizeof(*cmd));
964 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
965}
966
7ef2798d
JR
967static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
968{
969 memset(cmd, 0, sizeof(*cmd));
970 cmd->data[0] = devid;
971 CMD_SET_TYPE(cmd, CMD_INV_IRT);
972}
973
431b2a20 974/*
431b2a20 975 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 976 * hardware about the new command.
431b2a20 977 */
f1ca1512
JR
978static int iommu_queue_command_sync(struct amd_iommu *iommu,
979 struct iommu_cmd *cmd,
980 bool sync)
a19ae1ec 981{
ac0ea6e9 982 u32 left, tail, head, next_tail;
a19ae1ec 983 unsigned long flags;
a19ae1ec 984
ac0ea6e9 985again:
a19ae1ec 986 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 987
ac0ea6e9
JR
988 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
deba4bce
JR
990 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
991 left = (head - next_tail) % CMD_BUFFER_SIZE;
a19ae1ec 992
ac0ea6e9
JR
993 if (left <= 2) {
994 struct iommu_cmd sync_cmd;
995 volatile u64 sem = 0;
996 int ret;
8d201968 997
ac0ea6e9
JR
998 build_completion_wait(&sync_cmd, (u64)&sem);
999 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1000
ac0ea6e9
JR
1001 spin_unlock_irqrestore(&iommu->lock, flags);
1002
1003 if ((ret = wait_on_sem(&sem)) != 0)
1004 return ret;
1005
1006 goto again;
8d201968
JR
1007 }
1008
ac0ea6e9
JR
1009 copy_cmd_to_buffer(iommu, cmd, tail);
1010
1011 /* We need to sync now to make sure all commands are processed */
f1ca1512 1012 iommu->need_sync = sync;
ac0ea6e9 1013
a19ae1ec 1014 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1015
815b33fd 1016 return 0;
8d201968
JR
1017}
1018
f1ca1512
JR
1019static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1020{
1021 return iommu_queue_command_sync(iommu, cmd, true);
1022}
1023
8d201968
JR
1024/*
1025 * This function queues a completion wait command into the command
1026 * buffer of an IOMMU
1027 */
a19ae1ec 1028static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1029{
1030 struct iommu_cmd cmd;
815b33fd 1031 volatile u64 sem = 0;
ac0ea6e9 1032 int ret;
8d201968 1033
09ee17eb 1034 if (!iommu->need_sync)
815b33fd 1035 return 0;
09ee17eb 1036
815b33fd 1037 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1038
f1ca1512 1039 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1040 if (ret)
815b33fd 1041 return ret;
8d201968 1042
ac0ea6e9 1043 return wait_on_sem(&sem);
8d201968
JR
1044}
1045
d8c13085 1046static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1047{
d8c13085 1048 struct iommu_cmd cmd;
a19ae1ec 1049
d8c13085 1050 build_inv_dte(&cmd, devid);
7e4f88da 1051
d8c13085
JR
1052 return iommu_queue_command(iommu, &cmd);
1053}
09ee17eb 1054
7d0c5cc5
JR
1055static void iommu_flush_dte_all(struct amd_iommu *iommu)
1056{
1057 u32 devid;
09ee17eb 1058
7d0c5cc5
JR
1059 for (devid = 0; devid <= 0xffff; ++devid)
1060 iommu_flush_dte(iommu, devid);
a19ae1ec 1061
7d0c5cc5
JR
1062 iommu_completion_wait(iommu);
1063}
84df8175 1064
7d0c5cc5
JR
1065/*
1066 * This function uses heavy locking and may disable irqs for some time. But
1067 * this is no issue because it is only called during resume.
1068 */
1069static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1070{
1071 u32 dom_id;
a19ae1ec 1072
7d0c5cc5
JR
1073 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1074 struct iommu_cmd cmd;
1075 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1076 dom_id, 1);
1077 iommu_queue_command(iommu, &cmd);
1078 }
8eed9833 1079
7d0c5cc5 1080 iommu_completion_wait(iommu);
a19ae1ec
JR
1081}
1082
58fc7f14 1083static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1084{
58fc7f14 1085 struct iommu_cmd cmd;
0518a3a4 1086
58fc7f14 1087 build_inv_all(&cmd);
0518a3a4 1088
58fc7f14
JR
1089 iommu_queue_command(iommu, &cmd);
1090 iommu_completion_wait(iommu);
1091}
1092
7ef2798d
JR
1093static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1094{
1095 struct iommu_cmd cmd;
1096
1097 build_inv_irt(&cmd, devid);
1098
1099 iommu_queue_command(iommu, &cmd);
1100}
1101
1102static void iommu_flush_irt_all(struct amd_iommu *iommu)
1103{
1104 u32 devid;
1105
1106 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1107 iommu_flush_irt(iommu, devid);
1108
1109 iommu_completion_wait(iommu);
1110}
1111
7d0c5cc5
JR
1112void iommu_flush_all_caches(struct amd_iommu *iommu)
1113{
58fc7f14
JR
1114 if (iommu_feature(iommu, FEATURE_IA)) {
1115 iommu_flush_all(iommu);
1116 } else {
1117 iommu_flush_dte_all(iommu);
7ef2798d 1118 iommu_flush_irt_all(iommu);
58fc7f14 1119 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1120 }
1121}
1122
431b2a20 1123/*
cb41ed85 1124 * Command send function for flushing on-device TLB
431b2a20 1125 */
6c542047
JR
1126static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1127 u64 address, size_t size)
3fa43655
JR
1128{
1129 struct amd_iommu *iommu;
b00d3bcf 1130 struct iommu_cmd cmd;
cb41ed85 1131 int qdep;
3fa43655 1132
ea61cddb
JR
1133 qdep = dev_data->ats.qdep;
1134 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1135
ea61cddb 1136 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1137
1138 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1139}
1140
431b2a20 1141/*
431b2a20 1142 * Command send function for invalidating a device table entry
431b2a20 1143 */
6c542047 1144static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1145{
3fa43655 1146 struct amd_iommu *iommu;
e25bfb56 1147 u16 alias;
ee2fa743 1148 int ret;
a19ae1ec 1149
6c542047 1150 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 1151 alias = amd_iommu_alias_table[dev_data->devid];
a19ae1ec 1152
f62dda66 1153 ret = iommu_flush_dte(iommu, dev_data->devid);
e25bfb56
JR
1154 if (!ret && alias != dev_data->devid)
1155 ret = iommu_flush_dte(iommu, alias);
cb41ed85
JR
1156 if (ret)
1157 return ret;
1158
ea61cddb 1159 if (dev_data->ats.enabled)
6c542047 1160 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1161
ee2fa743 1162 return ret;
a19ae1ec
JR
1163}
1164
431b2a20
JR
1165/*
1166 * TLB invalidation function which is called from the mapping functions.
1167 * It invalidates a single PTE if the range to flush is within a single
1168 * page. Otherwise it flushes the whole TLB of the IOMMU.
1169 */
17b124bf
JR
1170static void __domain_flush_pages(struct protection_domain *domain,
1171 u64 address, size_t size, int pde)
a19ae1ec 1172{
cb41ed85 1173 struct iommu_dev_data *dev_data;
11b6402c
JR
1174 struct iommu_cmd cmd;
1175 int ret = 0, i;
a19ae1ec 1176
11b6402c 1177 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1178
6de8ad9b
JR
1179 for (i = 0; i < amd_iommus_present; ++i) {
1180 if (!domain->dev_iommu[i])
1181 continue;
1182
1183 /*
1184 * Devices of this domain are behind this IOMMU
1185 * We need a TLB flush
1186 */
11b6402c 1187 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1188 }
1189
cb41ed85 1190 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1191
ea61cddb 1192 if (!dev_data->ats.enabled)
cb41ed85
JR
1193 continue;
1194
6c542047 1195 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1196 }
1197
11b6402c 1198 WARN_ON(ret);
6de8ad9b
JR
1199}
1200
17b124bf
JR
1201static void domain_flush_pages(struct protection_domain *domain,
1202 u64 address, size_t size)
6de8ad9b 1203{
17b124bf 1204 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1205}
b6c02715 1206
1c655773 1207/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1208static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1209{
17b124bf 1210 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1211}
1212
42a49f96 1213/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1214static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1215{
17b124bf 1216 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1217}
1218
17b124bf 1219static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1220{
17b124bf 1221 int i;
18811f55 1222
17b124bf
JR
1223 for (i = 0; i < amd_iommus_present; ++i) {
1224 if (!domain->dev_iommu[i])
1225 continue;
bfd1be18 1226
17b124bf
JR
1227 /*
1228 * Devices of this domain are behind this IOMMU
1229 * We need to wait for completion of all commands.
1230 */
1231 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1232 }
e394d72a
JR
1233}
1234
b00d3bcf 1235
09b42804 1236/*
b00d3bcf 1237 * This function flushes the DTEs for all devices in domain
09b42804 1238 */
17b124bf 1239static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1240{
b00d3bcf 1241 struct iommu_dev_data *dev_data;
b26e81b8 1242
b00d3bcf 1243 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1244 device_flush_dte(dev_data);
a345b23b
JR
1245}
1246
431b2a20
JR
1247/****************************************************************************
1248 *
1249 * The functions below are used the create the page table mappings for
1250 * unity mapped regions.
1251 *
1252 ****************************************************************************/
1253
308973d3
JR
1254/*
1255 * This function is used to add another level to an IO page table. Adding
1256 * another level increases the size of the address space by 9 bits to a size up
1257 * to 64 bits.
1258 */
1259static bool increase_address_space(struct protection_domain *domain,
1260 gfp_t gfp)
1261{
1262 u64 *pte;
1263
1264 if (domain->mode == PAGE_MODE_6_LEVEL)
1265 /* address space already 64 bit large */
1266 return false;
1267
1268 pte = (void *)get_zeroed_page(gfp);
1269 if (!pte)
1270 return false;
1271
1272 *pte = PM_LEVEL_PDE(domain->mode,
1273 virt_to_phys(domain->pt_root));
1274 domain->pt_root = pte;
1275 domain->mode += 1;
1276 domain->updated = true;
1277
1278 return true;
1279}
1280
1281static u64 *alloc_pte(struct protection_domain *domain,
1282 unsigned long address,
cbb9d729 1283 unsigned long page_size,
308973d3
JR
1284 u64 **pte_page,
1285 gfp_t gfp)
1286{
cbb9d729 1287 int level, end_lvl;
308973d3 1288 u64 *pte, *page;
cbb9d729
JR
1289
1290 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1291
1292 while (address > PM_LEVEL_SIZE(domain->mode))
1293 increase_address_space(domain, gfp);
1294
cbb9d729
JR
1295 level = domain->mode - 1;
1296 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1297 address = PAGE_SIZE_ALIGN(address, page_size);
1298 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1299
1300 while (level > end_lvl) {
7bfa5bd2
JR
1301 u64 __pte, __npte;
1302
1303 __pte = *pte;
1304
1305 if (!IOMMU_PTE_PRESENT(__pte)) {
308973d3
JR
1306 page = (u64 *)get_zeroed_page(gfp);
1307 if (!page)
1308 return NULL;
7bfa5bd2
JR
1309
1310 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1311
1312 if (cmpxchg64(pte, __pte, __npte)) {
1313 free_page((unsigned long)page);
1314 continue;
1315 }
308973d3
JR
1316 }
1317
cbb9d729
JR
1318 /* No level skipping support yet */
1319 if (PM_PTE_LEVEL(*pte) != level)
1320 return NULL;
1321
308973d3
JR
1322 level -= 1;
1323
1324 pte = IOMMU_PTE_PAGE(*pte);
1325
1326 if (pte_page && level == end_lvl)
1327 *pte_page = pte;
1328
1329 pte = &pte[PM_LEVEL_INDEX(level, address)];
1330 }
1331
1332 return pte;
1333}
1334
1335/*
1336 * This function checks if there is a PTE for a given dma address. If
1337 * there is one, it returns the pointer to it.
1338 */
3039ca1b
JR
1339static u64 *fetch_pte(struct protection_domain *domain,
1340 unsigned long address,
1341 unsigned long *page_size)
308973d3
JR
1342{
1343 int level;
1344 u64 *pte;
1345
24cd7723
JR
1346 if (address > PM_LEVEL_SIZE(domain->mode))
1347 return NULL;
1348
3039ca1b
JR
1349 level = domain->mode - 1;
1350 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1351 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1352
24cd7723
JR
1353 while (level > 0) {
1354
1355 /* Not Present */
308973d3
JR
1356 if (!IOMMU_PTE_PRESENT(*pte))
1357 return NULL;
1358
24cd7723 1359 /* Large PTE */
3039ca1b
JR
1360 if (PM_PTE_LEVEL(*pte) == 7 ||
1361 PM_PTE_LEVEL(*pte) == 0)
1362 break;
24cd7723
JR
1363
1364 /* No level skipping support yet */
1365 if (PM_PTE_LEVEL(*pte) != level)
1366 return NULL;
1367
308973d3
JR
1368 level -= 1;
1369
24cd7723 1370 /* Walk to the next level */
3039ca1b
JR
1371 pte = IOMMU_PTE_PAGE(*pte);
1372 pte = &pte[PM_LEVEL_INDEX(level, address)];
1373 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1374 }
1375
1376 if (PM_PTE_LEVEL(*pte) == 0x07) {
1377 unsigned long pte_mask;
1378
1379 /*
1380 * If we have a series of large PTEs, make
1381 * sure to return a pointer to the first one.
1382 */
1383 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1384 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1385 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1386 }
1387
1388 return pte;
1389}
1390
431b2a20
JR
1391/*
1392 * Generic mapping functions. It maps a physical address into a DMA
1393 * address space. It allocates the page table pages if necessary.
1394 * In the future it can be extended to a generic mapping function
1395 * supporting all features of AMD IOMMU page tables like level skipping
1396 * and full 64 bit address spaces.
1397 */
38e817fe
JR
1398static int iommu_map_page(struct protection_domain *dom,
1399 unsigned long bus_addr,
1400 unsigned long phys_addr,
abdc5eb3 1401 int prot,
cbb9d729 1402 unsigned long page_size)
bd0e5211 1403{
8bda3092 1404 u64 __pte, *pte;
cbb9d729 1405 int i, count;
abdc5eb3 1406
d4b03664
JR
1407 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1408 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1409
bad1cac2 1410 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1411 return -EINVAL;
1412
d4b03664
JR
1413 count = PAGE_SIZE_PTE_COUNT(page_size);
1414 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1415
63eaa75e
ML
1416 if (!pte)
1417 return -ENOMEM;
1418
cbb9d729
JR
1419 for (i = 0; i < count; ++i)
1420 if (IOMMU_PTE_PRESENT(pte[i]))
1421 return -EBUSY;
bd0e5211 1422
d4b03664 1423 if (count > 1) {
cbb9d729
JR
1424 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1425 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1426 } else
1427 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1428
bd0e5211
JR
1429 if (prot & IOMMU_PROT_IR)
1430 __pte |= IOMMU_PTE_IR;
1431 if (prot & IOMMU_PROT_IW)
1432 __pte |= IOMMU_PTE_IW;
1433
cbb9d729
JR
1434 for (i = 0; i < count; ++i)
1435 pte[i] = __pte;
bd0e5211 1436
04bfdd84
JR
1437 update_domain(dom);
1438
bd0e5211
JR
1439 return 0;
1440}
1441
24cd7723
JR
1442static unsigned long iommu_unmap_page(struct protection_domain *dom,
1443 unsigned long bus_addr,
1444 unsigned long page_size)
eb74ff6c 1445{
71b390e9
JR
1446 unsigned long long unmapped;
1447 unsigned long unmap_size;
24cd7723
JR
1448 u64 *pte;
1449
1450 BUG_ON(!is_power_of_2(page_size));
1451
1452 unmapped = 0;
eb74ff6c 1453
24cd7723
JR
1454 while (unmapped < page_size) {
1455
71b390e9
JR
1456 pte = fetch_pte(dom, bus_addr, &unmap_size);
1457
1458 if (pte) {
1459 int i, count;
1460
1461 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1462 for (i = 0; i < count; i++)
1463 pte[i] = 0ULL;
1464 }
1465
1466 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1467 unmapped += unmap_size;
1468 }
1469
60d0ca3c 1470 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1471
24cd7723 1472 return unmapped;
eb74ff6c 1473}
eb74ff6c 1474
431b2a20
JR
1475/****************************************************************************
1476 *
1477 * The next functions belong to the address allocator for the dma_ops
1478 * interface functions. They work like the allocators in the other IOMMU
1479 * drivers. Its basically a bitmap which marks the allocated pages in
1480 * the aperture. Maybe it could be enhanced in the future to a more
1481 * efficient allocator.
1482 *
1483 ****************************************************************************/
d3086444 1484
431b2a20 1485/*
384de729 1486 * The address allocator core functions.
431b2a20
JR
1487 *
1488 * called with domain->lock held
1489 */
384de729 1490
171e7b37
JR
1491/*
1492 * Used to reserve address ranges in the aperture (e.g. for exclusion
1493 * ranges.
1494 */
1495static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1496 unsigned long start_page,
1497 unsigned int pages)
1498{
1499 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1500
1501 if (start_page + pages > last_page)
1502 pages = last_page - start_page;
1503
1504 for (i = start_page; i < start_page + pages; ++i) {
1505 int index = i / APERTURE_RANGE_PAGES;
1506 int page = i % APERTURE_RANGE_PAGES;
1507 __set_bit(page, dom->aperture[index]->bitmap);
1508 }
1509}
1510
9cabe89b
JR
1511/*
1512 * This function is used to add a new aperture range to an existing
1513 * aperture in case of dma_ops domain allocation or address allocation
1514 * failure.
1515 */
576175c2 1516static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1517 bool populate, gfp_t gfp)
1518{
1519 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
5d7c94c3 1520 unsigned long i, old_size, pte_pgsize;
a73c1566
JR
1521 struct aperture_range *range;
1522 struct amd_iommu *iommu;
1523 unsigned long flags;
9cabe89b 1524
f5e9705c
JR
1525#ifdef CONFIG_IOMMU_STRESS
1526 populate = false;
1527#endif
1528
9cabe89b
JR
1529 if (index >= APERTURE_MAX_RANGES)
1530 return -ENOMEM;
1531
a73c1566
JR
1532 range = kzalloc(sizeof(struct aperture_range), gfp);
1533 if (!range)
9cabe89b
JR
1534 return -ENOMEM;
1535
a73c1566
JR
1536 range->bitmap = (void *)get_zeroed_page(gfp);
1537 if (!range->bitmap)
9cabe89b
JR
1538 goto out_free;
1539
a73c1566 1540 range->offset = dma_dom->aperture_size;
9cabe89b 1541
a73c1566 1542 spin_lock_init(&range->bitmap_lock);
08c5fb93 1543
9cabe89b
JR
1544 if (populate) {
1545 unsigned long address = dma_dom->aperture_size;
1546 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1547 u64 *pte, *pte_page;
1548
1549 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1550 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1551 &pte_page, gfp);
1552 if (!pte)
1553 goto out_free;
1554
a73c1566 1555 range->pte_pages[i] = pte_page;
9cabe89b
JR
1556
1557 address += APERTURE_RANGE_SIZE / 64;
1558 }
1559 }
1560
92d420ec
JR
1561 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1562
a73c1566 1563 /* First take the bitmap_lock and then publish the range */
92d420ec 1564 spin_lock(&range->bitmap_lock);
a73c1566
JR
1565
1566 old_size = dma_dom->aperture_size;
1567 dma_dom->aperture[index] = range;
1568 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
9cabe89b 1569
17f5b569
JR
1570 /* Reserve address range used for MSI messages */
1571 if (old_size < MSI_ADDR_BASE_LO &&
1572 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1573 unsigned long spage;
1574 int pages;
1575
1576 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1577 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1578
1579 dma_ops_reserve_addresses(dma_dom, spage, pages);
1580 }
1581
b595076a 1582 /* Initialize the exclusion range if necessary */
576175c2
JR
1583 for_each_iommu(iommu) {
1584 if (iommu->exclusion_start &&
1585 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1586 && iommu->exclusion_start < dma_dom->aperture_size) {
1587 unsigned long startpage;
1588 int pages = iommu_num_pages(iommu->exclusion_start,
1589 iommu->exclusion_length,
1590 PAGE_SIZE);
1591 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1592 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1593 }
00cd122a
JR
1594 }
1595
1596 /*
1597 * Check for areas already mapped as present in the new aperture
1598 * range and mark those pages as reserved in the allocator. Such
1599 * mappings may already exist as a result of requested unity
1600 * mappings for devices.
1601 */
1602 for (i = dma_dom->aperture[index]->offset;
1603 i < dma_dom->aperture_size;
5d7c94c3 1604 i += pte_pgsize) {
3039ca1b 1605 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1606 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1607 continue;
1608
5d7c94c3
JR
1609 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1610 pte_pgsize >> 12);
00cd122a
JR
1611 }
1612
04bfdd84
JR
1613 update_domain(&dma_dom->domain);
1614
92d420ec
JR
1615 spin_unlock(&range->bitmap_lock);
1616
1617 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
a73c1566 1618
9cabe89b
JR
1619 return 0;
1620
1621out_free:
04bfdd84
JR
1622 update_domain(&dma_dom->domain);
1623
a73c1566 1624 free_page((unsigned long)range->bitmap);
9cabe89b 1625
a73c1566 1626 kfree(range);
9cabe89b
JR
1627
1628 return -ENOMEM;
1629}
1630
ccb50e03
JR
1631static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1632 struct aperture_range *range,
a0f51447 1633 unsigned long pages,
a0f51447
JR
1634 unsigned long dma_mask,
1635 unsigned long boundary_size,
7b5e25b8
JR
1636 unsigned long align_mask,
1637 bool trylock)
a0f51447
JR
1638{
1639 unsigned long offset, limit, flags;
1640 dma_addr_t address;
ccb50e03 1641 bool flush = false;
a0f51447
JR
1642
1643 offset = range->offset >> PAGE_SHIFT;
1644 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1645 dma_mask >> PAGE_SHIFT);
1646
7b5e25b8
JR
1647 if (trylock) {
1648 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1649 return -1;
1650 } else {
1651 spin_lock_irqsave(&range->bitmap_lock, flags);
1652 }
1653
60e6a7cb
JR
1654 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1655 pages, offset, boundary_size, align_mask);
ccb50e03 1656 if (address == -1) {
60e6a7cb
JR
1657 /* Nothing found, retry one time */
1658 address = iommu_area_alloc(range->bitmap, limit,
1659 0, pages, offset, boundary_size,
1660 align_mask);
ccb50e03
JR
1661 flush = true;
1662 }
60e6a7cb
JR
1663
1664 if (address != -1)
1665 range->next_bit = address + pages;
1666
a0f51447
JR
1667 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1668
ccb50e03
JR
1669 if (flush) {
1670 domain_flush_tlb(&dom->domain);
1671 domain_flush_complete(&dom->domain);
1672 }
1673
a0f51447
JR
1674 return address;
1675}
1676
384de729
JR
1677static unsigned long dma_ops_area_alloc(struct device *dev,
1678 struct dma_ops_domain *dom,
1679 unsigned int pages,
1680 unsigned long align_mask,
05ab49e0 1681 u64 dma_mask)
384de729 1682{
ab7032bb 1683 unsigned long boundary_size, mask;
384de729 1684 unsigned long address = -1;
7b5e25b8 1685 bool first = true;
5f6bed50
JR
1686 u32 start, i;
1687
1688 preempt_disable();
384de729 1689
e6aabee0
JR
1690 mask = dma_get_seg_boundary(dev);
1691
7b5e25b8 1692again:
5f6bed50
JR
1693 start = this_cpu_read(*dom->next_index);
1694
1695 /* Sanity check - is it really necessary? */
1696 if (unlikely(start > APERTURE_MAX_RANGES)) {
1697 start = 0;
1698 this_cpu_write(*dom->next_index, 0);
1699 }
1700
e6aabee0
JR
1701 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1702 1UL << (BITS_PER_LONG - PAGE_SHIFT);
384de729 1703
2a87442c
JR
1704 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1705 struct aperture_range *range;
5f6bed50
JR
1706 int index;
1707
1708 index = (start + i) % APERTURE_MAX_RANGES;
ccb50e03 1709
5f6bed50 1710 range = dom->aperture[index];
2a87442c
JR
1711
1712 if (!range || range->offset >= dma_mask)
1713 continue;
384de729 1714
2a87442c 1715 address = dma_ops_aperture_alloc(dom, range, pages,
60e6a7cb 1716 dma_mask, boundary_size,
7b5e25b8 1717 align_mask, first);
384de729 1718 if (address != -1) {
2a87442c 1719 address = range->offset + (address << PAGE_SHIFT);
5f6bed50 1720 this_cpu_write(*dom->next_index, index);
384de729
JR
1721 break;
1722 }
384de729
JR
1723 }
1724
7b5e25b8
JR
1725 if (address == -1 && first) {
1726 first = false;
1727 goto again;
1728 }
1729
5f6bed50
JR
1730 preempt_enable();
1731
384de729
JR
1732 return address;
1733}
1734
d3086444
JR
1735static unsigned long dma_ops_alloc_addresses(struct device *dev,
1736 struct dma_ops_domain *dom,
6d4f343f 1737 unsigned int pages,
832a90c3
JR
1738 unsigned long align_mask,
1739 u64 dma_mask)
d3086444 1740{
266a3bd2 1741 unsigned long address = -1;
d3086444 1742
266a3bd2
JR
1743 while (address == -1) {
1744 address = dma_ops_area_alloc(dev, dom, pages,
1745 align_mask, dma_mask);
1746
7bfa5bd2 1747 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
266a3bd2
JR
1748 break;
1749 }
d3086444 1750
384de729 1751 if (unlikely(address == -1))
8fd524b3 1752 address = DMA_ERROR_CODE;
d3086444
JR
1753
1754 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1755
1756 return address;
1757}
1758
431b2a20
JR
1759/*
1760 * The address free function.
1761 *
1762 * called with domain->lock held
1763 */
d3086444
JR
1764static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1765 unsigned long address,
1766 unsigned int pages)
1767{
384de729
JR
1768 unsigned i = address >> APERTURE_RANGE_SHIFT;
1769 struct aperture_range *range = dom->aperture[i];
08c5fb93 1770 unsigned long flags;
80be308d 1771
384de729
JR
1772 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1773
47bccd6b
JR
1774#ifdef CONFIG_IOMMU_STRESS
1775 if (i < 4)
1776 return;
1777#endif
80be308d 1778
4eeca8c5 1779 if (amd_iommu_unmap_flush) {
d41ab098
JR
1780 domain_flush_tlb(&dom->domain);
1781 domain_flush_complete(&dom->domain);
1782 }
384de729
JR
1783
1784 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1785
08c5fb93 1786 spin_lock_irqsave(&range->bitmap_lock, flags);
4eeca8c5
JR
1787 if (address + pages > range->next_bit)
1788 range->next_bit = address + pages;
a66022c4 1789 bitmap_clear(range->bitmap, address, pages);
08c5fb93 1790 spin_unlock_irqrestore(&range->bitmap_lock, flags);
384de729 1791
d3086444
JR
1792}
1793
431b2a20
JR
1794/****************************************************************************
1795 *
1796 * The next functions belong to the domain allocation. A domain is
1797 * allocated for every IOMMU as the default domain. If device isolation
1798 * is enabled, every device get its own domain. The most important thing
1799 * about domains is the page table mapping the DMA address space they
1800 * contain.
1801 *
1802 ****************************************************************************/
1803
aeb26f55
JR
1804/*
1805 * This function adds a protection domain to the global protection domain list
1806 */
1807static void add_domain_to_list(struct protection_domain *domain)
1808{
1809 unsigned long flags;
1810
1811 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1812 list_add(&domain->list, &amd_iommu_pd_list);
1813 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1814}
1815
1816/*
1817 * This function removes a protection domain to the global
1818 * protection domain list
1819 */
1820static void del_domain_from_list(struct protection_domain *domain)
1821{
1822 unsigned long flags;
1823
1824 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1825 list_del(&domain->list);
1826 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1827}
1828
ec487d1a
JR
1829static u16 domain_id_alloc(void)
1830{
1831 unsigned long flags;
1832 int id;
1833
1834 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1835 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1836 BUG_ON(id == 0);
1837 if (id > 0 && id < MAX_DOMAIN_ID)
1838 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1839 else
1840 id = 0;
1841 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1842
1843 return id;
1844}
1845
a2acfb75
JR
1846static void domain_id_free(int id)
1847{
1848 unsigned long flags;
1849
1850 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1851 if (id > 0 && id < MAX_DOMAIN_ID)
1852 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1853 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1854}
a2acfb75 1855
5c34c403
JR
1856#define DEFINE_FREE_PT_FN(LVL, FN) \
1857static void free_pt_##LVL (unsigned long __pt) \
1858{ \
1859 unsigned long p; \
1860 u64 *pt; \
1861 int i; \
1862 \
1863 pt = (u64 *)__pt; \
1864 \
1865 for (i = 0; i < 512; ++i) { \
0b3fff54 1866 /* PTE present? */ \
5c34c403
JR
1867 if (!IOMMU_PTE_PRESENT(pt[i])) \
1868 continue; \
1869 \
0b3fff54
JR
1870 /* Large PTE? */ \
1871 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1872 PM_PTE_LEVEL(pt[i]) == 7) \
1873 continue; \
1874 \
5c34c403
JR
1875 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1876 FN(p); \
1877 } \
1878 free_page((unsigned long)pt); \
1879}
1880
1881DEFINE_FREE_PT_FN(l2, free_page)
1882DEFINE_FREE_PT_FN(l3, free_pt_l2)
1883DEFINE_FREE_PT_FN(l4, free_pt_l3)
1884DEFINE_FREE_PT_FN(l5, free_pt_l4)
1885DEFINE_FREE_PT_FN(l6, free_pt_l5)
1886
86db2e5d 1887static void free_pagetable(struct protection_domain *domain)
ec487d1a 1888{
5c34c403 1889 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1890
5c34c403
JR
1891 switch (domain->mode) {
1892 case PAGE_MODE_NONE:
1893 break;
1894 case PAGE_MODE_1_LEVEL:
1895 free_page(root);
1896 break;
1897 case PAGE_MODE_2_LEVEL:
1898 free_pt_l2(root);
1899 break;
1900 case PAGE_MODE_3_LEVEL:
1901 free_pt_l3(root);
1902 break;
1903 case PAGE_MODE_4_LEVEL:
1904 free_pt_l4(root);
1905 break;
1906 case PAGE_MODE_5_LEVEL:
1907 free_pt_l5(root);
1908 break;
1909 case PAGE_MODE_6_LEVEL:
1910 free_pt_l6(root);
1911 break;
1912 default:
1913 BUG();
ec487d1a 1914 }
ec487d1a
JR
1915}
1916
b16137b1
JR
1917static void free_gcr3_tbl_level1(u64 *tbl)
1918{
1919 u64 *ptr;
1920 int i;
1921
1922 for (i = 0; i < 512; ++i) {
1923 if (!(tbl[i] & GCR3_VALID))
1924 continue;
1925
1926 ptr = __va(tbl[i] & PAGE_MASK);
1927
1928 free_page((unsigned long)ptr);
1929 }
1930}
1931
1932static void free_gcr3_tbl_level2(u64 *tbl)
1933{
1934 u64 *ptr;
1935 int i;
1936
1937 for (i = 0; i < 512; ++i) {
1938 if (!(tbl[i] & GCR3_VALID))
1939 continue;
1940
1941 ptr = __va(tbl[i] & PAGE_MASK);
1942
1943 free_gcr3_tbl_level1(ptr);
1944 }
1945}
1946
52815b75
JR
1947static void free_gcr3_table(struct protection_domain *domain)
1948{
b16137b1
JR
1949 if (domain->glx == 2)
1950 free_gcr3_tbl_level2(domain->gcr3_tbl);
1951 else if (domain->glx == 1)
1952 free_gcr3_tbl_level1(domain->gcr3_tbl);
23d3a98c
JR
1953 else
1954 BUG_ON(domain->glx != 0);
b16137b1 1955
52815b75
JR
1956 free_page((unsigned long)domain->gcr3_tbl);
1957}
1958
431b2a20
JR
1959/*
1960 * Free a domain, only used if something went wrong in the
1961 * allocation path and we need to free an already allocated page table
1962 */
ec487d1a
JR
1963static void dma_ops_domain_free(struct dma_ops_domain *dom)
1964{
384de729
JR
1965 int i;
1966
ec487d1a
JR
1967 if (!dom)
1968 return;
1969
5f6bed50
JR
1970 free_percpu(dom->next_index);
1971
aeb26f55
JR
1972 del_domain_from_list(&dom->domain);
1973
86db2e5d 1974 free_pagetable(&dom->domain);
ec487d1a 1975
384de729
JR
1976 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1977 if (!dom->aperture[i])
1978 continue;
1979 free_page((unsigned long)dom->aperture[i]->bitmap);
1980 kfree(dom->aperture[i]);
1981 }
ec487d1a
JR
1982
1983 kfree(dom);
1984}
1985
a639a8ee
JR
1986static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1987 int max_apertures)
1988{
1989 int ret, i, apertures;
1990
1991 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1992 ret = 0;
1993
1994 for (i = apertures; i < max_apertures; ++i) {
1995 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1996 if (ret)
1997 break;
1998 }
1999
2000 return ret;
2001}
2002
431b2a20
JR
2003/*
2004 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 2005 * It also initializes the page table and the address allocator data
431b2a20
JR
2006 * structures required for the dma_ops interface
2007 */
87a64d52 2008static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2009{
2010 struct dma_ops_domain *dma_dom;
5f6bed50 2011 int cpu;
ec487d1a
JR
2012
2013 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2014 if (!dma_dom)
2015 return NULL;
2016
7a5a566e 2017 if (protection_domain_init(&dma_dom->domain))
ec487d1a 2018 goto free_dma_dom;
7a5a566e 2019
5f6bed50
JR
2020 dma_dom->next_index = alloc_percpu(u32);
2021 if (!dma_dom->next_index)
2022 goto free_dma_dom;
2023
8f7a017c 2024 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2025 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2026 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2027 dma_dom->domain.priv = dma_dom;
2028 if (!dma_dom->domain.pt_root)
2029 goto free_dma_dom;
ec487d1a 2030
aeb26f55
JR
2031 add_domain_to_list(&dma_dom->domain);
2032
576175c2 2033 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2034 goto free_dma_dom;
ec487d1a 2035
431b2a20 2036 /*
ec487d1a
JR
2037 * mark the first page as allocated so we never return 0 as
2038 * a valid dma-address. So we can use 0 as error value
431b2a20 2039 */
384de729 2040 dma_dom->aperture[0]->bitmap[0] = 1;
ec487d1a 2041
5f6bed50
JR
2042 for_each_possible_cpu(cpu)
2043 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
ec487d1a
JR
2044
2045 return dma_dom;
2046
2047free_dma_dom:
2048 dma_ops_domain_free(dma_dom);
2049
2050 return NULL;
2051}
2052
5b28df6f
JR
2053/*
2054 * little helper function to check whether a given protection domain is a
2055 * dma_ops domain
2056 */
2057static bool dma_ops_domain(struct protection_domain *domain)
2058{
2059 return domain->flags & PD_DMA_OPS_MASK;
2060}
2061
fd7b5535 2062static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2063{
132bd68f 2064 u64 pte_root = 0;
ee6c2868 2065 u64 flags = 0;
863c74eb 2066
132bd68f
JR
2067 if (domain->mode != PAGE_MODE_NONE)
2068 pte_root = virt_to_phys(domain->pt_root);
2069
38ddf41b
JR
2070 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2071 << DEV_ENTRY_MODE_SHIFT;
2072 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2073
ee6c2868
JR
2074 flags = amd_iommu_dev_table[devid].data[1];
2075
fd7b5535
JR
2076 if (ats)
2077 flags |= DTE_FLAG_IOTLB;
2078
52815b75
JR
2079 if (domain->flags & PD_IOMMUV2_MASK) {
2080 u64 gcr3 = __pa(domain->gcr3_tbl);
2081 u64 glx = domain->glx;
2082 u64 tmp;
2083
2084 pte_root |= DTE_FLAG_GV;
2085 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2086
2087 /* First mask out possible old values for GCR3 table */
2088 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2089 flags &= ~tmp;
2090
2091 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2092 flags &= ~tmp;
2093
2094 /* Encode GCR3 table into DTE */
2095 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2096 pte_root |= tmp;
2097
2098 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2099 flags |= tmp;
2100
2101 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2102 flags |= tmp;
2103 }
2104
ee6c2868
JR
2105 flags &= ~(0xffffUL);
2106 flags |= domain->id;
2107
2108 amd_iommu_dev_table[devid].data[1] = flags;
2109 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2110}
2111
2112static void clear_dte_entry(u16 devid)
2113{
15898bbc 2114 /* remove entry from the device table seen by the hardware */
cbf3ccd0
JR
2115 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2116 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
15898bbc
JR
2117
2118 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2119}
2120
ec9e79ef
JR
2121static void do_attach(struct iommu_dev_data *dev_data,
2122 struct protection_domain *domain)
7f760ddd 2123{
7f760ddd 2124 struct amd_iommu *iommu;
e25bfb56 2125 u16 alias;
ec9e79ef 2126 bool ats;
fd7b5535 2127
ec9e79ef 2128 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 2129 alias = amd_iommu_alias_table[dev_data->devid];
ec9e79ef 2130 ats = dev_data->ats.enabled;
7f760ddd
JR
2131
2132 /* Update data structures */
2133 dev_data->domain = domain;
2134 list_add(&dev_data->list, &domain->dev_list);
7f760ddd
JR
2135
2136 /* Do reference counting */
2137 domain->dev_iommu[iommu->index] += 1;
2138 domain->dev_cnt += 1;
2139
e25bfb56
JR
2140 /* Update device table */
2141 set_dte_entry(dev_data->devid, domain, ats);
2142 if (alias != dev_data->devid)
9b1a12d2 2143 set_dte_entry(alias, domain, ats);
e25bfb56 2144
6c542047 2145 device_flush_dte(dev_data);
7f760ddd
JR
2146}
2147
ec9e79ef 2148static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2149{
7f760ddd 2150 struct amd_iommu *iommu;
e25bfb56 2151 u16 alias;
7f760ddd 2152
5adad991
JR
2153 /*
2154 * First check if the device is still attached. It might already
2155 * be detached from its domain because the generic
2156 * iommu_detach_group code detached it and we try again here in
2157 * our alias handling.
2158 */
2159 if (!dev_data->domain)
2160 return;
2161
ec9e79ef 2162 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 2163 alias = amd_iommu_alias_table[dev_data->devid];
15898bbc
JR
2164
2165 /* decrease reference counters */
7f760ddd
JR
2166 dev_data->domain->dev_iommu[iommu->index] -= 1;
2167 dev_data->domain->dev_cnt -= 1;
2168
2169 /* Update data structures */
2170 dev_data->domain = NULL;
2171 list_del(&dev_data->list);
f62dda66 2172 clear_dte_entry(dev_data->devid);
e25bfb56
JR
2173 if (alias != dev_data->devid)
2174 clear_dte_entry(alias);
15898bbc 2175
7f760ddd 2176 /* Flush the DTE entry */
6c542047 2177 device_flush_dte(dev_data);
2b681faf
JR
2178}
2179
2180/*
2181 * If a device is not yet associated with a domain, this function does
2182 * assigns it visible for the hardware
2183 */
ec9e79ef 2184static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2185 struct protection_domain *domain)
2b681faf 2186{
84fe6c19 2187 int ret;
657cbb6b 2188
272e4f99
JR
2189 /*
2190 * Must be called with IRQs disabled. Warn here to detect early
2191 * when its not.
2192 */
2193 WARN_ON(!irqs_disabled());
2194
2b681faf
JR
2195 /* lock domain */
2196 spin_lock(&domain->lock);
2197
397111ab 2198 ret = -EBUSY;
150952f9 2199 if (dev_data->domain != NULL)
397111ab 2200 goto out_unlock;
15898bbc 2201
397111ab 2202 /* Attach alias group root */
150952f9 2203 do_attach(dev_data, domain);
24100055 2204
84fe6c19
JL
2205 ret = 0;
2206
2207out_unlock:
2208
eba6ac60
JR
2209 /* ready */
2210 spin_unlock(&domain->lock);
15898bbc 2211
84fe6c19 2212 return ret;
0feae533 2213}
b20ac0d4 2214
52815b75
JR
2215
2216static void pdev_iommuv2_disable(struct pci_dev *pdev)
2217{
2218 pci_disable_ats(pdev);
2219 pci_disable_pri(pdev);
2220 pci_disable_pasid(pdev);
2221}
2222
6a113ddc
JR
2223/* FIXME: Change generic reset-function to do the same */
2224static int pri_reset_while_enabled(struct pci_dev *pdev)
2225{
2226 u16 control;
2227 int pos;
2228
46277b75 2229 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2230 if (!pos)
2231 return -EINVAL;
2232
46277b75
JR
2233 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2234 control |= PCI_PRI_CTRL_RESET;
2235 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2236
2237 return 0;
2238}
2239
52815b75
JR
2240static int pdev_iommuv2_enable(struct pci_dev *pdev)
2241{
6a113ddc
JR
2242 bool reset_enable;
2243 int reqs, ret;
2244
2245 /* FIXME: Hardcode number of outstanding requests for now */
2246 reqs = 32;
2247 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2248 reqs = 1;
2249 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2250
2251 /* Only allow access to user-accessible pages */
2252 ret = pci_enable_pasid(pdev, 0);
2253 if (ret)
2254 goto out_err;
2255
2256 /* First reset the PRI state of the device */
2257 ret = pci_reset_pri(pdev);
2258 if (ret)
2259 goto out_err;
2260
6a113ddc
JR
2261 /* Enable PRI */
2262 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2263 if (ret)
2264 goto out_err;
2265
6a113ddc
JR
2266 if (reset_enable) {
2267 ret = pri_reset_while_enabled(pdev);
2268 if (ret)
2269 goto out_err;
2270 }
2271
52815b75
JR
2272 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2273 if (ret)
2274 goto out_err;
2275
2276 return 0;
2277
2278out_err:
2279 pci_disable_pri(pdev);
2280 pci_disable_pasid(pdev);
2281
2282 return ret;
2283}
2284
c99afa25 2285/* FIXME: Move this to PCI code */
a3b93121 2286#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2287
98f1ad25 2288static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2289{
a3b93121 2290 u16 status;
c99afa25
JR
2291 int pos;
2292
46277b75 2293 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2294 if (!pos)
2295 return false;
2296
a3b93121 2297 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2298
a3b93121 2299 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2300}
2301
407d733e 2302/*
df805abb 2303 * If a device is not yet associated with a domain, this function
407d733e
JR
2304 * assigns it visible for the hardware
2305 */
15898bbc
JR
2306static int attach_device(struct device *dev,
2307 struct protection_domain *domain)
0feae533 2308{
2bf9a0a1 2309 struct pci_dev *pdev;
ea61cddb 2310 struct iommu_dev_data *dev_data;
eba6ac60 2311 unsigned long flags;
15898bbc 2312 int ret;
eba6ac60 2313
ea61cddb
JR
2314 dev_data = get_dev_data(dev);
2315
2bf9a0a1
WZ
2316 if (!dev_is_pci(dev))
2317 goto skip_ats_check;
2318
2319 pdev = to_pci_dev(dev);
52815b75 2320 if (domain->flags & PD_IOMMUV2_MASK) {
02ca2021 2321 if (!dev_data->passthrough)
52815b75
JR
2322 return -EINVAL;
2323
02ca2021
JR
2324 if (dev_data->iommu_v2) {
2325 if (pdev_iommuv2_enable(pdev) != 0)
2326 return -EINVAL;
52815b75 2327
02ca2021
JR
2328 dev_data->ats.enabled = true;
2329 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2330 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2331 }
52815b75
JR
2332 } else if (amd_iommu_iotlb_sup &&
2333 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2334 dev_data->ats.enabled = true;
2335 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2336 }
fd7b5535 2337
2bf9a0a1 2338skip_ats_check:
eba6ac60 2339 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2340 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2341 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2342
0feae533
JR
2343 /*
2344 * We might boot into a crash-kernel here. The crashed kernel
2345 * left the caches in the IOMMU dirty. So we have to flush
2346 * here to evict all dirty stuff.
2347 */
17b124bf 2348 domain_flush_tlb_pde(domain);
15898bbc
JR
2349
2350 return ret;
b20ac0d4
JR
2351}
2352
355bf553
JR
2353/*
2354 * Removes a device from a protection domain (unlocked)
2355 */
ec9e79ef 2356static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2357{
2ca76279 2358 struct protection_domain *domain;
c4596114 2359
272e4f99
JR
2360 /*
2361 * Must be called with IRQs disabled. Warn here to detect early
2362 * when its not.
2363 */
2364 WARN_ON(!irqs_disabled());
2ca76279 2365
f34c73f5
JR
2366 if (WARN_ON(!dev_data->domain))
2367 return;
24100055 2368
2ca76279 2369 domain = dev_data->domain;
71f77580 2370
f1dd0a8b 2371 spin_lock(&domain->lock);
24100055 2372
150952f9 2373 do_detach(dev_data);
7f760ddd 2374
f1dd0a8b 2375 spin_unlock(&domain->lock);
355bf553
JR
2376}
2377
2378/*
2379 * Removes a device from a protection domain (with devtable_lock held)
2380 */
15898bbc 2381static void detach_device(struct device *dev)
355bf553 2382{
52815b75 2383 struct protection_domain *domain;
ea61cddb 2384 struct iommu_dev_data *dev_data;
355bf553
JR
2385 unsigned long flags;
2386
ec9e79ef 2387 dev_data = get_dev_data(dev);
52815b75 2388 domain = dev_data->domain;
ec9e79ef 2389
355bf553
JR
2390 /* lock device table */
2391 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2392 __detach_device(dev_data);
355bf553 2393 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2394
2bf9a0a1
WZ
2395 if (!dev_is_pci(dev))
2396 return;
2397
02ca2021 2398 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
52815b75
JR
2399 pdev_iommuv2_disable(to_pci_dev(dev));
2400 else if (dev_data->ats.enabled)
ea61cddb 2401 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2402
2403 dev_data->ats.enabled = false;
355bf553 2404}
e275a2a0 2405
aafd8ba0 2406static int amd_iommu_add_device(struct device *dev)
e275a2a0 2407{
5abcdba4 2408 struct iommu_dev_data *dev_data;
07ee8694 2409 struct iommu_domain *domain;
e275a2a0 2410 struct amd_iommu *iommu;
7aba6cb9 2411 int ret, devid;
e275a2a0 2412
aafd8ba0 2413 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2414 return 0;
e275a2a0 2415
aafd8ba0 2416 devid = get_device_id(dev);
7aba6cb9
WZ
2417 if (IS_ERR_VALUE(devid))
2418 return devid;
2419
aafd8ba0 2420 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2421
aafd8ba0 2422 ret = iommu_init_device(dev);
4d58b8a6
JR
2423 if (ret) {
2424 if (ret != -ENOTSUPP)
2425 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2426 dev_name(dev));
657cbb6b 2427
aafd8ba0 2428 iommu_ignore_device(dev);
343e9cac 2429 dev->archdata.dma_ops = &nommu_dma_ops;
aafd8ba0
JR
2430 goto out;
2431 }
2432 init_iommu_group(dev);
2c9195e9 2433
07ee8694 2434 dev_data = get_dev_data(dev);
2c9195e9 2435
4d58b8a6 2436 BUG_ON(!dev_data);
657cbb6b 2437
1e6a7b04 2438 if (iommu_pass_through || dev_data->iommu_v2)
07ee8694 2439 iommu_request_dm_for_dev(dev);
ac1534a5 2440
07ee8694
JR
2441 /* Domains are initialized for this device - have a look what we ended up with */
2442 domain = iommu_get_domain_for_dev(dev);
32302324 2443 if (domain->type == IOMMU_DOMAIN_IDENTITY)
07ee8694 2444 dev_data->passthrough = true;
32302324 2445 else
2c9195e9 2446 dev->archdata.dma_ops = &amd_iommu_dma_ops;
e275a2a0 2447
aafd8ba0 2448out:
e275a2a0
JR
2449 iommu_completion_wait(iommu);
2450
e275a2a0
JR
2451 return 0;
2452}
2453
aafd8ba0 2454static void amd_iommu_remove_device(struct device *dev)
8638c491 2455{
aafd8ba0 2456 struct amd_iommu *iommu;
7aba6cb9 2457 int devid;
aafd8ba0
JR
2458
2459 if (!check_device(dev))
2460 return;
2461
2462 devid = get_device_id(dev);
7aba6cb9
WZ
2463 if (IS_ERR_VALUE(devid))
2464 return;
2465
aafd8ba0
JR
2466 iommu = amd_iommu_rlookup_table[devid];
2467
2468 iommu_uninit_device(dev);
2469 iommu_completion_wait(iommu);
8638c491
JR
2470}
2471
b097d11a
WZ
2472static struct iommu_group *amd_iommu_device_group(struct device *dev)
2473{
2474 if (dev_is_pci(dev))
2475 return pci_device_group(dev);
2476
2477 return acpihid_device_group(dev);
2478}
2479
431b2a20
JR
2480/*****************************************************************************
2481 *
2482 * The next functions belong to the dma_ops mapping/unmapping code.
2483 *
2484 *****************************************************************************/
2485
2486/*
2487 * In the dma_ops path we only have the struct device. This function
2488 * finds the corresponding IOMMU, the protection domain and the
2489 * requestor id for a given device.
2490 * If the device is not yet associated with a domain this is also done
2491 * in this function.
2492 */
94f6d190 2493static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2494{
94f6d190 2495 struct protection_domain *domain;
063071df 2496 struct iommu_domain *io_domain;
b20ac0d4 2497
f99c0f1c 2498 if (!check_device(dev))
94f6d190 2499 return ERR_PTR(-EINVAL);
b20ac0d4 2500
063071df 2501 io_domain = iommu_get_domain_for_dev(dev);
0bb6e243
JR
2502 if (!io_domain)
2503 return NULL;
b20ac0d4 2504
0bb6e243
JR
2505 domain = to_pdomain(io_domain);
2506 if (!dma_ops_domain(domain))
94f6d190 2507 return ERR_PTR(-EBUSY);
f91ba190 2508
0bb6e243 2509 return domain;
b20ac0d4
JR
2510}
2511
04bfdd84
JR
2512static void update_device_table(struct protection_domain *domain)
2513{
492667da 2514 struct iommu_dev_data *dev_data;
04bfdd84 2515
ea61cddb
JR
2516 list_for_each_entry(dev_data, &domain->dev_list, list)
2517 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2518}
2519
2520static void update_domain(struct protection_domain *domain)
2521{
2522 if (!domain->updated)
2523 return;
2524
2525 update_device_table(domain);
17b124bf
JR
2526
2527 domain_flush_devices(domain);
2528 domain_flush_tlb_pde(domain);
04bfdd84
JR
2529
2530 domain->updated = false;
2531}
2532
8bda3092
JR
2533/*
2534 * This function fetches the PTE for a given address in the aperture
2535 */
2536static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2537 unsigned long address)
2538{
384de729 2539 struct aperture_range *aperture;
8bda3092
JR
2540 u64 *pte, *pte_page;
2541
384de729
JR
2542 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2543 if (!aperture)
2544 return NULL;
2545
2546 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2547 if (!pte) {
cbb9d729 2548 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2549 GFP_ATOMIC);
384de729
JR
2550 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2551 } else
8c8c143c 2552 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2553
04bfdd84 2554 update_domain(&dom->domain);
8bda3092
JR
2555
2556 return pte;
2557}
2558
431b2a20
JR
2559/*
2560 * This is the generic map function. It maps one 4kb page at paddr to
2561 * the given address in the DMA address space for the domain.
2562 */
680525e0 2563static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2564 unsigned long address,
2565 phys_addr_t paddr,
2566 int direction)
2567{
2568 u64 *pte, __pte;
2569
2570 WARN_ON(address > dom->aperture_size);
2571
2572 paddr &= PAGE_MASK;
2573
8bda3092 2574 pte = dma_ops_get_pte(dom, address);
53812c11 2575 if (!pte)
8fd524b3 2576 return DMA_ERROR_CODE;
cb76c322
JR
2577
2578 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2579
2580 if (direction == DMA_TO_DEVICE)
2581 __pte |= IOMMU_PTE_IR;
2582 else if (direction == DMA_FROM_DEVICE)
2583 __pte |= IOMMU_PTE_IW;
2584 else if (direction == DMA_BIDIRECTIONAL)
2585 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2586
a7fb668f 2587 WARN_ON_ONCE(*pte);
cb76c322
JR
2588
2589 *pte = __pte;
2590
2591 return (dma_addr_t)address;
2592}
2593
431b2a20
JR
2594/*
2595 * The generic unmapping function for on page in the DMA address space.
2596 */
680525e0 2597static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2598 unsigned long address)
2599{
384de729 2600 struct aperture_range *aperture;
cb76c322
JR
2601 u64 *pte;
2602
2603 if (address >= dom->aperture_size)
2604 return;
2605
384de729
JR
2606 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2607 if (!aperture)
2608 return;
2609
2610 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2611 if (!pte)
2612 return;
cb76c322 2613
8c8c143c 2614 pte += PM_LEVEL_INDEX(0, address);
cb76c322 2615
a7fb668f 2616 WARN_ON_ONCE(!*pte);
cb76c322
JR
2617
2618 *pte = 0ULL;
2619}
2620
431b2a20
JR
2621/*
2622 * This function contains common code for mapping of a physically
24f81160
JR
2623 * contiguous memory region into DMA address space. It is used by all
2624 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2625 * Must be called with the domain lock held.
2626 */
cb76c322 2627static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2628 struct dma_ops_domain *dma_dom,
2629 phys_addr_t paddr,
2630 size_t size,
6d4f343f 2631 int dir,
832a90c3
JR
2632 bool align,
2633 u64 dma_mask)
cb76c322
JR
2634{
2635 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2636 dma_addr_t address, start, ret;
cb76c322 2637 unsigned int pages;
6d4f343f 2638 unsigned long align_mask = 0;
cb76c322
JR
2639 int i;
2640
e3c449f5 2641 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2642 paddr &= PAGE_MASK;
2643
8ecaf8f1
JR
2644 INC_STATS_COUNTER(total_map_requests);
2645
c1858976
JR
2646 if (pages > 1)
2647 INC_STATS_COUNTER(cross_page);
2648
6d4f343f
JR
2649 if (align)
2650 align_mask = (1UL << get_order(size)) - 1;
2651
832a90c3
JR
2652 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2653 dma_mask);
ebaecb42 2654
266a3bd2
JR
2655 if (address == DMA_ERROR_CODE)
2656 goto out;
cb76c322
JR
2657
2658 start = address;
2659 for (i = 0; i < pages; ++i) {
680525e0 2660 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2661 if (ret == DMA_ERROR_CODE)
53812c11
JR
2662 goto out_unmap;
2663
cb76c322
JR
2664 paddr += PAGE_SIZE;
2665 start += PAGE_SIZE;
2666 }
2667 address += offset;
2668
5774f7c5
JR
2669 ADD_STATS_COUNTER(alloced_io_mem, size);
2670
ab7032bb 2671 if (unlikely(amd_iommu_np_cache)) {
17b124bf 2672 domain_flush_pages(&dma_dom->domain, address, size);
ab7032bb
JR
2673 domain_flush_complete(&dma_dom->domain);
2674 }
270cab24 2675
cb76c322
JR
2676out:
2677 return address;
53812c11
JR
2678
2679out_unmap:
2680
2681 for (--i; i >= 0; --i) {
2682 start -= PAGE_SIZE;
680525e0 2683 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2684 }
2685
2686 dma_ops_free_addresses(dma_dom, address, pages);
2687
8fd524b3 2688 return DMA_ERROR_CODE;
cb76c322
JR
2689}
2690
431b2a20
JR
2691/*
2692 * Does the reverse of the __map_single function. Must be called with
2693 * the domain lock held too
2694 */
cd8c82e8 2695static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2696 dma_addr_t dma_addr,
2697 size_t size,
2698 int dir)
2699{
04e0463e 2700 dma_addr_t flush_addr;
cb76c322
JR
2701 dma_addr_t i, start;
2702 unsigned int pages;
2703
8fd524b3 2704 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2705 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2706 return;
2707
04e0463e 2708 flush_addr = dma_addr;
e3c449f5 2709 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2710 dma_addr &= PAGE_MASK;
2711 start = dma_addr;
2712
2713 for (i = 0; i < pages; ++i) {
680525e0 2714 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2715 start += PAGE_SIZE;
2716 }
2717
84b3a0bc
JR
2718 SUB_STATS_COUNTER(alloced_io_mem, size);
2719
2720 dma_ops_free_addresses(dma_dom, dma_addr, pages);
cb76c322
JR
2721}
2722
431b2a20
JR
2723/*
2724 * The exported map_single function for dma_ops.
2725 */
51491367
FT
2726static dma_addr_t map_page(struct device *dev, struct page *page,
2727 unsigned long offset, size_t size,
2728 enum dma_data_direction dir,
2729 struct dma_attrs *attrs)
4da70b9e 2730{
92d420ec 2731 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2732 struct protection_domain *domain;
832a90c3 2733 u64 dma_mask;
4da70b9e 2734
0f2a86f2
JR
2735 INC_STATS_COUNTER(cnt_map_single);
2736
94f6d190
JR
2737 domain = get_domain(dev);
2738 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2739 return (dma_addr_t)paddr;
94f6d190
JR
2740 else if (IS_ERR(domain))
2741 return DMA_ERROR_CODE;
4da70b9e 2742
f99c0f1c
JR
2743 dma_mask = *dev->dma_mask;
2744
92d420ec 2745 return __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2746 dma_mask);
4da70b9e
JR
2747}
2748
431b2a20
JR
2749/*
2750 * The exported unmap_single function for dma_ops.
2751 */
51491367
FT
2752static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2753 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e 2754{
4da70b9e 2755 struct protection_domain *domain;
4da70b9e 2756
146a6917
JR
2757 INC_STATS_COUNTER(cnt_unmap_single);
2758
94f6d190
JR
2759 domain = get_domain(dev);
2760 if (IS_ERR(domain))
5b28df6f
JR
2761 return;
2762
cd8c82e8 2763 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e
JR
2764}
2765
431b2a20
JR
2766/*
2767 * The exported map_sg function for dma_ops (handles scatter-gather
2768 * lists).
2769 */
65b050ad 2770static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2771 int nelems, enum dma_data_direction dir,
2772 struct dma_attrs *attrs)
65b050ad 2773{
65b050ad 2774 struct protection_domain *domain;
65b050ad
JR
2775 int i;
2776 struct scatterlist *s;
2777 phys_addr_t paddr;
2778 int mapped_elems = 0;
832a90c3 2779 u64 dma_mask;
65b050ad 2780
d03f067a
JR
2781 INC_STATS_COUNTER(cnt_map_sg);
2782
94f6d190 2783 domain = get_domain(dev);
a0e191b2 2784 if (IS_ERR(domain))
94f6d190 2785 return 0;
dbcc112e 2786
832a90c3 2787 dma_mask = *dev->dma_mask;
65b050ad 2788
65b050ad
JR
2789 for_each_sg(sglist, s, nelems, i) {
2790 paddr = sg_phys(s);
2791
cd8c82e8 2792 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2793 paddr, s->length, dir, false,
2794 dma_mask);
65b050ad
JR
2795
2796 if (s->dma_address) {
2797 s->dma_length = s->length;
2798 mapped_elems++;
2799 } else
2800 goto unmap;
65b050ad
JR
2801 }
2802
65b050ad 2803 return mapped_elems;
92d420ec 2804
65b050ad
JR
2805unmap:
2806 for_each_sg(sglist, s, mapped_elems, i) {
2807 if (s->dma_address)
cd8c82e8 2808 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2809 s->dma_length, dir);
2810 s->dma_address = s->dma_length = 0;
2811 }
2812
92d420ec 2813 return 0;
65b050ad
JR
2814}
2815
431b2a20
JR
2816/*
2817 * The exported map_sg function for dma_ops (handles scatter-gather
2818 * lists).
2819 */
65b050ad 2820static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2821 int nelems, enum dma_data_direction dir,
2822 struct dma_attrs *attrs)
65b050ad 2823{
65b050ad
JR
2824 struct protection_domain *domain;
2825 struct scatterlist *s;
65b050ad
JR
2826 int i;
2827
55877a6b
JR
2828 INC_STATS_COUNTER(cnt_unmap_sg);
2829
94f6d190
JR
2830 domain = get_domain(dev);
2831 if (IS_ERR(domain))
5b28df6f
JR
2832 return;
2833
65b050ad 2834 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2835 __unmap_single(domain->priv, s->dma_address,
65b050ad 2836 s->dma_length, dir);
65b050ad
JR
2837 s->dma_address = s->dma_length = 0;
2838 }
65b050ad
JR
2839}
2840
431b2a20
JR
2841/*
2842 * The exported alloc_coherent function for dma_ops.
2843 */
5d8b53cf 2844static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2845 dma_addr_t *dma_addr, gfp_t flag,
2846 struct dma_attrs *attrs)
5d8b53cf 2847{
832a90c3 2848 u64 dma_mask = dev->coherent_dma_mask;
3b839a57 2849 struct protection_domain *domain;
3b839a57 2850 struct page *page;
5d8b53cf 2851
c8f0fb36
JR
2852 INC_STATS_COUNTER(cnt_alloc_coherent);
2853
94f6d190
JR
2854 domain = get_domain(dev);
2855 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2856 page = alloc_pages(flag, get_order(size));
2857 *dma_addr = page_to_phys(page);
2858 return page_address(page);
94f6d190
JR
2859 } else if (IS_ERR(domain))
2860 return NULL;
5d8b53cf 2861
3b839a57 2862 size = PAGE_ALIGN(size);
f99c0f1c
JR
2863 dma_mask = dev->coherent_dma_mask;
2864 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2865 flag |= __GFP_ZERO;
5d8b53cf 2866
3b839a57
JR
2867 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2868 if (!page) {
d0164adc 2869 if (!gfpflags_allow_blocking(flag))
3b839a57 2870 return NULL;
5d8b53cf 2871
3b839a57
JR
2872 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2873 get_order(size));
2874 if (!page)
2875 return NULL;
2876 }
5d8b53cf 2877
832a90c3
JR
2878 if (!dma_mask)
2879 dma_mask = *dev->dma_mask;
2880
3b839a57 2881 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2882 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2883
92d420ec 2884 if (*dma_addr == DMA_ERROR_CODE)
5b28df6f 2885 goto out_free;
5d8b53cf 2886
3b839a57 2887 return page_address(page);
5b28df6f
JR
2888
2889out_free:
2890
3b839a57
JR
2891 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2892 __free_pages(page, get_order(size));
5b28df6f
JR
2893
2894 return NULL;
5d8b53cf
JR
2895}
2896
431b2a20
JR
2897/*
2898 * The exported free_coherent function for dma_ops.
431b2a20 2899 */
5d8b53cf 2900static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2901 void *virt_addr, dma_addr_t dma_addr,
2902 struct dma_attrs *attrs)
5d8b53cf 2903{
5d8b53cf 2904 struct protection_domain *domain;
3b839a57 2905 struct page *page;
5d8b53cf 2906
5d31ee7e
JR
2907 INC_STATS_COUNTER(cnt_free_coherent);
2908
3b839a57
JR
2909 page = virt_to_page(virt_addr);
2910 size = PAGE_ALIGN(size);
2911
94f6d190
JR
2912 domain = get_domain(dev);
2913 if (IS_ERR(domain))
5b28df6f
JR
2914 goto free_mem;
2915
cd8c82e8 2916 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2917
5d8b53cf 2918free_mem:
3b839a57
JR
2919 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2920 __free_pages(page, get_order(size));
5d8b53cf
JR
2921}
2922
b39ba6ad
JR
2923/*
2924 * This function is called by the DMA layer to find out if we can handle a
2925 * particular device. It is part of the dma_ops.
2926 */
2927static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2928{
420aef8a 2929 return check_device(dev);
b39ba6ad
JR
2930}
2931
a639a8ee
JR
2932static int set_dma_mask(struct device *dev, u64 mask)
2933{
2934 struct protection_domain *domain;
2935 int max_apertures = 1;
2936
2937 domain = get_domain(dev);
2938 if (IS_ERR(domain))
2939 return PTR_ERR(domain);
2940
2941 if (mask == DMA_BIT_MASK(64))
2942 max_apertures = 8;
2943 else if (mask > DMA_BIT_MASK(32))
2944 max_apertures = 4;
2945
2946 /*
2947 * To prevent lock contention it doesn't make sense to allocate more
2948 * apertures than online cpus
2949 */
2950 if (max_apertures > num_online_cpus())
2951 max_apertures = num_online_cpus();
2952
2953 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2954 dev_err(dev, "Can't allocate %d iommu apertures\n",
2955 max_apertures);
2956
2957 return 0;
2958}
2959
160c1d8e 2960static struct dma_map_ops amd_iommu_dma_ops = {
a639a8ee
JR
2961 .alloc = alloc_coherent,
2962 .free = free_coherent,
2963 .map_page = map_page,
2964 .unmap_page = unmap_page,
2965 .map_sg = map_sg,
2966 .unmap_sg = unmap_sg,
2967 .dma_supported = amd_iommu_dma_supported,
2968 .set_dma_mask = set_dma_mask,
6631ee9d
JR
2969};
2970
3a18404c 2971int __init amd_iommu_init_api(void)
27c2127a 2972{
9a4d3bf5
WZ
2973 int err = 0;
2974
2975 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2976 if (err)
2977 return err;
2978#ifdef CONFIG_ARM_AMBA
2979 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2980 if (err)
2981 return err;
2982#endif
2983 return 0;
f5325094
JR
2984}
2985
6631ee9d
JR
2986int __init amd_iommu_init_dma_ops(void)
2987{
32302324 2988 swiotlb = iommu_pass_through ? 1 : 0;
6631ee9d 2989 iommu_detected = 1;
6631ee9d 2990
52717828
JR
2991 /*
2992 * In case we don't initialize SWIOTLB (actually the common case
2993 * when AMD IOMMU is enabled), make sure there are global
2994 * dma_ops set as a fall-back for devices not handled by this
2995 * driver (for example non-PCI devices).
2996 */
2997 if (!swiotlb)
2998 dma_ops = &nommu_dma_ops;
2999
7f26508b
JR
3000 amd_iommu_stats_init();
3001
62410eeb
JR
3002 if (amd_iommu_unmap_flush)
3003 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3004 else
3005 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3006
6631ee9d 3007 return 0;
6631ee9d 3008}
6d98cd80
JR
3009
3010/*****************************************************************************
3011 *
3012 * The following functions belong to the exported interface of AMD IOMMU
3013 *
3014 * This interface allows access to lower level functions of the IOMMU
3015 * like protection domain handling and assignement of devices to domains
3016 * which is not possible with the dma_ops interface.
3017 *
3018 *****************************************************************************/
3019
6d98cd80
JR
3020static void cleanup_domain(struct protection_domain *domain)
3021{
9b29d3c6 3022 struct iommu_dev_data *entry;
6d98cd80 3023 unsigned long flags;
6d98cd80
JR
3024
3025 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3026
9b29d3c6
JR
3027 while (!list_empty(&domain->dev_list)) {
3028 entry = list_first_entry(&domain->dev_list,
3029 struct iommu_dev_data, list);
3030 __detach_device(entry);
492667da 3031 }
6d98cd80
JR
3032
3033 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3034}
3035
2650815f
JR
3036static void protection_domain_free(struct protection_domain *domain)
3037{
3038 if (!domain)
3039 return;
3040
aeb26f55
JR
3041 del_domain_from_list(domain);
3042
2650815f
JR
3043 if (domain->id)
3044 domain_id_free(domain->id);
3045
3046 kfree(domain);
3047}
3048
7a5a566e
JR
3049static int protection_domain_init(struct protection_domain *domain)
3050{
3051 spin_lock_init(&domain->lock);
3052 mutex_init(&domain->api_lock);
3053 domain->id = domain_id_alloc();
3054 if (!domain->id)
3055 return -ENOMEM;
3056 INIT_LIST_HEAD(&domain->dev_list);
3057
3058 return 0;
3059}
3060
2650815f 3061static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3062{
3063 struct protection_domain *domain;
3064
3065 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3066 if (!domain)
2650815f 3067 return NULL;
c156e347 3068
7a5a566e 3069 if (protection_domain_init(domain))
2650815f
JR
3070 goto out_err;
3071
aeb26f55
JR
3072 add_domain_to_list(domain);
3073
2650815f
JR
3074 return domain;
3075
3076out_err:
3077 kfree(domain);
3078
3079 return NULL;
3080}
3081
3f4b87b9 3082static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 3083{
3f4b87b9 3084 struct protection_domain *pdomain;
0bb6e243 3085 struct dma_ops_domain *dma_domain;
2650815f 3086
0bb6e243
JR
3087 switch (type) {
3088 case IOMMU_DOMAIN_UNMANAGED:
3089 pdomain = protection_domain_alloc();
3090 if (!pdomain)
3091 return NULL;
c156e347 3092
0bb6e243
JR
3093 pdomain->mode = PAGE_MODE_3_LEVEL;
3094 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3095 if (!pdomain->pt_root) {
3096 protection_domain_free(pdomain);
3097 return NULL;
3098 }
c156e347 3099
0bb6e243
JR
3100 pdomain->domain.geometry.aperture_start = 0;
3101 pdomain->domain.geometry.aperture_end = ~0ULL;
3102 pdomain->domain.geometry.force_aperture = true;
0ff64f80 3103
0bb6e243
JR
3104 break;
3105 case IOMMU_DOMAIN_DMA:
3106 dma_domain = dma_ops_domain_alloc();
3107 if (!dma_domain) {
3108 pr_err("AMD-Vi: Failed to allocate\n");
3109 return NULL;
3110 }
3111 pdomain = &dma_domain->domain;
3112 break;
07f643a3
JR
3113 case IOMMU_DOMAIN_IDENTITY:
3114 pdomain = protection_domain_alloc();
3115 if (!pdomain)
3116 return NULL;
c156e347 3117
07f643a3
JR
3118 pdomain->mode = PAGE_MODE_NONE;
3119 break;
0bb6e243
JR
3120 default:
3121 return NULL;
3122 }
c156e347 3123
3f4b87b9 3124 return &pdomain->domain;
c156e347
JR
3125}
3126
3f4b87b9 3127static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3128{
3f4b87b9 3129 struct protection_domain *domain;
98383fc3 3130
3f4b87b9 3131 if (!dom)
98383fc3
JR
3132 return;
3133
3f4b87b9
JR
3134 domain = to_pdomain(dom);
3135
98383fc3
JR
3136 if (domain->dev_cnt > 0)
3137 cleanup_domain(domain);
3138
3139 BUG_ON(domain->dev_cnt != 0);
3140
132bd68f
JR
3141 if (domain->mode != PAGE_MODE_NONE)
3142 free_pagetable(domain);
98383fc3 3143
52815b75
JR
3144 if (domain->flags & PD_IOMMUV2_MASK)
3145 free_gcr3_table(domain);
3146
8b408fe4 3147 protection_domain_free(domain);
98383fc3
JR
3148}
3149
684f2888
JR
3150static void amd_iommu_detach_device(struct iommu_domain *dom,
3151 struct device *dev)
3152{
657cbb6b 3153 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3154 struct amd_iommu *iommu;
7aba6cb9 3155 int devid;
684f2888 3156
98fc5a69 3157 if (!check_device(dev))
684f2888
JR
3158 return;
3159
98fc5a69 3160 devid = get_device_id(dev);
7aba6cb9
WZ
3161 if (IS_ERR_VALUE(devid))
3162 return;
684f2888 3163
657cbb6b 3164 if (dev_data->domain != NULL)
15898bbc 3165 detach_device(dev);
684f2888
JR
3166
3167 iommu = amd_iommu_rlookup_table[devid];
3168 if (!iommu)
3169 return;
3170
684f2888
JR
3171 iommu_completion_wait(iommu);
3172}
3173
01106066
JR
3174static int amd_iommu_attach_device(struct iommu_domain *dom,
3175 struct device *dev)
3176{
3f4b87b9 3177 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3178 struct iommu_dev_data *dev_data;
01106066 3179 struct amd_iommu *iommu;
15898bbc 3180 int ret;
01106066 3181
98fc5a69 3182 if (!check_device(dev))
01106066
JR
3183 return -EINVAL;
3184
657cbb6b
JR
3185 dev_data = dev->archdata.iommu;
3186
f62dda66 3187 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3188 if (!iommu)
3189 return -EINVAL;
3190
657cbb6b 3191 if (dev_data->domain)
15898bbc 3192 detach_device(dev);
01106066 3193
15898bbc 3194 ret = attach_device(dev, domain);
01106066
JR
3195
3196 iommu_completion_wait(iommu);
3197
15898bbc 3198 return ret;
01106066
JR
3199}
3200
468e2366 3201static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3202 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3203{
3f4b87b9 3204 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3205 int prot = 0;
3206 int ret;
3207
132bd68f
JR
3208 if (domain->mode == PAGE_MODE_NONE)
3209 return -EINVAL;
3210
c6229ca6
JR
3211 if (iommu_prot & IOMMU_READ)
3212 prot |= IOMMU_PROT_IR;
3213 if (iommu_prot & IOMMU_WRITE)
3214 prot |= IOMMU_PROT_IW;
3215
5d214fe6 3216 mutex_lock(&domain->api_lock);
795e74f7 3217 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3218 mutex_unlock(&domain->api_lock);
3219
795e74f7 3220 return ret;
c6229ca6
JR
3221}
3222
5009065d
OBC
3223static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3224 size_t page_size)
eb74ff6c 3225{
3f4b87b9 3226 struct protection_domain *domain = to_pdomain(dom);
5009065d 3227 size_t unmap_size;
eb74ff6c 3228
132bd68f
JR
3229 if (domain->mode == PAGE_MODE_NONE)
3230 return -EINVAL;
3231
5d214fe6 3232 mutex_lock(&domain->api_lock);
468e2366 3233 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3234 mutex_unlock(&domain->api_lock);
eb74ff6c 3235
17b124bf 3236 domain_flush_tlb_pde(domain);
5d214fe6 3237
5009065d 3238 return unmap_size;
eb74ff6c
JR
3239}
3240
645c4c8d 3241static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3242 dma_addr_t iova)
645c4c8d 3243{
3f4b87b9 3244 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3245 unsigned long offset_mask, pte_pgsize;
f03152bb 3246 u64 *pte, __pte;
645c4c8d 3247
132bd68f
JR
3248 if (domain->mode == PAGE_MODE_NONE)
3249 return iova;
3250
3039ca1b 3251 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3252
a6d41a40 3253 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3254 return 0;
3255
b24b1b63
JR
3256 offset_mask = pte_pgsize - 1;
3257 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3258
b24b1b63 3259 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3260}
3261
ab636481 3262static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3263{
80a506b8
JR
3264 switch (cap) {
3265 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3266 return true;
bdddadcb 3267 case IOMMU_CAP_INTR_REMAP:
ab636481 3268 return (irq_remapping_enabled == 1);
cfdeec22
WD
3269 case IOMMU_CAP_NOEXEC:
3270 return false;
80a506b8
JR
3271 }
3272
ab636481 3273 return false;
dbb9fd86
SY
3274}
3275
35cf248f
JR
3276static void amd_iommu_get_dm_regions(struct device *dev,
3277 struct list_head *head)
3278{
3279 struct unity_map_entry *entry;
7aba6cb9 3280 int devid;
35cf248f
JR
3281
3282 devid = get_device_id(dev);
7aba6cb9
WZ
3283 if (IS_ERR_VALUE(devid))
3284 return;
35cf248f
JR
3285
3286 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3287 struct iommu_dm_region *region;
3288
3289 if (devid < entry->devid_start || devid > entry->devid_end)
3290 continue;
3291
3292 region = kzalloc(sizeof(*region), GFP_KERNEL);
3293 if (!region) {
3294 pr_err("Out of memory allocating dm-regions for %s\n",
3295 dev_name(dev));
3296 return;
3297 }
3298
3299 region->start = entry->address_start;
3300 region->length = entry->address_end - entry->address_start;
3301 if (entry->prot & IOMMU_PROT_IR)
3302 region->prot |= IOMMU_READ;
3303 if (entry->prot & IOMMU_PROT_IW)
3304 region->prot |= IOMMU_WRITE;
3305
3306 list_add_tail(&region->list, head);
3307 }
3308}
3309
3310static void amd_iommu_put_dm_regions(struct device *dev,
3311 struct list_head *head)
3312{
3313 struct iommu_dm_region *entry, *next;
3314
3315 list_for_each_entry_safe(entry, next, head, list)
3316 kfree(entry);
3317}
3318
b22f6434 3319static const struct iommu_ops amd_iommu_ops = {
ab636481 3320 .capable = amd_iommu_capable,
3f4b87b9
JR
3321 .domain_alloc = amd_iommu_domain_alloc,
3322 .domain_free = amd_iommu_domain_free,
26961efe
JR
3323 .attach_dev = amd_iommu_attach_device,
3324 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3325 .map = amd_iommu_map,
3326 .unmap = amd_iommu_unmap,
315786eb 3327 .map_sg = default_iommu_map_sg,
26961efe 3328 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3329 .add_device = amd_iommu_add_device,
3330 .remove_device = amd_iommu_remove_device,
b097d11a 3331 .device_group = amd_iommu_device_group,
35cf248f
JR
3332 .get_dm_regions = amd_iommu_get_dm_regions,
3333 .put_dm_regions = amd_iommu_put_dm_regions,
aa3de9c0 3334 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3335};
3336
0feae533
JR
3337/*****************************************************************************
3338 *
3339 * The next functions do a basic initialization of IOMMU for pass through
3340 * mode
3341 *
3342 * In passthrough mode the IOMMU is initialized and enabled but not used for
3343 * DMA-API translation.
3344 *
3345 *****************************************************************************/
3346
72e1dcc4
JR
3347/* IOMMUv2 specific functions */
3348int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3349{
3350 return atomic_notifier_chain_register(&ppr_notifier, nb);
3351}
3352EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3353
3354int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3355{
3356 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3357}
3358EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3359
3360void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3361{
3f4b87b9 3362 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3363 unsigned long flags;
3364
3365 spin_lock_irqsave(&domain->lock, flags);
3366
3367 /* Update data structure */
3368 domain->mode = PAGE_MODE_NONE;
3369 domain->updated = true;
3370
3371 /* Make changes visible to IOMMUs */
3372 update_domain(domain);
3373
3374 /* Page-table is not visible to IOMMU anymore, so free it */
3375 free_pagetable(domain);
3376
3377 spin_unlock_irqrestore(&domain->lock, flags);
3378}
3379EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3380
3381int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3382{
3f4b87b9 3383 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3384 unsigned long flags;
3385 int levels, ret;
3386
3387 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3388 return -EINVAL;
3389
3390 /* Number of GCR3 table levels required */
3391 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3392 levels += 1;
3393
3394 if (levels > amd_iommu_max_glx_val)
3395 return -EINVAL;
3396
3397 spin_lock_irqsave(&domain->lock, flags);
3398
3399 /*
3400 * Save us all sanity checks whether devices already in the
3401 * domain support IOMMUv2. Just force that the domain has no
3402 * devices attached when it is switched into IOMMUv2 mode.
3403 */
3404 ret = -EBUSY;
3405 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3406 goto out;
3407
3408 ret = -ENOMEM;
3409 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3410 if (domain->gcr3_tbl == NULL)
3411 goto out;
3412
3413 domain->glx = levels;
3414 domain->flags |= PD_IOMMUV2_MASK;
3415 domain->updated = true;
3416
3417 update_domain(domain);
3418
3419 ret = 0;
3420
3421out:
3422 spin_unlock_irqrestore(&domain->lock, flags);
3423
3424 return ret;
3425}
3426EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3427
3428static int __flush_pasid(struct protection_domain *domain, int pasid,
3429 u64 address, bool size)
3430{
3431 struct iommu_dev_data *dev_data;
3432 struct iommu_cmd cmd;
3433 int i, ret;
3434
3435 if (!(domain->flags & PD_IOMMUV2_MASK))
3436 return -EINVAL;
3437
3438 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3439
3440 /*
3441 * IOMMU TLB needs to be flushed before Device TLB to
3442 * prevent device TLB refill from IOMMU TLB
3443 */
3444 for (i = 0; i < amd_iommus_present; ++i) {
3445 if (domain->dev_iommu[i] == 0)
3446 continue;
3447
3448 ret = iommu_queue_command(amd_iommus[i], &cmd);
3449 if (ret != 0)
3450 goto out;
3451 }
3452
3453 /* Wait until IOMMU TLB flushes are complete */
3454 domain_flush_complete(domain);
3455
3456 /* Now flush device TLBs */
3457 list_for_each_entry(dev_data, &domain->dev_list, list) {
3458 struct amd_iommu *iommu;
3459 int qdep;
3460
1c1cc454
JR
3461 /*
3462 There might be non-IOMMUv2 capable devices in an IOMMUv2
3463 * domain.
3464 */
3465 if (!dev_data->ats.enabled)
3466 continue;
22e266c7
JR
3467
3468 qdep = dev_data->ats.qdep;
3469 iommu = amd_iommu_rlookup_table[dev_data->devid];
3470
3471 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3472 qdep, address, size);
3473
3474 ret = iommu_queue_command(iommu, &cmd);
3475 if (ret != 0)
3476 goto out;
3477 }
3478
3479 /* Wait until all device TLBs are flushed */
3480 domain_flush_complete(domain);
3481
3482 ret = 0;
3483
3484out:
3485
3486 return ret;
3487}
3488
3489static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3490 u64 address)
3491{
399be2f5
JR
3492 INC_STATS_COUNTER(invalidate_iotlb);
3493
22e266c7
JR
3494 return __flush_pasid(domain, pasid, address, false);
3495}
3496
3497int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3498 u64 address)
3499{
3f4b87b9 3500 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3501 unsigned long flags;
3502 int ret;
3503
3504 spin_lock_irqsave(&domain->lock, flags);
3505 ret = __amd_iommu_flush_page(domain, pasid, address);
3506 spin_unlock_irqrestore(&domain->lock, flags);
3507
3508 return ret;
3509}
3510EXPORT_SYMBOL(amd_iommu_flush_page);
3511
3512static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3513{
399be2f5
JR
3514 INC_STATS_COUNTER(invalidate_iotlb_all);
3515
22e266c7
JR
3516 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3517 true);
3518}
3519
3520int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3521{
3f4b87b9 3522 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3523 unsigned long flags;
3524 int ret;
3525
3526 spin_lock_irqsave(&domain->lock, flags);
3527 ret = __amd_iommu_flush_tlb(domain, pasid);
3528 spin_unlock_irqrestore(&domain->lock, flags);
3529
3530 return ret;
3531}
3532EXPORT_SYMBOL(amd_iommu_flush_tlb);
3533
b16137b1
JR
3534static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3535{
3536 int index;
3537 u64 *pte;
3538
3539 while (true) {
3540
3541 index = (pasid >> (9 * level)) & 0x1ff;
3542 pte = &root[index];
3543
3544 if (level == 0)
3545 break;
3546
3547 if (!(*pte & GCR3_VALID)) {
3548 if (!alloc)
3549 return NULL;
3550
3551 root = (void *)get_zeroed_page(GFP_ATOMIC);
3552 if (root == NULL)
3553 return NULL;
3554
3555 *pte = __pa(root) | GCR3_VALID;
3556 }
3557
3558 root = __va(*pte & PAGE_MASK);
3559
3560 level -= 1;
3561 }
3562
3563 return pte;
3564}
3565
3566static int __set_gcr3(struct protection_domain *domain, int pasid,
3567 unsigned long cr3)
3568{
3569 u64 *pte;
3570
3571 if (domain->mode != PAGE_MODE_NONE)
3572 return -EINVAL;
3573
3574 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3575 if (pte == NULL)
3576 return -ENOMEM;
3577
3578 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3579
3580 return __amd_iommu_flush_tlb(domain, pasid);
3581}
3582
3583static int __clear_gcr3(struct protection_domain *domain, int pasid)
3584{
3585 u64 *pte;
3586
3587 if (domain->mode != PAGE_MODE_NONE)
3588 return -EINVAL;
3589
3590 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3591 if (pte == NULL)
3592 return 0;
3593
3594 *pte = 0;
3595
3596 return __amd_iommu_flush_tlb(domain, pasid);
3597}
3598
3599int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3600 unsigned long cr3)
3601{
3f4b87b9 3602 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3603 unsigned long flags;
3604 int ret;
3605
3606 spin_lock_irqsave(&domain->lock, flags);
3607 ret = __set_gcr3(domain, pasid, cr3);
3608 spin_unlock_irqrestore(&domain->lock, flags);
3609
3610 return ret;
3611}
3612EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3613
3614int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3615{
3f4b87b9 3616 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3617 unsigned long flags;
3618 int ret;
3619
3620 spin_lock_irqsave(&domain->lock, flags);
3621 ret = __clear_gcr3(domain, pasid);
3622 spin_unlock_irqrestore(&domain->lock, flags);
3623
3624 return ret;
3625}
3626EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3627
3628int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3629 int status, int tag)
3630{
3631 struct iommu_dev_data *dev_data;
3632 struct amd_iommu *iommu;
3633 struct iommu_cmd cmd;
3634
399be2f5
JR
3635 INC_STATS_COUNTER(complete_ppr);
3636
c99afa25
JR
3637 dev_data = get_dev_data(&pdev->dev);
3638 iommu = amd_iommu_rlookup_table[dev_data->devid];
3639
3640 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3641 tag, dev_data->pri_tlp);
3642
3643 return iommu_queue_command(iommu, &cmd);
3644}
3645EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3646
3647struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3648{
3f4b87b9 3649 struct protection_domain *pdomain;
f3572db8 3650
3f4b87b9
JR
3651 pdomain = get_domain(&pdev->dev);
3652 if (IS_ERR(pdomain))
f3572db8
JR
3653 return NULL;
3654
3655 /* Only return IOMMUv2 domains */
3f4b87b9 3656 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3657 return NULL;
3658
3f4b87b9 3659 return &pdomain->domain;
f3572db8
JR
3660}
3661EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3662
3663void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3664{
3665 struct iommu_dev_data *dev_data;
3666
3667 if (!amd_iommu_v2_supported())
3668 return;
3669
3670 dev_data = get_dev_data(&pdev->dev);
3671 dev_data->errata |= (1 << erratum);
3672}
3673EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3674
3675int amd_iommu_device_info(struct pci_dev *pdev,
3676 struct amd_iommu_device_info *info)
3677{
3678 int max_pasids;
3679 int pos;
3680
3681 if (pdev == NULL || info == NULL)
3682 return -EINVAL;
3683
3684 if (!amd_iommu_v2_supported())
3685 return -EINVAL;
3686
3687 memset(info, 0, sizeof(*info));
3688
3689 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3690 if (pos)
3691 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3692
3693 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3694 if (pos)
3695 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3696
3697 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3698 if (pos) {
3699 int features;
3700
3701 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3702 max_pasids = min(max_pasids, (1 << 20));
3703
3704 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3705 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3706
3707 features = pci_pasid_features(pdev);
3708 if (features & PCI_PASID_CAP_EXEC)
3709 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3710 if (features & PCI_PASID_CAP_PRIV)
3711 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3712 }
3713
3714 return 0;
3715}
3716EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3717
3718#ifdef CONFIG_IRQ_REMAP
3719
3720/*****************************************************************************
3721 *
3722 * Interrupt Remapping Implementation
3723 *
3724 *****************************************************************************/
3725
3726union irte {
3727 u32 val;
3728 struct {
3729 u32 valid : 1,
3730 no_fault : 1,
3731 int_type : 3,
3732 rq_eoi : 1,
3733 dm : 1,
3734 rsvd_1 : 1,
3735 destination : 8,
3736 vector : 8,
3737 rsvd_2 : 8;
3738 } fields;
3739};
3740
9c724966
JL
3741struct irq_2_irte {
3742 u16 devid; /* Device ID for IRTE table */
3743 u16 index; /* Index into IRTE table*/
3744};
3745
7c71d306
JL
3746struct amd_ir_data {
3747 struct irq_2_irte irq_2_irte;
3748 union irte irte_entry;
3749 union {
3750 struct msi_msg msi_entry;
3751 };
3752};
3753
3754static struct irq_chip amd_ir_chip;
3755
2b324506
JR
3756#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3757#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3758#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3759#define DTE_IRQ_REMAP_ENABLE 1ULL
3760
3761static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3762{
3763 u64 dte;
3764
3765 dte = amd_iommu_dev_table[devid].data[2];
3766 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3767 dte |= virt_to_phys(table->table);
3768 dte |= DTE_IRQ_REMAP_INTCTL;
3769 dte |= DTE_IRQ_TABLE_LEN;
3770 dte |= DTE_IRQ_REMAP_ENABLE;
3771
3772 amd_iommu_dev_table[devid].data[2] = dte;
3773}
3774
3775#define IRTE_ALLOCATED (~1U)
3776
3777static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3778{
3779 struct irq_remap_table *table = NULL;
3780 struct amd_iommu *iommu;
3781 unsigned long flags;
3782 u16 alias;
3783
3784 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3785
3786 iommu = amd_iommu_rlookup_table[devid];
3787 if (!iommu)
3788 goto out_unlock;
3789
3790 table = irq_lookup_table[devid];
3791 if (table)
3792 goto out;
3793
3794 alias = amd_iommu_alias_table[devid];
3795 table = irq_lookup_table[alias];
3796 if (table) {
3797 irq_lookup_table[devid] = table;
3798 set_dte_irq_entry(devid, table);
3799 iommu_flush_dte(iommu, devid);
3800 goto out;
3801 }
3802
3803 /* Nothing there yet, allocate new irq remapping table */
3804 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3805 if (!table)
3806 goto out;
3807
197887f0
JR
3808 /* Initialize table spin-lock */
3809 spin_lock_init(&table->lock);
3810
2b324506
JR
3811 if (ioapic)
3812 /* Keep the first 32 indexes free for IOAPIC interrupts */
3813 table->min_index = 32;
3814
3815 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3816 if (!table->table) {
3817 kfree(table);
821f0f68 3818 table = NULL;
2b324506
JR
3819 goto out;
3820 }
3821
3822 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3823
3824 if (ioapic) {
3825 int i;
3826
3827 for (i = 0; i < 32; ++i)
3828 table->table[i] = IRTE_ALLOCATED;
3829 }
3830
3831 irq_lookup_table[devid] = table;
3832 set_dte_irq_entry(devid, table);
3833 iommu_flush_dte(iommu, devid);
3834 if (devid != alias) {
3835 irq_lookup_table[alias] = table;
e028a9e6 3836 set_dte_irq_entry(alias, table);
2b324506
JR
3837 iommu_flush_dte(iommu, alias);
3838 }
3839
3840out:
3841 iommu_completion_wait(iommu);
3842
3843out_unlock:
3844 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3845
3846 return table;
3847}
3848
3c3d4f90 3849static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3850{
3851 struct irq_remap_table *table;
3852 unsigned long flags;
3853 int index, c;
3854
3855 table = get_irq_table(devid, false);
3856 if (!table)
3857 return -ENODEV;
3858
3859 spin_lock_irqsave(&table->lock, flags);
3860
3861 /* Scan table for free entries */
3862 for (c = 0, index = table->min_index;
3863 index < MAX_IRQS_PER_TABLE;
3864 ++index) {
3865 if (table->table[index] == 0)
3866 c += 1;
3867 else
3868 c = 0;
3869
3870 if (c == count) {
2b324506
JR
3871 for (; c != 0; --c)
3872 table->table[index - c + 1] = IRTE_ALLOCATED;
3873
3874 index -= count - 1;
2b324506
JR
3875 goto out;
3876 }
3877 }
3878
3879 index = -ENOSPC;
3880
3881out:
3882 spin_unlock_irqrestore(&table->lock, flags);
3883
3884 return index;
3885}
3886
2b324506
JR
3887static int modify_irte(u16 devid, int index, union irte irte)
3888{
3889 struct irq_remap_table *table;
3890 struct amd_iommu *iommu;
3891 unsigned long flags;
3892
3893 iommu = amd_iommu_rlookup_table[devid];
3894 if (iommu == NULL)
3895 return -EINVAL;
3896
3897 table = get_irq_table(devid, false);
3898 if (!table)
3899 return -ENOMEM;
3900
3901 spin_lock_irqsave(&table->lock, flags);
3902 table->table[index] = irte.val;
3903 spin_unlock_irqrestore(&table->lock, flags);
3904
3905 iommu_flush_irt(iommu, devid);
3906 iommu_completion_wait(iommu);
3907
3908 return 0;
3909}
3910
3911static void free_irte(u16 devid, int index)
3912{
3913 struct irq_remap_table *table;
3914 struct amd_iommu *iommu;
3915 unsigned long flags;
3916
3917 iommu = amd_iommu_rlookup_table[devid];
3918 if (iommu == NULL)
3919 return;
3920
3921 table = get_irq_table(devid, false);
3922 if (!table)
3923 return;
3924
3925 spin_lock_irqsave(&table->lock, flags);
3926 table->table[index] = 0;
3927 spin_unlock_irqrestore(&table->lock, flags);
3928
3929 iommu_flush_irt(iommu, devid);
3930 iommu_completion_wait(iommu);
3931}
3932
7c71d306 3933static int get_devid(struct irq_alloc_info *info)
5527de74 3934{
7c71d306 3935 int devid = -1;
5527de74 3936
7c71d306
JL
3937 switch (info->type) {
3938 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3939 devid = get_ioapic_devid(info->ioapic_id);
3940 break;
3941 case X86_IRQ_ALLOC_TYPE_HPET:
3942 devid = get_hpet_devid(info->hpet_id);
3943 break;
3944 case X86_IRQ_ALLOC_TYPE_MSI:
3945 case X86_IRQ_ALLOC_TYPE_MSIX:
3946 devid = get_device_id(&info->msi_dev->dev);
3947 break;
3948 default:
3949 BUG_ON(1);
3950 break;
3951 }
5527de74 3952
7c71d306
JL
3953 return devid;
3954}
5527de74 3955
7c71d306
JL
3956static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3957{
3958 struct amd_iommu *iommu;
3959 int devid;
5527de74 3960
7c71d306
JL
3961 if (!info)
3962 return NULL;
5527de74 3963
7c71d306
JL
3964 devid = get_devid(info);
3965 if (devid >= 0) {
3966 iommu = amd_iommu_rlookup_table[devid];
3967 if (iommu)
3968 return iommu->ir_domain;
3969 }
5527de74 3970
7c71d306 3971 return NULL;
5527de74
JR
3972}
3973
7c71d306 3974static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 3975{
7c71d306
JL
3976 struct amd_iommu *iommu;
3977 int devid;
5527de74 3978
7c71d306
JL
3979 if (!info)
3980 return NULL;
5527de74 3981
7c71d306
JL
3982 switch (info->type) {
3983 case X86_IRQ_ALLOC_TYPE_MSI:
3984 case X86_IRQ_ALLOC_TYPE_MSIX:
3985 devid = get_device_id(&info->msi_dev->dev);
7aba6cb9
WZ
3986 if (IS_ERR_VALUE(devid))
3987 return NULL;
3988
1fb260bc
DC
3989 iommu = amd_iommu_rlookup_table[devid];
3990 if (iommu)
3991 return iommu->msi_domain;
7c71d306
JL
3992 break;
3993 default:
3994 break;
3995 }
5527de74 3996
7c71d306
JL
3997 return NULL;
3998}
5527de74 3999
6b474b82 4000struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4001 .prepare = amd_iommu_prepare,
4002 .enable = amd_iommu_enable,
4003 .disable = amd_iommu_disable,
4004 .reenable = amd_iommu_reenable,
4005 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
4006 .get_ir_irq_domain = get_ir_irq_domain,
4007 .get_irq_domain = get_irq_domain,
4008};
5527de74 4009
7c71d306
JL
4010static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4011 struct irq_cfg *irq_cfg,
4012 struct irq_alloc_info *info,
4013 int devid, int index, int sub_handle)
4014{
4015 struct irq_2_irte *irte_info = &data->irq_2_irte;
4016 struct msi_msg *msg = &data->msi_entry;
4017 union irte *irte = &data->irte_entry;
4018 struct IO_APIC_route_entry *entry;
5527de74 4019
7c71d306
JL
4020 data->irq_2_irte.devid = devid;
4021 data->irq_2_irte.index = index + sub_handle;
5527de74 4022
7c71d306
JL
4023 /* Setup IRTE for IOMMU */
4024 irte->val = 0;
4025 irte->fields.vector = irq_cfg->vector;
4026 irte->fields.int_type = apic->irq_delivery_mode;
4027 irte->fields.destination = irq_cfg->dest_apicid;
4028 irte->fields.dm = apic->irq_dest_mode;
4029 irte->fields.valid = 1;
4030
4031 switch (info->type) {
4032 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4033 /* Setup IOAPIC entry */
4034 entry = info->ioapic_entry;
4035 info->ioapic_entry = NULL;
4036 memset(entry, 0, sizeof(*entry));
4037 entry->vector = index;
4038 entry->mask = 0;
4039 entry->trigger = info->ioapic_trigger;
4040 entry->polarity = info->ioapic_polarity;
4041 /* Mask level triggered irqs. */
4042 if (info->ioapic_trigger)
4043 entry->mask = 1;
4044 break;
5527de74 4045
7c71d306
JL
4046 case X86_IRQ_ALLOC_TYPE_HPET:
4047 case X86_IRQ_ALLOC_TYPE_MSI:
4048 case X86_IRQ_ALLOC_TYPE_MSIX:
4049 msg->address_hi = MSI_ADDR_BASE_HI;
4050 msg->address_lo = MSI_ADDR_BASE_LO;
4051 msg->data = irte_info->index;
4052 break;
5527de74 4053
7c71d306
JL
4054 default:
4055 BUG_ON(1);
4056 break;
4057 }
5527de74
JR
4058}
4059
7c71d306
JL
4060static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4061 unsigned int nr_irqs, void *arg)
5527de74 4062{
7c71d306
JL
4063 struct irq_alloc_info *info = arg;
4064 struct irq_data *irq_data;
4065 struct amd_ir_data *data;
5527de74 4066 struct irq_cfg *cfg;
7c71d306
JL
4067 int i, ret, devid;
4068 int index = -1;
5527de74 4069
7c71d306
JL
4070 if (!info)
4071 return -EINVAL;
4072 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4073 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
4074 return -EINVAL;
4075
7c71d306
JL
4076 /*
4077 * With IRQ remapping enabled, don't need contiguous CPU vectors
4078 * to support multiple MSI interrupts.
4079 */
4080 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4081 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 4082
7c71d306
JL
4083 devid = get_devid(info);
4084 if (devid < 0)
4085 return -EINVAL;
5527de74 4086
7c71d306
JL
4087 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4088 if (ret < 0)
4089 return ret;
0b4d48cb 4090
7c71d306
JL
4091 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4092 if (get_irq_table(devid, true))
4093 index = info->ioapic_pin;
4094 else
4095 ret = -ENOMEM;
4096 } else {
3c3d4f90 4097 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
4098 }
4099 if (index < 0) {
4100 pr_warn("Failed to allocate IRTE\n");
7c71d306
JL
4101 goto out_free_parent;
4102 }
0b4d48cb 4103
7c71d306
JL
4104 for (i = 0; i < nr_irqs; i++) {
4105 irq_data = irq_domain_get_irq_data(domain, virq + i);
4106 cfg = irqd_cfg(irq_data);
4107 if (!irq_data || !cfg) {
4108 ret = -EINVAL;
4109 goto out_free_data;
4110 }
0b4d48cb 4111
a130e69f
JR
4112 ret = -ENOMEM;
4113 data = kzalloc(sizeof(*data), GFP_KERNEL);
4114 if (!data)
4115 goto out_free_data;
4116
7c71d306
JL
4117 irq_data->hwirq = (devid << 16) + i;
4118 irq_data->chip_data = data;
4119 irq_data->chip = &amd_ir_chip;
4120 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4121 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4122 }
a130e69f 4123
7c71d306 4124 return 0;
0b4d48cb 4125
7c71d306
JL
4126out_free_data:
4127 for (i--; i >= 0; i--) {
4128 irq_data = irq_domain_get_irq_data(domain, virq + i);
4129 if (irq_data)
4130 kfree(irq_data->chip_data);
4131 }
4132 for (i = 0; i < nr_irqs; i++)
4133 free_irte(devid, index + i);
4134out_free_parent:
4135 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4136 return ret;
0b4d48cb
JR
4137}
4138
7c71d306
JL
4139static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4140 unsigned int nr_irqs)
0b4d48cb 4141{
7c71d306
JL
4142 struct irq_2_irte *irte_info;
4143 struct irq_data *irq_data;
4144 struct amd_ir_data *data;
4145 int i;
0b4d48cb 4146
7c71d306
JL
4147 for (i = 0; i < nr_irqs; i++) {
4148 irq_data = irq_domain_get_irq_data(domain, virq + i);
4149 if (irq_data && irq_data->chip_data) {
4150 data = irq_data->chip_data;
4151 irte_info = &data->irq_2_irte;
4152 free_irte(irte_info->devid, irte_info->index);
4153 kfree(data);
4154 }
4155 }
4156 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4157}
0b4d48cb 4158
7c71d306
JL
4159static void irq_remapping_activate(struct irq_domain *domain,
4160 struct irq_data *irq_data)
4161{
4162 struct amd_ir_data *data = irq_data->chip_data;
4163 struct irq_2_irte *irte_info = &data->irq_2_irte;
0b4d48cb 4164
7c71d306 4165 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
0b4d48cb
JR
4166}
4167
7c71d306
JL
4168static void irq_remapping_deactivate(struct irq_domain *domain,
4169 struct irq_data *irq_data)
0b4d48cb 4170{
7c71d306
JL
4171 struct amd_ir_data *data = irq_data->chip_data;
4172 struct irq_2_irte *irte_info = &data->irq_2_irte;
4173 union irte entry;
0b4d48cb 4174
7c71d306
JL
4175 entry.val = 0;
4176 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4177}
0b4d48cb 4178
7c71d306
JL
4179static struct irq_domain_ops amd_ir_domain_ops = {
4180 .alloc = irq_remapping_alloc,
4181 .free = irq_remapping_free,
4182 .activate = irq_remapping_activate,
4183 .deactivate = irq_remapping_deactivate,
6b474b82 4184};
0b4d48cb 4185
7c71d306
JL
4186static int amd_ir_set_affinity(struct irq_data *data,
4187 const struct cpumask *mask, bool force)
4188{
4189 struct amd_ir_data *ir_data = data->chip_data;
4190 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4191 struct irq_cfg *cfg = irqd_cfg(data);
4192 struct irq_data *parent = data->parent_data;
4193 int ret;
0b4d48cb 4194
7c71d306
JL
4195 ret = parent->chip->irq_set_affinity(parent, mask, force);
4196 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4197 return ret;
0b4d48cb 4198
7c71d306
JL
4199 /*
4200 * Atomically updates the IRTE with the new destination, vector
4201 * and flushes the interrupt entry cache.
4202 */
4203 ir_data->irte_entry.fields.vector = cfg->vector;
4204 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4205 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
0b4d48cb 4206
7c71d306
JL
4207 /*
4208 * After this point, all the interrupts will start arriving
4209 * at the new destination. So, time to cleanup the previous
4210 * vector allocation.
4211 */
c6c2002b 4212 send_cleanup_vector(cfg);
7c71d306
JL
4213
4214 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
4215}
4216
7c71d306 4217static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 4218{
7c71d306 4219 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 4220
7c71d306
JL
4221 *msg = ir_data->msi_entry;
4222}
d976195c 4223
7c71d306
JL
4224static struct irq_chip amd_ir_chip = {
4225 .irq_ack = ir_ack_apic_edge,
4226 .irq_set_affinity = amd_ir_set_affinity,
4227 .irq_compose_msi_msg = ir_compose_msi_msg,
4228};
d976195c 4229
7c71d306
JL
4230int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4231{
4232 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4233 if (!iommu->ir_domain)
4234 return -ENOMEM;
d976195c 4235
7c71d306
JL
4236 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4237 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
d976195c
JR
4238
4239 return 0;
4240}
2b324506 4241#endif