]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Move struct iommu_dev_data to amd_iommu.c
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
b6c02715
JR
49
50#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51
815b33fd 52#define LOOP_TIMEOUT 100000
136f78a1 53
aa3de9c0
OBC
54/*
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
58 * that we support.
59 *
954e3dd8 60 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 61 */
954e3dd8 62#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 63
b6c02715
JR
64static DEFINE_RWLOCK(amd_iommu_devtable_lock);
65
bd60b735
JR
66/* A list of preallocated protection domains */
67static LIST_HEAD(iommu_pd_list);
68static DEFINE_SPINLOCK(iommu_pd_list_lock);
69
8fa5f802
JR
70/* List of all available dev_data structures */
71static LIST_HEAD(dev_data_list);
72static DEFINE_SPINLOCK(dev_data_list_lock);
73
6efed63b
JR
74LIST_HEAD(ioapic_map);
75LIST_HEAD(hpet_map);
76
0feae533
JR
77/*
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
80 */
81static struct protection_domain *pt_domain;
82
b22f6434 83static const struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
50917e26
JR
90/*
91 * This struct contains device specific data for the IOMMU
92 */
93struct iommu_dev_data {
94 struct list_head list; /* For domain->dev_list */
95 struct list_head dev_data_list; /* For global dev_data_list */
96 struct iommu_dev_data *alias_data;/* The alias dev_data */
97 struct protection_domain *domain; /* Domain the device is bound to */
98 atomic_t bind; /* Domain attach reference count */
99 u16 devid; /* PCI Device ID */
100 bool iommu_v2; /* Device can make use of IOMMUv2 */
101 bool passthrough; /* Default for device is pt_domain */
102 struct {
103 bool enabled;
104 int qdep;
105 } ats; /* ATS state */
106 bool pri_tlp; /* PASID TLB required for
107 PPR completions */
108 u32 errata; /* Bitmap for errata to apply */
109};
110
431b2a20
JR
111/*
112 * general struct to manage commands send to an IOMMU
113 */
d6449536 114struct iommu_cmd {
b6c02715
JR
115 u32 data[4];
116};
117
05152a04
JR
118struct kmem_cache *amd_iommu_irq_cache;
119
04bfdd84 120static void update_domain(struct protection_domain *domain);
5abcdba4 121static int __init alloc_passthrough_domain(void);
c1eee67b 122
15898bbc
JR
123/****************************************************************************
124 *
125 * Helper functions
126 *
127 ****************************************************************************/
128
f62dda66 129static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
130{
131 struct iommu_dev_data *dev_data;
132 unsigned long flags;
133
134 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
135 if (!dev_data)
136 return NULL;
137
f62dda66 138 dev_data->devid = devid;
8fa5f802
JR
139 atomic_set(&dev_data->bind, 0);
140
141 spin_lock_irqsave(&dev_data_list_lock, flags);
142 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
143 spin_unlock_irqrestore(&dev_data_list_lock, flags);
144
145 return dev_data;
146}
147
148static void free_dev_data(struct iommu_dev_data *dev_data)
149{
150 unsigned long flags;
151
152 spin_lock_irqsave(&dev_data_list_lock, flags);
153 list_del(&dev_data->dev_data_list);
154 spin_unlock_irqrestore(&dev_data_list_lock, flags);
155
156 kfree(dev_data);
157}
158
3b03bb74
JR
159static struct iommu_dev_data *search_dev_data(u16 devid)
160{
161 struct iommu_dev_data *dev_data;
162 unsigned long flags;
163
164 spin_lock_irqsave(&dev_data_list_lock, flags);
165 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
166 if (dev_data->devid == devid)
167 goto out_unlock;
168 }
169
170 dev_data = NULL;
171
172out_unlock:
173 spin_unlock_irqrestore(&dev_data_list_lock, flags);
174
175 return dev_data;
176}
177
178static struct iommu_dev_data *find_dev_data(u16 devid)
179{
180 struct iommu_dev_data *dev_data;
181
182 dev_data = search_dev_data(devid);
183
184 if (dev_data == NULL)
185 dev_data = alloc_dev_data(devid);
186
187 return dev_data;
188}
189
15898bbc
JR
190static inline u16 get_device_id(struct device *dev)
191{
192 struct pci_dev *pdev = to_pci_dev(dev);
193
6f2729ba 194 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
195}
196
657cbb6b
JR
197static struct iommu_dev_data *get_dev_data(struct device *dev)
198{
199 return dev->archdata.iommu;
200}
201
5abcdba4
JR
202static bool pci_iommuv2_capable(struct pci_dev *pdev)
203{
204 static const int caps[] = {
205 PCI_EXT_CAP_ID_ATS,
46277b75
JR
206 PCI_EXT_CAP_ID_PRI,
207 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
208 };
209 int i, pos;
210
211 for (i = 0; i < 3; ++i) {
212 pos = pci_find_ext_capability(pdev, caps[i]);
213 if (pos == 0)
214 return false;
215 }
216
217 return true;
218}
219
6a113ddc
JR
220static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
221{
222 struct iommu_dev_data *dev_data;
223
224 dev_data = get_dev_data(&pdev->dev);
225
226 return dev_data->errata & (1 << erratum) ? true : false;
227}
228
71c70984
JR
229/*
230 * In this function the list of preallocated protection domains is traversed to
231 * find the domain for a specific device
232 */
233static struct dma_ops_domain *find_protection_domain(u16 devid)
234{
235 struct dma_ops_domain *entry, *ret = NULL;
236 unsigned long flags;
237 u16 alias = amd_iommu_alias_table[devid];
238
239 if (list_empty(&iommu_pd_list))
240 return NULL;
241
242 spin_lock_irqsave(&iommu_pd_list_lock, flags);
243
244 list_for_each_entry(entry, &iommu_pd_list, list) {
245 if (entry->target_dev == devid ||
246 entry->target_dev == alias) {
247 ret = entry;
248 break;
249 }
250 }
251
252 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
253
254 return ret;
255}
256
98fc5a69
JR
257/*
258 * This function checks if the driver got a valid device from the caller to
259 * avoid dereferencing invalid pointers.
260 */
261static bool check_device(struct device *dev)
262{
263 u16 devid;
264
265 if (!dev || !dev->dma_mask)
266 return false;
267
b82a2272
YW
268 /* No PCI device */
269 if (!dev_is_pci(dev))
98fc5a69
JR
270 return false;
271
272 devid = get_device_id(dev);
273
274 /* Out of our scope? */
275 if (devid > amd_iommu_last_bdf)
276 return false;
277
278 if (amd_iommu_rlookup_table[devid] == NULL)
279 return false;
280
281 return true;
282}
283
2851db21
AW
284static int init_iommu_group(struct device *dev)
285{
2851db21 286 struct iommu_group *group;
2851db21 287
65d5352f 288 group = iommu_group_get_for_dev(dev);
2851db21 289
65d5352f
AW
290 if (IS_ERR(group))
291 return PTR_ERR(group);
2851db21 292
65d5352f
AW
293 iommu_group_put(group);
294 return 0;
eb9c9527
AW
295}
296
c1931090
AW
297static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
298{
299 *(u16 *)data = alias;
300 return 0;
301}
302
303static u16 get_alias(struct device *dev)
304{
305 struct pci_dev *pdev = to_pci_dev(dev);
306 u16 devid, ivrs_alias, pci_alias;
307
308 devid = get_device_id(dev);
309 ivrs_alias = amd_iommu_alias_table[devid];
310 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
311
312 if (ivrs_alias == pci_alias)
313 return ivrs_alias;
314
315 /*
316 * DMA alias showdown
317 *
318 * The IVRS is fairly reliable in telling us about aliases, but it
319 * can't know about every screwy device. If we don't have an IVRS
320 * reported alias, use the PCI reported alias. In that case we may
321 * still need to initialize the rlookup and dev_table entries if the
322 * alias is to a non-existent device.
323 */
324 if (ivrs_alias == devid) {
325 if (!amd_iommu_rlookup_table[pci_alias]) {
326 amd_iommu_rlookup_table[pci_alias] =
327 amd_iommu_rlookup_table[devid];
328 memcpy(amd_iommu_dev_table[pci_alias].data,
329 amd_iommu_dev_table[devid].data,
330 sizeof(amd_iommu_dev_table[pci_alias].data));
331 }
332
333 return pci_alias;
334 }
335
336 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
337 "for device %s[%04x:%04x], kernel reported alias "
338 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
339 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
340 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
341 PCI_FUNC(pci_alias));
342
343 /*
344 * If we don't have a PCI DMA alias and the IVRS alias is on the same
345 * bus, then the IVRS table may know about a quirk that we don't.
346 */
347 if (pci_alias == devid &&
348 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
349 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
350 pdev->dma_alias_devfn = ivrs_alias & 0xff;
351 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
352 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
353 dev_name(dev));
354 }
355
356 return ivrs_alias;
357}
358
eb9c9527
AW
359static int iommu_init_device(struct device *dev)
360{
361 struct pci_dev *pdev = to_pci_dev(dev);
362 struct iommu_dev_data *dev_data;
363 u16 alias;
364 int ret;
365
366 if (dev->archdata.iommu)
367 return 0;
368
369 dev_data = find_dev_data(get_device_id(dev));
370 if (!dev_data)
371 return -ENOMEM;
372
c1931090
AW
373 alias = get_alias(dev);
374
eb9c9527
AW
375 if (alias != dev_data->devid) {
376 struct iommu_dev_data *alias_data;
377
378 alias_data = find_dev_data(alias);
379 if (alias_data == NULL) {
380 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
381 dev_name(dev));
382 free_dev_data(dev_data);
383 return -ENOTSUPP;
384 }
385 dev_data->alias_data = alias_data;
386 }
387
388 ret = init_iommu_group(dev);
e644a013
RK
389 if (ret) {
390 free_dev_data(dev_data);
9dcd6130 391 return ret;
e644a013 392 }
9dcd6130 393
5abcdba4
JR
394 if (pci_iommuv2_capable(pdev)) {
395 struct amd_iommu *iommu;
396
397 iommu = amd_iommu_rlookup_table[dev_data->devid];
398 dev_data->iommu_v2 = iommu->is_iommu_v2;
399 }
400
657cbb6b
JR
401 dev->archdata.iommu = dev_data;
402
066f2e98
AW
403 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
404 dev);
405
657cbb6b
JR
406 return 0;
407}
408
26018874
JR
409static void iommu_ignore_device(struct device *dev)
410{
411 u16 devid, alias;
412
413 devid = get_device_id(dev);
414 alias = amd_iommu_alias_table[devid];
415
416 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
417 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
418
419 amd_iommu_rlookup_table[devid] = NULL;
420 amd_iommu_rlookup_table[alias] = NULL;
421}
422
657cbb6b
JR
423static void iommu_uninit_device(struct device *dev)
424{
c1931090
AW
425 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
426
427 if (!dev_data)
428 return;
429
066f2e98
AW
430 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
431 dev);
432
9dcd6130
AW
433 iommu_group_remove_device(dev);
434
c1931090
AW
435 /* Unlink from alias, it may change if another device is re-plugged */
436 dev_data->alias_data = NULL;
437
8fa5f802 438 /*
c1931090
AW
439 * We keep dev_data around for unplugged devices and reuse it when the
440 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 441 */
657cbb6b 442}
b7cc9554
JR
443
444void __init amd_iommu_uninit_devices(void)
445{
8fa5f802 446 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
447 struct pci_dev *pdev = NULL;
448
449 for_each_pci_dev(pdev) {
450
451 if (!check_device(&pdev->dev))
452 continue;
453
454 iommu_uninit_device(&pdev->dev);
455 }
8fa5f802
JR
456
457 /* Free all of our dev_data structures */
458 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
459 free_dev_data(dev_data);
b7cc9554
JR
460}
461
462int __init amd_iommu_init_devices(void)
463{
464 struct pci_dev *pdev = NULL;
465 int ret = 0;
466
467 for_each_pci_dev(pdev) {
468
469 if (!check_device(&pdev->dev))
470 continue;
471
472 ret = iommu_init_device(&pdev->dev);
26018874
JR
473 if (ret == -ENOTSUPP)
474 iommu_ignore_device(&pdev->dev);
475 else if (ret)
b7cc9554
JR
476 goto out_free;
477 }
478
479 return 0;
480
481out_free:
482
483 amd_iommu_uninit_devices();
484
485 return ret;
486}
7f26508b
JR
487#ifdef CONFIG_AMD_IOMMU_STATS
488
489/*
490 * Initialization code for statistics collection
491 */
492
da49f6df 493DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 494DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 495DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 496DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 497DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 498DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 499DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 500DECLARE_STATS_COUNTER(cross_page);
f57d98ae 501DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 502DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 503DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 504DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
505DECLARE_STATS_COUNTER(complete_ppr);
506DECLARE_STATS_COUNTER(invalidate_iotlb);
507DECLARE_STATS_COUNTER(invalidate_iotlb_all);
508DECLARE_STATS_COUNTER(pri_requests);
509
7f26508b 510static struct dentry *stats_dir;
7f26508b
JR
511static struct dentry *de_fflush;
512
513static void amd_iommu_stats_add(struct __iommu_counter *cnt)
514{
515 if (stats_dir == NULL)
516 return;
517
518 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
519 &cnt->value);
520}
521
522static void amd_iommu_stats_init(void)
523{
524 stats_dir = debugfs_create_dir("amd-iommu", NULL);
525 if (stats_dir == NULL)
526 return;
527
7f26508b 528 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 529 &amd_iommu_unmap_flush);
da49f6df
JR
530
531 amd_iommu_stats_add(&compl_wait);
0f2a86f2 532 amd_iommu_stats_add(&cnt_map_single);
146a6917 533 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 534 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 535 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 536 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 537 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 538 amd_iommu_stats_add(&cross_page);
f57d98ae 539 amd_iommu_stats_add(&domain_flush_single);
18811f55 540 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 541 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 542 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
543 amd_iommu_stats_add(&complete_ppr);
544 amd_iommu_stats_add(&invalidate_iotlb);
545 amd_iommu_stats_add(&invalidate_iotlb_all);
546 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
547}
548
549#endif
550
a80dc3e0
JR
551/****************************************************************************
552 *
553 * Interrupt handling functions
554 *
555 ****************************************************************************/
556
e3e59876
JR
557static void dump_dte_entry(u16 devid)
558{
559 int i;
560
ee6c2868
JR
561 for (i = 0; i < 4; ++i)
562 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
563 amd_iommu_dev_table[devid].data[i]);
564}
565
945b4ac4
JR
566static void dump_command(unsigned long phys_addr)
567{
568 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
569 int i;
570
571 for (i = 0; i < 4; ++i)
572 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
573}
574
a345b23b 575static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 576{
3d06fca8
JR
577 int type, devid, domid, flags;
578 volatile u32 *event = __evt;
579 int count = 0;
580 u64 address;
581
582retry:
583 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
584 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
585 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
586 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
587 address = (u64)(((u64)event[3]) << 32) | event[2];
588
589 if (type == 0) {
590 /* Did we hit the erratum? */
591 if (++count == LOOP_TIMEOUT) {
592 pr_err("AMD-Vi: No event written to event log\n");
593 return;
594 }
595 udelay(1);
596 goto retry;
597 }
90008ee4 598
4c6f40d4 599 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
600
601 switch (type) {
602 case EVENT_TYPE_ILL_DEV:
603 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
604 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 605 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 606 address, flags);
e3e59876 607 dump_dte_entry(devid);
90008ee4
JR
608 break;
609 case EVENT_TYPE_IO_FAULT:
610 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
611 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 612 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
613 domid, address, flags);
614 break;
615 case EVENT_TYPE_DEV_TAB_ERR:
616 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
617 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 618 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
619 address, flags);
620 break;
621 case EVENT_TYPE_PAGE_TAB_ERR:
622 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
623 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 624 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
625 domid, address, flags);
626 break;
627 case EVENT_TYPE_ILL_CMD:
628 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 629 dump_command(address);
90008ee4
JR
630 break;
631 case EVENT_TYPE_CMD_HARD_ERR:
632 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
633 "flags=0x%04x]\n", address, flags);
634 break;
635 case EVENT_TYPE_IOTLB_INV_TO:
636 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
637 "address=0x%016llx]\n",
c5081cd7 638 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
639 address);
640 break;
641 case EVENT_TYPE_INV_DEV_REQ:
642 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
643 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 644 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
645 address, flags);
646 break;
647 default:
648 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
649 }
3d06fca8
JR
650
651 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
652}
653
654static void iommu_poll_events(struct amd_iommu *iommu)
655{
656 u32 head, tail;
90008ee4
JR
657
658 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
659 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
660
661 while (head != tail) {
a345b23b 662 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
663 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
664 }
665
666 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
667}
668
eee53537 669static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
670{
671 struct amd_iommu_fault fault;
72e1dcc4 672
399be2f5
JR
673 INC_STATS_COUNTER(pri_requests);
674
72e1dcc4
JR
675 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
676 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
677 return;
678 }
679
680 fault.address = raw[1];
681 fault.pasid = PPR_PASID(raw[0]);
682 fault.device_id = PPR_DEVID(raw[0]);
683 fault.tag = PPR_TAG(raw[0]);
684 fault.flags = PPR_FLAGS(raw[0]);
685
72e1dcc4
JR
686 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
687}
688
689static void iommu_poll_ppr_log(struct amd_iommu *iommu)
690{
72e1dcc4
JR
691 u32 head, tail;
692
693 if (iommu->ppr_log == NULL)
694 return;
695
72e1dcc4
JR
696 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
697 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
698
699 while (head != tail) {
eee53537
JR
700 volatile u64 *raw;
701 u64 entry[2];
702 int i;
703
704 raw = (u64 *)(iommu->ppr_log + head);
705
706 /*
707 * Hardware bug: Interrupt may arrive before the entry is
708 * written to memory. If this happens we need to wait for the
709 * entry to arrive.
710 */
711 for (i = 0; i < LOOP_TIMEOUT; ++i) {
712 if (PPR_REQ_TYPE(raw[0]) != 0)
713 break;
714 udelay(1);
715 }
72e1dcc4 716
eee53537
JR
717 /* Avoid memcpy function-call overhead */
718 entry[0] = raw[0];
719 entry[1] = raw[1];
72e1dcc4 720
eee53537
JR
721 /*
722 * To detect the hardware bug we need to clear the entry
723 * back to zero.
724 */
725 raw[0] = raw[1] = 0UL;
726
727 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
728 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
729 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 730
eee53537
JR
731 /* Handle PPR entry */
732 iommu_handle_ppr_entry(iommu, entry);
733
eee53537
JR
734 /* Refresh ring-buffer information */
735 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
736 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
737 }
72e1dcc4
JR
738}
739
72fe00f0 740irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 741{
3f398bc7
SS
742 struct amd_iommu *iommu = (struct amd_iommu *) data;
743 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 744
3f398bc7
SS
745 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
746 /* Enable EVT and PPR interrupts again */
747 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
748 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 749
3f398bc7
SS
750 if (status & MMIO_STATUS_EVT_INT_MASK) {
751 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
752 iommu_poll_events(iommu);
753 }
90008ee4 754
3f398bc7
SS
755 if (status & MMIO_STATUS_PPR_INT_MASK) {
756 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
757 iommu_poll_ppr_log(iommu);
758 }
90008ee4 759
3f398bc7
SS
760 /*
761 * Hardware bug: ERBT1312
762 * When re-enabling interrupt (by writing 1
763 * to clear the bit), the hardware might also try to set
764 * the interrupt bit in the event status register.
765 * In this scenario, the bit will be set, and disable
766 * subsequent interrupts.
767 *
768 * Workaround: The IOMMU driver should read back the
769 * status register and check if the interrupt bits are cleared.
770 * If not, driver will need to go through the interrupt handler
771 * again and re-clear the bits
772 */
773 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
774 }
90008ee4 775 return IRQ_HANDLED;
a80dc3e0
JR
776}
777
72fe00f0
JR
778irqreturn_t amd_iommu_int_handler(int irq, void *data)
779{
780 return IRQ_WAKE_THREAD;
781}
782
431b2a20
JR
783/****************************************************************************
784 *
785 * IOMMU command queuing functions
786 *
787 ****************************************************************************/
788
ac0ea6e9
JR
789static int wait_on_sem(volatile u64 *sem)
790{
791 int i = 0;
792
793 while (*sem == 0 && i < LOOP_TIMEOUT) {
794 udelay(1);
795 i += 1;
796 }
797
798 if (i == LOOP_TIMEOUT) {
799 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
800 return -EIO;
801 }
802
803 return 0;
804}
805
806static void copy_cmd_to_buffer(struct amd_iommu *iommu,
807 struct iommu_cmd *cmd,
808 u32 tail)
a19ae1ec 809{
a19ae1ec
JR
810 u8 *target;
811
8a7c5ef3 812 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
813 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
814
815 /* Copy command to buffer */
816 memcpy(target, cmd, sizeof(*cmd));
817
818 /* Tell the IOMMU about it */
a19ae1ec 819 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 820}
a19ae1ec 821
815b33fd 822static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 823{
815b33fd
JR
824 WARN_ON(address & 0x7ULL);
825
ded46737 826 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
827 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
828 cmd->data[1] = upper_32_bits(__pa(address));
829 cmd->data[2] = 1;
ded46737
JR
830 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
831}
832
94fe79e2
JR
833static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
834{
835 memset(cmd, 0, sizeof(*cmd));
836 cmd->data[0] = devid;
837 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
838}
839
11b6402c
JR
840static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
841 size_t size, u16 domid, int pde)
842{
843 u64 pages;
844 int s;
845
846 pages = iommu_num_pages(address, size, PAGE_SIZE);
847 s = 0;
848
849 if (pages > 1) {
850 /*
851 * If we have to flush more than one page, flush all
852 * TLB entries for this domain
853 */
854 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
855 s = 1;
856 }
857
858 address &= PAGE_MASK;
859
860 memset(cmd, 0, sizeof(*cmd));
861 cmd->data[1] |= domid;
862 cmd->data[2] = lower_32_bits(address);
863 cmd->data[3] = upper_32_bits(address);
864 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
865 if (s) /* size bit - we flush more than one 4kb page */
866 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 867 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
868 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
869}
870
cb41ed85
JR
871static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
872 u64 address, size_t size)
873{
874 u64 pages;
875 int s;
876
877 pages = iommu_num_pages(address, size, PAGE_SIZE);
878 s = 0;
879
880 if (pages > 1) {
881 /*
882 * If we have to flush more than one page, flush all
883 * TLB entries for this domain
884 */
885 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
886 s = 1;
887 }
888
889 address &= PAGE_MASK;
890
891 memset(cmd, 0, sizeof(*cmd));
892 cmd->data[0] = devid;
893 cmd->data[0] |= (qdep & 0xff) << 24;
894 cmd->data[1] = devid;
895 cmd->data[2] = lower_32_bits(address);
896 cmd->data[3] = upper_32_bits(address);
897 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
898 if (s)
899 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
900}
901
22e266c7
JR
902static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
903 u64 address, bool size)
904{
905 memset(cmd, 0, sizeof(*cmd));
906
907 address &= ~(0xfffULL);
908
a919a018 909 cmd->data[0] = pasid;
22e266c7
JR
910 cmd->data[1] = domid;
911 cmd->data[2] = lower_32_bits(address);
912 cmd->data[3] = upper_32_bits(address);
913 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
914 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
915 if (size)
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
917 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
918}
919
920static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
921 int qdep, u64 address, bool size)
922{
923 memset(cmd, 0, sizeof(*cmd));
924
925 address &= ~(0xfffULL);
926
927 cmd->data[0] = devid;
e8d2d82d 928 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
929 cmd->data[0] |= (qdep & 0xff) << 24;
930 cmd->data[1] = devid;
e8d2d82d 931 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
932 cmd->data[2] = lower_32_bits(address);
933 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
934 cmd->data[3] = upper_32_bits(address);
935 if (size)
936 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
937 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
938}
939
c99afa25
JR
940static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
941 int status, int tag, bool gn)
942{
943 memset(cmd, 0, sizeof(*cmd));
944
945 cmd->data[0] = devid;
946 if (gn) {
a919a018 947 cmd->data[1] = pasid;
c99afa25
JR
948 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
949 }
950 cmd->data[3] = tag & 0x1ff;
951 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
952
953 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
954}
955
58fc7f14
JR
956static void build_inv_all(struct iommu_cmd *cmd)
957{
958 memset(cmd, 0, sizeof(*cmd));
959 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
960}
961
7ef2798d
JR
962static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
963{
964 memset(cmd, 0, sizeof(*cmd));
965 cmd->data[0] = devid;
966 CMD_SET_TYPE(cmd, CMD_INV_IRT);
967}
968
431b2a20 969/*
431b2a20 970 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 971 * hardware about the new command.
431b2a20 972 */
f1ca1512
JR
973static int iommu_queue_command_sync(struct amd_iommu *iommu,
974 struct iommu_cmd *cmd,
975 bool sync)
a19ae1ec 976{
ac0ea6e9 977 u32 left, tail, head, next_tail;
a19ae1ec 978 unsigned long flags;
a19ae1ec 979
549c90dc 980 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
981
982again:
a19ae1ec 983 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 984
ac0ea6e9
JR
985 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
986 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
987 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
988 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 989
ac0ea6e9
JR
990 if (left <= 2) {
991 struct iommu_cmd sync_cmd;
992 volatile u64 sem = 0;
993 int ret;
8d201968 994
ac0ea6e9
JR
995 build_completion_wait(&sync_cmd, (u64)&sem);
996 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 997
ac0ea6e9
JR
998 spin_unlock_irqrestore(&iommu->lock, flags);
999
1000 if ((ret = wait_on_sem(&sem)) != 0)
1001 return ret;
1002
1003 goto again;
8d201968
JR
1004 }
1005
ac0ea6e9
JR
1006 copy_cmd_to_buffer(iommu, cmd, tail);
1007
1008 /* We need to sync now to make sure all commands are processed */
f1ca1512 1009 iommu->need_sync = sync;
ac0ea6e9 1010
a19ae1ec 1011 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1012
815b33fd 1013 return 0;
8d201968
JR
1014}
1015
f1ca1512
JR
1016static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1017{
1018 return iommu_queue_command_sync(iommu, cmd, true);
1019}
1020
8d201968
JR
1021/*
1022 * This function queues a completion wait command into the command
1023 * buffer of an IOMMU
1024 */
a19ae1ec 1025static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1026{
1027 struct iommu_cmd cmd;
815b33fd 1028 volatile u64 sem = 0;
ac0ea6e9 1029 int ret;
8d201968 1030
09ee17eb 1031 if (!iommu->need_sync)
815b33fd 1032 return 0;
09ee17eb 1033
815b33fd 1034 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1035
f1ca1512 1036 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1037 if (ret)
815b33fd 1038 return ret;
8d201968 1039
ac0ea6e9 1040 return wait_on_sem(&sem);
8d201968
JR
1041}
1042
d8c13085 1043static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1044{
d8c13085 1045 struct iommu_cmd cmd;
a19ae1ec 1046
d8c13085 1047 build_inv_dte(&cmd, devid);
7e4f88da 1048
d8c13085
JR
1049 return iommu_queue_command(iommu, &cmd);
1050}
09ee17eb 1051
7d0c5cc5
JR
1052static void iommu_flush_dte_all(struct amd_iommu *iommu)
1053{
1054 u32 devid;
09ee17eb 1055
7d0c5cc5
JR
1056 for (devid = 0; devid <= 0xffff; ++devid)
1057 iommu_flush_dte(iommu, devid);
a19ae1ec 1058
7d0c5cc5
JR
1059 iommu_completion_wait(iommu);
1060}
84df8175 1061
7d0c5cc5
JR
1062/*
1063 * This function uses heavy locking and may disable irqs for some time. But
1064 * this is no issue because it is only called during resume.
1065 */
1066static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1067{
1068 u32 dom_id;
a19ae1ec 1069
7d0c5cc5
JR
1070 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1071 struct iommu_cmd cmd;
1072 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1073 dom_id, 1);
1074 iommu_queue_command(iommu, &cmd);
1075 }
8eed9833 1076
7d0c5cc5 1077 iommu_completion_wait(iommu);
a19ae1ec
JR
1078}
1079
58fc7f14 1080static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1081{
58fc7f14 1082 struct iommu_cmd cmd;
0518a3a4 1083
58fc7f14 1084 build_inv_all(&cmd);
0518a3a4 1085
58fc7f14
JR
1086 iommu_queue_command(iommu, &cmd);
1087 iommu_completion_wait(iommu);
1088}
1089
7ef2798d
JR
1090static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1091{
1092 struct iommu_cmd cmd;
1093
1094 build_inv_irt(&cmd, devid);
1095
1096 iommu_queue_command(iommu, &cmd);
1097}
1098
1099static void iommu_flush_irt_all(struct amd_iommu *iommu)
1100{
1101 u32 devid;
1102
1103 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1104 iommu_flush_irt(iommu, devid);
1105
1106 iommu_completion_wait(iommu);
1107}
1108
7d0c5cc5
JR
1109void iommu_flush_all_caches(struct amd_iommu *iommu)
1110{
58fc7f14
JR
1111 if (iommu_feature(iommu, FEATURE_IA)) {
1112 iommu_flush_all(iommu);
1113 } else {
1114 iommu_flush_dte_all(iommu);
7ef2798d 1115 iommu_flush_irt_all(iommu);
58fc7f14 1116 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1117 }
1118}
1119
431b2a20 1120/*
cb41ed85 1121 * Command send function for flushing on-device TLB
431b2a20 1122 */
6c542047
JR
1123static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1124 u64 address, size_t size)
3fa43655
JR
1125{
1126 struct amd_iommu *iommu;
b00d3bcf 1127 struct iommu_cmd cmd;
cb41ed85 1128 int qdep;
3fa43655 1129
ea61cddb
JR
1130 qdep = dev_data->ats.qdep;
1131 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1132
ea61cddb 1133 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1134
1135 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1136}
1137
431b2a20 1138/*
431b2a20 1139 * Command send function for invalidating a device table entry
431b2a20 1140 */
6c542047 1141static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1142{
3fa43655 1143 struct amd_iommu *iommu;
ee2fa743 1144 int ret;
a19ae1ec 1145
6c542047 1146 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1147
f62dda66 1148 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1149 if (ret)
1150 return ret;
1151
ea61cddb 1152 if (dev_data->ats.enabled)
6c542047 1153 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1154
ee2fa743 1155 return ret;
a19ae1ec
JR
1156}
1157
431b2a20
JR
1158/*
1159 * TLB invalidation function which is called from the mapping functions.
1160 * It invalidates a single PTE if the range to flush is within a single
1161 * page. Otherwise it flushes the whole TLB of the IOMMU.
1162 */
17b124bf
JR
1163static void __domain_flush_pages(struct protection_domain *domain,
1164 u64 address, size_t size, int pde)
a19ae1ec 1165{
cb41ed85 1166 struct iommu_dev_data *dev_data;
11b6402c
JR
1167 struct iommu_cmd cmd;
1168 int ret = 0, i;
a19ae1ec 1169
11b6402c 1170 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1171
6de8ad9b
JR
1172 for (i = 0; i < amd_iommus_present; ++i) {
1173 if (!domain->dev_iommu[i])
1174 continue;
1175
1176 /*
1177 * Devices of this domain are behind this IOMMU
1178 * We need a TLB flush
1179 */
11b6402c 1180 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1181 }
1182
cb41ed85 1183 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1184
ea61cddb 1185 if (!dev_data->ats.enabled)
cb41ed85
JR
1186 continue;
1187
6c542047 1188 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1189 }
1190
11b6402c 1191 WARN_ON(ret);
6de8ad9b
JR
1192}
1193
17b124bf
JR
1194static void domain_flush_pages(struct protection_domain *domain,
1195 u64 address, size_t size)
6de8ad9b 1196{
17b124bf 1197 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1198}
b6c02715 1199
1c655773 1200/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1201static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1202{
17b124bf 1203 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1204}
1205
42a49f96 1206/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1207static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1208{
17b124bf 1209 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1210}
1211
17b124bf 1212static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1213{
17b124bf 1214 int i;
18811f55 1215
17b124bf
JR
1216 for (i = 0; i < amd_iommus_present; ++i) {
1217 if (!domain->dev_iommu[i])
1218 continue;
bfd1be18 1219
17b124bf
JR
1220 /*
1221 * Devices of this domain are behind this IOMMU
1222 * We need to wait for completion of all commands.
1223 */
1224 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1225 }
e394d72a
JR
1226}
1227
b00d3bcf 1228
09b42804 1229/*
b00d3bcf 1230 * This function flushes the DTEs for all devices in domain
09b42804 1231 */
17b124bf 1232static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1233{
b00d3bcf 1234 struct iommu_dev_data *dev_data;
b26e81b8 1235
b00d3bcf 1236 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1237 device_flush_dte(dev_data);
a345b23b
JR
1238}
1239
431b2a20
JR
1240/****************************************************************************
1241 *
1242 * The functions below are used the create the page table mappings for
1243 * unity mapped regions.
1244 *
1245 ****************************************************************************/
1246
308973d3
JR
1247/*
1248 * This function is used to add another level to an IO page table. Adding
1249 * another level increases the size of the address space by 9 bits to a size up
1250 * to 64 bits.
1251 */
1252static bool increase_address_space(struct protection_domain *domain,
1253 gfp_t gfp)
1254{
1255 u64 *pte;
1256
1257 if (domain->mode == PAGE_MODE_6_LEVEL)
1258 /* address space already 64 bit large */
1259 return false;
1260
1261 pte = (void *)get_zeroed_page(gfp);
1262 if (!pte)
1263 return false;
1264
1265 *pte = PM_LEVEL_PDE(domain->mode,
1266 virt_to_phys(domain->pt_root));
1267 domain->pt_root = pte;
1268 domain->mode += 1;
1269 domain->updated = true;
1270
1271 return true;
1272}
1273
1274static u64 *alloc_pte(struct protection_domain *domain,
1275 unsigned long address,
cbb9d729 1276 unsigned long page_size,
308973d3
JR
1277 u64 **pte_page,
1278 gfp_t gfp)
1279{
cbb9d729 1280 int level, end_lvl;
308973d3 1281 u64 *pte, *page;
cbb9d729
JR
1282
1283 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1284
1285 while (address > PM_LEVEL_SIZE(domain->mode))
1286 increase_address_space(domain, gfp);
1287
cbb9d729
JR
1288 level = domain->mode - 1;
1289 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1290 address = PAGE_SIZE_ALIGN(address, page_size);
1291 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1292
1293 while (level > end_lvl) {
1294 if (!IOMMU_PTE_PRESENT(*pte)) {
1295 page = (u64 *)get_zeroed_page(gfp);
1296 if (!page)
1297 return NULL;
1298 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1299 }
1300
cbb9d729
JR
1301 /* No level skipping support yet */
1302 if (PM_PTE_LEVEL(*pte) != level)
1303 return NULL;
1304
308973d3
JR
1305 level -= 1;
1306
1307 pte = IOMMU_PTE_PAGE(*pte);
1308
1309 if (pte_page && level == end_lvl)
1310 *pte_page = pte;
1311
1312 pte = &pte[PM_LEVEL_INDEX(level, address)];
1313 }
1314
1315 return pte;
1316}
1317
1318/*
1319 * This function checks if there is a PTE for a given dma address. If
1320 * there is one, it returns the pointer to it.
1321 */
24cd7723 1322static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1323{
1324 int level;
1325 u64 *pte;
1326
24cd7723
JR
1327 if (address > PM_LEVEL_SIZE(domain->mode))
1328 return NULL;
1329
1330 level = domain->mode - 1;
1331 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1332
24cd7723
JR
1333 while (level > 0) {
1334
1335 /* Not Present */
308973d3
JR
1336 if (!IOMMU_PTE_PRESENT(*pte))
1337 return NULL;
1338
24cd7723
JR
1339 /* Large PTE */
1340 if (PM_PTE_LEVEL(*pte) == 0x07) {
1341 unsigned long pte_mask, __pte;
1342
1343 /*
1344 * If we have a series of large PTEs, make
1345 * sure to return a pointer to the first one.
1346 */
1347 pte_mask = PTE_PAGE_SIZE(*pte);
1348 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1349 __pte = ((unsigned long)pte) & pte_mask;
1350
1351 return (u64 *)__pte;
1352 }
1353
1354 /* No level skipping support yet */
1355 if (PM_PTE_LEVEL(*pte) != level)
1356 return NULL;
1357
308973d3
JR
1358 level -= 1;
1359
24cd7723 1360 /* Walk to the next level */
308973d3
JR
1361 pte = IOMMU_PTE_PAGE(*pte);
1362 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1363 }
1364
1365 return pte;
1366}
1367
431b2a20
JR
1368/*
1369 * Generic mapping functions. It maps a physical address into a DMA
1370 * address space. It allocates the page table pages if necessary.
1371 * In the future it can be extended to a generic mapping function
1372 * supporting all features of AMD IOMMU page tables like level skipping
1373 * and full 64 bit address spaces.
1374 */
38e817fe
JR
1375static int iommu_map_page(struct protection_domain *dom,
1376 unsigned long bus_addr,
1377 unsigned long phys_addr,
abdc5eb3 1378 int prot,
cbb9d729 1379 unsigned long page_size)
bd0e5211 1380{
8bda3092 1381 u64 __pte, *pte;
cbb9d729 1382 int i, count;
abdc5eb3 1383
bad1cac2 1384 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1385 return -EINVAL;
1386
cbb9d729
JR
1387 bus_addr = PAGE_ALIGN(bus_addr);
1388 phys_addr = PAGE_ALIGN(phys_addr);
1389 count = PAGE_SIZE_PTE_COUNT(page_size);
1390 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1391
1392 for (i = 0; i < count; ++i)
1393 if (IOMMU_PTE_PRESENT(pte[i]))
1394 return -EBUSY;
bd0e5211 1395
cbb9d729
JR
1396 if (page_size > PAGE_SIZE) {
1397 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1398 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1399 } else
1400 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1401
bd0e5211
JR
1402 if (prot & IOMMU_PROT_IR)
1403 __pte |= IOMMU_PTE_IR;
1404 if (prot & IOMMU_PROT_IW)
1405 __pte |= IOMMU_PTE_IW;
1406
cbb9d729
JR
1407 for (i = 0; i < count; ++i)
1408 pte[i] = __pte;
bd0e5211 1409
04bfdd84
JR
1410 update_domain(dom);
1411
bd0e5211
JR
1412 return 0;
1413}
1414
24cd7723
JR
1415static unsigned long iommu_unmap_page(struct protection_domain *dom,
1416 unsigned long bus_addr,
1417 unsigned long page_size)
eb74ff6c 1418{
24cd7723
JR
1419 unsigned long long unmap_size, unmapped;
1420 u64 *pte;
1421
1422 BUG_ON(!is_power_of_2(page_size));
1423
1424 unmapped = 0;
eb74ff6c 1425
24cd7723
JR
1426 while (unmapped < page_size) {
1427
1428 pte = fetch_pte(dom, bus_addr);
1429
1430 if (!pte) {
1431 /*
1432 * No PTE for this address
1433 * move forward in 4kb steps
1434 */
1435 unmap_size = PAGE_SIZE;
1436 } else if (PM_PTE_LEVEL(*pte) == 0) {
1437 /* 4kb PTE found for this address */
1438 unmap_size = PAGE_SIZE;
1439 *pte = 0ULL;
1440 } else {
1441 int count, i;
1442
1443 /* Large PTE found which maps this address */
1444 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1445
1446 /* Only unmap from the first pte in the page */
1447 if ((unmap_size - 1) & bus_addr)
1448 break;
24cd7723
JR
1449 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1450 for (i = 0; i < count; i++)
1451 pte[i] = 0ULL;
1452 }
1453
1454 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1455 unmapped += unmap_size;
1456 }
1457
60d0ca3c 1458 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1459
24cd7723 1460 return unmapped;
eb74ff6c 1461}
eb74ff6c 1462
431b2a20
JR
1463/*
1464 * This function checks if a specific unity mapping entry is needed for
1465 * this specific IOMMU.
1466 */
bd0e5211
JR
1467static int iommu_for_unity_map(struct amd_iommu *iommu,
1468 struct unity_map_entry *entry)
1469{
1470 u16 bdf, i;
1471
1472 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1473 bdf = amd_iommu_alias_table[i];
1474 if (amd_iommu_rlookup_table[bdf] == iommu)
1475 return 1;
1476 }
1477
1478 return 0;
1479}
1480
431b2a20
JR
1481/*
1482 * This function actually applies the mapping to the page table of the
1483 * dma_ops domain.
1484 */
bd0e5211
JR
1485static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1486 struct unity_map_entry *e)
1487{
1488 u64 addr;
1489 int ret;
1490
1491 for (addr = e->address_start; addr < e->address_end;
1492 addr += PAGE_SIZE) {
abdc5eb3 1493 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1494 PAGE_SIZE);
bd0e5211
JR
1495 if (ret)
1496 return ret;
1497 /*
1498 * if unity mapping is in aperture range mark the page
1499 * as allocated in the aperture
1500 */
1501 if (addr < dma_dom->aperture_size)
c3239567 1502 __set_bit(addr >> PAGE_SHIFT,
384de729 1503 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1504 }
1505
1506 return 0;
1507}
1508
171e7b37
JR
1509/*
1510 * Init the unity mappings for a specific IOMMU in the system
1511 *
1512 * Basically iterates over all unity mapping entries and applies them to
1513 * the default domain DMA of that IOMMU if necessary.
1514 */
1515static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1516{
1517 struct unity_map_entry *entry;
1518 int ret;
1519
1520 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1521 if (!iommu_for_unity_map(iommu, entry))
1522 continue;
1523 ret = dma_ops_unity_map(iommu->default_dom, entry);
1524 if (ret)
1525 return ret;
1526 }
1527
1528 return 0;
1529}
1530
431b2a20
JR
1531/*
1532 * Inits the unity mappings required for a specific device
1533 */
bd0e5211
JR
1534static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1535 u16 devid)
1536{
1537 struct unity_map_entry *e;
1538 int ret;
1539
1540 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1541 if (!(devid >= e->devid_start && devid <= e->devid_end))
1542 continue;
1543 ret = dma_ops_unity_map(dma_dom, e);
1544 if (ret)
1545 return ret;
1546 }
1547
1548 return 0;
1549}
1550
431b2a20
JR
1551/****************************************************************************
1552 *
1553 * The next functions belong to the address allocator for the dma_ops
1554 * interface functions. They work like the allocators in the other IOMMU
1555 * drivers. Its basically a bitmap which marks the allocated pages in
1556 * the aperture. Maybe it could be enhanced in the future to a more
1557 * efficient allocator.
1558 *
1559 ****************************************************************************/
d3086444 1560
431b2a20 1561/*
384de729 1562 * The address allocator core functions.
431b2a20
JR
1563 *
1564 * called with domain->lock held
1565 */
384de729 1566
171e7b37
JR
1567/*
1568 * Used to reserve address ranges in the aperture (e.g. for exclusion
1569 * ranges.
1570 */
1571static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1572 unsigned long start_page,
1573 unsigned int pages)
1574{
1575 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1576
1577 if (start_page + pages > last_page)
1578 pages = last_page - start_page;
1579
1580 for (i = start_page; i < start_page + pages; ++i) {
1581 int index = i / APERTURE_RANGE_PAGES;
1582 int page = i % APERTURE_RANGE_PAGES;
1583 __set_bit(page, dom->aperture[index]->bitmap);
1584 }
1585}
1586
9cabe89b
JR
1587/*
1588 * This function is used to add a new aperture range to an existing
1589 * aperture in case of dma_ops domain allocation or address allocation
1590 * failure.
1591 */
576175c2 1592static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1593 bool populate, gfp_t gfp)
1594{
1595 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1596 struct amd_iommu *iommu;
17f5b569 1597 unsigned long i, old_size;
9cabe89b 1598
f5e9705c
JR
1599#ifdef CONFIG_IOMMU_STRESS
1600 populate = false;
1601#endif
1602
9cabe89b
JR
1603 if (index >= APERTURE_MAX_RANGES)
1604 return -ENOMEM;
1605
1606 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1607 if (!dma_dom->aperture[index])
1608 return -ENOMEM;
1609
1610 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1611 if (!dma_dom->aperture[index]->bitmap)
1612 goto out_free;
1613
1614 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1615
1616 if (populate) {
1617 unsigned long address = dma_dom->aperture_size;
1618 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1619 u64 *pte, *pte_page;
1620
1621 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1622 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1623 &pte_page, gfp);
1624 if (!pte)
1625 goto out_free;
1626
1627 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1628
1629 address += APERTURE_RANGE_SIZE / 64;
1630 }
1631 }
1632
17f5b569 1633 old_size = dma_dom->aperture_size;
9cabe89b
JR
1634 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1635
17f5b569
JR
1636 /* Reserve address range used for MSI messages */
1637 if (old_size < MSI_ADDR_BASE_LO &&
1638 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1639 unsigned long spage;
1640 int pages;
1641
1642 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1643 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1644
1645 dma_ops_reserve_addresses(dma_dom, spage, pages);
1646 }
1647
b595076a 1648 /* Initialize the exclusion range if necessary */
576175c2
JR
1649 for_each_iommu(iommu) {
1650 if (iommu->exclusion_start &&
1651 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1652 && iommu->exclusion_start < dma_dom->aperture_size) {
1653 unsigned long startpage;
1654 int pages = iommu_num_pages(iommu->exclusion_start,
1655 iommu->exclusion_length,
1656 PAGE_SIZE);
1657 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1658 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1659 }
00cd122a
JR
1660 }
1661
1662 /*
1663 * Check for areas already mapped as present in the new aperture
1664 * range and mark those pages as reserved in the allocator. Such
1665 * mappings may already exist as a result of requested unity
1666 * mappings for devices.
1667 */
1668 for (i = dma_dom->aperture[index]->offset;
1669 i < dma_dom->aperture_size;
1670 i += PAGE_SIZE) {
24cd7723 1671 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1672 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1673 continue;
1674
fcd0861d 1675 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1676 }
1677
04bfdd84
JR
1678 update_domain(&dma_dom->domain);
1679
9cabe89b
JR
1680 return 0;
1681
1682out_free:
04bfdd84
JR
1683 update_domain(&dma_dom->domain);
1684
9cabe89b
JR
1685 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1686
1687 kfree(dma_dom->aperture[index]);
1688 dma_dom->aperture[index] = NULL;
1689
1690 return -ENOMEM;
1691}
1692
384de729
JR
1693static unsigned long dma_ops_area_alloc(struct device *dev,
1694 struct dma_ops_domain *dom,
1695 unsigned int pages,
1696 unsigned long align_mask,
1697 u64 dma_mask,
1698 unsigned long start)
1699{
803b8cb4 1700 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1701 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1702 int i = start >> APERTURE_RANGE_SHIFT;
1703 unsigned long boundary_size;
1704 unsigned long address = -1;
1705 unsigned long limit;
1706
803b8cb4
JR
1707 next_bit >>= PAGE_SHIFT;
1708
384de729
JR
1709 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1710 PAGE_SIZE) >> PAGE_SHIFT;
1711
1712 for (;i < max_index; ++i) {
1713 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1714
1715 if (dom->aperture[i]->offset >= dma_mask)
1716 break;
1717
1718 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1719 dma_mask >> PAGE_SHIFT);
1720
1721 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1722 limit, next_bit, pages, 0,
1723 boundary_size, align_mask);
1724 if (address != -1) {
1725 address = dom->aperture[i]->offset +
1726 (address << PAGE_SHIFT);
803b8cb4 1727 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1728 break;
1729 }
1730
1731 next_bit = 0;
1732 }
1733
1734 return address;
1735}
1736
d3086444
JR
1737static unsigned long dma_ops_alloc_addresses(struct device *dev,
1738 struct dma_ops_domain *dom,
6d4f343f 1739 unsigned int pages,
832a90c3
JR
1740 unsigned long align_mask,
1741 u64 dma_mask)
d3086444 1742{
d3086444 1743 unsigned long address;
d3086444 1744
fe16f088
JR
1745#ifdef CONFIG_IOMMU_STRESS
1746 dom->next_address = 0;
1747 dom->need_flush = true;
1748#endif
d3086444 1749
384de729 1750 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1751 dma_mask, dom->next_address);
d3086444 1752
1c655773 1753 if (address == -1) {
803b8cb4 1754 dom->next_address = 0;
384de729
JR
1755 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1756 dma_mask, 0);
1c655773
JR
1757 dom->need_flush = true;
1758 }
d3086444 1759
384de729 1760 if (unlikely(address == -1))
8fd524b3 1761 address = DMA_ERROR_CODE;
d3086444
JR
1762
1763 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1764
1765 return address;
1766}
1767
431b2a20
JR
1768/*
1769 * The address free function.
1770 *
1771 * called with domain->lock held
1772 */
d3086444
JR
1773static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1774 unsigned long address,
1775 unsigned int pages)
1776{
384de729
JR
1777 unsigned i = address >> APERTURE_RANGE_SHIFT;
1778 struct aperture_range *range = dom->aperture[i];
80be308d 1779
384de729
JR
1780 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1781
47bccd6b
JR
1782#ifdef CONFIG_IOMMU_STRESS
1783 if (i < 4)
1784 return;
1785#endif
80be308d 1786
803b8cb4 1787 if (address >= dom->next_address)
80be308d 1788 dom->need_flush = true;
384de729
JR
1789
1790 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1791
a66022c4 1792 bitmap_clear(range->bitmap, address, pages);
384de729 1793
d3086444
JR
1794}
1795
431b2a20
JR
1796/****************************************************************************
1797 *
1798 * The next functions belong to the domain allocation. A domain is
1799 * allocated for every IOMMU as the default domain. If device isolation
1800 * is enabled, every device get its own domain. The most important thing
1801 * about domains is the page table mapping the DMA address space they
1802 * contain.
1803 *
1804 ****************************************************************************/
1805
aeb26f55
JR
1806/*
1807 * This function adds a protection domain to the global protection domain list
1808 */
1809static void add_domain_to_list(struct protection_domain *domain)
1810{
1811 unsigned long flags;
1812
1813 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1814 list_add(&domain->list, &amd_iommu_pd_list);
1815 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1816}
1817
1818/*
1819 * This function removes a protection domain to the global
1820 * protection domain list
1821 */
1822static void del_domain_from_list(struct protection_domain *domain)
1823{
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1827 list_del(&domain->list);
1828 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1829}
1830
ec487d1a
JR
1831static u16 domain_id_alloc(void)
1832{
1833 unsigned long flags;
1834 int id;
1835
1836 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1837 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1838 BUG_ON(id == 0);
1839 if (id > 0 && id < MAX_DOMAIN_ID)
1840 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1841 else
1842 id = 0;
1843 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1844
1845 return id;
1846}
1847
a2acfb75
JR
1848static void domain_id_free(int id)
1849{
1850 unsigned long flags;
1851
1852 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1853 if (id > 0 && id < MAX_DOMAIN_ID)
1854 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1855 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1856}
a2acfb75 1857
5c34c403
JR
1858#define DEFINE_FREE_PT_FN(LVL, FN) \
1859static void free_pt_##LVL (unsigned long __pt) \
1860{ \
1861 unsigned long p; \
1862 u64 *pt; \
1863 int i; \
1864 \
1865 pt = (u64 *)__pt; \
1866 \
1867 for (i = 0; i < 512; ++i) { \
1868 if (!IOMMU_PTE_PRESENT(pt[i])) \
1869 continue; \
1870 \
1871 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1872 FN(p); \
1873 } \
1874 free_page((unsigned long)pt); \
1875}
1876
1877DEFINE_FREE_PT_FN(l2, free_page)
1878DEFINE_FREE_PT_FN(l3, free_pt_l2)
1879DEFINE_FREE_PT_FN(l4, free_pt_l3)
1880DEFINE_FREE_PT_FN(l5, free_pt_l4)
1881DEFINE_FREE_PT_FN(l6, free_pt_l5)
1882
86db2e5d 1883static void free_pagetable(struct protection_domain *domain)
ec487d1a 1884{
5c34c403 1885 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1886
5c34c403
JR
1887 switch (domain->mode) {
1888 case PAGE_MODE_NONE:
1889 break;
1890 case PAGE_MODE_1_LEVEL:
1891 free_page(root);
1892 break;
1893 case PAGE_MODE_2_LEVEL:
1894 free_pt_l2(root);
1895 break;
1896 case PAGE_MODE_3_LEVEL:
1897 free_pt_l3(root);
1898 break;
1899 case PAGE_MODE_4_LEVEL:
1900 free_pt_l4(root);
1901 break;
1902 case PAGE_MODE_5_LEVEL:
1903 free_pt_l5(root);
1904 break;
1905 case PAGE_MODE_6_LEVEL:
1906 free_pt_l6(root);
1907 break;
1908 default:
1909 BUG();
ec487d1a 1910 }
ec487d1a
JR
1911}
1912
b16137b1
JR
1913static void free_gcr3_tbl_level1(u64 *tbl)
1914{
1915 u64 *ptr;
1916 int i;
1917
1918 for (i = 0; i < 512; ++i) {
1919 if (!(tbl[i] & GCR3_VALID))
1920 continue;
1921
1922 ptr = __va(tbl[i] & PAGE_MASK);
1923
1924 free_page((unsigned long)ptr);
1925 }
1926}
1927
1928static void free_gcr3_tbl_level2(u64 *tbl)
1929{
1930 u64 *ptr;
1931 int i;
1932
1933 for (i = 0; i < 512; ++i) {
1934 if (!(tbl[i] & GCR3_VALID))
1935 continue;
1936
1937 ptr = __va(tbl[i] & PAGE_MASK);
1938
1939 free_gcr3_tbl_level1(ptr);
1940 }
1941}
1942
52815b75
JR
1943static void free_gcr3_table(struct protection_domain *domain)
1944{
b16137b1
JR
1945 if (domain->glx == 2)
1946 free_gcr3_tbl_level2(domain->gcr3_tbl);
1947 else if (domain->glx == 1)
1948 free_gcr3_tbl_level1(domain->gcr3_tbl);
1949 else if (domain->glx != 0)
1950 BUG();
1951
52815b75
JR
1952 free_page((unsigned long)domain->gcr3_tbl);
1953}
1954
431b2a20
JR
1955/*
1956 * Free a domain, only used if something went wrong in the
1957 * allocation path and we need to free an already allocated page table
1958 */
ec487d1a
JR
1959static void dma_ops_domain_free(struct dma_ops_domain *dom)
1960{
384de729
JR
1961 int i;
1962
ec487d1a
JR
1963 if (!dom)
1964 return;
1965
aeb26f55
JR
1966 del_domain_from_list(&dom->domain);
1967
86db2e5d 1968 free_pagetable(&dom->domain);
ec487d1a 1969
384de729
JR
1970 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1971 if (!dom->aperture[i])
1972 continue;
1973 free_page((unsigned long)dom->aperture[i]->bitmap);
1974 kfree(dom->aperture[i]);
1975 }
ec487d1a
JR
1976
1977 kfree(dom);
1978}
1979
431b2a20
JR
1980/*
1981 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1982 * It also initializes the page table and the address allocator data
431b2a20
JR
1983 * structures required for the dma_ops interface
1984 */
87a64d52 1985static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1986{
1987 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1988
1989 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1990 if (!dma_dom)
1991 return NULL;
1992
1993 spin_lock_init(&dma_dom->domain.lock);
1994
1995 dma_dom->domain.id = domain_id_alloc();
1996 if (dma_dom->domain.id == 0)
1997 goto free_dma_dom;
7c392cbe 1998 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1999 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2000 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2001 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2002 dma_dom->domain.priv = dma_dom;
2003 if (!dma_dom->domain.pt_root)
2004 goto free_dma_dom;
ec487d1a 2005
1c655773 2006 dma_dom->need_flush = false;
bd60b735 2007 dma_dom->target_dev = 0xffff;
1c655773 2008
aeb26f55
JR
2009 add_domain_to_list(&dma_dom->domain);
2010
576175c2 2011 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2012 goto free_dma_dom;
ec487d1a 2013
431b2a20 2014 /*
ec487d1a
JR
2015 * mark the first page as allocated so we never return 0 as
2016 * a valid dma-address. So we can use 0 as error value
431b2a20 2017 */
384de729 2018 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2019 dma_dom->next_address = 0;
ec487d1a 2020
ec487d1a
JR
2021
2022 return dma_dom;
2023
2024free_dma_dom:
2025 dma_ops_domain_free(dma_dom);
2026
2027 return NULL;
2028}
2029
5b28df6f
JR
2030/*
2031 * little helper function to check whether a given protection domain is a
2032 * dma_ops domain
2033 */
2034static bool dma_ops_domain(struct protection_domain *domain)
2035{
2036 return domain->flags & PD_DMA_OPS_MASK;
2037}
2038
fd7b5535 2039static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2040{
132bd68f 2041 u64 pte_root = 0;
ee6c2868 2042 u64 flags = 0;
863c74eb 2043
132bd68f
JR
2044 if (domain->mode != PAGE_MODE_NONE)
2045 pte_root = virt_to_phys(domain->pt_root);
2046
38ddf41b
JR
2047 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2048 << DEV_ENTRY_MODE_SHIFT;
2049 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2050
ee6c2868
JR
2051 flags = amd_iommu_dev_table[devid].data[1];
2052
fd7b5535
JR
2053 if (ats)
2054 flags |= DTE_FLAG_IOTLB;
2055
52815b75
JR
2056 if (domain->flags & PD_IOMMUV2_MASK) {
2057 u64 gcr3 = __pa(domain->gcr3_tbl);
2058 u64 glx = domain->glx;
2059 u64 tmp;
2060
2061 pte_root |= DTE_FLAG_GV;
2062 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2063
2064 /* First mask out possible old values for GCR3 table */
2065 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2066 flags &= ~tmp;
2067
2068 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2069 flags &= ~tmp;
2070
2071 /* Encode GCR3 table into DTE */
2072 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2073 pte_root |= tmp;
2074
2075 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2076 flags |= tmp;
2077
2078 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2079 flags |= tmp;
2080 }
2081
ee6c2868
JR
2082 flags &= ~(0xffffUL);
2083 flags |= domain->id;
2084
2085 amd_iommu_dev_table[devid].data[1] = flags;
2086 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2087}
2088
2089static void clear_dte_entry(u16 devid)
2090{
15898bbc
JR
2091 /* remove entry from the device table seen by the hardware */
2092 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2093 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2094
2095 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2096}
2097
ec9e79ef
JR
2098static void do_attach(struct iommu_dev_data *dev_data,
2099 struct protection_domain *domain)
7f760ddd 2100{
7f760ddd 2101 struct amd_iommu *iommu;
ec9e79ef 2102 bool ats;
fd7b5535 2103
ec9e79ef
JR
2104 iommu = amd_iommu_rlookup_table[dev_data->devid];
2105 ats = dev_data->ats.enabled;
7f760ddd
JR
2106
2107 /* Update data structures */
2108 dev_data->domain = domain;
2109 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2110 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2111
2112 /* Do reference counting */
2113 domain->dev_iommu[iommu->index] += 1;
2114 domain->dev_cnt += 1;
2115
2116 /* Flush the DTE entry */
6c542047 2117 device_flush_dte(dev_data);
7f760ddd
JR
2118}
2119
ec9e79ef 2120static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2121{
7f760ddd 2122 struct amd_iommu *iommu;
7f760ddd 2123
ec9e79ef 2124 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2125
2126 /* decrease reference counters */
7f760ddd
JR
2127 dev_data->domain->dev_iommu[iommu->index] -= 1;
2128 dev_data->domain->dev_cnt -= 1;
2129
2130 /* Update data structures */
2131 dev_data->domain = NULL;
2132 list_del(&dev_data->list);
f62dda66 2133 clear_dte_entry(dev_data->devid);
15898bbc 2134
7f760ddd 2135 /* Flush the DTE entry */
6c542047 2136 device_flush_dte(dev_data);
2b681faf
JR
2137}
2138
2139/*
2140 * If a device is not yet associated with a domain, this function does
2141 * assigns it visible for the hardware
2142 */
ec9e79ef 2143static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2144 struct protection_domain *domain)
2b681faf 2145{
84fe6c19 2146 int ret;
657cbb6b 2147
2b681faf
JR
2148 /* lock domain */
2149 spin_lock(&domain->lock);
2150
71f77580
JR
2151 if (dev_data->alias_data != NULL) {
2152 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2153
2b02b091
JR
2154 /* Some sanity checks */
2155 ret = -EBUSY;
2156 if (alias_data->domain != NULL &&
2157 alias_data->domain != domain)
2158 goto out_unlock;
eba6ac60 2159
2b02b091
JR
2160 if (dev_data->domain != NULL &&
2161 dev_data->domain != domain)
2162 goto out_unlock;
15898bbc 2163
2b02b091 2164 /* Do real assignment */
7f760ddd 2165 if (alias_data->domain == NULL)
ec9e79ef 2166 do_attach(alias_data, domain);
24100055
JR
2167
2168 atomic_inc(&alias_data->bind);
657cbb6b 2169 }
15898bbc 2170
7f760ddd 2171 if (dev_data->domain == NULL)
ec9e79ef 2172 do_attach(dev_data, domain);
eba6ac60 2173
24100055
JR
2174 atomic_inc(&dev_data->bind);
2175
84fe6c19
JL
2176 ret = 0;
2177
2178out_unlock:
2179
eba6ac60
JR
2180 /* ready */
2181 spin_unlock(&domain->lock);
15898bbc 2182
84fe6c19 2183 return ret;
0feae533 2184}
b20ac0d4 2185
52815b75
JR
2186
2187static void pdev_iommuv2_disable(struct pci_dev *pdev)
2188{
2189 pci_disable_ats(pdev);
2190 pci_disable_pri(pdev);
2191 pci_disable_pasid(pdev);
2192}
2193
6a113ddc
JR
2194/* FIXME: Change generic reset-function to do the same */
2195static int pri_reset_while_enabled(struct pci_dev *pdev)
2196{
2197 u16 control;
2198 int pos;
2199
46277b75 2200 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2201 if (!pos)
2202 return -EINVAL;
2203
46277b75
JR
2204 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2205 control |= PCI_PRI_CTRL_RESET;
2206 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2207
2208 return 0;
2209}
2210
52815b75
JR
2211static int pdev_iommuv2_enable(struct pci_dev *pdev)
2212{
6a113ddc
JR
2213 bool reset_enable;
2214 int reqs, ret;
2215
2216 /* FIXME: Hardcode number of outstanding requests for now */
2217 reqs = 32;
2218 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2219 reqs = 1;
2220 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2221
2222 /* Only allow access to user-accessible pages */
2223 ret = pci_enable_pasid(pdev, 0);
2224 if (ret)
2225 goto out_err;
2226
2227 /* First reset the PRI state of the device */
2228 ret = pci_reset_pri(pdev);
2229 if (ret)
2230 goto out_err;
2231
6a113ddc
JR
2232 /* Enable PRI */
2233 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2234 if (ret)
2235 goto out_err;
2236
6a113ddc
JR
2237 if (reset_enable) {
2238 ret = pri_reset_while_enabled(pdev);
2239 if (ret)
2240 goto out_err;
2241 }
2242
52815b75
JR
2243 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2244 if (ret)
2245 goto out_err;
2246
2247 return 0;
2248
2249out_err:
2250 pci_disable_pri(pdev);
2251 pci_disable_pasid(pdev);
2252
2253 return ret;
2254}
2255
c99afa25 2256/* FIXME: Move this to PCI code */
a3b93121 2257#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2258
98f1ad25 2259static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2260{
a3b93121 2261 u16 status;
c99afa25
JR
2262 int pos;
2263
46277b75 2264 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2265 if (!pos)
2266 return false;
2267
a3b93121 2268 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2269
a3b93121 2270 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2271}
2272
407d733e 2273/*
df805abb 2274 * If a device is not yet associated with a domain, this function
407d733e
JR
2275 * assigns it visible for the hardware
2276 */
15898bbc
JR
2277static int attach_device(struct device *dev,
2278 struct protection_domain *domain)
0feae533 2279{
fd7b5535 2280 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2281 struct iommu_dev_data *dev_data;
eba6ac60 2282 unsigned long flags;
15898bbc 2283 int ret;
eba6ac60 2284
ea61cddb
JR
2285 dev_data = get_dev_data(dev);
2286
52815b75
JR
2287 if (domain->flags & PD_IOMMUV2_MASK) {
2288 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2289 return -EINVAL;
2290
2291 if (pdev_iommuv2_enable(pdev) != 0)
2292 return -EINVAL;
2293
2294 dev_data->ats.enabled = true;
2295 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2296 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2297 } else if (amd_iommu_iotlb_sup &&
2298 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2299 dev_data->ats.enabled = true;
2300 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2301 }
fd7b5535 2302
eba6ac60 2303 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2304 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2305 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2306
0feae533
JR
2307 /*
2308 * We might boot into a crash-kernel here. The crashed kernel
2309 * left the caches in the IOMMU dirty. So we have to flush
2310 * here to evict all dirty stuff.
2311 */
17b124bf 2312 domain_flush_tlb_pde(domain);
15898bbc
JR
2313
2314 return ret;
b20ac0d4
JR
2315}
2316
355bf553
JR
2317/*
2318 * Removes a device from a protection domain (unlocked)
2319 */
ec9e79ef 2320static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2321{
2ca76279 2322 struct protection_domain *domain;
7c392cbe 2323 unsigned long flags;
c4596114 2324
7f760ddd 2325 BUG_ON(!dev_data->domain);
355bf553 2326
2ca76279
JR
2327 domain = dev_data->domain;
2328
2329 spin_lock_irqsave(&domain->lock, flags);
24100055 2330
71f77580
JR
2331 if (dev_data->alias_data != NULL) {
2332 struct iommu_dev_data *alias_data = dev_data->alias_data;
2333
7f760ddd 2334 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2335 do_detach(alias_data);
24100055
JR
2336 }
2337
7f760ddd 2338 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2339 do_detach(dev_data);
7f760ddd 2340
2ca76279 2341 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2342
2343 /*
2344 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2345 * passthrough domain if it is detached from any other domain.
2346 * Make sure we can deassign from the pt_domain itself.
21129f78 2347 */
5abcdba4 2348 if (dev_data->passthrough &&
d3ad9373 2349 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2350 __attach_device(dev_data, pt_domain);
355bf553
JR
2351}
2352
2353/*
2354 * Removes a device from a protection domain (with devtable_lock held)
2355 */
15898bbc 2356static void detach_device(struct device *dev)
355bf553 2357{
52815b75 2358 struct protection_domain *domain;
ea61cddb 2359 struct iommu_dev_data *dev_data;
355bf553
JR
2360 unsigned long flags;
2361
ec9e79ef 2362 dev_data = get_dev_data(dev);
52815b75 2363 domain = dev_data->domain;
ec9e79ef 2364
355bf553
JR
2365 /* lock device table */
2366 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2367 __detach_device(dev_data);
355bf553 2368 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2369
52815b75
JR
2370 if (domain->flags & PD_IOMMUV2_MASK)
2371 pdev_iommuv2_disable(to_pci_dev(dev));
2372 else if (dev_data->ats.enabled)
ea61cddb 2373 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2374
2375 dev_data->ats.enabled = false;
355bf553 2376}
e275a2a0 2377
15898bbc
JR
2378/*
2379 * Find out the protection domain structure for a given PCI device. This
2380 * will give us the pointer to the page table root for example.
2381 */
2382static struct protection_domain *domain_for_device(struct device *dev)
2383{
71f77580 2384 struct iommu_dev_data *dev_data;
2b02b091 2385 struct protection_domain *dom = NULL;
15898bbc 2386 unsigned long flags;
15898bbc 2387
657cbb6b 2388 dev_data = get_dev_data(dev);
15898bbc 2389
2b02b091
JR
2390 if (dev_data->domain)
2391 return dev_data->domain;
15898bbc 2392
71f77580
JR
2393 if (dev_data->alias_data != NULL) {
2394 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2395
2396 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2397 if (alias_data->domain != NULL) {
2398 __attach_device(dev_data, alias_data->domain);
2399 dom = alias_data->domain;
2400 }
2401 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2402 }
15898bbc
JR
2403
2404 return dom;
2405}
2406
e275a2a0
JR
2407static int device_change_notifier(struct notifier_block *nb,
2408 unsigned long action, void *data)
2409{
e275a2a0 2410 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2411 struct protection_domain *domain;
2412 struct iommu_dev_data *dev_data;
2413 struct device *dev = data;
e275a2a0 2414 struct amd_iommu *iommu;
1ac4cbbc 2415 unsigned long flags;
5abcdba4 2416 u16 devid;
e275a2a0 2417
98fc5a69
JR
2418 if (!check_device(dev))
2419 return 0;
e275a2a0 2420
5abcdba4
JR
2421 devid = get_device_id(dev);
2422 iommu = amd_iommu_rlookup_table[devid];
2423 dev_data = get_dev_data(dev);
e275a2a0
JR
2424
2425 switch (action) {
c1eee67b 2426 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2427
2428 domain = domain_for_device(dev);
2429
e275a2a0
JR
2430 if (!domain)
2431 goto out;
5abcdba4 2432 if (dev_data->passthrough)
a1ca331c 2433 break;
15898bbc 2434 detach_device(dev);
1ac4cbbc
JR
2435 break;
2436 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2437
2438 iommu_init_device(dev);
2439
2c9195e9
JR
2440 /*
2441 * dev_data is still NULL and
2442 * got initialized in iommu_init_device
2443 */
2444 dev_data = get_dev_data(dev);
2445
2446 if (iommu_pass_through || dev_data->iommu_v2) {
2447 dev_data->passthrough = true;
2448 attach_device(dev, pt_domain);
2449 break;
2450 }
2451
657cbb6b
JR
2452 domain = domain_for_device(dev);
2453
1ac4cbbc
JR
2454 /* allocate a protection domain if a device is added */
2455 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2456 if (!dma_domain) {
2457 dma_domain = dma_ops_domain_alloc();
2458 if (!dma_domain)
2459 goto out;
2460 dma_domain->target_dev = devid;
2461
2462 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2463 list_add_tail(&dma_domain->list, &iommu_pd_list);
2464 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2465 }
ac1534a5 2466
2c9195e9 2467 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2468
e275a2a0 2469 break;
657cbb6b
JR
2470 case BUS_NOTIFY_DEL_DEVICE:
2471
2472 iommu_uninit_device(dev);
2473
e275a2a0
JR
2474 default:
2475 goto out;
2476 }
2477
e275a2a0
JR
2478 iommu_completion_wait(iommu);
2479
2480out:
2481 return 0;
2482}
2483
b25ae679 2484static struct notifier_block device_nb = {
e275a2a0
JR
2485 .notifier_call = device_change_notifier,
2486};
355bf553 2487
8638c491
JR
2488void amd_iommu_init_notifier(void)
2489{
2490 bus_register_notifier(&pci_bus_type, &device_nb);
2491}
2492
431b2a20
JR
2493/*****************************************************************************
2494 *
2495 * The next functions belong to the dma_ops mapping/unmapping code.
2496 *
2497 *****************************************************************************/
2498
2499/*
2500 * In the dma_ops path we only have the struct device. This function
2501 * finds the corresponding IOMMU, the protection domain and the
2502 * requestor id for a given device.
2503 * If the device is not yet associated with a domain this is also done
2504 * in this function.
2505 */
94f6d190 2506static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2507{
94f6d190 2508 struct protection_domain *domain;
b20ac0d4 2509 struct dma_ops_domain *dma_dom;
94f6d190 2510 u16 devid = get_device_id(dev);
b20ac0d4 2511
f99c0f1c 2512 if (!check_device(dev))
94f6d190 2513 return ERR_PTR(-EINVAL);
b20ac0d4 2514
94f6d190
JR
2515 domain = domain_for_device(dev);
2516 if (domain != NULL && !dma_ops_domain(domain))
2517 return ERR_PTR(-EBUSY);
f99c0f1c 2518
94f6d190
JR
2519 if (domain != NULL)
2520 return domain;
b20ac0d4 2521
df805abb 2522 /* Device not bound yet - bind it */
94f6d190 2523 dma_dom = find_protection_domain(devid);
15898bbc 2524 if (!dma_dom)
94f6d190
JR
2525 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2526 attach_device(dev, &dma_dom->domain);
15898bbc 2527 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2528 dma_dom->domain.id, dev_name(dev));
f91ba190 2529
94f6d190 2530 return &dma_dom->domain;
b20ac0d4
JR
2531}
2532
04bfdd84
JR
2533static void update_device_table(struct protection_domain *domain)
2534{
492667da 2535 struct iommu_dev_data *dev_data;
04bfdd84 2536
ea61cddb
JR
2537 list_for_each_entry(dev_data, &domain->dev_list, list)
2538 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2539}
2540
2541static void update_domain(struct protection_domain *domain)
2542{
2543 if (!domain->updated)
2544 return;
2545
2546 update_device_table(domain);
17b124bf
JR
2547
2548 domain_flush_devices(domain);
2549 domain_flush_tlb_pde(domain);
04bfdd84
JR
2550
2551 domain->updated = false;
2552}
2553
8bda3092
JR
2554/*
2555 * This function fetches the PTE for a given address in the aperture
2556 */
2557static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2558 unsigned long address)
2559{
384de729 2560 struct aperture_range *aperture;
8bda3092
JR
2561 u64 *pte, *pte_page;
2562
384de729
JR
2563 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2564 if (!aperture)
2565 return NULL;
2566
2567 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2568 if (!pte) {
cbb9d729 2569 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2570 GFP_ATOMIC);
384de729
JR
2571 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2572 } else
8c8c143c 2573 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2574
04bfdd84 2575 update_domain(&dom->domain);
8bda3092
JR
2576
2577 return pte;
2578}
2579
431b2a20
JR
2580/*
2581 * This is the generic map function. It maps one 4kb page at paddr to
2582 * the given address in the DMA address space for the domain.
2583 */
680525e0 2584static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2585 unsigned long address,
2586 phys_addr_t paddr,
2587 int direction)
2588{
2589 u64 *pte, __pte;
2590
2591 WARN_ON(address > dom->aperture_size);
2592
2593 paddr &= PAGE_MASK;
2594
8bda3092 2595 pte = dma_ops_get_pte(dom, address);
53812c11 2596 if (!pte)
8fd524b3 2597 return DMA_ERROR_CODE;
cb76c322
JR
2598
2599 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2600
2601 if (direction == DMA_TO_DEVICE)
2602 __pte |= IOMMU_PTE_IR;
2603 else if (direction == DMA_FROM_DEVICE)
2604 __pte |= IOMMU_PTE_IW;
2605 else if (direction == DMA_BIDIRECTIONAL)
2606 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2607
2608 WARN_ON(*pte);
2609
2610 *pte = __pte;
2611
2612 return (dma_addr_t)address;
2613}
2614
431b2a20
JR
2615/*
2616 * The generic unmapping function for on page in the DMA address space.
2617 */
680525e0 2618static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2619 unsigned long address)
2620{
384de729 2621 struct aperture_range *aperture;
cb76c322
JR
2622 u64 *pte;
2623
2624 if (address >= dom->aperture_size)
2625 return;
2626
384de729
JR
2627 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2628 if (!aperture)
2629 return;
2630
2631 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2632 if (!pte)
2633 return;
cb76c322 2634
8c8c143c 2635 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2636
2637 WARN_ON(!*pte);
2638
2639 *pte = 0ULL;
2640}
2641
431b2a20
JR
2642/*
2643 * This function contains common code for mapping of a physically
24f81160
JR
2644 * contiguous memory region into DMA address space. It is used by all
2645 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2646 * Must be called with the domain lock held.
2647 */
cb76c322 2648static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2649 struct dma_ops_domain *dma_dom,
2650 phys_addr_t paddr,
2651 size_t size,
6d4f343f 2652 int dir,
832a90c3
JR
2653 bool align,
2654 u64 dma_mask)
cb76c322
JR
2655{
2656 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2657 dma_addr_t address, start, ret;
cb76c322 2658 unsigned int pages;
6d4f343f 2659 unsigned long align_mask = 0;
cb76c322
JR
2660 int i;
2661
e3c449f5 2662 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2663 paddr &= PAGE_MASK;
2664
8ecaf8f1
JR
2665 INC_STATS_COUNTER(total_map_requests);
2666
c1858976
JR
2667 if (pages > 1)
2668 INC_STATS_COUNTER(cross_page);
2669
6d4f343f
JR
2670 if (align)
2671 align_mask = (1UL << get_order(size)) - 1;
2672
11b83888 2673retry:
832a90c3
JR
2674 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2675 dma_mask);
8fd524b3 2676 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2677 /*
2678 * setting next_address here will let the address
2679 * allocator only scan the new allocated range in the
2680 * first run. This is a small optimization.
2681 */
2682 dma_dom->next_address = dma_dom->aperture_size;
2683
576175c2 2684 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2685 goto out;
2686
2687 /*
af901ca1 2688 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2689 * allocation again
2690 */
2691 goto retry;
2692 }
cb76c322
JR
2693
2694 start = address;
2695 for (i = 0; i < pages; ++i) {
680525e0 2696 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2697 if (ret == DMA_ERROR_CODE)
53812c11
JR
2698 goto out_unmap;
2699
cb76c322
JR
2700 paddr += PAGE_SIZE;
2701 start += PAGE_SIZE;
2702 }
2703 address += offset;
2704
5774f7c5
JR
2705 ADD_STATS_COUNTER(alloced_io_mem, size);
2706
afa9fdc2 2707 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2708 domain_flush_tlb(&dma_dom->domain);
1c655773 2709 dma_dom->need_flush = false;
318afd41 2710 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2711 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2712
cb76c322
JR
2713out:
2714 return address;
53812c11
JR
2715
2716out_unmap:
2717
2718 for (--i; i >= 0; --i) {
2719 start -= PAGE_SIZE;
680525e0 2720 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2721 }
2722
2723 dma_ops_free_addresses(dma_dom, address, pages);
2724
8fd524b3 2725 return DMA_ERROR_CODE;
cb76c322
JR
2726}
2727
431b2a20
JR
2728/*
2729 * Does the reverse of the __map_single function. Must be called with
2730 * the domain lock held too
2731 */
cd8c82e8 2732static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2733 dma_addr_t dma_addr,
2734 size_t size,
2735 int dir)
2736{
04e0463e 2737 dma_addr_t flush_addr;
cb76c322
JR
2738 dma_addr_t i, start;
2739 unsigned int pages;
2740
8fd524b3 2741 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2742 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2743 return;
2744
04e0463e 2745 flush_addr = dma_addr;
e3c449f5 2746 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2747 dma_addr &= PAGE_MASK;
2748 start = dma_addr;
2749
2750 for (i = 0; i < pages; ++i) {
680525e0 2751 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2752 start += PAGE_SIZE;
2753 }
2754
5774f7c5
JR
2755 SUB_STATS_COUNTER(alloced_io_mem, size);
2756
cb76c322 2757 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2758
80be308d 2759 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2760 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2761 dma_dom->need_flush = false;
2762 }
cb76c322
JR
2763}
2764
431b2a20
JR
2765/*
2766 * The exported map_single function for dma_ops.
2767 */
51491367
FT
2768static dma_addr_t map_page(struct device *dev, struct page *page,
2769 unsigned long offset, size_t size,
2770 enum dma_data_direction dir,
2771 struct dma_attrs *attrs)
4da70b9e
JR
2772{
2773 unsigned long flags;
4da70b9e 2774 struct protection_domain *domain;
4da70b9e 2775 dma_addr_t addr;
832a90c3 2776 u64 dma_mask;
51491367 2777 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2778
0f2a86f2
JR
2779 INC_STATS_COUNTER(cnt_map_single);
2780
94f6d190
JR
2781 domain = get_domain(dev);
2782 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2783 return (dma_addr_t)paddr;
94f6d190
JR
2784 else if (IS_ERR(domain))
2785 return DMA_ERROR_CODE;
4da70b9e 2786
f99c0f1c
JR
2787 dma_mask = *dev->dma_mask;
2788
4da70b9e 2789 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2790
cd8c82e8 2791 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2792 dma_mask);
8fd524b3 2793 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2794 goto out;
2795
17b124bf 2796 domain_flush_complete(domain);
4da70b9e
JR
2797
2798out:
2799 spin_unlock_irqrestore(&domain->lock, flags);
2800
2801 return addr;
2802}
2803
431b2a20
JR
2804/*
2805 * The exported unmap_single function for dma_ops.
2806 */
51491367
FT
2807static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2808 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2809{
2810 unsigned long flags;
4da70b9e 2811 struct protection_domain *domain;
4da70b9e 2812
146a6917
JR
2813 INC_STATS_COUNTER(cnt_unmap_single);
2814
94f6d190
JR
2815 domain = get_domain(dev);
2816 if (IS_ERR(domain))
5b28df6f
JR
2817 return;
2818
4da70b9e
JR
2819 spin_lock_irqsave(&domain->lock, flags);
2820
cd8c82e8 2821 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2822
17b124bf 2823 domain_flush_complete(domain);
4da70b9e
JR
2824
2825 spin_unlock_irqrestore(&domain->lock, flags);
2826}
2827
431b2a20
JR
2828/*
2829 * The exported map_sg function for dma_ops (handles scatter-gather
2830 * lists).
2831 */
65b050ad 2832static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2833 int nelems, enum dma_data_direction dir,
2834 struct dma_attrs *attrs)
65b050ad
JR
2835{
2836 unsigned long flags;
65b050ad 2837 struct protection_domain *domain;
65b050ad
JR
2838 int i;
2839 struct scatterlist *s;
2840 phys_addr_t paddr;
2841 int mapped_elems = 0;
832a90c3 2842 u64 dma_mask;
65b050ad 2843
d03f067a
JR
2844 INC_STATS_COUNTER(cnt_map_sg);
2845
94f6d190 2846 domain = get_domain(dev);
a0e191b2 2847 if (IS_ERR(domain))
94f6d190 2848 return 0;
dbcc112e 2849
832a90c3 2850 dma_mask = *dev->dma_mask;
65b050ad 2851
65b050ad
JR
2852 spin_lock_irqsave(&domain->lock, flags);
2853
2854 for_each_sg(sglist, s, nelems, i) {
2855 paddr = sg_phys(s);
2856
cd8c82e8 2857 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2858 paddr, s->length, dir, false,
2859 dma_mask);
65b050ad
JR
2860
2861 if (s->dma_address) {
2862 s->dma_length = s->length;
2863 mapped_elems++;
2864 } else
2865 goto unmap;
65b050ad
JR
2866 }
2867
17b124bf 2868 domain_flush_complete(domain);
65b050ad
JR
2869
2870out:
2871 spin_unlock_irqrestore(&domain->lock, flags);
2872
2873 return mapped_elems;
2874unmap:
2875 for_each_sg(sglist, s, mapped_elems, i) {
2876 if (s->dma_address)
cd8c82e8 2877 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2878 s->dma_length, dir);
2879 s->dma_address = s->dma_length = 0;
2880 }
2881
2882 mapped_elems = 0;
2883
2884 goto out;
2885}
2886
431b2a20
JR
2887/*
2888 * The exported map_sg function for dma_ops (handles scatter-gather
2889 * lists).
2890 */
65b050ad 2891static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2892 int nelems, enum dma_data_direction dir,
2893 struct dma_attrs *attrs)
65b050ad
JR
2894{
2895 unsigned long flags;
65b050ad
JR
2896 struct protection_domain *domain;
2897 struct scatterlist *s;
65b050ad
JR
2898 int i;
2899
55877a6b
JR
2900 INC_STATS_COUNTER(cnt_unmap_sg);
2901
94f6d190
JR
2902 domain = get_domain(dev);
2903 if (IS_ERR(domain))
5b28df6f
JR
2904 return;
2905
65b050ad
JR
2906 spin_lock_irqsave(&domain->lock, flags);
2907
2908 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2909 __unmap_single(domain->priv, s->dma_address,
65b050ad 2910 s->dma_length, dir);
65b050ad
JR
2911 s->dma_address = s->dma_length = 0;
2912 }
2913
17b124bf 2914 domain_flush_complete(domain);
65b050ad
JR
2915
2916 spin_unlock_irqrestore(&domain->lock, flags);
2917}
2918
431b2a20
JR
2919/*
2920 * The exported alloc_coherent function for dma_ops.
2921 */
5d8b53cf 2922static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2923 dma_addr_t *dma_addr, gfp_t flag,
2924 struct dma_attrs *attrs)
5d8b53cf
JR
2925{
2926 unsigned long flags;
2927 void *virt_addr;
5d8b53cf 2928 struct protection_domain *domain;
5d8b53cf 2929 phys_addr_t paddr;
832a90c3 2930 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2931
c8f0fb36
JR
2932 INC_STATS_COUNTER(cnt_alloc_coherent);
2933
94f6d190
JR
2934 domain = get_domain(dev);
2935 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2936 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2937 *dma_addr = __pa(virt_addr);
2938 return virt_addr;
94f6d190
JR
2939 } else if (IS_ERR(domain))
2940 return NULL;
5d8b53cf 2941
f99c0f1c
JR
2942 dma_mask = dev->coherent_dma_mask;
2943 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2944 flag |= __GFP_ZERO;
5d8b53cf
JR
2945
2946 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2947 if (!virt_addr)
b25ae679 2948 return NULL;
5d8b53cf 2949
5d8b53cf
JR
2950 paddr = virt_to_phys(virt_addr);
2951
832a90c3
JR
2952 if (!dma_mask)
2953 dma_mask = *dev->dma_mask;
2954
5d8b53cf
JR
2955 spin_lock_irqsave(&domain->lock, flags);
2956
cd8c82e8 2957 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2958 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2959
8fd524b3 2960 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2961 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2962 goto out_free;
367d04c4 2963 }
5d8b53cf 2964
17b124bf 2965 domain_flush_complete(domain);
5d8b53cf 2966
5d8b53cf
JR
2967 spin_unlock_irqrestore(&domain->lock, flags);
2968
2969 return virt_addr;
5b28df6f
JR
2970
2971out_free:
2972
2973 free_pages((unsigned long)virt_addr, get_order(size));
2974
2975 return NULL;
5d8b53cf
JR
2976}
2977
431b2a20
JR
2978/*
2979 * The exported free_coherent function for dma_ops.
431b2a20 2980 */
5d8b53cf 2981static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2982 void *virt_addr, dma_addr_t dma_addr,
2983 struct dma_attrs *attrs)
5d8b53cf
JR
2984{
2985 unsigned long flags;
5d8b53cf 2986 struct protection_domain *domain;
5d8b53cf 2987
5d31ee7e
JR
2988 INC_STATS_COUNTER(cnt_free_coherent);
2989
94f6d190
JR
2990 domain = get_domain(dev);
2991 if (IS_ERR(domain))
5b28df6f
JR
2992 goto free_mem;
2993
5d8b53cf
JR
2994 spin_lock_irqsave(&domain->lock, flags);
2995
cd8c82e8 2996 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2997
17b124bf 2998 domain_flush_complete(domain);
5d8b53cf
JR
2999
3000 spin_unlock_irqrestore(&domain->lock, flags);
3001
3002free_mem:
3003 free_pages((unsigned long)virt_addr, get_order(size));
3004}
3005
b39ba6ad
JR
3006/*
3007 * This function is called by the DMA layer to find out if we can handle a
3008 * particular device. It is part of the dma_ops.
3009 */
3010static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3011{
420aef8a 3012 return check_device(dev);
b39ba6ad
JR
3013}
3014
c432f3df 3015/*
431b2a20
JR
3016 * The function for pre-allocating protection domains.
3017 *
c432f3df
JR
3018 * If the driver core informs the DMA layer if a driver grabs a device
3019 * we don't need to preallocate the protection domains anymore.
3020 * For now we have to.
3021 */
943bc7e1 3022static void __init prealloc_protection_domains(void)
c432f3df 3023{
5abcdba4 3024 struct iommu_dev_data *dev_data;
c432f3df 3025 struct dma_ops_domain *dma_dom;
5abcdba4 3026 struct pci_dev *dev = NULL;
98fc5a69 3027 u16 devid;
c432f3df 3028
d18c69d3 3029 for_each_pci_dev(dev) {
98fc5a69
JR
3030
3031 /* Do we handle this device? */
3032 if (!check_device(&dev->dev))
c432f3df 3033 continue;
98fc5a69 3034
5abcdba4
JR
3035 dev_data = get_dev_data(&dev->dev);
3036 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3037 /* Make sure passthrough domain is allocated */
3038 alloc_passthrough_domain();
3039 dev_data->passthrough = true;
3040 attach_device(&dev->dev, pt_domain);
df805abb 3041 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3042 dev_name(&dev->dev));
3043 }
3044
98fc5a69 3045 /* Is there already any domain for it? */
15898bbc 3046 if (domain_for_device(&dev->dev))
c432f3df 3047 continue;
98fc5a69
JR
3048
3049 devid = get_device_id(&dev->dev);
3050
87a64d52 3051 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3052 if (!dma_dom)
3053 continue;
3054 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3055 dma_dom->target_dev = devid;
3056
15898bbc 3057 attach_device(&dev->dev, &dma_dom->domain);
be831297 3058
bd60b735 3059 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3060 }
3061}
3062
160c1d8e 3063static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3064 .alloc = alloc_coherent,
3065 .free = free_coherent,
51491367
FT
3066 .map_page = map_page,
3067 .unmap_page = unmap_page,
6631ee9d
JR
3068 .map_sg = map_sg,
3069 .unmap_sg = unmap_sg,
b39ba6ad 3070 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3071};
3072
27c2127a
JR
3073static unsigned device_dma_ops_init(void)
3074{
5abcdba4 3075 struct iommu_dev_data *dev_data;
27c2127a
JR
3076 struct pci_dev *pdev = NULL;
3077 unsigned unhandled = 0;
3078
3079 for_each_pci_dev(pdev) {
3080 if (!check_device(&pdev->dev)) {
af1be049
JR
3081
3082 iommu_ignore_device(&pdev->dev);
3083
27c2127a
JR
3084 unhandled += 1;
3085 continue;
3086 }
3087
5abcdba4
JR
3088 dev_data = get_dev_data(&pdev->dev);
3089
3090 if (!dev_data->passthrough)
3091 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3092 else
3093 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3094 }
3095
3096 return unhandled;
3097}
3098
431b2a20
JR
3099/*
3100 * The function which clues the AMD IOMMU driver into dma_ops.
3101 */
f5325094
JR
3102
3103void __init amd_iommu_init_api(void)
3104{
2cc21c42 3105 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3106}
3107
6631ee9d
JR
3108int __init amd_iommu_init_dma_ops(void)
3109{
3110 struct amd_iommu *iommu;
27c2127a 3111 int ret, unhandled;
6631ee9d 3112
431b2a20
JR
3113 /*
3114 * first allocate a default protection domain for every IOMMU we
3115 * found in the system. Devices not assigned to any other
3116 * protection domain will be assigned to the default one.
3117 */
3bd22172 3118 for_each_iommu(iommu) {
87a64d52 3119 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3120 if (iommu->default_dom == NULL)
3121 return -ENOMEM;
e2dc14a2 3122 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3123 ret = iommu_init_unity_mappings(iommu);
3124 if (ret)
3125 goto free_domains;
3126 }
3127
431b2a20 3128 /*
8793abeb 3129 * Pre-allocate the protection domains for each device.
431b2a20 3130 */
8793abeb 3131 prealloc_protection_domains();
6631ee9d
JR
3132
3133 iommu_detected = 1;
75f1cdf1 3134 swiotlb = 0;
6631ee9d 3135
431b2a20 3136 /* Make the driver finally visible to the drivers */
27c2127a
JR
3137 unhandled = device_dma_ops_init();
3138 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3139 /* There are unhandled devices - initialize swiotlb for them */
3140 swiotlb = 1;
3141 }
6631ee9d 3142
7f26508b
JR
3143 amd_iommu_stats_init();
3144
62410eeb
JR
3145 if (amd_iommu_unmap_flush)
3146 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3147 else
3148 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3149
6631ee9d
JR
3150 return 0;
3151
3152free_domains:
3153
3bd22172 3154 for_each_iommu(iommu) {
91457df7 3155 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3156 }
3157
3158 return ret;
3159}
6d98cd80
JR
3160
3161/*****************************************************************************
3162 *
3163 * The following functions belong to the exported interface of AMD IOMMU
3164 *
3165 * This interface allows access to lower level functions of the IOMMU
3166 * like protection domain handling and assignement of devices to domains
3167 * which is not possible with the dma_ops interface.
3168 *
3169 *****************************************************************************/
3170
6d98cd80
JR
3171static void cleanup_domain(struct protection_domain *domain)
3172{
9b29d3c6 3173 struct iommu_dev_data *entry;
6d98cd80 3174 unsigned long flags;
6d98cd80
JR
3175
3176 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3177
9b29d3c6
JR
3178 while (!list_empty(&domain->dev_list)) {
3179 entry = list_first_entry(&domain->dev_list,
3180 struct iommu_dev_data, list);
3181 __detach_device(entry);
3182 atomic_set(&entry->bind, 0);
492667da 3183 }
6d98cd80
JR
3184
3185 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3186}
3187
2650815f
JR
3188static void protection_domain_free(struct protection_domain *domain)
3189{
3190 if (!domain)
3191 return;
3192
aeb26f55
JR
3193 del_domain_from_list(domain);
3194
2650815f
JR
3195 if (domain->id)
3196 domain_id_free(domain->id);
3197
3198 kfree(domain);
3199}
3200
3201static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3202{
3203 struct protection_domain *domain;
3204
3205 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3206 if (!domain)
2650815f 3207 return NULL;
c156e347
JR
3208
3209 spin_lock_init(&domain->lock);
5d214fe6 3210 mutex_init(&domain->api_lock);
c156e347
JR
3211 domain->id = domain_id_alloc();
3212 if (!domain->id)
2650815f 3213 goto out_err;
7c392cbe 3214 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3215
aeb26f55
JR
3216 add_domain_to_list(domain);
3217
2650815f
JR
3218 return domain;
3219
3220out_err:
3221 kfree(domain);
3222
3223 return NULL;
3224}
3225
5abcdba4
JR
3226static int __init alloc_passthrough_domain(void)
3227{
3228 if (pt_domain != NULL)
3229 return 0;
3230
3231 /* allocate passthrough domain */
3232 pt_domain = protection_domain_alloc();
3233 if (!pt_domain)
3234 return -ENOMEM;
3235
3236 pt_domain->mode = PAGE_MODE_NONE;
3237
3238 return 0;
3239}
2650815f
JR
3240static int amd_iommu_domain_init(struct iommu_domain *dom)
3241{
3242 struct protection_domain *domain;
3243
3244 domain = protection_domain_alloc();
3245 if (!domain)
c156e347 3246 goto out_free;
2650815f
JR
3247
3248 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3249 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3250 if (!domain->pt_root)
3251 goto out_free;
3252
f3572db8
JR
3253 domain->iommu_domain = dom;
3254
c156e347
JR
3255 dom->priv = domain;
3256
0ff64f80
JR
3257 dom->geometry.aperture_start = 0;
3258 dom->geometry.aperture_end = ~0ULL;
3259 dom->geometry.force_aperture = true;
3260
c156e347
JR
3261 return 0;
3262
3263out_free:
2650815f 3264 protection_domain_free(domain);
c156e347
JR
3265
3266 return -ENOMEM;
3267}
3268
98383fc3
JR
3269static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3270{
3271 struct protection_domain *domain = dom->priv;
3272
3273 if (!domain)
3274 return;
3275
3276 if (domain->dev_cnt > 0)
3277 cleanup_domain(domain);
3278
3279 BUG_ON(domain->dev_cnt != 0);
3280
132bd68f
JR
3281 if (domain->mode != PAGE_MODE_NONE)
3282 free_pagetable(domain);
98383fc3 3283
52815b75
JR
3284 if (domain->flags & PD_IOMMUV2_MASK)
3285 free_gcr3_table(domain);
3286
8b408fe4 3287 protection_domain_free(domain);
98383fc3
JR
3288
3289 dom->priv = NULL;
3290}
3291
684f2888
JR
3292static void amd_iommu_detach_device(struct iommu_domain *dom,
3293 struct device *dev)
3294{
657cbb6b 3295 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3296 struct amd_iommu *iommu;
684f2888
JR
3297 u16 devid;
3298
98fc5a69 3299 if (!check_device(dev))
684f2888
JR
3300 return;
3301
98fc5a69 3302 devid = get_device_id(dev);
684f2888 3303
657cbb6b 3304 if (dev_data->domain != NULL)
15898bbc 3305 detach_device(dev);
684f2888
JR
3306
3307 iommu = amd_iommu_rlookup_table[devid];
3308 if (!iommu)
3309 return;
3310
684f2888
JR
3311 iommu_completion_wait(iommu);
3312}
3313
01106066
JR
3314static int amd_iommu_attach_device(struct iommu_domain *dom,
3315 struct device *dev)
3316{
3317 struct protection_domain *domain = dom->priv;
657cbb6b 3318 struct iommu_dev_data *dev_data;
01106066 3319 struct amd_iommu *iommu;
15898bbc 3320 int ret;
01106066 3321
98fc5a69 3322 if (!check_device(dev))
01106066
JR
3323 return -EINVAL;
3324
657cbb6b
JR
3325 dev_data = dev->archdata.iommu;
3326
f62dda66 3327 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3328 if (!iommu)
3329 return -EINVAL;
3330
657cbb6b 3331 if (dev_data->domain)
15898bbc 3332 detach_device(dev);
01106066 3333
15898bbc 3334 ret = attach_device(dev, domain);
01106066
JR
3335
3336 iommu_completion_wait(iommu);
3337
15898bbc 3338 return ret;
01106066
JR
3339}
3340
468e2366 3341static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3342 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3343{
3344 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3345 int prot = 0;
3346 int ret;
3347
132bd68f
JR
3348 if (domain->mode == PAGE_MODE_NONE)
3349 return -EINVAL;
3350
c6229ca6
JR
3351 if (iommu_prot & IOMMU_READ)
3352 prot |= IOMMU_PROT_IR;
3353 if (iommu_prot & IOMMU_WRITE)
3354 prot |= IOMMU_PROT_IW;
3355
5d214fe6 3356 mutex_lock(&domain->api_lock);
795e74f7 3357 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3358 mutex_unlock(&domain->api_lock);
3359
795e74f7 3360 return ret;
c6229ca6
JR
3361}
3362
5009065d
OBC
3363static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3364 size_t page_size)
eb74ff6c 3365{
eb74ff6c 3366 struct protection_domain *domain = dom->priv;
5009065d 3367 size_t unmap_size;
eb74ff6c 3368
132bd68f
JR
3369 if (domain->mode == PAGE_MODE_NONE)
3370 return -EINVAL;
3371
5d214fe6 3372 mutex_lock(&domain->api_lock);
468e2366 3373 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3374 mutex_unlock(&domain->api_lock);
eb74ff6c 3375
17b124bf 3376 domain_flush_tlb_pde(domain);
5d214fe6 3377
5009065d 3378 return unmap_size;
eb74ff6c
JR
3379}
3380
645c4c8d 3381static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3382 dma_addr_t iova)
645c4c8d
JR
3383{
3384 struct protection_domain *domain = dom->priv;
f03152bb 3385 unsigned long offset_mask;
645c4c8d 3386 phys_addr_t paddr;
f03152bb 3387 u64 *pte, __pte;
645c4c8d 3388
132bd68f
JR
3389 if (domain->mode == PAGE_MODE_NONE)
3390 return iova;
3391
24cd7723 3392 pte = fetch_pte(domain, iova);
645c4c8d 3393
a6d41a40 3394 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3395 return 0;
3396
f03152bb
JR
3397 if (PM_PTE_LEVEL(*pte) == 0)
3398 offset_mask = PAGE_SIZE - 1;
3399 else
3400 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3401
3402 __pte = *pte & PM_ADDR_MASK;
3403 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3404
3405 return paddr;
3406}
3407
dbb9fd86
SY
3408static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3409 unsigned long cap)
3410{
80a506b8
JR
3411 switch (cap) {
3412 case IOMMU_CAP_CACHE_COHERENCY:
3413 return 1;
bdddadcb
JR
3414 case IOMMU_CAP_INTR_REMAP:
3415 return irq_remapping_enabled;
80a506b8
JR
3416 }
3417
dbb9fd86
SY
3418 return 0;
3419}
3420
b22f6434 3421static const struct iommu_ops amd_iommu_ops = {
26961efe
JR
3422 .domain_init = amd_iommu_domain_init,
3423 .domain_destroy = amd_iommu_domain_destroy,
3424 .attach_dev = amd_iommu_attach_device,
3425 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3426 .map = amd_iommu_map,
3427 .unmap = amd_iommu_unmap,
26961efe 3428 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3429 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3430 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3431};
3432
0feae533
JR
3433/*****************************************************************************
3434 *
3435 * The next functions do a basic initialization of IOMMU for pass through
3436 * mode
3437 *
3438 * In passthrough mode the IOMMU is initialized and enabled but not used for
3439 * DMA-API translation.
3440 *
3441 *****************************************************************************/
3442
3443int __init amd_iommu_init_passthrough(void)
3444{
5abcdba4 3445 struct iommu_dev_data *dev_data;
0feae533 3446 struct pci_dev *dev = NULL;
5abcdba4 3447 int ret;
0feae533 3448
5abcdba4
JR
3449 ret = alloc_passthrough_domain();
3450 if (ret)
3451 return ret;
0feae533 3452
6c54aabd 3453 for_each_pci_dev(dev) {
98fc5a69 3454 if (!check_device(&dev->dev))
0feae533
JR
3455 continue;
3456
5abcdba4
JR
3457 dev_data = get_dev_data(&dev->dev);
3458 dev_data->passthrough = true;
3459
15898bbc 3460 attach_device(&dev->dev, pt_domain);
0feae533
JR
3461 }
3462
2655d7a2
JR
3463 amd_iommu_stats_init();
3464
0feae533
JR
3465 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3466
3467 return 0;
3468}
72e1dcc4
JR
3469
3470/* IOMMUv2 specific functions */
3471int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3472{
3473 return atomic_notifier_chain_register(&ppr_notifier, nb);
3474}
3475EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3476
3477int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3478{
3479 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3480}
3481EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3482
3483void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3484{
3485 struct protection_domain *domain = dom->priv;
3486 unsigned long flags;
3487
3488 spin_lock_irqsave(&domain->lock, flags);
3489
3490 /* Update data structure */
3491 domain->mode = PAGE_MODE_NONE;
3492 domain->updated = true;
3493
3494 /* Make changes visible to IOMMUs */
3495 update_domain(domain);
3496
3497 /* Page-table is not visible to IOMMU anymore, so free it */
3498 free_pagetable(domain);
3499
3500 spin_unlock_irqrestore(&domain->lock, flags);
3501}
3502EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3503
3504int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3505{
3506 struct protection_domain *domain = dom->priv;
3507 unsigned long flags;
3508 int levels, ret;
3509
3510 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3511 return -EINVAL;
3512
3513 /* Number of GCR3 table levels required */
3514 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3515 levels += 1;
3516
3517 if (levels > amd_iommu_max_glx_val)
3518 return -EINVAL;
3519
3520 spin_lock_irqsave(&domain->lock, flags);
3521
3522 /*
3523 * Save us all sanity checks whether devices already in the
3524 * domain support IOMMUv2. Just force that the domain has no
3525 * devices attached when it is switched into IOMMUv2 mode.
3526 */
3527 ret = -EBUSY;
3528 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3529 goto out;
3530
3531 ret = -ENOMEM;
3532 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3533 if (domain->gcr3_tbl == NULL)
3534 goto out;
3535
3536 domain->glx = levels;
3537 domain->flags |= PD_IOMMUV2_MASK;
3538 domain->updated = true;
3539
3540 update_domain(domain);
3541
3542 ret = 0;
3543
3544out:
3545 spin_unlock_irqrestore(&domain->lock, flags);
3546
3547 return ret;
3548}
3549EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3550
3551static int __flush_pasid(struct protection_domain *domain, int pasid,
3552 u64 address, bool size)
3553{
3554 struct iommu_dev_data *dev_data;
3555 struct iommu_cmd cmd;
3556 int i, ret;
3557
3558 if (!(domain->flags & PD_IOMMUV2_MASK))
3559 return -EINVAL;
3560
3561 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3562
3563 /*
3564 * IOMMU TLB needs to be flushed before Device TLB to
3565 * prevent device TLB refill from IOMMU TLB
3566 */
3567 for (i = 0; i < amd_iommus_present; ++i) {
3568 if (domain->dev_iommu[i] == 0)
3569 continue;
3570
3571 ret = iommu_queue_command(amd_iommus[i], &cmd);
3572 if (ret != 0)
3573 goto out;
3574 }
3575
3576 /* Wait until IOMMU TLB flushes are complete */
3577 domain_flush_complete(domain);
3578
3579 /* Now flush device TLBs */
3580 list_for_each_entry(dev_data, &domain->dev_list, list) {
3581 struct amd_iommu *iommu;
3582 int qdep;
3583
3584 BUG_ON(!dev_data->ats.enabled);
3585
3586 qdep = dev_data->ats.qdep;
3587 iommu = amd_iommu_rlookup_table[dev_data->devid];
3588
3589 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3590 qdep, address, size);
3591
3592 ret = iommu_queue_command(iommu, &cmd);
3593 if (ret != 0)
3594 goto out;
3595 }
3596
3597 /* Wait until all device TLBs are flushed */
3598 domain_flush_complete(domain);
3599
3600 ret = 0;
3601
3602out:
3603
3604 return ret;
3605}
3606
3607static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3608 u64 address)
3609{
399be2f5
JR
3610 INC_STATS_COUNTER(invalidate_iotlb);
3611
22e266c7
JR
3612 return __flush_pasid(domain, pasid, address, false);
3613}
3614
3615int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3616 u64 address)
3617{
3618 struct protection_domain *domain = dom->priv;
3619 unsigned long flags;
3620 int ret;
3621
3622 spin_lock_irqsave(&domain->lock, flags);
3623 ret = __amd_iommu_flush_page(domain, pasid, address);
3624 spin_unlock_irqrestore(&domain->lock, flags);
3625
3626 return ret;
3627}
3628EXPORT_SYMBOL(amd_iommu_flush_page);
3629
3630static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3631{
399be2f5
JR
3632 INC_STATS_COUNTER(invalidate_iotlb_all);
3633
22e266c7
JR
3634 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3635 true);
3636}
3637
3638int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3639{
3640 struct protection_domain *domain = dom->priv;
3641 unsigned long flags;
3642 int ret;
3643
3644 spin_lock_irqsave(&domain->lock, flags);
3645 ret = __amd_iommu_flush_tlb(domain, pasid);
3646 spin_unlock_irqrestore(&domain->lock, flags);
3647
3648 return ret;
3649}
3650EXPORT_SYMBOL(amd_iommu_flush_tlb);
3651
b16137b1
JR
3652static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3653{
3654 int index;
3655 u64 *pte;
3656
3657 while (true) {
3658
3659 index = (pasid >> (9 * level)) & 0x1ff;
3660 pte = &root[index];
3661
3662 if (level == 0)
3663 break;
3664
3665 if (!(*pte & GCR3_VALID)) {
3666 if (!alloc)
3667 return NULL;
3668
3669 root = (void *)get_zeroed_page(GFP_ATOMIC);
3670 if (root == NULL)
3671 return NULL;
3672
3673 *pte = __pa(root) | GCR3_VALID;
3674 }
3675
3676 root = __va(*pte & PAGE_MASK);
3677
3678 level -= 1;
3679 }
3680
3681 return pte;
3682}
3683
3684static int __set_gcr3(struct protection_domain *domain, int pasid,
3685 unsigned long cr3)
3686{
3687 u64 *pte;
3688
3689 if (domain->mode != PAGE_MODE_NONE)
3690 return -EINVAL;
3691
3692 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3693 if (pte == NULL)
3694 return -ENOMEM;
3695
3696 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3697
3698 return __amd_iommu_flush_tlb(domain, pasid);
3699}
3700
3701static int __clear_gcr3(struct protection_domain *domain, int pasid)
3702{
3703 u64 *pte;
3704
3705 if (domain->mode != PAGE_MODE_NONE)
3706 return -EINVAL;
3707
3708 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3709 if (pte == NULL)
3710 return 0;
3711
3712 *pte = 0;
3713
3714 return __amd_iommu_flush_tlb(domain, pasid);
3715}
3716
3717int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3718 unsigned long cr3)
3719{
3720 struct protection_domain *domain = dom->priv;
3721 unsigned long flags;
3722 int ret;
3723
3724 spin_lock_irqsave(&domain->lock, flags);
3725 ret = __set_gcr3(domain, pasid, cr3);
3726 spin_unlock_irqrestore(&domain->lock, flags);
3727
3728 return ret;
3729}
3730EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3731
3732int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3733{
3734 struct protection_domain *domain = dom->priv;
3735 unsigned long flags;
3736 int ret;
3737
3738 spin_lock_irqsave(&domain->lock, flags);
3739 ret = __clear_gcr3(domain, pasid);
3740 spin_unlock_irqrestore(&domain->lock, flags);
3741
3742 return ret;
3743}
3744EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3745
3746int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3747 int status, int tag)
3748{
3749 struct iommu_dev_data *dev_data;
3750 struct amd_iommu *iommu;
3751 struct iommu_cmd cmd;
3752
399be2f5
JR
3753 INC_STATS_COUNTER(complete_ppr);
3754
c99afa25
JR
3755 dev_data = get_dev_data(&pdev->dev);
3756 iommu = amd_iommu_rlookup_table[dev_data->devid];
3757
3758 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3759 tag, dev_data->pri_tlp);
3760
3761 return iommu_queue_command(iommu, &cmd);
3762}
3763EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3764
3765struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3766{
3767 struct protection_domain *domain;
3768
3769 domain = get_domain(&pdev->dev);
3770 if (IS_ERR(domain))
3771 return NULL;
3772
3773 /* Only return IOMMUv2 domains */
3774 if (!(domain->flags & PD_IOMMUV2_MASK))
3775 return NULL;
3776
3777 return domain->iommu_domain;
3778}
3779EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3780
3781void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3782{
3783 struct iommu_dev_data *dev_data;
3784
3785 if (!amd_iommu_v2_supported())
3786 return;
3787
3788 dev_data = get_dev_data(&pdev->dev);
3789 dev_data->errata |= (1 << erratum);
3790}
3791EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3792
3793int amd_iommu_device_info(struct pci_dev *pdev,
3794 struct amd_iommu_device_info *info)
3795{
3796 int max_pasids;
3797 int pos;
3798
3799 if (pdev == NULL || info == NULL)
3800 return -EINVAL;
3801
3802 if (!amd_iommu_v2_supported())
3803 return -EINVAL;
3804
3805 memset(info, 0, sizeof(*info));
3806
3807 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3808 if (pos)
3809 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3810
3811 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3812 if (pos)
3813 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3814
3815 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3816 if (pos) {
3817 int features;
3818
3819 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3820 max_pasids = min(max_pasids, (1 << 20));
3821
3822 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3823 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3824
3825 features = pci_pasid_features(pdev);
3826 if (features & PCI_PASID_CAP_EXEC)
3827 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3828 if (features & PCI_PASID_CAP_PRIV)
3829 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3830 }
3831
3832 return 0;
3833}
3834EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3835
3836#ifdef CONFIG_IRQ_REMAP
3837
3838/*****************************************************************************
3839 *
3840 * Interrupt Remapping Implementation
3841 *
3842 *****************************************************************************/
3843
3844union irte {
3845 u32 val;
3846 struct {
3847 u32 valid : 1,
3848 no_fault : 1,
3849 int_type : 3,
3850 rq_eoi : 1,
3851 dm : 1,
3852 rsvd_1 : 1,
3853 destination : 8,
3854 vector : 8,
3855 rsvd_2 : 8;
3856 } fields;
3857};
3858
3859#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3860#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3861#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3862#define DTE_IRQ_REMAP_ENABLE 1ULL
3863
3864static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3865{
3866 u64 dte;
3867
3868 dte = amd_iommu_dev_table[devid].data[2];
3869 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3870 dte |= virt_to_phys(table->table);
3871 dte |= DTE_IRQ_REMAP_INTCTL;
3872 dte |= DTE_IRQ_TABLE_LEN;
3873 dte |= DTE_IRQ_REMAP_ENABLE;
3874
3875 amd_iommu_dev_table[devid].data[2] = dte;
3876}
3877
3878#define IRTE_ALLOCATED (~1U)
3879
3880static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3881{
3882 struct irq_remap_table *table = NULL;
3883 struct amd_iommu *iommu;
3884 unsigned long flags;
3885 u16 alias;
3886
3887 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3888
3889 iommu = amd_iommu_rlookup_table[devid];
3890 if (!iommu)
3891 goto out_unlock;
3892
3893 table = irq_lookup_table[devid];
3894 if (table)
3895 goto out;
3896
3897 alias = amd_iommu_alias_table[devid];
3898 table = irq_lookup_table[alias];
3899 if (table) {
3900 irq_lookup_table[devid] = table;
3901 set_dte_irq_entry(devid, table);
3902 iommu_flush_dte(iommu, devid);
3903 goto out;
3904 }
3905
3906 /* Nothing there yet, allocate new irq remapping table */
3907 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3908 if (!table)
3909 goto out;
3910
197887f0
JR
3911 /* Initialize table spin-lock */
3912 spin_lock_init(&table->lock);
3913
2b324506
JR
3914 if (ioapic)
3915 /* Keep the first 32 indexes free for IOAPIC interrupts */
3916 table->min_index = 32;
3917
3918 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3919 if (!table->table) {
3920 kfree(table);
821f0f68 3921 table = NULL;
2b324506
JR
3922 goto out;
3923 }
3924
3925 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3926
3927 if (ioapic) {
3928 int i;
3929
3930 for (i = 0; i < 32; ++i)
3931 table->table[i] = IRTE_ALLOCATED;
3932 }
3933
3934 irq_lookup_table[devid] = table;
3935 set_dte_irq_entry(devid, table);
3936 iommu_flush_dte(iommu, devid);
3937 if (devid != alias) {
3938 irq_lookup_table[alias] = table;
e028a9e6 3939 set_dte_irq_entry(alias, table);
2b324506
JR
3940 iommu_flush_dte(iommu, alias);
3941 }
3942
3943out:
3944 iommu_completion_wait(iommu);
3945
3946out_unlock:
3947 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3948
3949 return table;
3950}
3951
3952static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3953{
3954 struct irq_remap_table *table;
3955 unsigned long flags;
3956 int index, c;
3957
3958 table = get_irq_table(devid, false);
3959 if (!table)
3960 return -ENODEV;
3961
3962 spin_lock_irqsave(&table->lock, flags);
3963
3964 /* Scan table for free entries */
3965 for (c = 0, index = table->min_index;
3966 index < MAX_IRQS_PER_TABLE;
3967 ++index) {
3968 if (table->table[index] == 0)
3969 c += 1;
3970 else
3971 c = 0;
3972
3973 if (c == count) {
0dfedd61 3974 struct irq_2_irte *irte_info;
2b324506
JR
3975
3976 for (; c != 0; --c)
3977 table->table[index - c + 1] = IRTE_ALLOCATED;
3978
3979 index -= count - 1;
3980
9b1b0e42 3981 cfg->remapped = 1;
0dfedd61
JR
3982 irte_info = &cfg->irq_2_irte;
3983 irte_info->devid = devid;
3984 irte_info->index = index;
2b324506
JR
3985
3986 goto out;
3987 }
3988 }
3989
3990 index = -ENOSPC;
3991
3992out:
3993 spin_unlock_irqrestore(&table->lock, flags);
3994
3995 return index;
3996}
3997
3998static int get_irte(u16 devid, int index, union irte *irte)
3999{
4000 struct irq_remap_table *table;
4001 unsigned long flags;
4002
4003 table = get_irq_table(devid, false);
4004 if (!table)
4005 return -ENOMEM;
4006
4007 spin_lock_irqsave(&table->lock, flags);
4008 irte->val = table->table[index];
4009 spin_unlock_irqrestore(&table->lock, flags);
4010
4011 return 0;
4012}
4013
4014static int modify_irte(u16 devid, int index, union irte irte)
4015{
4016 struct irq_remap_table *table;
4017 struct amd_iommu *iommu;
4018 unsigned long flags;
4019
4020 iommu = amd_iommu_rlookup_table[devid];
4021 if (iommu == NULL)
4022 return -EINVAL;
4023
4024 table = get_irq_table(devid, false);
4025 if (!table)
4026 return -ENOMEM;
4027
4028 spin_lock_irqsave(&table->lock, flags);
4029 table->table[index] = irte.val;
4030 spin_unlock_irqrestore(&table->lock, flags);
4031
4032 iommu_flush_irt(iommu, devid);
4033 iommu_completion_wait(iommu);
4034
4035 return 0;
4036}
4037
4038static void free_irte(u16 devid, int index)
4039{
4040 struct irq_remap_table *table;
4041 struct amd_iommu *iommu;
4042 unsigned long flags;
4043
4044 iommu = amd_iommu_rlookup_table[devid];
4045 if (iommu == NULL)
4046 return;
4047
4048 table = get_irq_table(devid, false);
4049 if (!table)
4050 return;
4051
4052 spin_lock_irqsave(&table->lock, flags);
4053 table->table[index] = 0;
4054 spin_unlock_irqrestore(&table->lock, flags);
4055
4056 iommu_flush_irt(iommu, devid);
4057 iommu_completion_wait(iommu);
4058}
4059
5527de74
JR
4060static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4061 unsigned int destination, int vector,
4062 struct io_apic_irq_attr *attr)
4063{
4064 struct irq_remap_table *table;
0dfedd61 4065 struct irq_2_irte *irte_info;
5527de74
JR
4066 struct irq_cfg *cfg;
4067 union irte irte;
4068 int ioapic_id;
4069 int index;
4070 int devid;
4071 int ret;
4072
4073 cfg = irq_get_chip_data(irq);
4074 if (!cfg)
4075 return -EINVAL;
4076
0dfedd61 4077 irte_info = &cfg->irq_2_irte;
5527de74
JR
4078 ioapic_id = mpc_ioapic_id(attr->ioapic);
4079 devid = get_ioapic_devid(ioapic_id);
4080
4081 if (devid < 0)
4082 return devid;
4083
4084 table = get_irq_table(devid, true);
4085 if (table == NULL)
4086 return -ENOMEM;
4087
4088 index = attr->ioapic_pin;
4089
4090 /* Setup IRQ remapping info */
9b1b0e42 4091 cfg->remapped = 1;
0dfedd61
JR
4092 irte_info->devid = devid;
4093 irte_info->index = index;
5527de74
JR
4094
4095 /* Setup IRTE for IOMMU */
4096 irte.val = 0;
4097 irte.fields.vector = vector;
4098 irte.fields.int_type = apic->irq_delivery_mode;
4099 irte.fields.destination = destination;
4100 irte.fields.dm = apic->irq_dest_mode;
4101 irte.fields.valid = 1;
4102
4103 ret = modify_irte(devid, index, irte);
4104 if (ret)
4105 return ret;
4106
4107 /* Setup IOAPIC entry */
4108 memset(entry, 0, sizeof(*entry));
4109
4110 entry->vector = index;
4111 entry->mask = 0;
4112 entry->trigger = attr->trigger;
4113 entry->polarity = attr->polarity;
4114
4115 /*
4116 * Mask level triggered irqs.
5527de74
JR
4117 */
4118 if (attr->trigger)
4119 entry->mask = 1;
4120
4121 return 0;
4122}
4123
4124static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4125 bool force)
4126{
0dfedd61 4127 struct irq_2_irte *irte_info;
5527de74
JR
4128 unsigned int dest, irq;
4129 struct irq_cfg *cfg;
4130 union irte irte;
4131 int err;
4132
4133 if (!config_enabled(CONFIG_SMP))
4134 return -1;
4135
4136 cfg = data->chip_data;
4137 irq = data->irq;
0dfedd61 4138 irte_info = &cfg->irq_2_irte;
5527de74
JR
4139
4140 if (!cpumask_intersects(mask, cpu_online_mask))
4141 return -EINVAL;
4142
0dfedd61 4143 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4144 return -EBUSY;
4145
4146 if (assign_irq_vector(irq, cfg, mask))
4147 return -EBUSY;
4148
4149 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4150 if (err) {
4151 if (assign_irq_vector(irq, cfg, data->affinity))
4152 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4153 return err;
4154 }
4155
4156 irte.fields.vector = cfg->vector;
4157 irte.fields.destination = dest;
4158
0dfedd61 4159 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4160
4161 if (cfg->move_in_progress)
4162 send_cleanup_vector(cfg);
4163
4164 cpumask_copy(data->affinity, mask);
4165
4166 return 0;
4167}
4168
4169static int free_irq(int irq)
4170{
0dfedd61 4171 struct irq_2_irte *irte_info;
5527de74
JR
4172 struct irq_cfg *cfg;
4173
4174 cfg = irq_get_chip_data(irq);
4175 if (!cfg)
4176 return -EINVAL;
4177
0dfedd61 4178 irte_info = &cfg->irq_2_irte;
5527de74 4179
0dfedd61 4180 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4181
4182 return 0;
4183}
4184
0b4d48cb
JR
4185static void compose_msi_msg(struct pci_dev *pdev,
4186 unsigned int irq, unsigned int dest,
4187 struct msi_msg *msg, u8 hpet_id)
4188{
0dfedd61 4189 struct irq_2_irte *irte_info;
0b4d48cb
JR
4190 struct irq_cfg *cfg;
4191 union irte irte;
4192
4193 cfg = irq_get_chip_data(irq);
4194 if (!cfg)
4195 return;
4196
0dfedd61 4197 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4198
4199 irte.val = 0;
4200 irte.fields.vector = cfg->vector;
4201 irte.fields.int_type = apic->irq_delivery_mode;
4202 irte.fields.destination = dest;
4203 irte.fields.dm = apic->irq_dest_mode;
4204 irte.fields.valid = 1;
4205
0dfedd61 4206 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4207
4208 msg->address_hi = MSI_ADDR_BASE_HI;
4209 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4210 msg->data = irte_info->index;
0b4d48cb
JR
4211}
4212
4213static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4214{
4215 struct irq_cfg *cfg;
4216 int index;
4217 u16 devid;
4218
4219 if (!pdev)
4220 return -EINVAL;
4221
4222 cfg = irq_get_chip_data(irq);
4223 if (!cfg)
4224 return -EINVAL;
4225
4226 devid = get_device_id(&pdev->dev);
4227 index = alloc_irq_index(cfg, devid, nvec);
4228
4229 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4230}
4231
4232static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4233 int index, int offset)
4234{
0dfedd61 4235 struct irq_2_irte *irte_info;
0b4d48cb
JR
4236 struct irq_cfg *cfg;
4237 u16 devid;
4238
4239 if (!pdev)
4240 return -EINVAL;
4241
4242 cfg = irq_get_chip_data(irq);
4243 if (!cfg)
4244 return -EINVAL;
4245
4246 if (index >= MAX_IRQS_PER_TABLE)
4247 return 0;
4248
4249 devid = get_device_id(&pdev->dev);
0dfedd61 4250 irte_info = &cfg->irq_2_irte;
0b4d48cb 4251
9b1b0e42 4252 cfg->remapped = 1;
0dfedd61
JR
4253 irte_info->devid = devid;
4254 irte_info->index = index + offset;
0b4d48cb
JR
4255
4256 return 0;
4257}
4258
d976195c
JR
4259static int setup_hpet_msi(unsigned int irq, unsigned int id)
4260{
0dfedd61 4261 struct irq_2_irte *irte_info;
d976195c
JR
4262 struct irq_cfg *cfg;
4263 int index, devid;
4264
4265 cfg = irq_get_chip_data(irq);
4266 if (!cfg)
4267 return -EINVAL;
4268
0dfedd61 4269 irte_info = &cfg->irq_2_irte;
d976195c
JR
4270 devid = get_hpet_devid(id);
4271 if (devid < 0)
4272 return devid;
4273
4274 index = alloc_irq_index(cfg, devid, 1);
4275 if (index < 0)
4276 return index;
4277
9b1b0e42 4278 cfg->remapped = 1;
0dfedd61
JR
4279 irte_info->devid = devid;
4280 irte_info->index = index;
d976195c
JR
4281
4282 return 0;
4283}
4284
6b474b82
JR
4285struct irq_remap_ops amd_iommu_irq_ops = {
4286 .supported = amd_iommu_supported,
4287 .prepare = amd_iommu_prepare,
4288 .enable = amd_iommu_enable,
4289 .disable = amd_iommu_disable,
4290 .reenable = amd_iommu_reenable,
4291 .enable_faulting = amd_iommu_enable_faulting,
4292 .setup_ioapic_entry = setup_ioapic_entry,
4293 .set_affinity = set_affinity,
4294 .free_irq = free_irq,
4295 .compose_msi_msg = compose_msi_msg,
4296 .msi_alloc_irq = msi_alloc_irq,
4297 .msi_setup_irq = msi_setup_irq,
4298 .setup_hpet_msi = setup_hpet_msi,
4299};
2b324506 4300#endif