]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Optimize alloc_new_range for new fetch_pte interface
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
2b324506
JR
37#include <asm/irq_remapping.h>
38#include <asm/io_apic.h>
39#include <asm/apic.h>
40#include <asm/hw_irq.h>
17f5b569 41#include <asm/msidef.h>
b6c02715 42#include <asm/proto.h>
46a7fa27 43#include <asm/iommu.h>
1d9b16d1 44#include <asm/gart.h>
27c2127a 45#include <asm/dma.h>
403f81d8
JR
46
47#include "amd_iommu_proto.h"
48#include "amd_iommu_types.h"
6b474b82 49#include "irq_remapping.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
b22f6434 84static const struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
50917e26
JR
91/*
92 * This struct contains device specific data for the IOMMU
93 */
94struct iommu_dev_data {
95 struct list_head list; /* For domain->dev_list */
96 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 97 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
98 struct iommu_dev_data *alias_data;/* The alias dev_data */
99 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
100 u16 devid; /* PCI Device ID */
101 bool iommu_v2; /* Device can make use of IOMMUv2 */
102 bool passthrough; /* Default for device is pt_domain */
103 struct {
104 bool enabled;
105 int qdep;
106 } ats; /* ATS state */
107 bool pri_tlp; /* PASID TLB required for
108 PPR completions */
109 u32 errata; /* Bitmap for errata to apply */
110};
111
431b2a20
JR
112/*
113 * general struct to manage commands send to an IOMMU
114 */
d6449536 115struct iommu_cmd {
b6c02715
JR
116 u32 data[4];
117};
118
05152a04
JR
119struct kmem_cache *amd_iommu_irq_cache;
120
04bfdd84 121static void update_domain(struct protection_domain *domain);
5abcdba4 122static int __init alloc_passthrough_domain(void);
c1eee67b 123
15898bbc
JR
124/****************************************************************************
125 *
126 * Helper functions
127 *
128 ****************************************************************************/
129
f62dda66 130static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
131{
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
f251e187
JR
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
f62dda66 141 dev_data->devid = devid;
8fa5f802
JR
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
145 spin_unlock_irqrestore(&dev_data_list_lock, flags);
146
147 return dev_data;
148}
149
150static void free_dev_data(struct iommu_dev_data *dev_data)
151{
152 unsigned long flags;
153
154 spin_lock_irqsave(&dev_data_list_lock, flags);
155 list_del(&dev_data->dev_data_list);
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 kfree(dev_data);
159}
160
3b03bb74
JR
161static struct iommu_dev_data *search_dev_data(u16 devid)
162{
163 struct iommu_dev_data *dev_data;
164 unsigned long flags;
165
166 spin_lock_irqsave(&dev_data_list_lock, flags);
167 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
168 if (dev_data->devid == devid)
169 goto out_unlock;
170 }
171
172 dev_data = NULL;
173
174out_unlock:
175 spin_unlock_irqrestore(&dev_data_list_lock, flags);
176
177 return dev_data;
178}
179
180static struct iommu_dev_data *find_dev_data(u16 devid)
181{
182 struct iommu_dev_data *dev_data;
183
184 dev_data = search_dev_data(devid);
185
186 if (dev_data == NULL)
187 dev_data = alloc_dev_data(devid);
188
189 return dev_data;
190}
191
15898bbc
JR
192static inline u16 get_device_id(struct device *dev)
193{
194 struct pci_dev *pdev = to_pci_dev(dev);
195
6f2729ba 196 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
197}
198
657cbb6b
JR
199static struct iommu_dev_data *get_dev_data(struct device *dev)
200{
201 return dev->archdata.iommu;
202}
203
5abcdba4
JR
204static bool pci_iommuv2_capable(struct pci_dev *pdev)
205{
206 static const int caps[] = {
207 PCI_EXT_CAP_ID_ATS,
46277b75
JR
208 PCI_EXT_CAP_ID_PRI,
209 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
210 };
211 int i, pos;
212
213 for (i = 0; i < 3; ++i) {
214 pos = pci_find_ext_capability(pdev, caps[i]);
215 if (pos == 0)
216 return false;
217 }
218
219 return true;
220}
221
6a113ddc
JR
222static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
223{
224 struct iommu_dev_data *dev_data;
225
226 dev_data = get_dev_data(&pdev->dev);
227
228 return dev_data->errata & (1 << erratum) ? true : false;
229}
230
71c70984
JR
231/*
232 * In this function the list of preallocated protection domains is traversed to
233 * find the domain for a specific device
234 */
235static struct dma_ops_domain *find_protection_domain(u16 devid)
236{
237 struct dma_ops_domain *entry, *ret = NULL;
238 unsigned long flags;
239 u16 alias = amd_iommu_alias_table[devid];
240
241 if (list_empty(&iommu_pd_list))
242 return NULL;
243
244 spin_lock_irqsave(&iommu_pd_list_lock, flags);
245
246 list_for_each_entry(entry, &iommu_pd_list, list) {
247 if (entry->target_dev == devid ||
248 entry->target_dev == alias) {
249 ret = entry;
250 break;
251 }
252 }
253
254 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
255
256 return ret;
257}
258
98fc5a69
JR
259/*
260 * This function checks if the driver got a valid device from the caller to
261 * avoid dereferencing invalid pointers.
262 */
263static bool check_device(struct device *dev)
264{
265 u16 devid;
266
267 if (!dev || !dev->dma_mask)
268 return false;
269
b82a2272
YW
270 /* No PCI device */
271 if (!dev_is_pci(dev))
98fc5a69
JR
272 return false;
273
274 devid = get_device_id(dev);
275
276 /* Out of our scope? */
277 if (devid > amd_iommu_last_bdf)
278 return false;
279
280 if (amd_iommu_rlookup_table[devid] == NULL)
281 return false;
282
283 return true;
284}
285
25b11ce2 286static void init_iommu_group(struct device *dev)
2851db21 287{
2851db21 288 struct iommu_group *group;
2851db21 289
65d5352f 290 group = iommu_group_get_for_dev(dev);
25b11ce2
AW
291 if (!IS_ERR(group))
292 iommu_group_put(group);
eb9c9527
AW
293}
294
c1931090
AW
295static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
296{
297 *(u16 *)data = alias;
298 return 0;
299}
300
301static u16 get_alias(struct device *dev)
302{
303 struct pci_dev *pdev = to_pci_dev(dev);
304 u16 devid, ivrs_alias, pci_alias;
305
306 devid = get_device_id(dev);
307 ivrs_alias = amd_iommu_alias_table[devid];
308 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
309
310 if (ivrs_alias == pci_alias)
311 return ivrs_alias;
312
313 /*
314 * DMA alias showdown
315 *
316 * The IVRS is fairly reliable in telling us about aliases, but it
317 * can't know about every screwy device. If we don't have an IVRS
318 * reported alias, use the PCI reported alias. In that case we may
319 * still need to initialize the rlookup and dev_table entries if the
320 * alias is to a non-existent device.
321 */
322 if (ivrs_alias == devid) {
323 if (!amd_iommu_rlookup_table[pci_alias]) {
324 amd_iommu_rlookup_table[pci_alias] =
325 amd_iommu_rlookup_table[devid];
326 memcpy(amd_iommu_dev_table[pci_alias].data,
327 amd_iommu_dev_table[devid].data,
328 sizeof(amd_iommu_dev_table[pci_alias].data));
329 }
330
331 return pci_alias;
332 }
333
334 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
335 "for device %s[%04x:%04x], kernel reported alias "
336 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
337 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
338 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
339 PCI_FUNC(pci_alias));
340
341 /*
342 * If we don't have a PCI DMA alias and the IVRS alias is on the same
343 * bus, then the IVRS table may know about a quirk that we don't.
344 */
345 if (pci_alias == devid &&
346 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
347 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
348 pdev->dma_alias_devfn = ivrs_alias & 0xff;
349 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
350 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
351 dev_name(dev));
352 }
353
354 return ivrs_alias;
355}
356
eb9c9527
AW
357static int iommu_init_device(struct device *dev)
358{
359 struct pci_dev *pdev = to_pci_dev(dev);
360 struct iommu_dev_data *dev_data;
361 u16 alias;
eb9c9527
AW
362
363 if (dev->archdata.iommu)
364 return 0;
365
366 dev_data = find_dev_data(get_device_id(dev));
367 if (!dev_data)
368 return -ENOMEM;
369
c1931090
AW
370 alias = get_alias(dev);
371
eb9c9527
AW
372 if (alias != dev_data->devid) {
373 struct iommu_dev_data *alias_data;
374
375 alias_data = find_dev_data(alias);
376 if (alias_data == NULL) {
377 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
378 dev_name(dev));
379 free_dev_data(dev_data);
380 return -ENOTSUPP;
381 }
382 dev_data->alias_data = alias_data;
eb9c9527 383
f251e187
JR
384 /* Add device to the alias_list */
385 list_add(&dev_data->alias_list, &alias_data->alias_list);
e644a013 386 }
9dcd6130 387
5abcdba4
JR
388 if (pci_iommuv2_capable(pdev)) {
389 struct amd_iommu *iommu;
390
391 iommu = amd_iommu_rlookup_table[dev_data->devid];
392 dev_data->iommu_v2 = iommu->is_iommu_v2;
393 }
394
657cbb6b
JR
395 dev->archdata.iommu = dev_data;
396
066f2e98
AW
397 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
398 dev);
399
657cbb6b
JR
400 return 0;
401}
402
26018874
JR
403static void iommu_ignore_device(struct device *dev)
404{
405 u16 devid, alias;
406
407 devid = get_device_id(dev);
408 alias = amd_iommu_alias_table[devid];
409
410 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
411 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
412
413 amd_iommu_rlookup_table[devid] = NULL;
414 amd_iommu_rlookup_table[alias] = NULL;
415}
416
657cbb6b
JR
417static void iommu_uninit_device(struct device *dev)
418{
c1931090
AW
419 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
420
421 if (!dev_data)
422 return;
423
066f2e98
AW
424 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
425 dev);
426
9dcd6130
AW
427 iommu_group_remove_device(dev);
428
c1931090
AW
429 /* Unlink from alias, it may change if another device is re-plugged */
430 dev_data->alias_data = NULL;
431
8fa5f802 432 /*
c1931090
AW
433 * We keep dev_data around for unplugged devices and reuse it when the
434 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 435 */
657cbb6b 436}
b7cc9554
JR
437
438void __init amd_iommu_uninit_devices(void)
439{
8fa5f802 440 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
441 struct pci_dev *pdev = NULL;
442
443 for_each_pci_dev(pdev) {
444
445 if (!check_device(&pdev->dev))
446 continue;
447
448 iommu_uninit_device(&pdev->dev);
449 }
8fa5f802
JR
450
451 /* Free all of our dev_data structures */
452 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
453 free_dev_data(dev_data);
b7cc9554
JR
454}
455
456int __init amd_iommu_init_devices(void)
457{
458 struct pci_dev *pdev = NULL;
459 int ret = 0;
460
461 for_each_pci_dev(pdev) {
462
463 if (!check_device(&pdev->dev))
464 continue;
465
466 ret = iommu_init_device(&pdev->dev);
26018874
JR
467 if (ret == -ENOTSUPP)
468 iommu_ignore_device(&pdev->dev);
469 else if (ret)
b7cc9554
JR
470 goto out_free;
471 }
472
25b11ce2
AW
473 /*
474 * Initialize IOMMU groups only after iommu_init_device() has
475 * had a chance to populate any IVRS defined aliases.
476 */
477 for_each_pci_dev(pdev) {
478 if (check_device(&pdev->dev))
479 init_iommu_group(&pdev->dev);
480 }
481
b7cc9554
JR
482 return 0;
483
484out_free:
485
486 amd_iommu_uninit_devices();
487
488 return ret;
489}
7f26508b
JR
490#ifdef CONFIG_AMD_IOMMU_STATS
491
492/*
493 * Initialization code for statistics collection
494 */
495
da49f6df 496DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 497DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 498DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 499DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 500DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 501DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 502DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 503DECLARE_STATS_COUNTER(cross_page);
f57d98ae 504DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 505DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 506DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 507DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
508DECLARE_STATS_COUNTER(complete_ppr);
509DECLARE_STATS_COUNTER(invalidate_iotlb);
510DECLARE_STATS_COUNTER(invalidate_iotlb_all);
511DECLARE_STATS_COUNTER(pri_requests);
512
7f26508b 513static struct dentry *stats_dir;
7f26508b
JR
514static struct dentry *de_fflush;
515
516static void amd_iommu_stats_add(struct __iommu_counter *cnt)
517{
518 if (stats_dir == NULL)
519 return;
520
521 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
522 &cnt->value);
523}
524
525static void amd_iommu_stats_init(void)
526{
527 stats_dir = debugfs_create_dir("amd-iommu", NULL);
528 if (stats_dir == NULL)
529 return;
530
7f26508b 531 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 532 &amd_iommu_unmap_flush);
da49f6df
JR
533
534 amd_iommu_stats_add(&compl_wait);
0f2a86f2 535 amd_iommu_stats_add(&cnt_map_single);
146a6917 536 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 537 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 538 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 539 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 540 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 541 amd_iommu_stats_add(&cross_page);
f57d98ae 542 amd_iommu_stats_add(&domain_flush_single);
18811f55 543 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 544 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 545 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
546 amd_iommu_stats_add(&complete_ppr);
547 amd_iommu_stats_add(&invalidate_iotlb);
548 amd_iommu_stats_add(&invalidate_iotlb_all);
549 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
550}
551
552#endif
553
a80dc3e0
JR
554/****************************************************************************
555 *
556 * Interrupt handling functions
557 *
558 ****************************************************************************/
559
e3e59876
JR
560static void dump_dte_entry(u16 devid)
561{
562 int i;
563
ee6c2868
JR
564 for (i = 0; i < 4; ++i)
565 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
566 amd_iommu_dev_table[devid].data[i]);
567}
568
945b4ac4
JR
569static void dump_command(unsigned long phys_addr)
570{
571 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
572 int i;
573
574 for (i = 0; i < 4; ++i)
575 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
576}
577
a345b23b 578static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 579{
3d06fca8
JR
580 int type, devid, domid, flags;
581 volatile u32 *event = __evt;
582 int count = 0;
583 u64 address;
584
585retry:
586 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
587 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
588 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
589 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
590 address = (u64)(((u64)event[3]) << 32) | event[2];
591
592 if (type == 0) {
593 /* Did we hit the erratum? */
594 if (++count == LOOP_TIMEOUT) {
595 pr_err("AMD-Vi: No event written to event log\n");
596 return;
597 }
598 udelay(1);
599 goto retry;
600 }
90008ee4 601
4c6f40d4 602 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
603
604 switch (type) {
605 case EVENT_TYPE_ILL_DEV:
606 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
607 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 608 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 609 address, flags);
e3e59876 610 dump_dte_entry(devid);
90008ee4
JR
611 break;
612 case EVENT_TYPE_IO_FAULT:
613 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
614 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
616 domid, address, flags);
617 break;
618 case EVENT_TYPE_DEV_TAB_ERR:
619 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
620 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
622 address, flags);
623 break;
624 case EVENT_TYPE_PAGE_TAB_ERR:
625 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
626 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
628 domid, address, flags);
629 break;
630 case EVENT_TYPE_ILL_CMD:
631 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 632 dump_command(address);
90008ee4
JR
633 break;
634 case EVENT_TYPE_CMD_HARD_ERR:
635 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
636 "flags=0x%04x]\n", address, flags);
637 break;
638 case EVENT_TYPE_IOTLB_INV_TO:
639 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
640 "address=0x%016llx]\n",
c5081cd7 641 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
642 address);
643 break;
644 case EVENT_TYPE_INV_DEV_REQ:
645 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
646 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 647 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
648 address, flags);
649 break;
650 default:
651 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
652 }
3d06fca8
JR
653
654 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
655}
656
657static void iommu_poll_events(struct amd_iommu *iommu)
658{
659 u32 head, tail;
90008ee4
JR
660
661 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
662 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
663
664 while (head != tail) {
a345b23b 665 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
666 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
667 }
668
669 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
670}
671
eee53537 672static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
673{
674 struct amd_iommu_fault fault;
72e1dcc4 675
399be2f5
JR
676 INC_STATS_COUNTER(pri_requests);
677
72e1dcc4
JR
678 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
679 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
680 return;
681 }
682
683 fault.address = raw[1];
684 fault.pasid = PPR_PASID(raw[0]);
685 fault.device_id = PPR_DEVID(raw[0]);
686 fault.tag = PPR_TAG(raw[0]);
687 fault.flags = PPR_FLAGS(raw[0]);
688
72e1dcc4
JR
689 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
690}
691
692static void iommu_poll_ppr_log(struct amd_iommu *iommu)
693{
72e1dcc4
JR
694 u32 head, tail;
695
696 if (iommu->ppr_log == NULL)
697 return;
698
72e1dcc4
JR
699 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
701
702 while (head != tail) {
eee53537
JR
703 volatile u64 *raw;
704 u64 entry[2];
705 int i;
706
707 raw = (u64 *)(iommu->ppr_log + head);
708
709 /*
710 * Hardware bug: Interrupt may arrive before the entry is
711 * written to memory. If this happens we need to wait for the
712 * entry to arrive.
713 */
714 for (i = 0; i < LOOP_TIMEOUT; ++i) {
715 if (PPR_REQ_TYPE(raw[0]) != 0)
716 break;
717 udelay(1);
718 }
72e1dcc4 719
eee53537
JR
720 /* Avoid memcpy function-call overhead */
721 entry[0] = raw[0];
722 entry[1] = raw[1];
72e1dcc4 723
eee53537
JR
724 /*
725 * To detect the hardware bug we need to clear the entry
726 * back to zero.
727 */
728 raw[0] = raw[1] = 0UL;
729
730 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
731 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
732 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 733
eee53537
JR
734 /* Handle PPR entry */
735 iommu_handle_ppr_entry(iommu, entry);
736
eee53537
JR
737 /* Refresh ring-buffer information */
738 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
739 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
740 }
72e1dcc4
JR
741}
742
72fe00f0 743irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 744{
3f398bc7
SS
745 struct amd_iommu *iommu = (struct amd_iommu *) data;
746 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 747
3f398bc7
SS
748 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
749 /* Enable EVT and PPR interrupts again */
750 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
751 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 752
3f398bc7
SS
753 if (status & MMIO_STATUS_EVT_INT_MASK) {
754 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
755 iommu_poll_events(iommu);
756 }
90008ee4 757
3f398bc7
SS
758 if (status & MMIO_STATUS_PPR_INT_MASK) {
759 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
760 iommu_poll_ppr_log(iommu);
761 }
90008ee4 762
3f398bc7
SS
763 /*
764 * Hardware bug: ERBT1312
765 * When re-enabling interrupt (by writing 1
766 * to clear the bit), the hardware might also try to set
767 * the interrupt bit in the event status register.
768 * In this scenario, the bit will be set, and disable
769 * subsequent interrupts.
770 *
771 * Workaround: The IOMMU driver should read back the
772 * status register and check if the interrupt bits are cleared.
773 * If not, driver will need to go through the interrupt handler
774 * again and re-clear the bits
775 */
776 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777 }
90008ee4 778 return IRQ_HANDLED;
a80dc3e0
JR
779}
780
72fe00f0
JR
781irqreturn_t amd_iommu_int_handler(int irq, void *data)
782{
783 return IRQ_WAKE_THREAD;
784}
785
431b2a20
JR
786/****************************************************************************
787 *
788 * IOMMU command queuing functions
789 *
790 ****************************************************************************/
791
ac0ea6e9
JR
792static int wait_on_sem(volatile u64 *sem)
793{
794 int i = 0;
795
796 while (*sem == 0 && i < LOOP_TIMEOUT) {
797 udelay(1);
798 i += 1;
799 }
800
801 if (i == LOOP_TIMEOUT) {
802 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
803 return -EIO;
804 }
805
806 return 0;
807}
808
809static void copy_cmd_to_buffer(struct amd_iommu *iommu,
810 struct iommu_cmd *cmd,
811 u32 tail)
a19ae1ec 812{
a19ae1ec
JR
813 u8 *target;
814
8a7c5ef3 815 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
816 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
817
818 /* Copy command to buffer */
819 memcpy(target, cmd, sizeof(*cmd));
820
821 /* Tell the IOMMU about it */
a19ae1ec 822 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 823}
a19ae1ec 824
815b33fd 825static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 826{
815b33fd
JR
827 WARN_ON(address & 0x7ULL);
828
ded46737 829 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
830 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
831 cmd->data[1] = upper_32_bits(__pa(address));
832 cmd->data[2] = 1;
ded46737
JR
833 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
834}
835
94fe79e2
JR
836static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
837{
838 memset(cmd, 0, sizeof(*cmd));
839 cmd->data[0] = devid;
840 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
841}
842
11b6402c
JR
843static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
844 size_t size, u16 domid, int pde)
845{
846 u64 pages;
ae0cbbb1 847 bool s;
11b6402c
JR
848
849 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 850 s = false;
11b6402c
JR
851
852 if (pages > 1) {
853 /*
854 * If we have to flush more than one page, flush all
855 * TLB entries for this domain
856 */
857 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 858 s = true;
11b6402c
JR
859 }
860
861 address &= PAGE_MASK;
862
863 memset(cmd, 0, sizeof(*cmd));
864 cmd->data[1] |= domid;
865 cmd->data[2] = lower_32_bits(address);
866 cmd->data[3] = upper_32_bits(address);
867 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
868 if (s) /* size bit - we flush more than one 4kb page */
869 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 870 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
871 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
872}
873
cb41ed85
JR
874static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
875 u64 address, size_t size)
876{
877 u64 pages;
ae0cbbb1 878 bool s;
cb41ed85
JR
879
880 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 881 s = false;
cb41ed85
JR
882
883 if (pages > 1) {
884 /*
885 * If we have to flush more than one page, flush all
886 * TLB entries for this domain
887 */
888 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 889 s = true;
cb41ed85
JR
890 }
891
892 address &= PAGE_MASK;
893
894 memset(cmd, 0, sizeof(*cmd));
895 cmd->data[0] = devid;
896 cmd->data[0] |= (qdep & 0xff) << 24;
897 cmd->data[1] = devid;
898 cmd->data[2] = lower_32_bits(address);
899 cmd->data[3] = upper_32_bits(address);
900 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
901 if (s)
902 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
903}
904
22e266c7
JR
905static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
906 u64 address, bool size)
907{
908 memset(cmd, 0, sizeof(*cmd));
909
910 address &= ~(0xfffULL);
911
a919a018 912 cmd->data[0] = pasid;
22e266c7
JR
913 cmd->data[1] = domid;
914 cmd->data[2] = lower_32_bits(address);
915 cmd->data[3] = upper_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
917 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
921}
922
923static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int qdep, u64 address, bool size)
925{
926 memset(cmd, 0, sizeof(*cmd));
927
928 address &= ~(0xfffULL);
929
930 cmd->data[0] = devid;
e8d2d82d 931 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
932 cmd->data[0] |= (qdep & 0xff) << 24;
933 cmd->data[1] = devid;
e8d2d82d 934 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
935 cmd->data[2] = lower_32_bits(address);
936 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
937 cmd->data[3] = upper_32_bits(address);
938 if (size)
939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
940 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
941}
942
c99afa25
JR
943static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
944 int status, int tag, bool gn)
945{
946 memset(cmd, 0, sizeof(*cmd));
947
948 cmd->data[0] = devid;
949 if (gn) {
a919a018 950 cmd->data[1] = pasid;
c99afa25
JR
951 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
952 }
953 cmd->data[3] = tag & 0x1ff;
954 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
955
956 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
957}
958
58fc7f14
JR
959static void build_inv_all(struct iommu_cmd *cmd)
960{
961 memset(cmd, 0, sizeof(*cmd));
962 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
963}
964
7ef2798d
JR
965static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
966{
967 memset(cmd, 0, sizeof(*cmd));
968 cmd->data[0] = devid;
969 CMD_SET_TYPE(cmd, CMD_INV_IRT);
970}
971
431b2a20 972/*
431b2a20 973 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 974 * hardware about the new command.
431b2a20 975 */
f1ca1512
JR
976static int iommu_queue_command_sync(struct amd_iommu *iommu,
977 struct iommu_cmd *cmd,
978 bool sync)
a19ae1ec 979{
ac0ea6e9 980 u32 left, tail, head, next_tail;
a19ae1ec 981 unsigned long flags;
a19ae1ec 982
549c90dc 983 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
984
985again:
a19ae1ec 986 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 987
ac0ea6e9
JR
988 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
990 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
991 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 992
ac0ea6e9
JR
993 if (left <= 2) {
994 struct iommu_cmd sync_cmd;
995 volatile u64 sem = 0;
996 int ret;
8d201968 997
ac0ea6e9
JR
998 build_completion_wait(&sync_cmd, (u64)&sem);
999 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1000
ac0ea6e9
JR
1001 spin_unlock_irqrestore(&iommu->lock, flags);
1002
1003 if ((ret = wait_on_sem(&sem)) != 0)
1004 return ret;
1005
1006 goto again;
8d201968
JR
1007 }
1008
ac0ea6e9
JR
1009 copy_cmd_to_buffer(iommu, cmd, tail);
1010
1011 /* We need to sync now to make sure all commands are processed */
f1ca1512 1012 iommu->need_sync = sync;
ac0ea6e9 1013
a19ae1ec 1014 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1015
815b33fd 1016 return 0;
8d201968
JR
1017}
1018
f1ca1512
JR
1019static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1020{
1021 return iommu_queue_command_sync(iommu, cmd, true);
1022}
1023
8d201968
JR
1024/*
1025 * This function queues a completion wait command into the command
1026 * buffer of an IOMMU
1027 */
a19ae1ec 1028static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1029{
1030 struct iommu_cmd cmd;
815b33fd 1031 volatile u64 sem = 0;
ac0ea6e9 1032 int ret;
8d201968 1033
09ee17eb 1034 if (!iommu->need_sync)
815b33fd 1035 return 0;
09ee17eb 1036
815b33fd 1037 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1038
f1ca1512 1039 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1040 if (ret)
815b33fd 1041 return ret;
8d201968 1042
ac0ea6e9 1043 return wait_on_sem(&sem);
8d201968
JR
1044}
1045
d8c13085 1046static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1047{
d8c13085 1048 struct iommu_cmd cmd;
a19ae1ec 1049
d8c13085 1050 build_inv_dte(&cmd, devid);
7e4f88da 1051
d8c13085
JR
1052 return iommu_queue_command(iommu, &cmd);
1053}
09ee17eb 1054
7d0c5cc5
JR
1055static void iommu_flush_dte_all(struct amd_iommu *iommu)
1056{
1057 u32 devid;
09ee17eb 1058
7d0c5cc5
JR
1059 for (devid = 0; devid <= 0xffff; ++devid)
1060 iommu_flush_dte(iommu, devid);
a19ae1ec 1061
7d0c5cc5
JR
1062 iommu_completion_wait(iommu);
1063}
84df8175 1064
7d0c5cc5
JR
1065/*
1066 * This function uses heavy locking and may disable irqs for some time. But
1067 * this is no issue because it is only called during resume.
1068 */
1069static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1070{
1071 u32 dom_id;
a19ae1ec 1072
7d0c5cc5
JR
1073 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1074 struct iommu_cmd cmd;
1075 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1076 dom_id, 1);
1077 iommu_queue_command(iommu, &cmd);
1078 }
8eed9833 1079
7d0c5cc5 1080 iommu_completion_wait(iommu);
a19ae1ec
JR
1081}
1082
58fc7f14 1083static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1084{
58fc7f14 1085 struct iommu_cmd cmd;
0518a3a4 1086
58fc7f14 1087 build_inv_all(&cmd);
0518a3a4 1088
58fc7f14
JR
1089 iommu_queue_command(iommu, &cmd);
1090 iommu_completion_wait(iommu);
1091}
1092
7ef2798d
JR
1093static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1094{
1095 struct iommu_cmd cmd;
1096
1097 build_inv_irt(&cmd, devid);
1098
1099 iommu_queue_command(iommu, &cmd);
1100}
1101
1102static void iommu_flush_irt_all(struct amd_iommu *iommu)
1103{
1104 u32 devid;
1105
1106 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1107 iommu_flush_irt(iommu, devid);
1108
1109 iommu_completion_wait(iommu);
1110}
1111
7d0c5cc5
JR
1112void iommu_flush_all_caches(struct amd_iommu *iommu)
1113{
58fc7f14
JR
1114 if (iommu_feature(iommu, FEATURE_IA)) {
1115 iommu_flush_all(iommu);
1116 } else {
1117 iommu_flush_dte_all(iommu);
7ef2798d 1118 iommu_flush_irt_all(iommu);
58fc7f14 1119 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1120 }
1121}
1122
431b2a20 1123/*
cb41ed85 1124 * Command send function for flushing on-device TLB
431b2a20 1125 */
6c542047
JR
1126static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1127 u64 address, size_t size)
3fa43655
JR
1128{
1129 struct amd_iommu *iommu;
b00d3bcf 1130 struct iommu_cmd cmd;
cb41ed85 1131 int qdep;
3fa43655 1132
ea61cddb
JR
1133 qdep = dev_data->ats.qdep;
1134 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1135
ea61cddb 1136 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1137
1138 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1139}
1140
431b2a20 1141/*
431b2a20 1142 * Command send function for invalidating a device table entry
431b2a20 1143 */
6c542047 1144static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1145{
3fa43655 1146 struct amd_iommu *iommu;
ee2fa743 1147 int ret;
a19ae1ec 1148
6c542047 1149 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1150
f62dda66 1151 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1152 if (ret)
1153 return ret;
1154
ea61cddb 1155 if (dev_data->ats.enabled)
6c542047 1156 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1157
ee2fa743 1158 return ret;
a19ae1ec
JR
1159}
1160
431b2a20
JR
1161/*
1162 * TLB invalidation function which is called from the mapping functions.
1163 * It invalidates a single PTE if the range to flush is within a single
1164 * page. Otherwise it flushes the whole TLB of the IOMMU.
1165 */
17b124bf
JR
1166static void __domain_flush_pages(struct protection_domain *domain,
1167 u64 address, size_t size, int pde)
a19ae1ec 1168{
cb41ed85 1169 struct iommu_dev_data *dev_data;
11b6402c
JR
1170 struct iommu_cmd cmd;
1171 int ret = 0, i;
a19ae1ec 1172
11b6402c 1173 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1174
6de8ad9b
JR
1175 for (i = 0; i < amd_iommus_present; ++i) {
1176 if (!domain->dev_iommu[i])
1177 continue;
1178
1179 /*
1180 * Devices of this domain are behind this IOMMU
1181 * We need a TLB flush
1182 */
11b6402c 1183 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1184 }
1185
cb41ed85 1186 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1187
ea61cddb 1188 if (!dev_data->ats.enabled)
cb41ed85
JR
1189 continue;
1190
6c542047 1191 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1192 }
1193
11b6402c 1194 WARN_ON(ret);
6de8ad9b
JR
1195}
1196
17b124bf
JR
1197static void domain_flush_pages(struct protection_domain *domain,
1198 u64 address, size_t size)
6de8ad9b 1199{
17b124bf 1200 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1201}
b6c02715 1202
1c655773 1203/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1204static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1205{
17b124bf 1206 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1207}
1208
42a49f96 1209/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1210static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1211{
17b124bf 1212 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1213}
1214
17b124bf 1215static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1216{
17b124bf 1217 int i;
18811f55 1218
17b124bf
JR
1219 for (i = 0; i < amd_iommus_present; ++i) {
1220 if (!domain->dev_iommu[i])
1221 continue;
bfd1be18 1222
17b124bf
JR
1223 /*
1224 * Devices of this domain are behind this IOMMU
1225 * We need to wait for completion of all commands.
1226 */
1227 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1228 }
e394d72a
JR
1229}
1230
b00d3bcf 1231
09b42804 1232/*
b00d3bcf 1233 * This function flushes the DTEs for all devices in domain
09b42804 1234 */
17b124bf 1235static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1236{
b00d3bcf 1237 struct iommu_dev_data *dev_data;
b26e81b8 1238
b00d3bcf 1239 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1240 device_flush_dte(dev_data);
a345b23b
JR
1241}
1242
431b2a20
JR
1243/****************************************************************************
1244 *
1245 * The functions below are used the create the page table mappings for
1246 * unity mapped regions.
1247 *
1248 ****************************************************************************/
1249
308973d3
JR
1250/*
1251 * This function is used to add another level to an IO page table. Adding
1252 * another level increases the size of the address space by 9 bits to a size up
1253 * to 64 bits.
1254 */
1255static bool increase_address_space(struct protection_domain *domain,
1256 gfp_t gfp)
1257{
1258 u64 *pte;
1259
1260 if (domain->mode == PAGE_MODE_6_LEVEL)
1261 /* address space already 64 bit large */
1262 return false;
1263
1264 pte = (void *)get_zeroed_page(gfp);
1265 if (!pte)
1266 return false;
1267
1268 *pte = PM_LEVEL_PDE(domain->mode,
1269 virt_to_phys(domain->pt_root));
1270 domain->pt_root = pte;
1271 domain->mode += 1;
1272 domain->updated = true;
1273
1274 return true;
1275}
1276
1277static u64 *alloc_pte(struct protection_domain *domain,
1278 unsigned long address,
cbb9d729 1279 unsigned long page_size,
308973d3
JR
1280 u64 **pte_page,
1281 gfp_t gfp)
1282{
cbb9d729 1283 int level, end_lvl;
308973d3 1284 u64 *pte, *page;
cbb9d729
JR
1285
1286 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1287
1288 while (address > PM_LEVEL_SIZE(domain->mode))
1289 increase_address_space(domain, gfp);
1290
cbb9d729
JR
1291 level = domain->mode - 1;
1292 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1293 address = PAGE_SIZE_ALIGN(address, page_size);
1294 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1295
1296 while (level > end_lvl) {
1297 if (!IOMMU_PTE_PRESENT(*pte)) {
1298 page = (u64 *)get_zeroed_page(gfp);
1299 if (!page)
1300 return NULL;
1301 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1302 }
1303
cbb9d729
JR
1304 /* No level skipping support yet */
1305 if (PM_PTE_LEVEL(*pte) != level)
1306 return NULL;
1307
308973d3
JR
1308 level -= 1;
1309
1310 pte = IOMMU_PTE_PAGE(*pte);
1311
1312 if (pte_page && level == end_lvl)
1313 *pte_page = pte;
1314
1315 pte = &pte[PM_LEVEL_INDEX(level, address)];
1316 }
1317
1318 return pte;
1319}
1320
1321/*
1322 * This function checks if there is a PTE for a given dma address. If
1323 * there is one, it returns the pointer to it.
1324 */
3039ca1b
JR
1325static u64 *fetch_pte(struct protection_domain *domain,
1326 unsigned long address,
1327 unsigned long *page_size)
308973d3
JR
1328{
1329 int level;
1330 u64 *pte;
1331
24cd7723
JR
1332 if (address > PM_LEVEL_SIZE(domain->mode))
1333 return NULL;
1334
3039ca1b
JR
1335 level = domain->mode - 1;
1336 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1337 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1338
24cd7723
JR
1339 while (level > 0) {
1340
1341 /* Not Present */
308973d3
JR
1342 if (!IOMMU_PTE_PRESENT(*pte))
1343 return NULL;
1344
24cd7723 1345 /* Large PTE */
3039ca1b
JR
1346 if (PM_PTE_LEVEL(*pte) == 7 ||
1347 PM_PTE_LEVEL(*pte) == 0)
1348 break;
24cd7723
JR
1349
1350 /* No level skipping support yet */
1351 if (PM_PTE_LEVEL(*pte) != level)
1352 return NULL;
1353
308973d3
JR
1354 level -= 1;
1355
24cd7723 1356 /* Walk to the next level */
3039ca1b
JR
1357 pte = IOMMU_PTE_PAGE(*pte);
1358 pte = &pte[PM_LEVEL_INDEX(level, address)];
1359 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1360 }
1361
1362 if (PM_PTE_LEVEL(*pte) == 0x07) {
1363 unsigned long pte_mask;
1364
1365 /*
1366 * If we have a series of large PTEs, make
1367 * sure to return a pointer to the first one.
1368 */
1369 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1370 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1371 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1372 }
1373
1374 return pte;
1375}
1376
431b2a20
JR
1377/*
1378 * Generic mapping functions. It maps a physical address into a DMA
1379 * address space. It allocates the page table pages if necessary.
1380 * In the future it can be extended to a generic mapping function
1381 * supporting all features of AMD IOMMU page tables like level skipping
1382 * and full 64 bit address spaces.
1383 */
38e817fe
JR
1384static int iommu_map_page(struct protection_domain *dom,
1385 unsigned long bus_addr,
1386 unsigned long phys_addr,
abdc5eb3 1387 int prot,
cbb9d729 1388 unsigned long page_size)
bd0e5211 1389{
8bda3092 1390 u64 __pte, *pte;
cbb9d729 1391 int i, count;
abdc5eb3 1392
bad1cac2 1393 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1394 return -EINVAL;
1395
cbb9d729
JR
1396 bus_addr = PAGE_ALIGN(bus_addr);
1397 phys_addr = PAGE_ALIGN(phys_addr);
1398 count = PAGE_SIZE_PTE_COUNT(page_size);
1399 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1400
63eaa75e
ML
1401 if (!pte)
1402 return -ENOMEM;
1403
cbb9d729
JR
1404 for (i = 0; i < count; ++i)
1405 if (IOMMU_PTE_PRESENT(pte[i]))
1406 return -EBUSY;
bd0e5211 1407
cbb9d729
JR
1408 if (page_size > PAGE_SIZE) {
1409 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1410 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1411 } else
1412 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1413
bd0e5211
JR
1414 if (prot & IOMMU_PROT_IR)
1415 __pte |= IOMMU_PTE_IR;
1416 if (prot & IOMMU_PROT_IW)
1417 __pte |= IOMMU_PTE_IW;
1418
cbb9d729
JR
1419 for (i = 0; i < count; ++i)
1420 pte[i] = __pte;
bd0e5211 1421
04bfdd84
JR
1422 update_domain(dom);
1423
bd0e5211
JR
1424 return 0;
1425}
1426
24cd7723
JR
1427static unsigned long iommu_unmap_page(struct protection_domain *dom,
1428 unsigned long bus_addr,
1429 unsigned long page_size)
eb74ff6c 1430{
71b390e9
JR
1431 unsigned long long unmapped;
1432 unsigned long unmap_size;
24cd7723
JR
1433 u64 *pte;
1434
1435 BUG_ON(!is_power_of_2(page_size));
1436
1437 unmapped = 0;
eb74ff6c 1438
24cd7723
JR
1439 while (unmapped < page_size) {
1440
71b390e9
JR
1441 pte = fetch_pte(dom, bus_addr, &unmap_size);
1442
1443 if (pte) {
1444 int i, count;
1445
1446 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1447 for (i = 0; i < count; i++)
1448 pte[i] = 0ULL;
1449 }
1450
1451 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1452 unmapped += unmap_size;
1453 }
1454
60d0ca3c 1455 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1456
24cd7723 1457 return unmapped;
eb74ff6c 1458}
eb74ff6c 1459
431b2a20
JR
1460/*
1461 * This function checks if a specific unity mapping entry is needed for
1462 * this specific IOMMU.
1463 */
bd0e5211
JR
1464static int iommu_for_unity_map(struct amd_iommu *iommu,
1465 struct unity_map_entry *entry)
1466{
1467 u16 bdf, i;
1468
1469 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1470 bdf = amd_iommu_alias_table[i];
1471 if (amd_iommu_rlookup_table[bdf] == iommu)
1472 return 1;
1473 }
1474
1475 return 0;
1476}
1477
431b2a20
JR
1478/*
1479 * This function actually applies the mapping to the page table of the
1480 * dma_ops domain.
1481 */
bd0e5211
JR
1482static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1483 struct unity_map_entry *e)
1484{
1485 u64 addr;
1486 int ret;
1487
1488 for (addr = e->address_start; addr < e->address_end;
1489 addr += PAGE_SIZE) {
abdc5eb3 1490 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1491 PAGE_SIZE);
bd0e5211
JR
1492 if (ret)
1493 return ret;
1494 /*
1495 * if unity mapping is in aperture range mark the page
1496 * as allocated in the aperture
1497 */
1498 if (addr < dma_dom->aperture_size)
c3239567 1499 __set_bit(addr >> PAGE_SHIFT,
384de729 1500 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1501 }
1502
1503 return 0;
1504}
1505
171e7b37
JR
1506/*
1507 * Init the unity mappings for a specific IOMMU in the system
1508 *
1509 * Basically iterates over all unity mapping entries and applies them to
1510 * the default domain DMA of that IOMMU if necessary.
1511 */
1512static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1513{
1514 struct unity_map_entry *entry;
1515 int ret;
1516
1517 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1518 if (!iommu_for_unity_map(iommu, entry))
1519 continue;
1520 ret = dma_ops_unity_map(iommu->default_dom, entry);
1521 if (ret)
1522 return ret;
1523 }
1524
1525 return 0;
1526}
1527
431b2a20
JR
1528/*
1529 * Inits the unity mappings required for a specific device
1530 */
bd0e5211
JR
1531static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1532 u16 devid)
1533{
1534 struct unity_map_entry *e;
1535 int ret;
1536
1537 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1538 if (!(devid >= e->devid_start && devid <= e->devid_end))
1539 continue;
1540 ret = dma_ops_unity_map(dma_dom, e);
1541 if (ret)
1542 return ret;
1543 }
1544
1545 return 0;
1546}
1547
431b2a20
JR
1548/****************************************************************************
1549 *
1550 * The next functions belong to the address allocator for the dma_ops
1551 * interface functions. They work like the allocators in the other IOMMU
1552 * drivers. Its basically a bitmap which marks the allocated pages in
1553 * the aperture. Maybe it could be enhanced in the future to a more
1554 * efficient allocator.
1555 *
1556 ****************************************************************************/
d3086444 1557
431b2a20 1558/*
384de729 1559 * The address allocator core functions.
431b2a20
JR
1560 *
1561 * called with domain->lock held
1562 */
384de729 1563
171e7b37
JR
1564/*
1565 * Used to reserve address ranges in the aperture (e.g. for exclusion
1566 * ranges.
1567 */
1568static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1569 unsigned long start_page,
1570 unsigned int pages)
1571{
1572 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1573
1574 if (start_page + pages > last_page)
1575 pages = last_page - start_page;
1576
1577 for (i = start_page; i < start_page + pages; ++i) {
1578 int index = i / APERTURE_RANGE_PAGES;
1579 int page = i % APERTURE_RANGE_PAGES;
1580 __set_bit(page, dom->aperture[index]->bitmap);
1581 }
1582}
1583
9cabe89b
JR
1584/*
1585 * This function is used to add a new aperture range to an existing
1586 * aperture in case of dma_ops domain allocation or address allocation
1587 * failure.
1588 */
576175c2 1589static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1590 bool populate, gfp_t gfp)
1591{
1592 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1593 struct amd_iommu *iommu;
5d7c94c3 1594 unsigned long i, old_size, pte_pgsize;
9cabe89b 1595
f5e9705c
JR
1596#ifdef CONFIG_IOMMU_STRESS
1597 populate = false;
1598#endif
1599
9cabe89b
JR
1600 if (index >= APERTURE_MAX_RANGES)
1601 return -ENOMEM;
1602
1603 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1604 if (!dma_dom->aperture[index])
1605 return -ENOMEM;
1606
1607 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1608 if (!dma_dom->aperture[index]->bitmap)
1609 goto out_free;
1610
1611 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1612
1613 if (populate) {
1614 unsigned long address = dma_dom->aperture_size;
1615 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1616 u64 *pte, *pte_page;
1617
1618 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1619 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1620 &pte_page, gfp);
1621 if (!pte)
1622 goto out_free;
1623
1624 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1625
1626 address += APERTURE_RANGE_SIZE / 64;
1627 }
1628 }
1629
17f5b569 1630 old_size = dma_dom->aperture_size;
9cabe89b
JR
1631 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1632
17f5b569
JR
1633 /* Reserve address range used for MSI messages */
1634 if (old_size < MSI_ADDR_BASE_LO &&
1635 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1636 unsigned long spage;
1637 int pages;
1638
1639 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1640 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1641
1642 dma_ops_reserve_addresses(dma_dom, spage, pages);
1643 }
1644
b595076a 1645 /* Initialize the exclusion range if necessary */
576175c2
JR
1646 for_each_iommu(iommu) {
1647 if (iommu->exclusion_start &&
1648 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1649 && iommu->exclusion_start < dma_dom->aperture_size) {
1650 unsigned long startpage;
1651 int pages = iommu_num_pages(iommu->exclusion_start,
1652 iommu->exclusion_length,
1653 PAGE_SIZE);
1654 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1655 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1656 }
00cd122a
JR
1657 }
1658
1659 /*
1660 * Check for areas already mapped as present in the new aperture
1661 * range and mark those pages as reserved in the allocator. Such
1662 * mappings may already exist as a result of requested unity
1663 * mappings for devices.
1664 */
1665 for (i = dma_dom->aperture[index]->offset;
1666 i < dma_dom->aperture_size;
5d7c94c3 1667 i += pte_pgsize) {
3039ca1b 1668 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1669 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1670 continue;
1671
5d7c94c3
JR
1672 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1673 pte_pgsize >> 12);
00cd122a
JR
1674 }
1675
04bfdd84
JR
1676 update_domain(&dma_dom->domain);
1677
9cabe89b
JR
1678 return 0;
1679
1680out_free:
04bfdd84
JR
1681 update_domain(&dma_dom->domain);
1682
9cabe89b
JR
1683 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1684
1685 kfree(dma_dom->aperture[index]);
1686 dma_dom->aperture[index] = NULL;
1687
1688 return -ENOMEM;
1689}
1690
384de729
JR
1691static unsigned long dma_ops_area_alloc(struct device *dev,
1692 struct dma_ops_domain *dom,
1693 unsigned int pages,
1694 unsigned long align_mask,
1695 u64 dma_mask,
1696 unsigned long start)
1697{
803b8cb4 1698 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1699 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1700 int i = start >> APERTURE_RANGE_SHIFT;
1701 unsigned long boundary_size;
1702 unsigned long address = -1;
1703 unsigned long limit;
1704
803b8cb4
JR
1705 next_bit >>= PAGE_SHIFT;
1706
384de729
JR
1707 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1708 PAGE_SIZE) >> PAGE_SHIFT;
1709
1710 for (;i < max_index; ++i) {
1711 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1712
1713 if (dom->aperture[i]->offset >= dma_mask)
1714 break;
1715
1716 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1717 dma_mask >> PAGE_SHIFT);
1718
1719 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1720 limit, next_bit, pages, 0,
1721 boundary_size, align_mask);
1722 if (address != -1) {
1723 address = dom->aperture[i]->offset +
1724 (address << PAGE_SHIFT);
803b8cb4 1725 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1726 break;
1727 }
1728
1729 next_bit = 0;
1730 }
1731
1732 return address;
1733}
1734
d3086444
JR
1735static unsigned long dma_ops_alloc_addresses(struct device *dev,
1736 struct dma_ops_domain *dom,
6d4f343f 1737 unsigned int pages,
832a90c3
JR
1738 unsigned long align_mask,
1739 u64 dma_mask)
d3086444 1740{
d3086444 1741 unsigned long address;
d3086444 1742
fe16f088
JR
1743#ifdef CONFIG_IOMMU_STRESS
1744 dom->next_address = 0;
1745 dom->need_flush = true;
1746#endif
d3086444 1747
384de729 1748 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1749 dma_mask, dom->next_address);
d3086444 1750
1c655773 1751 if (address == -1) {
803b8cb4 1752 dom->next_address = 0;
384de729
JR
1753 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1754 dma_mask, 0);
1c655773
JR
1755 dom->need_flush = true;
1756 }
d3086444 1757
384de729 1758 if (unlikely(address == -1))
8fd524b3 1759 address = DMA_ERROR_CODE;
d3086444
JR
1760
1761 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1762
1763 return address;
1764}
1765
431b2a20
JR
1766/*
1767 * The address free function.
1768 *
1769 * called with domain->lock held
1770 */
d3086444
JR
1771static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1772 unsigned long address,
1773 unsigned int pages)
1774{
384de729
JR
1775 unsigned i = address >> APERTURE_RANGE_SHIFT;
1776 struct aperture_range *range = dom->aperture[i];
80be308d 1777
384de729
JR
1778 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1779
47bccd6b
JR
1780#ifdef CONFIG_IOMMU_STRESS
1781 if (i < 4)
1782 return;
1783#endif
80be308d 1784
803b8cb4 1785 if (address >= dom->next_address)
80be308d 1786 dom->need_flush = true;
384de729
JR
1787
1788 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1789
a66022c4 1790 bitmap_clear(range->bitmap, address, pages);
384de729 1791
d3086444
JR
1792}
1793
431b2a20
JR
1794/****************************************************************************
1795 *
1796 * The next functions belong to the domain allocation. A domain is
1797 * allocated for every IOMMU as the default domain. If device isolation
1798 * is enabled, every device get its own domain. The most important thing
1799 * about domains is the page table mapping the DMA address space they
1800 * contain.
1801 *
1802 ****************************************************************************/
1803
aeb26f55
JR
1804/*
1805 * This function adds a protection domain to the global protection domain list
1806 */
1807static void add_domain_to_list(struct protection_domain *domain)
1808{
1809 unsigned long flags;
1810
1811 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1812 list_add(&domain->list, &amd_iommu_pd_list);
1813 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1814}
1815
1816/*
1817 * This function removes a protection domain to the global
1818 * protection domain list
1819 */
1820static void del_domain_from_list(struct protection_domain *domain)
1821{
1822 unsigned long flags;
1823
1824 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1825 list_del(&domain->list);
1826 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1827}
1828
ec487d1a
JR
1829static u16 domain_id_alloc(void)
1830{
1831 unsigned long flags;
1832 int id;
1833
1834 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1835 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1836 BUG_ON(id == 0);
1837 if (id > 0 && id < MAX_DOMAIN_ID)
1838 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1839 else
1840 id = 0;
1841 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1842
1843 return id;
1844}
1845
a2acfb75
JR
1846static void domain_id_free(int id)
1847{
1848 unsigned long flags;
1849
1850 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1851 if (id > 0 && id < MAX_DOMAIN_ID)
1852 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1853 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1854}
a2acfb75 1855
5c34c403
JR
1856#define DEFINE_FREE_PT_FN(LVL, FN) \
1857static void free_pt_##LVL (unsigned long __pt) \
1858{ \
1859 unsigned long p; \
1860 u64 *pt; \
1861 int i; \
1862 \
1863 pt = (u64 *)__pt; \
1864 \
1865 for (i = 0; i < 512; ++i) { \
1866 if (!IOMMU_PTE_PRESENT(pt[i])) \
1867 continue; \
1868 \
1869 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1870 FN(p); \
1871 } \
1872 free_page((unsigned long)pt); \
1873}
1874
1875DEFINE_FREE_PT_FN(l2, free_page)
1876DEFINE_FREE_PT_FN(l3, free_pt_l2)
1877DEFINE_FREE_PT_FN(l4, free_pt_l3)
1878DEFINE_FREE_PT_FN(l5, free_pt_l4)
1879DEFINE_FREE_PT_FN(l6, free_pt_l5)
1880
86db2e5d 1881static void free_pagetable(struct protection_domain *domain)
ec487d1a 1882{
5c34c403 1883 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1884
5c34c403
JR
1885 switch (domain->mode) {
1886 case PAGE_MODE_NONE:
1887 break;
1888 case PAGE_MODE_1_LEVEL:
1889 free_page(root);
1890 break;
1891 case PAGE_MODE_2_LEVEL:
1892 free_pt_l2(root);
1893 break;
1894 case PAGE_MODE_3_LEVEL:
1895 free_pt_l3(root);
1896 break;
1897 case PAGE_MODE_4_LEVEL:
1898 free_pt_l4(root);
1899 break;
1900 case PAGE_MODE_5_LEVEL:
1901 free_pt_l5(root);
1902 break;
1903 case PAGE_MODE_6_LEVEL:
1904 free_pt_l6(root);
1905 break;
1906 default:
1907 BUG();
ec487d1a 1908 }
ec487d1a
JR
1909}
1910
b16137b1
JR
1911static void free_gcr3_tbl_level1(u64 *tbl)
1912{
1913 u64 *ptr;
1914 int i;
1915
1916 for (i = 0; i < 512; ++i) {
1917 if (!(tbl[i] & GCR3_VALID))
1918 continue;
1919
1920 ptr = __va(tbl[i] & PAGE_MASK);
1921
1922 free_page((unsigned long)ptr);
1923 }
1924}
1925
1926static void free_gcr3_tbl_level2(u64 *tbl)
1927{
1928 u64 *ptr;
1929 int i;
1930
1931 for (i = 0; i < 512; ++i) {
1932 if (!(tbl[i] & GCR3_VALID))
1933 continue;
1934
1935 ptr = __va(tbl[i] & PAGE_MASK);
1936
1937 free_gcr3_tbl_level1(ptr);
1938 }
1939}
1940
52815b75
JR
1941static void free_gcr3_table(struct protection_domain *domain)
1942{
b16137b1
JR
1943 if (domain->glx == 2)
1944 free_gcr3_tbl_level2(domain->gcr3_tbl);
1945 else if (domain->glx == 1)
1946 free_gcr3_tbl_level1(domain->gcr3_tbl);
1947 else if (domain->glx != 0)
1948 BUG();
1949
52815b75
JR
1950 free_page((unsigned long)domain->gcr3_tbl);
1951}
1952
431b2a20
JR
1953/*
1954 * Free a domain, only used if something went wrong in the
1955 * allocation path and we need to free an already allocated page table
1956 */
ec487d1a
JR
1957static void dma_ops_domain_free(struct dma_ops_domain *dom)
1958{
384de729
JR
1959 int i;
1960
ec487d1a
JR
1961 if (!dom)
1962 return;
1963
aeb26f55
JR
1964 del_domain_from_list(&dom->domain);
1965
86db2e5d 1966 free_pagetable(&dom->domain);
ec487d1a 1967
384de729
JR
1968 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1969 if (!dom->aperture[i])
1970 continue;
1971 free_page((unsigned long)dom->aperture[i]->bitmap);
1972 kfree(dom->aperture[i]);
1973 }
ec487d1a
JR
1974
1975 kfree(dom);
1976}
1977
431b2a20
JR
1978/*
1979 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1980 * It also initializes the page table and the address allocator data
431b2a20
JR
1981 * structures required for the dma_ops interface
1982 */
87a64d52 1983static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1984{
1985 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1986
1987 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1988 if (!dma_dom)
1989 return NULL;
1990
1991 spin_lock_init(&dma_dom->domain.lock);
1992
1993 dma_dom->domain.id = domain_id_alloc();
1994 if (dma_dom->domain.id == 0)
1995 goto free_dma_dom;
7c392cbe 1996 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1997 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1998 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1999 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2000 dma_dom->domain.priv = dma_dom;
2001 if (!dma_dom->domain.pt_root)
2002 goto free_dma_dom;
ec487d1a 2003
1c655773 2004 dma_dom->need_flush = false;
bd60b735 2005 dma_dom->target_dev = 0xffff;
1c655773 2006
aeb26f55
JR
2007 add_domain_to_list(&dma_dom->domain);
2008
576175c2 2009 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2010 goto free_dma_dom;
ec487d1a 2011
431b2a20 2012 /*
ec487d1a
JR
2013 * mark the first page as allocated so we never return 0 as
2014 * a valid dma-address. So we can use 0 as error value
431b2a20 2015 */
384de729 2016 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2017 dma_dom->next_address = 0;
ec487d1a 2018
ec487d1a
JR
2019
2020 return dma_dom;
2021
2022free_dma_dom:
2023 dma_ops_domain_free(dma_dom);
2024
2025 return NULL;
2026}
2027
5b28df6f
JR
2028/*
2029 * little helper function to check whether a given protection domain is a
2030 * dma_ops domain
2031 */
2032static bool dma_ops_domain(struct protection_domain *domain)
2033{
2034 return domain->flags & PD_DMA_OPS_MASK;
2035}
2036
fd7b5535 2037static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2038{
132bd68f 2039 u64 pte_root = 0;
ee6c2868 2040 u64 flags = 0;
863c74eb 2041
132bd68f
JR
2042 if (domain->mode != PAGE_MODE_NONE)
2043 pte_root = virt_to_phys(domain->pt_root);
2044
38ddf41b
JR
2045 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2046 << DEV_ENTRY_MODE_SHIFT;
2047 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2048
ee6c2868
JR
2049 flags = amd_iommu_dev_table[devid].data[1];
2050
fd7b5535
JR
2051 if (ats)
2052 flags |= DTE_FLAG_IOTLB;
2053
52815b75
JR
2054 if (domain->flags & PD_IOMMUV2_MASK) {
2055 u64 gcr3 = __pa(domain->gcr3_tbl);
2056 u64 glx = domain->glx;
2057 u64 tmp;
2058
2059 pte_root |= DTE_FLAG_GV;
2060 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2061
2062 /* First mask out possible old values for GCR3 table */
2063 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2064 flags &= ~tmp;
2065
2066 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2067 flags &= ~tmp;
2068
2069 /* Encode GCR3 table into DTE */
2070 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2071 pte_root |= tmp;
2072
2073 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2074 flags |= tmp;
2075
2076 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2077 flags |= tmp;
2078 }
2079
ee6c2868
JR
2080 flags &= ~(0xffffUL);
2081 flags |= domain->id;
2082
2083 amd_iommu_dev_table[devid].data[1] = flags;
2084 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2085}
2086
2087static void clear_dte_entry(u16 devid)
2088{
15898bbc
JR
2089 /* remove entry from the device table seen by the hardware */
2090 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2091 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2092
2093 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2094}
2095
ec9e79ef
JR
2096static void do_attach(struct iommu_dev_data *dev_data,
2097 struct protection_domain *domain)
7f760ddd 2098{
7f760ddd 2099 struct amd_iommu *iommu;
ec9e79ef 2100 bool ats;
fd7b5535 2101
ec9e79ef
JR
2102 iommu = amd_iommu_rlookup_table[dev_data->devid];
2103 ats = dev_data->ats.enabled;
7f760ddd
JR
2104
2105 /* Update data structures */
2106 dev_data->domain = domain;
2107 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2108 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2109
2110 /* Do reference counting */
2111 domain->dev_iommu[iommu->index] += 1;
2112 domain->dev_cnt += 1;
2113
2114 /* Flush the DTE entry */
6c542047 2115 device_flush_dte(dev_data);
7f760ddd
JR
2116}
2117
ec9e79ef 2118static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2119{
7f760ddd 2120 struct amd_iommu *iommu;
7f760ddd 2121
ec9e79ef 2122 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2123
2124 /* decrease reference counters */
7f760ddd
JR
2125 dev_data->domain->dev_iommu[iommu->index] -= 1;
2126 dev_data->domain->dev_cnt -= 1;
2127
2128 /* Update data structures */
2129 dev_data->domain = NULL;
2130 list_del(&dev_data->list);
f62dda66 2131 clear_dte_entry(dev_data->devid);
15898bbc 2132
7f760ddd 2133 /* Flush the DTE entry */
6c542047 2134 device_flush_dte(dev_data);
2b681faf
JR
2135}
2136
2137/*
2138 * If a device is not yet associated with a domain, this function does
2139 * assigns it visible for the hardware
2140 */
ec9e79ef 2141static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2142 struct protection_domain *domain)
2b681faf 2143{
397111ab 2144 struct iommu_dev_data *head, *entry;
84fe6c19 2145 int ret;
657cbb6b 2146
2b681faf
JR
2147 /* lock domain */
2148 spin_lock(&domain->lock);
2149
397111ab 2150 head = dev_data;
15898bbc 2151
397111ab
JR
2152 if (head->alias_data != NULL)
2153 head = head->alias_data;
eba6ac60 2154
397111ab 2155 /* Now we have the root of the alias group, if any */
15898bbc 2156
397111ab
JR
2157 ret = -EBUSY;
2158 if (head->domain != NULL)
2159 goto out_unlock;
15898bbc 2160
397111ab
JR
2161 /* Attach alias group root */
2162 do_attach(head, domain);
eba6ac60 2163
397111ab
JR
2164 /* Attach other devices in the alias group */
2165 list_for_each_entry(entry, &head->alias_list, alias_list)
2166 do_attach(entry, domain);
24100055 2167
84fe6c19
JL
2168 ret = 0;
2169
2170out_unlock:
2171
eba6ac60
JR
2172 /* ready */
2173 spin_unlock(&domain->lock);
15898bbc 2174
84fe6c19 2175 return ret;
0feae533 2176}
b20ac0d4 2177
52815b75
JR
2178
2179static void pdev_iommuv2_disable(struct pci_dev *pdev)
2180{
2181 pci_disable_ats(pdev);
2182 pci_disable_pri(pdev);
2183 pci_disable_pasid(pdev);
2184}
2185
6a113ddc
JR
2186/* FIXME: Change generic reset-function to do the same */
2187static int pri_reset_while_enabled(struct pci_dev *pdev)
2188{
2189 u16 control;
2190 int pos;
2191
46277b75 2192 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2193 if (!pos)
2194 return -EINVAL;
2195
46277b75
JR
2196 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2197 control |= PCI_PRI_CTRL_RESET;
2198 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2199
2200 return 0;
2201}
2202
52815b75
JR
2203static int pdev_iommuv2_enable(struct pci_dev *pdev)
2204{
6a113ddc
JR
2205 bool reset_enable;
2206 int reqs, ret;
2207
2208 /* FIXME: Hardcode number of outstanding requests for now */
2209 reqs = 32;
2210 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2211 reqs = 1;
2212 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2213
2214 /* Only allow access to user-accessible pages */
2215 ret = pci_enable_pasid(pdev, 0);
2216 if (ret)
2217 goto out_err;
2218
2219 /* First reset the PRI state of the device */
2220 ret = pci_reset_pri(pdev);
2221 if (ret)
2222 goto out_err;
2223
6a113ddc
JR
2224 /* Enable PRI */
2225 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2226 if (ret)
2227 goto out_err;
2228
6a113ddc
JR
2229 if (reset_enable) {
2230 ret = pri_reset_while_enabled(pdev);
2231 if (ret)
2232 goto out_err;
2233 }
2234
52815b75
JR
2235 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2236 if (ret)
2237 goto out_err;
2238
2239 return 0;
2240
2241out_err:
2242 pci_disable_pri(pdev);
2243 pci_disable_pasid(pdev);
2244
2245 return ret;
2246}
2247
c99afa25 2248/* FIXME: Move this to PCI code */
a3b93121 2249#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2250
98f1ad25 2251static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2252{
a3b93121 2253 u16 status;
c99afa25
JR
2254 int pos;
2255
46277b75 2256 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2257 if (!pos)
2258 return false;
2259
a3b93121 2260 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2261
a3b93121 2262 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2263}
2264
407d733e 2265/*
df805abb 2266 * If a device is not yet associated with a domain, this function
407d733e
JR
2267 * assigns it visible for the hardware
2268 */
15898bbc
JR
2269static int attach_device(struct device *dev,
2270 struct protection_domain *domain)
0feae533 2271{
fd7b5535 2272 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2273 struct iommu_dev_data *dev_data;
eba6ac60 2274 unsigned long flags;
15898bbc 2275 int ret;
eba6ac60 2276
ea61cddb
JR
2277 dev_data = get_dev_data(dev);
2278
52815b75
JR
2279 if (domain->flags & PD_IOMMUV2_MASK) {
2280 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2281 return -EINVAL;
2282
2283 if (pdev_iommuv2_enable(pdev) != 0)
2284 return -EINVAL;
2285
2286 dev_data->ats.enabled = true;
2287 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2288 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2289 } else if (amd_iommu_iotlb_sup &&
2290 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2291 dev_data->ats.enabled = true;
2292 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2293 }
fd7b5535 2294
eba6ac60 2295 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2296 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2297 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2298
0feae533
JR
2299 /*
2300 * We might boot into a crash-kernel here. The crashed kernel
2301 * left the caches in the IOMMU dirty. So we have to flush
2302 * here to evict all dirty stuff.
2303 */
17b124bf 2304 domain_flush_tlb_pde(domain);
15898bbc
JR
2305
2306 return ret;
b20ac0d4
JR
2307}
2308
355bf553
JR
2309/*
2310 * Removes a device from a protection domain (unlocked)
2311 */
ec9e79ef 2312static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2313{
397111ab 2314 struct iommu_dev_data *head, *entry;
2ca76279 2315 struct protection_domain *domain;
7c392cbe 2316 unsigned long flags;
c4596114 2317
7f760ddd 2318 BUG_ON(!dev_data->domain);
355bf553 2319
2ca76279
JR
2320 domain = dev_data->domain;
2321
2322 spin_lock_irqsave(&domain->lock, flags);
24100055 2323
397111ab
JR
2324 head = dev_data;
2325 if (head->alias_data != NULL)
2326 head = head->alias_data;
71f77580 2327
397111ab
JR
2328 list_for_each_entry(entry, &head->alias_list, alias_list)
2329 do_detach(entry);
24100055 2330
397111ab 2331 do_detach(head);
7f760ddd 2332
2ca76279 2333 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2334
2335 /*
2336 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2337 * passthrough domain if it is detached from any other domain.
2338 * Make sure we can deassign from the pt_domain itself.
21129f78 2339 */
5abcdba4 2340 if (dev_data->passthrough &&
d3ad9373 2341 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2342 __attach_device(dev_data, pt_domain);
355bf553
JR
2343}
2344
2345/*
2346 * Removes a device from a protection domain (with devtable_lock held)
2347 */
15898bbc 2348static void detach_device(struct device *dev)
355bf553 2349{
52815b75 2350 struct protection_domain *domain;
ea61cddb 2351 struct iommu_dev_data *dev_data;
355bf553
JR
2352 unsigned long flags;
2353
ec9e79ef 2354 dev_data = get_dev_data(dev);
52815b75 2355 domain = dev_data->domain;
ec9e79ef 2356
355bf553
JR
2357 /* lock device table */
2358 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2359 __detach_device(dev_data);
355bf553 2360 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2361
52815b75
JR
2362 if (domain->flags & PD_IOMMUV2_MASK)
2363 pdev_iommuv2_disable(to_pci_dev(dev));
2364 else if (dev_data->ats.enabled)
ea61cddb 2365 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2366
2367 dev_data->ats.enabled = false;
355bf553 2368}
e275a2a0 2369
15898bbc
JR
2370/*
2371 * Find out the protection domain structure for a given PCI device. This
2372 * will give us the pointer to the page table root for example.
2373 */
2374static struct protection_domain *domain_for_device(struct device *dev)
2375{
71f77580 2376 struct iommu_dev_data *dev_data;
2b02b091 2377 struct protection_domain *dom = NULL;
15898bbc 2378 unsigned long flags;
15898bbc 2379
657cbb6b 2380 dev_data = get_dev_data(dev);
15898bbc 2381
2b02b091
JR
2382 if (dev_data->domain)
2383 return dev_data->domain;
15898bbc 2384
71f77580
JR
2385 if (dev_data->alias_data != NULL) {
2386 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2387
2388 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2389 if (alias_data->domain != NULL) {
2390 __attach_device(dev_data, alias_data->domain);
2391 dom = alias_data->domain;
2392 }
2393 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2394 }
15898bbc
JR
2395
2396 return dom;
2397}
2398
e275a2a0
JR
2399static int device_change_notifier(struct notifier_block *nb,
2400 unsigned long action, void *data)
2401{
e275a2a0 2402 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2403 struct protection_domain *domain;
2404 struct iommu_dev_data *dev_data;
2405 struct device *dev = data;
e275a2a0 2406 struct amd_iommu *iommu;
1ac4cbbc 2407 unsigned long flags;
5abcdba4 2408 u16 devid;
e275a2a0 2409
98fc5a69
JR
2410 if (!check_device(dev))
2411 return 0;
e275a2a0 2412
5abcdba4
JR
2413 devid = get_device_id(dev);
2414 iommu = amd_iommu_rlookup_table[devid];
2415 dev_data = get_dev_data(dev);
e275a2a0
JR
2416
2417 switch (action) {
1ac4cbbc 2418 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2419
2420 iommu_init_device(dev);
25b11ce2 2421 init_iommu_group(dev);
657cbb6b 2422
2c9195e9
JR
2423 /*
2424 * dev_data is still NULL and
2425 * got initialized in iommu_init_device
2426 */
2427 dev_data = get_dev_data(dev);
2428
2429 if (iommu_pass_through || dev_data->iommu_v2) {
2430 dev_data->passthrough = true;
2431 attach_device(dev, pt_domain);
2432 break;
2433 }
2434
657cbb6b
JR
2435 domain = domain_for_device(dev);
2436
1ac4cbbc
JR
2437 /* allocate a protection domain if a device is added */
2438 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2439 if (!dma_domain) {
2440 dma_domain = dma_ops_domain_alloc();
2441 if (!dma_domain)
2442 goto out;
2443 dma_domain->target_dev = devid;
2444
2445 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2446 list_add_tail(&dma_domain->list, &iommu_pd_list);
2447 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2448 }
ac1534a5 2449
2c9195e9 2450 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2451
e275a2a0 2452 break;
6c5cc801 2453 case BUS_NOTIFY_REMOVED_DEVICE:
657cbb6b
JR
2454
2455 iommu_uninit_device(dev);
2456
e275a2a0
JR
2457 default:
2458 goto out;
2459 }
2460
e275a2a0
JR
2461 iommu_completion_wait(iommu);
2462
2463out:
2464 return 0;
2465}
2466
b25ae679 2467static struct notifier_block device_nb = {
e275a2a0
JR
2468 .notifier_call = device_change_notifier,
2469};
355bf553 2470
8638c491
JR
2471void amd_iommu_init_notifier(void)
2472{
2473 bus_register_notifier(&pci_bus_type, &device_nb);
2474}
2475
431b2a20
JR
2476/*****************************************************************************
2477 *
2478 * The next functions belong to the dma_ops mapping/unmapping code.
2479 *
2480 *****************************************************************************/
2481
2482/*
2483 * In the dma_ops path we only have the struct device. This function
2484 * finds the corresponding IOMMU, the protection domain and the
2485 * requestor id for a given device.
2486 * If the device is not yet associated with a domain this is also done
2487 * in this function.
2488 */
94f6d190 2489static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2490{
94f6d190 2491 struct protection_domain *domain;
b20ac0d4 2492 struct dma_ops_domain *dma_dom;
94f6d190 2493 u16 devid = get_device_id(dev);
b20ac0d4 2494
f99c0f1c 2495 if (!check_device(dev))
94f6d190 2496 return ERR_PTR(-EINVAL);
b20ac0d4 2497
94f6d190
JR
2498 domain = domain_for_device(dev);
2499 if (domain != NULL && !dma_ops_domain(domain))
2500 return ERR_PTR(-EBUSY);
f99c0f1c 2501
94f6d190
JR
2502 if (domain != NULL)
2503 return domain;
b20ac0d4 2504
df805abb 2505 /* Device not bound yet - bind it */
94f6d190 2506 dma_dom = find_protection_domain(devid);
15898bbc 2507 if (!dma_dom)
94f6d190
JR
2508 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2509 attach_device(dev, &dma_dom->domain);
15898bbc 2510 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2511 dma_dom->domain.id, dev_name(dev));
f91ba190 2512
94f6d190 2513 return &dma_dom->domain;
b20ac0d4
JR
2514}
2515
04bfdd84
JR
2516static void update_device_table(struct protection_domain *domain)
2517{
492667da 2518 struct iommu_dev_data *dev_data;
04bfdd84 2519
ea61cddb
JR
2520 list_for_each_entry(dev_data, &domain->dev_list, list)
2521 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2522}
2523
2524static void update_domain(struct protection_domain *domain)
2525{
2526 if (!domain->updated)
2527 return;
2528
2529 update_device_table(domain);
17b124bf
JR
2530
2531 domain_flush_devices(domain);
2532 domain_flush_tlb_pde(domain);
04bfdd84
JR
2533
2534 domain->updated = false;
2535}
2536
8bda3092
JR
2537/*
2538 * This function fetches the PTE for a given address in the aperture
2539 */
2540static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2541 unsigned long address)
2542{
384de729 2543 struct aperture_range *aperture;
8bda3092
JR
2544 u64 *pte, *pte_page;
2545
384de729
JR
2546 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2547 if (!aperture)
2548 return NULL;
2549
2550 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2551 if (!pte) {
cbb9d729 2552 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2553 GFP_ATOMIC);
384de729
JR
2554 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2555 } else
8c8c143c 2556 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2557
04bfdd84 2558 update_domain(&dom->domain);
8bda3092
JR
2559
2560 return pte;
2561}
2562
431b2a20
JR
2563/*
2564 * This is the generic map function. It maps one 4kb page at paddr to
2565 * the given address in the DMA address space for the domain.
2566 */
680525e0 2567static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2568 unsigned long address,
2569 phys_addr_t paddr,
2570 int direction)
2571{
2572 u64 *pte, __pte;
2573
2574 WARN_ON(address > dom->aperture_size);
2575
2576 paddr &= PAGE_MASK;
2577
8bda3092 2578 pte = dma_ops_get_pte(dom, address);
53812c11 2579 if (!pte)
8fd524b3 2580 return DMA_ERROR_CODE;
cb76c322
JR
2581
2582 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2583
2584 if (direction == DMA_TO_DEVICE)
2585 __pte |= IOMMU_PTE_IR;
2586 else if (direction == DMA_FROM_DEVICE)
2587 __pte |= IOMMU_PTE_IW;
2588 else if (direction == DMA_BIDIRECTIONAL)
2589 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2590
2591 WARN_ON(*pte);
2592
2593 *pte = __pte;
2594
2595 return (dma_addr_t)address;
2596}
2597
431b2a20
JR
2598/*
2599 * The generic unmapping function for on page in the DMA address space.
2600 */
680525e0 2601static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2602 unsigned long address)
2603{
384de729 2604 struct aperture_range *aperture;
cb76c322
JR
2605 u64 *pte;
2606
2607 if (address >= dom->aperture_size)
2608 return;
2609
384de729
JR
2610 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2611 if (!aperture)
2612 return;
2613
2614 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2615 if (!pte)
2616 return;
cb76c322 2617
8c8c143c 2618 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2619
2620 WARN_ON(!*pte);
2621
2622 *pte = 0ULL;
2623}
2624
431b2a20
JR
2625/*
2626 * This function contains common code for mapping of a physically
24f81160
JR
2627 * contiguous memory region into DMA address space. It is used by all
2628 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2629 * Must be called with the domain lock held.
2630 */
cb76c322 2631static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2632 struct dma_ops_domain *dma_dom,
2633 phys_addr_t paddr,
2634 size_t size,
6d4f343f 2635 int dir,
832a90c3
JR
2636 bool align,
2637 u64 dma_mask)
cb76c322
JR
2638{
2639 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2640 dma_addr_t address, start, ret;
cb76c322 2641 unsigned int pages;
6d4f343f 2642 unsigned long align_mask = 0;
cb76c322
JR
2643 int i;
2644
e3c449f5 2645 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2646 paddr &= PAGE_MASK;
2647
8ecaf8f1
JR
2648 INC_STATS_COUNTER(total_map_requests);
2649
c1858976
JR
2650 if (pages > 1)
2651 INC_STATS_COUNTER(cross_page);
2652
6d4f343f
JR
2653 if (align)
2654 align_mask = (1UL << get_order(size)) - 1;
2655
11b83888 2656retry:
832a90c3
JR
2657 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2658 dma_mask);
8fd524b3 2659 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2660 /*
2661 * setting next_address here will let the address
2662 * allocator only scan the new allocated range in the
2663 * first run. This is a small optimization.
2664 */
2665 dma_dom->next_address = dma_dom->aperture_size;
2666
576175c2 2667 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2668 goto out;
2669
2670 /*
af901ca1 2671 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2672 * allocation again
2673 */
2674 goto retry;
2675 }
cb76c322
JR
2676
2677 start = address;
2678 for (i = 0; i < pages; ++i) {
680525e0 2679 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2680 if (ret == DMA_ERROR_CODE)
53812c11
JR
2681 goto out_unmap;
2682
cb76c322
JR
2683 paddr += PAGE_SIZE;
2684 start += PAGE_SIZE;
2685 }
2686 address += offset;
2687
5774f7c5
JR
2688 ADD_STATS_COUNTER(alloced_io_mem, size);
2689
afa9fdc2 2690 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2691 domain_flush_tlb(&dma_dom->domain);
1c655773 2692 dma_dom->need_flush = false;
318afd41 2693 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2694 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2695
cb76c322
JR
2696out:
2697 return address;
53812c11
JR
2698
2699out_unmap:
2700
2701 for (--i; i >= 0; --i) {
2702 start -= PAGE_SIZE;
680525e0 2703 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2704 }
2705
2706 dma_ops_free_addresses(dma_dom, address, pages);
2707
8fd524b3 2708 return DMA_ERROR_CODE;
cb76c322
JR
2709}
2710
431b2a20
JR
2711/*
2712 * Does the reverse of the __map_single function. Must be called with
2713 * the domain lock held too
2714 */
cd8c82e8 2715static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2716 dma_addr_t dma_addr,
2717 size_t size,
2718 int dir)
2719{
04e0463e 2720 dma_addr_t flush_addr;
cb76c322
JR
2721 dma_addr_t i, start;
2722 unsigned int pages;
2723
8fd524b3 2724 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2725 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2726 return;
2727
04e0463e 2728 flush_addr = dma_addr;
e3c449f5 2729 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2730 dma_addr &= PAGE_MASK;
2731 start = dma_addr;
2732
2733 for (i = 0; i < pages; ++i) {
680525e0 2734 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2735 start += PAGE_SIZE;
2736 }
2737
5774f7c5
JR
2738 SUB_STATS_COUNTER(alloced_io_mem, size);
2739
cb76c322 2740 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2741
80be308d 2742 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2743 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2744 dma_dom->need_flush = false;
2745 }
cb76c322
JR
2746}
2747
431b2a20
JR
2748/*
2749 * The exported map_single function for dma_ops.
2750 */
51491367
FT
2751static dma_addr_t map_page(struct device *dev, struct page *page,
2752 unsigned long offset, size_t size,
2753 enum dma_data_direction dir,
2754 struct dma_attrs *attrs)
4da70b9e
JR
2755{
2756 unsigned long flags;
4da70b9e 2757 struct protection_domain *domain;
4da70b9e 2758 dma_addr_t addr;
832a90c3 2759 u64 dma_mask;
51491367 2760 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2761
0f2a86f2
JR
2762 INC_STATS_COUNTER(cnt_map_single);
2763
94f6d190
JR
2764 domain = get_domain(dev);
2765 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2766 return (dma_addr_t)paddr;
94f6d190
JR
2767 else if (IS_ERR(domain))
2768 return DMA_ERROR_CODE;
4da70b9e 2769
f99c0f1c
JR
2770 dma_mask = *dev->dma_mask;
2771
4da70b9e 2772 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2773
cd8c82e8 2774 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2775 dma_mask);
8fd524b3 2776 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2777 goto out;
2778
17b124bf 2779 domain_flush_complete(domain);
4da70b9e
JR
2780
2781out:
2782 spin_unlock_irqrestore(&domain->lock, flags);
2783
2784 return addr;
2785}
2786
431b2a20
JR
2787/*
2788 * The exported unmap_single function for dma_ops.
2789 */
51491367
FT
2790static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2791 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2792{
2793 unsigned long flags;
4da70b9e 2794 struct protection_domain *domain;
4da70b9e 2795
146a6917
JR
2796 INC_STATS_COUNTER(cnt_unmap_single);
2797
94f6d190
JR
2798 domain = get_domain(dev);
2799 if (IS_ERR(domain))
5b28df6f
JR
2800 return;
2801
4da70b9e
JR
2802 spin_lock_irqsave(&domain->lock, flags);
2803
cd8c82e8 2804 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2805
17b124bf 2806 domain_flush_complete(domain);
4da70b9e
JR
2807
2808 spin_unlock_irqrestore(&domain->lock, flags);
2809}
2810
431b2a20
JR
2811/*
2812 * The exported map_sg function for dma_ops (handles scatter-gather
2813 * lists).
2814 */
65b050ad 2815static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2816 int nelems, enum dma_data_direction dir,
2817 struct dma_attrs *attrs)
65b050ad
JR
2818{
2819 unsigned long flags;
65b050ad 2820 struct protection_domain *domain;
65b050ad
JR
2821 int i;
2822 struct scatterlist *s;
2823 phys_addr_t paddr;
2824 int mapped_elems = 0;
832a90c3 2825 u64 dma_mask;
65b050ad 2826
d03f067a
JR
2827 INC_STATS_COUNTER(cnt_map_sg);
2828
94f6d190 2829 domain = get_domain(dev);
a0e191b2 2830 if (IS_ERR(domain))
94f6d190 2831 return 0;
dbcc112e 2832
832a90c3 2833 dma_mask = *dev->dma_mask;
65b050ad 2834
65b050ad
JR
2835 spin_lock_irqsave(&domain->lock, flags);
2836
2837 for_each_sg(sglist, s, nelems, i) {
2838 paddr = sg_phys(s);
2839
cd8c82e8 2840 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2841 paddr, s->length, dir, false,
2842 dma_mask);
65b050ad
JR
2843
2844 if (s->dma_address) {
2845 s->dma_length = s->length;
2846 mapped_elems++;
2847 } else
2848 goto unmap;
65b050ad
JR
2849 }
2850
17b124bf 2851 domain_flush_complete(domain);
65b050ad
JR
2852
2853out:
2854 spin_unlock_irqrestore(&domain->lock, flags);
2855
2856 return mapped_elems;
2857unmap:
2858 for_each_sg(sglist, s, mapped_elems, i) {
2859 if (s->dma_address)
cd8c82e8 2860 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2861 s->dma_length, dir);
2862 s->dma_address = s->dma_length = 0;
2863 }
2864
2865 mapped_elems = 0;
2866
2867 goto out;
2868}
2869
431b2a20
JR
2870/*
2871 * The exported map_sg function for dma_ops (handles scatter-gather
2872 * lists).
2873 */
65b050ad 2874static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2875 int nelems, enum dma_data_direction dir,
2876 struct dma_attrs *attrs)
65b050ad
JR
2877{
2878 unsigned long flags;
65b050ad
JR
2879 struct protection_domain *domain;
2880 struct scatterlist *s;
65b050ad
JR
2881 int i;
2882
55877a6b
JR
2883 INC_STATS_COUNTER(cnt_unmap_sg);
2884
94f6d190
JR
2885 domain = get_domain(dev);
2886 if (IS_ERR(domain))
5b28df6f
JR
2887 return;
2888
65b050ad
JR
2889 spin_lock_irqsave(&domain->lock, flags);
2890
2891 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2892 __unmap_single(domain->priv, s->dma_address,
65b050ad 2893 s->dma_length, dir);
65b050ad
JR
2894 s->dma_address = s->dma_length = 0;
2895 }
2896
17b124bf 2897 domain_flush_complete(domain);
65b050ad
JR
2898
2899 spin_unlock_irqrestore(&domain->lock, flags);
2900}
2901
431b2a20
JR
2902/*
2903 * The exported alloc_coherent function for dma_ops.
2904 */
5d8b53cf 2905static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2906 dma_addr_t *dma_addr, gfp_t flag,
2907 struct dma_attrs *attrs)
5d8b53cf 2908{
832a90c3 2909 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2910 struct protection_domain *domain;
2911 unsigned long flags;
2912 struct page *page;
5d8b53cf 2913
c8f0fb36
JR
2914 INC_STATS_COUNTER(cnt_alloc_coherent);
2915
94f6d190
JR
2916 domain = get_domain(dev);
2917 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2918 page = alloc_pages(flag, get_order(size));
2919 *dma_addr = page_to_phys(page);
2920 return page_address(page);
94f6d190
JR
2921 } else if (IS_ERR(domain))
2922 return NULL;
5d8b53cf 2923
3b839a57 2924 size = PAGE_ALIGN(size);
f99c0f1c
JR
2925 dma_mask = dev->coherent_dma_mask;
2926 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 2927
3b839a57
JR
2928 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2929 if (!page) {
2930 if (!(flag & __GFP_WAIT))
2931 return NULL;
5d8b53cf 2932
3b839a57
JR
2933 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2934 get_order(size));
2935 if (!page)
2936 return NULL;
2937 }
5d8b53cf 2938
832a90c3
JR
2939 if (!dma_mask)
2940 dma_mask = *dev->dma_mask;
2941
5d8b53cf
JR
2942 spin_lock_irqsave(&domain->lock, flags);
2943
3b839a57 2944 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2945 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2946
8fd524b3 2947 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2948 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2949 goto out_free;
367d04c4 2950 }
5d8b53cf 2951
17b124bf 2952 domain_flush_complete(domain);
5d8b53cf 2953
5d8b53cf
JR
2954 spin_unlock_irqrestore(&domain->lock, flags);
2955
3b839a57 2956 return page_address(page);
5b28df6f
JR
2957
2958out_free:
2959
3b839a57
JR
2960 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2961 __free_pages(page, get_order(size));
5b28df6f
JR
2962
2963 return NULL;
5d8b53cf
JR
2964}
2965
431b2a20
JR
2966/*
2967 * The exported free_coherent function for dma_ops.
431b2a20 2968 */
5d8b53cf 2969static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2970 void *virt_addr, dma_addr_t dma_addr,
2971 struct dma_attrs *attrs)
5d8b53cf 2972{
5d8b53cf 2973 struct protection_domain *domain;
3b839a57
JR
2974 unsigned long flags;
2975 struct page *page;
5d8b53cf 2976
5d31ee7e
JR
2977 INC_STATS_COUNTER(cnt_free_coherent);
2978
3b839a57
JR
2979 page = virt_to_page(virt_addr);
2980 size = PAGE_ALIGN(size);
2981
94f6d190
JR
2982 domain = get_domain(dev);
2983 if (IS_ERR(domain))
5b28df6f
JR
2984 goto free_mem;
2985
5d8b53cf
JR
2986 spin_lock_irqsave(&domain->lock, flags);
2987
cd8c82e8 2988 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2989
17b124bf 2990 domain_flush_complete(domain);
5d8b53cf
JR
2991
2992 spin_unlock_irqrestore(&domain->lock, flags);
2993
2994free_mem:
3b839a57
JR
2995 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2996 __free_pages(page, get_order(size));
5d8b53cf
JR
2997}
2998
b39ba6ad
JR
2999/*
3000 * This function is called by the DMA layer to find out if we can handle a
3001 * particular device. It is part of the dma_ops.
3002 */
3003static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3004{
420aef8a 3005 return check_device(dev);
b39ba6ad
JR
3006}
3007
c432f3df 3008/*
431b2a20
JR
3009 * The function for pre-allocating protection domains.
3010 *
c432f3df
JR
3011 * If the driver core informs the DMA layer if a driver grabs a device
3012 * we don't need to preallocate the protection domains anymore.
3013 * For now we have to.
3014 */
943bc7e1 3015static void __init prealloc_protection_domains(void)
c432f3df 3016{
5abcdba4 3017 struct iommu_dev_data *dev_data;
c432f3df 3018 struct dma_ops_domain *dma_dom;
5abcdba4 3019 struct pci_dev *dev = NULL;
98fc5a69 3020 u16 devid;
c432f3df 3021
d18c69d3 3022 for_each_pci_dev(dev) {
98fc5a69
JR
3023
3024 /* Do we handle this device? */
3025 if (!check_device(&dev->dev))
c432f3df 3026 continue;
98fc5a69 3027
5abcdba4
JR
3028 dev_data = get_dev_data(&dev->dev);
3029 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3030 /* Make sure passthrough domain is allocated */
3031 alloc_passthrough_domain();
3032 dev_data->passthrough = true;
3033 attach_device(&dev->dev, pt_domain);
df805abb 3034 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3035 dev_name(&dev->dev));
3036 }
3037
98fc5a69 3038 /* Is there already any domain for it? */
15898bbc 3039 if (domain_for_device(&dev->dev))
c432f3df 3040 continue;
98fc5a69
JR
3041
3042 devid = get_device_id(&dev->dev);
3043
87a64d52 3044 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3045 if (!dma_dom)
3046 continue;
3047 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3048 dma_dom->target_dev = devid;
3049
15898bbc 3050 attach_device(&dev->dev, &dma_dom->domain);
be831297 3051
bd60b735 3052 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3053 }
3054}
3055
160c1d8e 3056static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3057 .alloc = alloc_coherent,
3058 .free = free_coherent,
51491367
FT
3059 .map_page = map_page,
3060 .unmap_page = unmap_page,
6631ee9d
JR
3061 .map_sg = map_sg,
3062 .unmap_sg = unmap_sg,
b39ba6ad 3063 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3064};
3065
27c2127a
JR
3066static unsigned device_dma_ops_init(void)
3067{
5abcdba4 3068 struct iommu_dev_data *dev_data;
27c2127a
JR
3069 struct pci_dev *pdev = NULL;
3070 unsigned unhandled = 0;
3071
3072 for_each_pci_dev(pdev) {
3073 if (!check_device(&pdev->dev)) {
af1be049
JR
3074
3075 iommu_ignore_device(&pdev->dev);
3076
27c2127a
JR
3077 unhandled += 1;
3078 continue;
3079 }
3080
5abcdba4
JR
3081 dev_data = get_dev_data(&pdev->dev);
3082
3083 if (!dev_data->passthrough)
3084 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3085 else
3086 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3087 }
3088
3089 return unhandled;
3090}
3091
431b2a20
JR
3092/*
3093 * The function which clues the AMD IOMMU driver into dma_ops.
3094 */
f5325094
JR
3095
3096void __init amd_iommu_init_api(void)
3097{
2cc21c42 3098 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3099}
3100
6631ee9d
JR
3101int __init amd_iommu_init_dma_ops(void)
3102{
3103 struct amd_iommu *iommu;
27c2127a 3104 int ret, unhandled;
6631ee9d 3105
431b2a20
JR
3106 /*
3107 * first allocate a default protection domain for every IOMMU we
3108 * found in the system. Devices not assigned to any other
3109 * protection domain will be assigned to the default one.
3110 */
3bd22172 3111 for_each_iommu(iommu) {
87a64d52 3112 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3113 if (iommu->default_dom == NULL)
3114 return -ENOMEM;
e2dc14a2 3115 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3116 ret = iommu_init_unity_mappings(iommu);
3117 if (ret)
3118 goto free_domains;
3119 }
3120
431b2a20 3121 /*
8793abeb 3122 * Pre-allocate the protection domains for each device.
431b2a20 3123 */
8793abeb 3124 prealloc_protection_domains();
6631ee9d
JR
3125
3126 iommu_detected = 1;
75f1cdf1 3127 swiotlb = 0;
6631ee9d 3128
431b2a20 3129 /* Make the driver finally visible to the drivers */
27c2127a
JR
3130 unhandled = device_dma_ops_init();
3131 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3132 /* There are unhandled devices - initialize swiotlb for them */
3133 swiotlb = 1;
3134 }
6631ee9d 3135
7f26508b
JR
3136 amd_iommu_stats_init();
3137
62410eeb
JR
3138 if (amd_iommu_unmap_flush)
3139 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3140 else
3141 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3142
6631ee9d
JR
3143 return 0;
3144
3145free_domains:
3146
3bd22172 3147 for_each_iommu(iommu) {
91457df7 3148 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3149 }
3150
3151 return ret;
3152}
6d98cd80
JR
3153
3154/*****************************************************************************
3155 *
3156 * The following functions belong to the exported interface of AMD IOMMU
3157 *
3158 * This interface allows access to lower level functions of the IOMMU
3159 * like protection domain handling and assignement of devices to domains
3160 * which is not possible with the dma_ops interface.
3161 *
3162 *****************************************************************************/
3163
6d98cd80
JR
3164static void cleanup_domain(struct protection_domain *domain)
3165{
9b29d3c6 3166 struct iommu_dev_data *entry;
6d98cd80 3167 unsigned long flags;
6d98cd80
JR
3168
3169 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3170
9b29d3c6
JR
3171 while (!list_empty(&domain->dev_list)) {
3172 entry = list_first_entry(&domain->dev_list,
3173 struct iommu_dev_data, list);
3174 __detach_device(entry);
492667da 3175 }
6d98cd80
JR
3176
3177 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3178}
3179
2650815f
JR
3180static void protection_domain_free(struct protection_domain *domain)
3181{
3182 if (!domain)
3183 return;
3184
aeb26f55
JR
3185 del_domain_from_list(domain);
3186
2650815f
JR
3187 if (domain->id)
3188 domain_id_free(domain->id);
3189
3190 kfree(domain);
3191}
3192
3193static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3194{
3195 struct protection_domain *domain;
3196
3197 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3198 if (!domain)
2650815f 3199 return NULL;
c156e347
JR
3200
3201 spin_lock_init(&domain->lock);
5d214fe6 3202 mutex_init(&domain->api_lock);
c156e347
JR
3203 domain->id = domain_id_alloc();
3204 if (!domain->id)
2650815f 3205 goto out_err;
7c392cbe 3206 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3207
aeb26f55
JR
3208 add_domain_to_list(domain);
3209
2650815f
JR
3210 return domain;
3211
3212out_err:
3213 kfree(domain);
3214
3215 return NULL;
3216}
3217
5abcdba4
JR
3218static int __init alloc_passthrough_domain(void)
3219{
3220 if (pt_domain != NULL)
3221 return 0;
3222
3223 /* allocate passthrough domain */
3224 pt_domain = protection_domain_alloc();
3225 if (!pt_domain)
3226 return -ENOMEM;
3227
3228 pt_domain->mode = PAGE_MODE_NONE;
3229
3230 return 0;
3231}
2650815f
JR
3232static int amd_iommu_domain_init(struct iommu_domain *dom)
3233{
3234 struct protection_domain *domain;
3235
3236 domain = protection_domain_alloc();
3237 if (!domain)
c156e347 3238 goto out_free;
2650815f
JR
3239
3240 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3241 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3242 if (!domain->pt_root)
3243 goto out_free;
3244
f3572db8
JR
3245 domain->iommu_domain = dom;
3246
c156e347
JR
3247 dom->priv = domain;
3248
0ff64f80
JR
3249 dom->geometry.aperture_start = 0;
3250 dom->geometry.aperture_end = ~0ULL;
3251 dom->geometry.force_aperture = true;
3252
c156e347
JR
3253 return 0;
3254
3255out_free:
2650815f 3256 protection_domain_free(domain);
c156e347
JR
3257
3258 return -ENOMEM;
3259}
3260
98383fc3
JR
3261static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3262{
3263 struct protection_domain *domain = dom->priv;
3264
3265 if (!domain)
3266 return;
3267
3268 if (domain->dev_cnt > 0)
3269 cleanup_domain(domain);
3270
3271 BUG_ON(domain->dev_cnt != 0);
3272
132bd68f
JR
3273 if (domain->mode != PAGE_MODE_NONE)
3274 free_pagetable(domain);
98383fc3 3275
52815b75
JR
3276 if (domain->flags & PD_IOMMUV2_MASK)
3277 free_gcr3_table(domain);
3278
8b408fe4 3279 protection_domain_free(domain);
98383fc3
JR
3280
3281 dom->priv = NULL;
3282}
3283
684f2888
JR
3284static void amd_iommu_detach_device(struct iommu_domain *dom,
3285 struct device *dev)
3286{
657cbb6b 3287 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3288 struct amd_iommu *iommu;
684f2888
JR
3289 u16 devid;
3290
98fc5a69 3291 if (!check_device(dev))
684f2888
JR
3292 return;
3293
98fc5a69 3294 devid = get_device_id(dev);
684f2888 3295
657cbb6b 3296 if (dev_data->domain != NULL)
15898bbc 3297 detach_device(dev);
684f2888
JR
3298
3299 iommu = amd_iommu_rlookup_table[devid];
3300 if (!iommu)
3301 return;
3302
684f2888
JR
3303 iommu_completion_wait(iommu);
3304}
3305
01106066
JR
3306static int amd_iommu_attach_device(struct iommu_domain *dom,
3307 struct device *dev)
3308{
3309 struct protection_domain *domain = dom->priv;
657cbb6b 3310 struct iommu_dev_data *dev_data;
01106066 3311 struct amd_iommu *iommu;
15898bbc 3312 int ret;
01106066 3313
98fc5a69 3314 if (!check_device(dev))
01106066
JR
3315 return -EINVAL;
3316
657cbb6b
JR
3317 dev_data = dev->archdata.iommu;
3318
f62dda66 3319 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3320 if (!iommu)
3321 return -EINVAL;
3322
657cbb6b 3323 if (dev_data->domain)
15898bbc 3324 detach_device(dev);
01106066 3325
15898bbc 3326 ret = attach_device(dev, domain);
01106066
JR
3327
3328 iommu_completion_wait(iommu);
3329
15898bbc 3330 return ret;
01106066
JR
3331}
3332
468e2366 3333static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3334 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3335{
3336 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3337 int prot = 0;
3338 int ret;
3339
132bd68f
JR
3340 if (domain->mode == PAGE_MODE_NONE)
3341 return -EINVAL;
3342
c6229ca6
JR
3343 if (iommu_prot & IOMMU_READ)
3344 prot |= IOMMU_PROT_IR;
3345 if (iommu_prot & IOMMU_WRITE)
3346 prot |= IOMMU_PROT_IW;
3347
5d214fe6 3348 mutex_lock(&domain->api_lock);
795e74f7 3349 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3350 mutex_unlock(&domain->api_lock);
3351
795e74f7 3352 return ret;
c6229ca6
JR
3353}
3354
5009065d
OBC
3355static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3356 size_t page_size)
eb74ff6c 3357{
eb74ff6c 3358 struct protection_domain *domain = dom->priv;
5009065d 3359 size_t unmap_size;
eb74ff6c 3360
132bd68f
JR
3361 if (domain->mode == PAGE_MODE_NONE)
3362 return -EINVAL;
3363
5d214fe6 3364 mutex_lock(&domain->api_lock);
468e2366 3365 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3366 mutex_unlock(&domain->api_lock);
eb74ff6c 3367
17b124bf 3368 domain_flush_tlb_pde(domain);
5d214fe6 3369
5009065d 3370 return unmap_size;
eb74ff6c
JR
3371}
3372
645c4c8d 3373static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3374 dma_addr_t iova)
645c4c8d
JR
3375{
3376 struct protection_domain *domain = dom->priv;
3039ca1b 3377 unsigned long offset_mask, pte_pgsize;
645c4c8d 3378 phys_addr_t paddr;
f03152bb 3379 u64 *pte, __pte;
645c4c8d 3380
132bd68f
JR
3381 if (domain->mode == PAGE_MODE_NONE)
3382 return iova;
3383
3039ca1b 3384 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3385
a6d41a40 3386 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3387 return 0;
3388
f03152bb
JR
3389 if (PM_PTE_LEVEL(*pte) == 0)
3390 offset_mask = PAGE_SIZE - 1;
3391 else
3392 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3393
3394 __pte = *pte & PM_ADDR_MASK;
3395 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3396
3397 return paddr;
3398}
3399
ab636481 3400static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3401{
80a506b8
JR
3402 switch (cap) {
3403 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3404 return true;
bdddadcb 3405 case IOMMU_CAP_INTR_REMAP:
ab636481 3406 return (irq_remapping_enabled == 1);
cfdeec22
WD
3407 case IOMMU_CAP_NOEXEC:
3408 return false;
80a506b8
JR
3409 }
3410
ab636481 3411 return false;
dbb9fd86
SY
3412}
3413
b22f6434 3414static const struct iommu_ops amd_iommu_ops = {
ab636481 3415 .capable = amd_iommu_capable,
26961efe
JR
3416 .domain_init = amd_iommu_domain_init,
3417 .domain_destroy = amd_iommu_domain_destroy,
3418 .attach_dev = amd_iommu_attach_device,
3419 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3420 .map = amd_iommu_map,
3421 .unmap = amd_iommu_unmap,
315786eb 3422 .map_sg = default_iommu_map_sg,
26961efe 3423 .iova_to_phys = amd_iommu_iova_to_phys,
aa3de9c0 3424 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3425};
3426
0feae533
JR
3427/*****************************************************************************
3428 *
3429 * The next functions do a basic initialization of IOMMU for pass through
3430 * mode
3431 *
3432 * In passthrough mode the IOMMU is initialized and enabled but not used for
3433 * DMA-API translation.
3434 *
3435 *****************************************************************************/
3436
3437int __init amd_iommu_init_passthrough(void)
3438{
5abcdba4 3439 struct iommu_dev_data *dev_data;
0feae533 3440 struct pci_dev *dev = NULL;
5abcdba4 3441 int ret;
0feae533 3442
5abcdba4
JR
3443 ret = alloc_passthrough_domain();
3444 if (ret)
3445 return ret;
0feae533 3446
6c54aabd 3447 for_each_pci_dev(dev) {
98fc5a69 3448 if (!check_device(&dev->dev))
0feae533
JR
3449 continue;
3450
5abcdba4
JR
3451 dev_data = get_dev_data(&dev->dev);
3452 dev_data->passthrough = true;
3453
15898bbc 3454 attach_device(&dev->dev, pt_domain);
0feae533
JR
3455 }
3456
2655d7a2
JR
3457 amd_iommu_stats_init();
3458
0feae533
JR
3459 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3460
3461 return 0;
3462}
72e1dcc4
JR
3463
3464/* IOMMUv2 specific functions */
3465int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3466{
3467 return atomic_notifier_chain_register(&ppr_notifier, nb);
3468}
3469EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3470
3471int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3472{
3473 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3474}
3475EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3476
3477void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3478{
3479 struct protection_domain *domain = dom->priv;
3480 unsigned long flags;
3481
3482 spin_lock_irqsave(&domain->lock, flags);
3483
3484 /* Update data structure */
3485 domain->mode = PAGE_MODE_NONE;
3486 domain->updated = true;
3487
3488 /* Make changes visible to IOMMUs */
3489 update_domain(domain);
3490
3491 /* Page-table is not visible to IOMMU anymore, so free it */
3492 free_pagetable(domain);
3493
3494 spin_unlock_irqrestore(&domain->lock, flags);
3495}
3496EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3497
3498int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3499{
3500 struct protection_domain *domain = dom->priv;
3501 unsigned long flags;
3502 int levels, ret;
3503
3504 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3505 return -EINVAL;
3506
3507 /* Number of GCR3 table levels required */
3508 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3509 levels += 1;
3510
3511 if (levels > amd_iommu_max_glx_val)
3512 return -EINVAL;
3513
3514 spin_lock_irqsave(&domain->lock, flags);
3515
3516 /*
3517 * Save us all sanity checks whether devices already in the
3518 * domain support IOMMUv2. Just force that the domain has no
3519 * devices attached when it is switched into IOMMUv2 mode.
3520 */
3521 ret = -EBUSY;
3522 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3523 goto out;
3524
3525 ret = -ENOMEM;
3526 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3527 if (domain->gcr3_tbl == NULL)
3528 goto out;
3529
3530 domain->glx = levels;
3531 domain->flags |= PD_IOMMUV2_MASK;
3532 domain->updated = true;
3533
3534 update_domain(domain);
3535
3536 ret = 0;
3537
3538out:
3539 spin_unlock_irqrestore(&domain->lock, flags);
3540
3541 return ret;
3542}
3543EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3544
3545static int __flush_pasid(struct protection_domain *domain, int pasid,
3546 u64 address, bool size)
3547{
3548 struct iommu_dev_data *dev_data;
3549 struct iommu_cmd cmd;
3550 int i, ret;
3551
3552 if (!(domain->flags & PD_IOMMUV2_MASK))
3553 return -EINVAL;
3554
3555 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3556
3557 /*
3558 * IOMMU TLB needs to be flushed before Device TLB to
3559 * prevent device TLB refill from IOMMU TLB
3560 */
3561 for (i = 0; i < amd_iommus_present; ++i) {
3562 if (domain->dev_iommu[i] == 0)
3563 continue;
3564
3565 ret = iommu_queue_command(amd_iommus[i], &cmd);
3566 if (ret != 0)
3567 goto out;
3568 }
3569
3570 /* Wait until IOMMU TLB flushes are complete */
3571 domain_flush_complete(domain);
3572
3573 /* Now flush device TLBs */
3574 list_for_each_entry(dev_data, &domain->dev_list, list) {
3575 struct amd_iommu *iommu;
3576 int qdep;
3577
3578 BUG_ON(!dev_data->ats.enabled);
3579
3580 qdep = dev_data->ats.qdep;
3581 iommu = amd_iommu_rlookup_table[dev_data->devid];
3582
3583 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3584 qdep, address, size);
3585
3586 ret = iommu_queue_command(iommu, &cmd);
3587 if (ret != 0)
3588 goto out;
3589 }
3590
3591 /* Wait until all device TLBs are flushed */
3592 domain_flush_complete(domain);
3593
3594 ret = 0;
3595
3596out:
3597
3598 return ret;
3599}
3600
3601static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3602 u64 address)
3603{
399be2f5
JR
3604 INC_STATS_COUNTER(invalidate_iotlb);
3605
22e266c7
JR
3606 return __flush_pasid(domain, pasid, address, false);
3607}
3608
3609int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3610 u64 address)
3611{
3612 struct protection_domain *domain = dom->priv;
3613 unsigned long flags;
3614 int ret;
3615
3616 spin_lock_irqsave(&domain->lock, flags);
3617 ret = __amd_iommu_flush_page(domain, pasid, address);
3618 spin_unlock_irqrestore(&domain->lock, flags);
3619
3620 return ret;
3621}
3622EXPORT_SYMBOL(amd_iommu_flush_page);
3623
3624static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3625{
399be2f5
JR
3626 INC_STATS_COUNTER(invalidate_iotlb_all);
3627
22e266c7
JR
3628 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3629 true);
3630}
3631
3632int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3633{
3634 struct protection_domain *domain = dom->priv;
3635 unsigned long flags;
3636 int ret;
3637
3638 spin_lock_irqsave(&domain->lock, flags);
3639 ret = __amd_iommu_flush_tlb(domain, pasid);
3640 spin_unlock_irqrestore(&domain->lock, flags);
3641
3642 return ret;
3643}
3644EXPORT_SYMBOL(amd_iommu_flush_tlb);
3645
b16137b1
JR
3646static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3647{
3648 int index;
3649 u64 *pte;
3650
3651 while (true) {
3652
3653 index = (pasid >> (9 * level)) & 0x1ff;
3654 pte = &root[index];
3655
3656 if (level == 0)
3657 break;
3658
3659 if (!(*pte & GCR3_VALID)) {
3660 if (!alloc)
3661 return NULL;
3662
3663 root = (void *)get_zeroed_page(GFP_ATOMIC);
3664 if (root == NULL)
3665 return NULL;
3666
3667 *pte = __pa(root) | GCR3_VALID;
3668 }
3669
3670 root = __va(*pte & PAGE_MASK);
3671
3672 level -= 1;
3673 }
3674
3675 return pte;
3676}
3677
3678static int __set_gcr3(struct protection_domain *domain, int pasid,
3679 unsigned long cr3)
3680{
3681 u64 *pte;
3682
3683 if (domain->mode != PAGE_MODE_NONE)
3684 return -EINVAL;
3685
3686 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3687 if (pte == NULL)
3688 return -ENOMEM;
3689
3690 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3691
3692 return __amd_iommu_flush_tlb(domain, pasid);
3693}
3694
3695static int __clear_gcr3(struct protection_domain *domain, int pasid)
3696{
3697 u64 *pte;
3698
3699 if (domain->mode != PAGE_MODE_NONE)
3700 return -EINVAL;
3701
3702 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3703 if (pte == NULL)
3704 return 0;
3705
3706 *pte = 0;
3707
3708 return __amd_iommu_flush_tlb(domain, pasid);
3709}
3710
3711int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3712 unsigned long cr3)
3713{
3714 struct protection_domain *domain = dom->priv;
3715 unsigned long flags;
3716 int ret;
3717
3718 spin_lock_irqsave(&domain->lock, flags);
3719 ret = __set_gcr3(domain, pasid, cr3);
3720 spin_unlock_irqrestore(&domain->lock, flags);
3721
3722 return ret;
3723}
3724EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3725
3726int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3727{
3728 struct protection_domain *domain = dom->priv;
3729 unsigned long flags;
3730 int ret;
3731
3732 spin_lock_irqsave(&domain->lock, flags);
3733 ret = __clear_gcr3(domain, pasid);
3734 spin_unlock_irqrestore(&domain->lock, flags);
3735
3736 return ret;
3737}
3738EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3739
3740int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3741 int status, int tag)
3742{
3743 struct iommu_dev_data *dev_data;
3744 struct amd_iommu *iommu;
3745 struct iommu_cmd cmd;
3746
399be2f5
JR
3747 INC_STATS_COUNTER(complete_ppr);
3748
c99afa25
JR
3749 dev_data = get_dev_data(&pdev->dev);
3750 iommu = amd_iommu_rlookup_table[dev_data->devid];
3751
3752 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3753 tag, dev_data->pri_tlp);
3754
3755 return iommu_queue_command(iommu, &cmd);
3756}
3757EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3758
3759struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3760{
3761 struct protection_domain *domain;
3762
3763 domain = get_domain(&pdev->dev);
3764 if (IS_ERR(domain))
3765 return NULL;
3766
3767 /* Only return IOMMUv2 domains */
3768 if (!(domain->flags & PD_IOMMUV2_MASK))
3769 return NULL;
3770
3771 return domain->iommu_domain;
3772}
3773EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3774
3775void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3776{
3777 struct iommu_dev_data *dev_data;
3778
3779 if (!amd_iommu_v2_supported())
3780 return;
3781
3782 dev_data = get_dev_data(&pdev->dev);
3783 dev_data->errata |= (1 << erratum);
3784}
3785EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3786
3787int amd_iommu_device_info(struct pci_dev *pdev,
3788 struct amd_iommu_device_info *info)
3789{
3790 int max_pasids;
3791 int pos;
3792
3793 if (pdev == NULL || info == NULL)
3794 return -EINVAL;
3795
3796 if (!amd_iommu_v2_supported())
3797 return -EINVAL;
3798
3799 memset(info, 0, sizeof(*info));
3800
3801 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3802 if (pos)
3803 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3804
3805 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3806 if (pos)
3807 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3808
3809 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3810 if (pos) {
3811 int features;
3812
3813 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3814 max_pasids = min(max_pasids, (1 << 20));
3815
3816 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3817 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3818
3819 features = pci_pasid_features(pdev);
3820 if (features & PCI_PASID_CAP_EXEC)
3821 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3822 if (features & PCI_PASID_CAP_PRIV)
3823 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3824 }
3825
3826 return 0;
3827}
3828EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3829
3830#ifdef CONFIG_IRQ_REMAP
3831
3832/*****************************************************************************
3833 *
3834 * Interrupt Remapping Implementation
3835 *
3836 *****************************************************************************/
3837
3838union irte {
3839 u32 val;
3840 struct {
3841 u32 valid : 1,
3842 no_fault : 1,
3843 int_type : 3,
3844 rq_eoi : 1,
3845 dm : 1,
3846 rsvd_1 : 1,
3847 destination : 8,
3848 vector : 8,
3849 rsvd_2 : 8;
3850 } fields;
3851};
3852
3853#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3854#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3855#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3856#define DTE_IRQ_REMAP_ENABLE 1ULL
3857
3858static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3859{
3860 u64 dte;
3861
3862 dte = amd_iommu_dev_table[devid].data[2];
3863 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3864 dte |= virt_to_phys(table->table);
3865 dte |= DTE_IRQ_REMAP_INTCTL;
3866 dte |= DTE_IRQ_TABLE_LEN;
3867 dte |= DTE_IRQ_REMAP_ENABLE;
3868
3869 amd_iommu_dev_table[devid].data[2] = dte;
3870}
3871
3872#define IRTE_ALLOCATED (~1U)
3873
3874static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3875{
3876 struct irq_remap_table *table = NULL;
3877 struct amd_iommu *iommu;
3878 unsigned long flags;
3879 u16 alias;
3880
3881 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3882
3883 iommu = amd_iommu_rlookup_table[devid];
3884 if (!iommu)
3885 goto out_unlock;
3886
3887 table = irq_lookup_table[devid];
3888 if (table)
3889 goto out;
3890
3891 alias = amd_iommu_alias_table[devid];
3892 table = irq_lookup_table[alias];
3893 if (table) {
3894 irq_lookup_table[devid] = table;
3895 set_dte_irq_entry(devid, table);
3896 iommu_flush_dte(iommu, devid);
3897 goto out;
3898 }
3899
3900 /* Nothing there yet, allocate new irq remapping table */
3901 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3902 if (!table)
3903 goto out;
3904
197887f0
JR
3905 /* Initialize table spin-lock */
3906 spin_lock_init(&table->lock);
3907
2b324506
JR
3908 if (ioapic)
3909 /* Keep the first 32 indexes free for IOAPIC interrupts */
3910 table->min_index = 32;
3911
3912 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3913 if (!table->table) {
3914 kfree(table);
821f0f68 3915 table = NULL;
2b324506
JR
3916 goto out;
3917 }
3918
3919 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3920
3921 if (ioapic) {
3922 int i;
3923
3924 for (i = 0; i < 32; ++i)
3925 table->table[i] = IRTE_ALLOCATED;
3926 }
3927
3928 irq_lookup_table[devid] = table;
3929 set_dte_irq_entry(devid, table);
3930 iommu_flush_dte(iommu, devid);
3931 if (devid != alias) {
3932 irq_lookup_table[alias] = table;
e028a9e6 3933 set_dte_irq_entry(alias, table);
2b324506
JR
3934 iommu_flush_dte(iommu, alias);
3935 }
3936
3937out:
3938 iommu_completion_wait(iommu);
3939
3940out_unlock:
3941 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3942
3943 return table;
3944}
3945
3946static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3947{
3948 struct irq_remap_table *table;
3949 unsigned long flags;
3950 int index, c;
3951
3952 table = get_irq_table(devid, false);
3953 if (!table)
3954 return -ENODEV;
3955
3956 spin_lock_irqsave(&table->lock, flags);
3957
3958 /* Scan table for free entries */
3959 for (c = 0, index = table->min_index;
3960 index < MAX_IRQS_PER_TABLE;
3961 ++index) {
3962 if (table->table[index] == 0)
3963 c += 1;
3964 else
3965 c = 0;
3966
3967 if (c == count) {
0dfedd61 3968 struct irq_2_irte *irte_info;
2b324506
JR
3969
3970 for (; c != 0; --c)
3971 table->table[index - c + 1] = IRTE_ALLOCATED;
3972
3973 index -= count - 1;
3974
9b1b0e42 3975 cfg->remapped = 1;
0dfedd61
JR
3976 irte_info = &cfg->irq_2_irte;
3977 irte_info->devid = devid;
3978 irte_info->index = index;
2b324506
JR
3979
3980 goto out;
3981 }
3982 }
3983
3984 index = -ENOSPC;
3985
3986out:
3987 spin_unlock_irqrestore(&table->lock, flags);
3988
3989 return index;
3990}
3991
3992static int get_irte(u16 devid, int index, union irte *irte)
3993{
3994 struct irq_remap_table *table;
3995 unsigned long flags;
3996
3997 table = get_irq_table(devid, false);
3998 if (!table)
3999 return -ENOMEM;
4000
4001 spin_lock_irqsave(&table->lock, flags);
4002 irte->val = table->table[index];
4003 spin_unlock_irqrestore(&table->lock, flags);
4004
4005 return 0;
4006}
4007
4008static int modify_irte(u16 devid, int index, union irte irte)
4009{
4010 struct irq_remap_table *table;
4011 struct amd_iommu *iommu;
4012 unsigned long flags;
4013
4014 iommu = amd_iommu_rlookup_table[devid];
4015 if (iommu == NULL)
4016 return -EINVAL;
4017
4018 table = get_irq_table(devid, false);
4019 if (!table)
4020 return -ENOMEM;
4021
4022 spin_lock_irqsave(&table->lock, flags);
4023 table->table[index] = irte.val;
4024 spin_unlock_irqrestore(&table->lock, flags);
4025
4026 iommu_flush_irt(iommu, devid);
4027 iommu_completion_wait(iommu);
4028
4029 return 0;
4030}
4031
4032static void free_irte(u16 devid, int index)
4033{
4034 struct irq_remap_table *table;
4035 struct amd_iommu *iommu;
4036 unsigned long flags;
4037
4038 iommu = amd_iommu_rlookup_table[devid];
4039 if (iommu == NULL)
4040 return;
4041
4042 table = get_irq_table(devid, false);
4043 if (!table)
4044 return;
4045
4046 spin_lock_irqsave(&table->lock, flags);
4047 table->table[index] = 0;
4048 spin_unlock_irqrestore(&table->lock, flags);
4049
4050 iommu_flush_irt(iommu, devid);
4051 iommu_completion_wait(iommu);
4052}
4053
5527de74
JR
4054static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4055 unsigned int destination, int vector,
4056 struct io_apic_irq_attr *attr)
4057{
4058 struct irq_remap_table *table;
0dfedd61 4059 struct irq_2_irte *irte_info;
5527de74
JR
4060 struct irq_cfg *cfg;
4061 union irte irte;
4062 int ioapic_id;
4063 int index;
4064 int devid;
4065 int ret;
4066
719b530c 4067 cfg = irq_cfg(irq);
5527de74
JR
4068 if (!cfg)
4069 return -EINVAL;
4070
0dfedd61 4071 irte_info = &cfg->irq_2_irte;
5527de74
JR
4072 ioapic_id = mpc_ioapic_id(attr->ioapic);
4073 devid = get_ioapic_devid(ioapic_id);
4074
4075 if (devid < 0)
4076 return devid;
4077
4078 table = get_irq_table(devid, true);
4079 if (table == NULL)
4080 return -ENOMEM;
4081
4082 index = attr->ioapic_pin;
4083
4084 /* Setup IRQ remapping info */
9b1b0e42 4085 cfg->remapped = 1;
0dfedd61
JR
4086 irte_info->devid = devid;
4087 irte_info->index = index;
5527de74
JR
4088
4089 /* Setup IRTE for IOMMU */
4090 irte.val = 0;
4091 irte.fields.vector = vector;
4092 irte.fields.int_type = apic->irq_delivery_mode;
4093 irte.fields.destination = destination;
4094 irte.fields.dm = apic->irq_dest_mode;
4095 irte.fields.valid = 1;
4096
4097 ret = modify_irte(devid, index, irte);
4098 if (ret)
4099 return ret;
4100
4101 /* Setup IOAPIC entry */
4102 memset(entry, 0, sizeof(*entry));
4103
4104 entry->vector = index;
4105 entry->mask = 0;
4106 entry->trigger = attr->trigger;
4107 entry->polarity = attr->polarity;
4108
4109 /*
4110 * Mask level triggered irqs.
5527de74
JR
4111 */
4112 if (attr->trigger)
4113 entry->mask = 1;
4114
4115 return 0;
4116}
4117
4118static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4119 bool force)
4120{
0dfedd61 4121 struct irq_2_irte *irte_info;
5527de74
JR
4122 unsigned int dest, irq;
4123 struct irq_cfg *cfg;
4124 union irte irte;
4125 int err;
4126
4127 if (!config_enabled(CONFIG_SMP))
4128 return -1;
4129
719b530c 4130 cfg = irqd_cfg(data);
5527de74 4131 irq = data->irq;
0dfedd61 4132 irte_info = &cfg->irq_2_irte;
5527de74
JR
4133
4134 if (!cpumask_intersects(mask, cpu_online_mask))
4135 return -EINVAL;
4136
0dfedd61 4137 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4138 return -EBUSY;
4139
4140 if (assign_irq_vector(irq, cfg, mask))
4141 return -EBUSY;
4142
4143 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4144 if (err) {
4145 if (assign_irq_vector(irq, cfg, data->affinity))
4146 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4147 return err;
4148 }
4149
4150 irte.fields.vector = cfg->vector;
4151 irte.fields.destination = dest;
4152
0dfedd61 4153 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4154
4155 if (cfg->move_in_progress)
4156 send_cleanup_vector(cfg);
4157
4158 cpumask_copy(data->affinity, mask);
4159
4160 return 0;
4161}
4162
4163static int free_irq(int irq)
4164{
0dfedd61 4165 struct irq_2_irte *irte_info;
5527de74
JR
4166 struct irq_cfg *cfg;
4167
719b530c 4168 cfg = irq_cfg(irq);
5527de74
JR
4169 if (!cfg)
4170 return -EINVAL;
4171
0dfedd61 4172 irte_info = &cfg->irq_2_irte;
5527de74 4173
0dfedd61 4174 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4175
4176 return 0;
4177}
4178
0b4d48cb
JR
4179static void compose_msi_msg(struct pci_dev *pdev,
4180 unsigned int irq, unsigned int dest,
4181 struct msi_msg *msg, u8 hpet_id)
4182{
0dfedd61 4183 struct irq_2_irte *irte_info;
0b4d48cb
JR
4184 struct irq_cfg *cfg;
4185 union irte irte;
4186
719b530c 4187 cfg = irq_cfg(irq);
0b4d48cb
JR
4188 if (!cfg)
4189 return;
4190
0dfedd61 4191 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4192
4193 irte.val = 0;
4194 irte.fields.vector = cfg->vector;
4195 irte.fields.int_type = apic->irq_delivery_mode;
4196 irte.fields.destination = dest;
4197 irte.fields.dm = apic->irq_dest_mode;
4198 irte.fields.valid = 1;
4199
0dfedd61 4200 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4201
4202 msg->address_hi = MSI_ADDR_BASE_HI;
4203 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4204 msg->data = irte_info->index;
0b4d48cb
JR
4205}
4206
4207static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4208{
4209 struct irq_cfg *cfg;
4210 int index;
4211 u16 devid;
4212
4213 if (!pdev)
4214 return -EINVAL;
4215
719b530c 4216 cfg = irq_cfg(irq);
0b4d48cb
JR
4217 if (!cfg)
4218 return -EINVAL;
4219
4220 devid = get_device_id(&pdev->dev);
4221 index = alloc_irq_index(cfg, devid, nvec);
4222
4223 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4224}
4225
4226static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4227 int index, int offset)
4228{
0dfedd61 4229 struct irq_2_irte *irte_info;
0b4d48cb
JR
4230 struct irq_cfg *cfg;
4231 u16 devid;
4232
4233 if (!pdev)
4234 return -EINVAL;
4235
719b530c 4236 cfg = irq_cfg(irq);
0b4d48cb
JR
4237 if (!cfg)
4238 return -EINVAL;
4239
4240 if (index >= MAX_IRQS_PER_TABLE)
4241 return 0;
4242
4243 devid = get_device_id(&pdev->dev);
0dfedd61 4244 irte_info = &cfg->irq_2_irte;
0b4d48cb 4245
9b1b0e42 4246 cfg->remapped = 1;
0dfedd61
JR
4247 irte_info->devid = devid;
4248 irte_info->index = index + offset;
0b4d48cb
JR
4249
4250 return 0;
4251}
4252
5fc24d8c 4253static int alloc_hpet_msi(unsigned int irq, unsigned int id)
d976195c 4254{
0dfedd61 4255 struct irq_2_irte *irte_info;
d976195c
JR
4256 struct irq_cfg *cfg;
4257 int index, devid;
4258
719b530c 4259 cfg = irq_cfg(irq);
d976195c
JR
4260 if (!cfg)
4261 return -EINVAL;
4262
0dfedd61 4263 irte_info = &cfg->irq_2_irte;
d976195c
JR
4264 devid = get_hpet_devid(id);
4265 if (devid < 0)
4266 return devid;
4267
4268 index = alloc_irq_index(cfg, devid, 1);
4269 if (index < 0)
4270 return index;
4271
9b1b0e42 4272 cfg->remapped = 1;
0dfedd61
JR
4273 irte_info->devid = devid;
4274 irte_info->index = index;
d976195c
JR
4275
4276 return 0;
4277}
4278
6b474b82 4279struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4280 .prepare = amd_iommu_prepare,
4281 .enable = amd_iommu_enable,
4282 .disable = amd_iommu_disable,
4283 .reenable = amd_iommu_reenable,
4284 .enable_faulting = amd_iommu_enable_faulting,
4285 .setup_ioapic_entry = setup_ioapic_entry,
4286 .set_affinity = set_affinity,
4287 .free_irq = free_irq,
4288 .compose_msi_msg = compose_msi_msg,
4289 .msi_alloc_irq = msi_alloc_irq,
4290 .msi_setup_irq = msi_setup_irq,
5fc24d8c 4291 .alloc_hpet_msi = alloc_hpet_msi,
6b474b82 4292};
2b324506 4293#endif