]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Add device errata handling
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
17f5b569 34#include <asm/msidef.h>
b6c02715 35#include <asm/proto.h>
46a7fa27 36#include <asm/iommu.h>
1d9b16d1 37#include <asm/gart.h>
27c2127a 38#include <asm/dma.h>
403f81d8
JR
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
b6c02715
JR
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
815b33fd 45#define LOOP_TIMEOUT 100000
136f78a1 46
b6c02715
JR
47static DEFINE_RWLOCK(amd_iommu_devtable_lock);
48
bd60b735
JR
49/* A list of preallocated protection domains */
50static LIST_HEAD(iommu_pd_list);
51static DEFINE_SPINLOCK(iommu_pd_list_lock);
52
8fa5f802
JR
53/* List of all available dev_data structures */
54static LIST_HEAD(dev_data_list);
55static DEFINE_SPINLOCK(dev_data_list_lock);
56
0feae533
JR
57/*
58 * Domain for untranslated devices - only allocated
59 * if iommu=pt passed on kernel cmd line.
60 */
61static struct protection_domain *pt_domain;
62
26961efe 63static struct iommu_ops amd_iommu_ops;
26961efe 64
72e1dcc4 65static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 66int amd_iommu_max_glx_val = -1;
72e1dcc4 67
431b2a20
JR
68/*
69 * general struct to manage commands send to an IOMMU
70 */
d6449536 71struct iommu_cmd {
b6c02715
JR
72 u32 data[4];
73};
74
04bfdd84 75static void update_domain(struct protection_domain *domain);
5abcdba4 76static int __init alloc_passthrough_domain(void);
c1eee67b 77
15898bbc
JR
78/****************************************************************************
79 *
80 * Helper functions
81 *
82 ****************************************************************************/
83
f62dda66 84static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
85{
86 struct iommu_dev_data *dev_data;
87 unsigned long flags;
88
89 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
90 if (!dev_data)
91 return NULL;
92
f62dda66 93 dev_data->devid = devid;
8fa5f802
JR
94 atomic_set(&dev_data->bind, 0);
95
96 spin_lock_irqsave(&dev_data_list_lock, flags);
97 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
98 spin_unlock_irqrestore(&dev_data_list_lock, flags);
99
100 return dev_data;
101}
102
103static void free_dev_data(struct iommu_dev_data *dev_data)
104{
105 unsigned long flags;
106
107 spin_lock_irqsave(&dev_data_list_lock, flags);
108 list_del(&dev_data->dev_data_list);
109 spin_unlock_irqrestore(&dev_data_list_lock, flags);
110
111 kfree(dev_data);
112}
113
3b03bb74
JR
114static struct iommu_dev_data *search_dev_data(u16 devid)
115{
116 struct iommu_dev_data *dev_data;
117 unsigned long flags;
118
119 spin_lock_irqsave(&dev_data_list_lock, flags);
120 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
121 if (dev_data->devid == devid)
122 goto out_unlock;
123 }
124
125 dev_data = NULL;
126
127out_unlock:
128 spin_unlock_irqrestore(&dev_data_list_lock, flags);
129
130 return dev_data;
131}
132
133static struct iommu_dev_data *find_dev_data(u16 devid)
134{
135 struct iommu_dev_data *dev_data;
136
137 dev_data = search_dev_data(devid);
138
139 if (dev_data == NULL)
140 dev_data = alloc_dev_data(devid);
141
142 return dev_data;
143}
144
15898bbc
JR
145static inline u16 get_device_id(struct device *dev)
146{
147 struct pci_dev *pdev = to_pci_dev(dev);
148
149 return calc_devid(pdev->bus->number, pdev->devfn);
150}
151
657cbb6b
JR
152static struct iommu_dev_data *get_dev_data(struct device *dev)
153{
154 return dev->archdata.iommu;
155}
156
5abcdba4
JR
157static bool pci_iommuv2_capable(struct pci_dev *pdev)
158{
159 static const int caps[] = {
160 PCI_EXT_CAP_ID_ATS,
161 PCI_PRI_CAP,
162 PCI_PASID_CAP,
163 };
164 int i, pos;
165
166 for (i = 0; i < 3; ++i) {
167 pos = pci_find_ext_capability(pdev, caps[i]);
168 if (pos == 0)
169 return false;
170 }
171
172 return true;
173}
174
6a113ddc
JR
175static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
176{
177 struct iommu_dev_data *dev_data;
178
179 dev_data = get_dev_data(&pdev->dev);
180
181 return dev_data->errata & (1 << erratum) ? true : false;
182}
183
71c70984
JR
184/*
185 * In this function the list of preallocated protection domains is traversed to
186 * find the domain for a specific device
187 */
188static struct dma_ops_domain *find_protection_domain(u16 devid)
189{
190 struct dma_ops_domain *entry, *ret = NULL;
191 unsigned long flags;
192 u16 alias = amd_iommu_alias_table[devid];
193
194 if (list_empty(&iommu_pd_list))
195 return NULL;
196
197 spin_lock_irqsave(&iommu_pd_list_lock, flags);
198
199 list_for_each_entry(entry, &iommu_pd_list, list) {
200 if (entry->target_dev == devid ||
201 entry->target_dev == alias) {
202 ret = entry;
203 break;
204 }
205 }
206
207 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
208
209 return ret;
210}
211
98fc5a69
JR
212/*
213 * This function checks if the driver got a valid device from the caller to
214 * avoid dereferencing invalid pointers.
215 */
216static bool check_device(struct device *dev)
217{
218 u16 devid;
219
220 if (!dev || !dev->dma_mask)
221 return false;
222
223 /* No device or no PCI device */
339d3261 224 if (dev->bus != &pci_bus_type)
98fc5a69
JR
225 return false;
226
227 devid = get_device_id(dev);
228
229 /* Out of our scope? */
230 if (devid > amd_iommu_last_bdf)
231 return false;
232
233 if (amd_iommu_rlookup_table[devid] == NULL)
234 return false;
235
236 return true;
237}
238
657cbb6b
JR
239static int iommu_init_device(struct device *dev)
240{
5abcdba4 241 struct pci_dev *pdev = to_pci_dev(dev);
657cbb6b 242 struct iommu_dev_data *dev_data;
8fa5f802 243 u16 alias;
657cbb6b
JR
244
245 if (dev->archdata.iommu)
246 return 0;
247
3b03bb74 248 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
249 if (!dev_data)
250 return -ENOMEM;
251
f62dda66 252 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 253 if (alias != dev_data->devid) {
71f77580 254 struct iommu_dev_data *alias_data;
b00d3bcf 255
71f77580
JR
256 alias_data = find_dev_data(alias);
257 if (alias_data == NULL) {
258 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
259 dev_name(dev));
2b02b091
JR
260 free_dev_data(dev_data);
261 return -ENOTSUPP;
262 }
71f77580 263 dev_data->alias_data = alias_data;
26018874 264 }
657cbb6b 265
5abcdba4
JR
266 if (pci_iommuv2_capable(pdev)) {
267 struct amd_iommu *iommu;
268
269 iommu = amd_iommu_rlookup_table[dev_data->devid];
270 dev_data->iommu_v2 = iommu->is_iommu_v2;
271 }
272
657cbb6b
JR
273 dev->archdata.iommu = dev_data;
274
657cbb6b
JR
275 return 0;
276}
277
26018874
JR
278static void iommu_ignore_device(struct device *dev)
279{
280 u16 devid, alias;
281
282 devid = get_device_id(dev);
283 alias = amd_iommu_alias_table[devid];
284
285 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
286 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
287
288 amd_iommu_rlookup_table[devid] = NULL;
289 amd_iommu_rlookup_table[alias] = NULL;
290}
291
657cbb6b
JR
292static void iommu_uninit_device(struct device *dev)
293{
8fa5f802
JR
294 /*
295 * Nothing to do here - we keep dev_data around for unplugged devices
296 * and reuse it when the device is re-plugged - not doing so would
297 * introduce a ton of races.
298 */
657cbb6b 299}
b7cc9554
JR
300
301void __init amd_iommu_uninit_devices(void)
302{
8fa5f802 303 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
304 struct pci_dev *pdev = NULL;
305
306 for_each_pci_dev(pdev) {
307
308 if (!check_device(&pdev->dev))
309 continue;
310
311 iommu_uninit_device(&pdev->dev);
312 }
8fa5f802
JR
313
314 /* Free all of our dev_data structures */
315 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
316 free_dev_data(dev_data);
b7cc9554
JR
317}
318
319int __init amd_iommu_init_devices(void)
320{
321 struct pci_dev *pdev = NULL;
322 int ret = 0;
323
324 for_each_pci_dev(pdev) {
325
326 if (!check_device(&pdev->dev))
327 continue;
328
329 ret = iommu_init_device(&pdev->dev);
26018874
JR
330 if (ret == -ENOTSUPP)
331 iommu_ignore_device(&pdev->dev);
332 else if (ret)
b7cc9554
JR
333 goto out_free;
334 }
335
336 return 0;
337
338out_free:
339
340 amd_iommu_uninit_devices();
341
342 return ret;
343}
7f26508b
JR
344#ifdef CONFIG_AMD_IOMMU_STATS
345
346/*
347 * Initialization code for statistics collection
348 */
349
da49f6df 350DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 351DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 352DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 353DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 354DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 355DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 356DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 357DECLARE_STATS_COUNTER(cross_page);
f57d98ae 358DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 359DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 360DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 361DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 362
7f26508b 363static struct dentry *stats_dir;
7f26508b
JR
364static struct dentry *de_fflush;
365
366static void amd_iommu_stats_add(struct __iommu_counter *cnt)
367{
368 if (stats_dir == NULL)
369 return;
370
371 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
372 &cnt->value);
373}
374
375static void amd_iommu_stats_init(void)
376{
377 stats_dir = debugfs_create_dir("amd-iommu", NULL);
378 if (stats_dir == NULL)
379 return;
380
7f26508b
JR
381 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
382 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
383
384 amd_iommu_stats_add(&compl_wait);
0f2a86f2 385 amd_iommu_stats_add(&cnt_map_single);
146a6917 386 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 387 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 388 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 389 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 390 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 391 amd_iommu_stats_add(&cross_page);
f57d98ae 392 amd_iommu_stats_add(&domain_flush_single);
18811f55 393 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 394 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 395 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
396}
397
398#endif
399
a80dc3e0
JR
400/****************************************************************************
401 *
402 * Interrupt handling functions
403 *
404 ****************************************************************************/
405
e3e59876
JR
406static void dump_dte_entry(u16 devid)
407{
408 int i;
409
ee6c2868
JR
410 for (i = 0; i < 4; ++i)
411 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
412 amd_iommu_dev_table[devid].data[i]);
413}
414
945b4ac4
JR
415static void dump_command(unsigned long phys_addr)
416{
417 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
418 int i;
419
420 for (i = 0; i < 4; ++i)
421 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
422}
423
a345b23b 424static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
425{
426 u32 *event = __evt;
427 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
428 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
429 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
430 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
431 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
432
4c6f40d4 433 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
434
435 switch (type) {
436 case EVENT_TYPE_ILL_DEV:
437 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
438 "address=0x%016llx flags=0x%04x]\n",
439 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
440 address, flags);
e3e59876 441 dump_dte_entry(devid);
90008ee4
JR
442 break;
443 case EVENT_TYPE_IO_FAULT:
444 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
445 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
446 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
447 domid, address, flags);
448 break;
449 case EVENT_TYPE_DEV_TAB_ERR:
450 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
451 "address=0x%016llx flags=0x%04x]\n",
452 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
453 address, flags);
454 break;
455 case EVENT_TYPE_PAGE_TAB_ERR:
456 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
457 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
458 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
459 domid, address, flags);
460 break;
461 case EVENT_TYPE_ILL_CMD:
462 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 463 dump_command(address);
90008ee4
JR
464 break;
465 case EVENT_TYPE_CMD_HARD_ERR:
466 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
467 "flags=0x%04x]\n", address, flags);
468 break;
469 case EVENT_TYPE_IOTLB_INV_TO:
470 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
471 "address=0x%016llx]\n",
472 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
473 address);
474 break;
475 case EVENT_TYPE_INV_DEV_REQ:
476 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
477 "address=0x%016llx flags=0x%04x]\n",
478 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
479 address, flags);
480 break;
481 default:
482 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
483 }
484}
485
486static void iommu_poll_events(struct amd_iommu *iommu)
487{
488 u32 head, tail;
489 unsigned long flags;
490
491 spin_lock_irqsave(&iommu->lock, flags);
492
493 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
494 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
495
496 while (head != tail) {
a345b23b 497 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
498 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
499 }
500
501 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
502
503 spin_unlock_irqrestore(&iommu->lock, flags);
504}
505
72e1dcc4
JR
506static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
507{
508 struct amd_iommu_fault fault;
509 volatile u64 *raw;
510 int i;
511
512 raw = (u64 *)(iommu->ppr_log + head);
513
514 /*
515 * Hardware bug: Interrupt may arrive before the entry is written to
516 * memory. If this happens we need to wait for the entry to arrive.
517 */
518 for (i = 0; i < LOOP_TIMEOUT; ++i) {
519 if (PPR_REQ_TYPE(raw[0]) != 0)
520 break;
521 udelay(1);
522 }
523
524 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
525 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
526 return;
527 }
528
529 fault.address = raw[1];
530 fault.pasid = PPR_PASID(raw[0]);
531 fault.device_id = PPR_DEVID(raw[0]);
532 fault.tag = PPR_TAG(raw[0]);
533 fault.flags = PPR_FLAGS(raw[0]);
534
535 /*
536 * To detect the hardware bug we need to clear the entry
537 * to back to zero.
538 */
539 raw[0] = raw[1] = 0;
540
541 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
542}
543
544static void iommu_poll_ppr_log(struct amd_iommu *iommu)
545{
546 unsigned long flags;
547 u32 head, tail;
548
549 if (iommu->ppr_log == NULL)
550 return;
551
552 spin_lock_irqsave(&iommu->lock, flags);
553
554 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
555 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
556
557 while (head != tail) {
558
559 /* Handle PPR entry */
560 iommu_handle_ppr_entry(iommu, head);
561
562 /* Update and refresh ring-buffer state*/
563 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
564 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
565 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
566 }
567
568 /* enable ppr interrupts again */
569 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
570
571 spin_unlock_irqrestore(&iommu->lock, flags);
572}
573
72fe00f0 574irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 575{
90008ee4
JR
576 struct amd_iommu *iommu;
577
72e1dcc4 578 for_each_iommu(iommu) {
90008ee4 579 iommu_poll_events(iommu);
72e1dcc4
JR
580 iommu_poll_ppr_log(iommu);
581 }
90008ee4
JR
582
583 return IRQ_HANDLED;
a80dc3e0
JR
584}
585
72fe00f0
JR
586irqreturn_t amd_iommu_int_handler(int irq, void *data)
587{
588 return IRQ_WAKE_THREAD;
589}
590
431b2a20
JR
591/****************************************************************************
592 *
593 * IOMMU command queuing functions
594 *
595 ****************************************************************************/
596
ac0ea6e9
JR
597static int wait_on_sem(volatile u64 *sem)
598{
599 int i = 0;
600
601 while (*sem == 0 && i < LOOP_TIMEOUT) {
602 udelay(1);
603 i += 1;
604 }
605
606 if (i == LOOP_TIMEOUT) {
607 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
608 return -EIO;
609 }
610
611 return 0;
612}
613
614static void copy_cmd_to_buffer(struct amd_iommu *iommu,
615 struct iommu_cmd *cmd,
616 u32 tail)
a19ae1ec 617{
a19ae1ec
JR
618 u8 *target;
619
8a7c5ef3 620 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
621 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
622
623 /* Copy command to buffer */
624 memcpy(target, cmd, sizeof(*cmd));
625
626 /* Tell the IOMMU about it */
a19ae1ec 627 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 628}
a19ae1ec 629
815b33fd 630static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 631{
815b33fd
JR
632 WARN_ON(address & 0x7ULL);
633
ded46737 634 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
635 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
636 cmd->data[1] = upper_32_bits(__pa(address));
637 cmd->data[2] = 1;
ded46737
JR
638 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
639}
640
94fe79e2
JR
641static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
642{
643 memset(cmd, 0, sizeof(*cmd));
644 cmd->data[0] = devid;
645 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
646}
647
11b6402c
JR
648static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
649 size_t size, u16 domid, int pde)
650{
651 u64 pages;
652 int s;
653
654 pages = iommu_num_pages(address, size, PAGE_SIZE);
655 s = 0;
656
657 if (pages > 1) {
658 /*
659 * If we have to flush more than one page, flush all
660 * TLB entries for this domain
661 */
662 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
663 s = 1;
664 }
665
666 address &= PAGE_MASK;
667
668 memset(cmd, 0, sizeof(*cmd));
669 cmd->data[1] |= domid;
670 cmd->data[2] = lower_32_bits(address);
671 cmd->data[3] = upper_32_bits(address);
672 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
673 if (s) /* size bit - we flush more than one 4kb page */
674 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
675 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
676 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
677}
678
cb41ed85
JR
679static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
680 u64 address, size_t size)
681{
682 u64 pages;
683 int s;
684
685 pages = iommu_num_pages(address, size, PAGE_SIZE);
686 s = 0;
687
688 if (pages > 1) {
689 /*
690 * If we have to flush more than one page, flush all
691 * TLB entries for this domain
692 */
693 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
694 s = 1;
695 }
696
697 address &= PAGE_MASK;
698
699 memset(cmd, 0, sizeof(*cmd));
700 cmd->data[0] = devid;
701 cmd->data[0] |= (qdep & 0xff) << 24;
702 cmd->data[1] = devid;
703 cmd->data[2] = lower_32_bits(address);
704 cmd->data[3] = upper_32_bits(address);
705 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
706 if (s)
707 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
708}
709
22e266c7
JR
710static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
711 u64 address, bool size)
712{
713 memset(cmd, 0, sizeof(*cmd));
714
715 address &= ~(0xfffULL);
716
717 cmd->data[0] = pasid & PASID_MASK;
718 cmd->data[1] = domid;
719 cmd->data[2] = lower_32_bits(address);
720 cmd->data[3] = upper_32_bits(address);
721 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
722 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
723 if (size)
724 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
725 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
726}
727
728static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
729 int qdep, u64 address, bool size)
730{
731 memset(cmd, 0, sizeof(*cmd));
732
733 address &= ~(0xfffULL);
734
735 cmd->data[0] = devid;
736 cmd->data[0] |= (pasid & 0xff) << 16;
737 cmd->data[0] |= (qdep & 0xff) << 24;
738 cmd->data[1] = devid;
739 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
740 cmd->data[2] = lower_32_bits(address);
741 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
742 cmd->data[3] = upper_32_bits(address);
743 if (size)
744 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
745 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
746}
747
c99afa25
JR
748static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
749 int status, int tag, bool gn)
750{
751 memset(cmd, 0, sizeof(*cmd));
752
753 cmd->data[0] = devid;
754 if (gn) {
755 cmd->data[1] = pasid & PASID_MASK;
756 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
757 }
758 cmd->data[3] = tag & 0x1ff;
759 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
760
761 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
762}
763
58fc7f14
JR
764static void build_inv_all(struct iommu_cmd *cmd)
765{
766 memset(cmd, 0, sizeof(*cmd));
767 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
768}
769
431b2a20 770/*
431b2a20 771 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 772 * hardware about the new command.
431b2a20 773 */
f1ca1512
JR
774static int iommu_queue_command_sync(struct amd_iommu *iommu,
775 struct iommu_cmd *cmd,
776 bool sync)
a19ae1ec 777{
ac0ea6e9 778 u32 left, tail, head, next_tail;
a19ae1ec 779 unsigned long flags;
a19ae1ec 780
549c90dc 781 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
782
783again:
a19ae1ec 784 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 785
ac0ea6e9
JR
786 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
787 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
788 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
789 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 790
ac0ea6e9
JR
791 if (left <= 2) {
792 struct iommu_cmd sync_cmd;
793 volatile u64 sem = 0;
794 int ret;
8d201968 795
ac0ea6e9
JR
796 build_completion_wait(&sync_cmd, (u64)&sem);
797 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 798
ac0ea6e9
JR
799 spin_unlock_irqrestore(&iommu->lock, flags);
800
801 if ((ret = wait_on_sem(&sem)) != 0)
802 return ret;
803
804 goto again;
8d201968
JR
805 }
806
ac0ea6e9
JR
807 copy_cmd_to_buffer(iommu, cmd, tail);
808
809 /* We need to sync now to make sure all commands are processed */
f1ca1512 810 iommu->need_sync = sync;
ac0ea6e9 811
a19ae1ec 812 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 813
815b33fd 814 return 0;
8d201968
JR
815}
816
f1ca1512
JR
817static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
818{
819 return iommu_queue_command_sync(iommu, cmd, true);
820}
821
8d201968
JR
822/*
823 * This function queues a completion wait command into the command
824 * buffer of an IOMMU
825 */
a19ae1ec 826static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
827{
828 struct iommu_cmd cmd;
815b33fd 829 volatile u64 sem = 0;
ac0ea6e9 830 int ret;
8d201968 831
09ee17eb 832 if (!iommu->need_sync)
815b33fd 833 return 0;
09ee17eb 834
815b33fd 835 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 836
f1ca1512 837 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 838 if (ret)
815b33fd 839 return ret;
8d201968 840
ac0ea6e9 841 return wait_on_sem(&sem);
8d201968
JR
842}
843
d8c13085 844static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 845{
d8c13085 846 struct iommu_cmd cmd;
a19ae1ec 847
d8c13085 848 build_inv_dte(&cmd, devid);
7e4f88da 849
d8c13085
JR
850 return iommu_queue_command(iommu, &cmd);
851}
09ee17eb 852
7d0c5cc5
JR
853static void iommu_flush_dte_all(struct amd_iommu *iommu)
854{
855 u32 devid;
09ee17eb 856
7d0c5cc5
JR
857 for (devid = 0; devid <= 0xffff; ++devid)
858 iommu_flush_dte(iommu, devid);
a19ae1ec 859
7d0c5cc5
JR
860 iommu_completion_wait(iommu);
861}
84df8175 862
7d0c5cc5
JR
863/*
864 * This function uses heavy locking and may disable irqs for some time. But
865 * this is no issue because it is only called during resume.
866 */
867static void iommu_flush_tlb_all(struct amd_iommu *iommu)
868{
869 u32 dom_id;
a19ae1ec 870
7d0c5cc5
JR
871 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
872 struct iommu_cmd cmd;
873 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
874 dom_id, 1);
875 iommu_queue_command(iommu, &cmd);
876 }
8eed9833 877
7d0c5cc5 878 iommu_completion_wait(iommu);
a19ae1ec
JR
879}
880
58fc7f14 881static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 882{
58fc7f14 883 struct iommu_cmd cmd;
0518a3a4 884
58fc7f14 885 build_inv_all(&cmd);
0518a3a4 886
58fc7f14
JR
887 iommu_queue_command(iommu, &cmd);
888 iommu_completion_wait(iommu);
889}
890
7d0c5cc5
JR
891void iommu_flush_all_caches(struct amd_iommu *iommu)
892{
58fc7f14
JR
893 if (iommu_feature(iommu, FEATURE_IA)) {
894 iommu_flush_all(iommu);
895 } else {
896 iommu_flush_dte_all(iommu);
897 iommu_flush_tlb_all(iommu);
0518a3a4
JR
898 }
899}
900
431b2a20 901/*
cb41ed85 902 * Command send function for flushing on-device TLB
431b2a20 903 */
6c542047
JR
904static int device_flush_iotlb(struct iommu_dev_data *dev_data,
905 u64 address, size_t size)
3fa43655
JR
906{
907 struct amd_iommu *iommu;
b00d3bcf 908 struct iommu_cmd cmd;
cb41ed85 909 int qdep;
3fa43655 910
ea61cddb
JR
911 qdep = dev_data->ats.qdep;
912 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 913
ea61cddb 914 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
915
916 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
917}
918
431b2a20 919/*
431b2a20 920 * Command send function for invalidating a device table entry
431b2a20 921 */
6c542047 922static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 923{
3fa43655 924 struct amd_iommu *iommu;
ee2fa743 925 int ret;
a19ae1ec 926
6c542047 927 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 928
f62dda66 929 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
930 if (ret)
931 return ret;
932
ea61cddb 933 if (dev_data->ats.enabled)
6c542047 934 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 935
ee2fa743 936 return ret;
a19ae1ec
JR
937}
938
431b2a20
JR
939/*
940 * TLB invalidation function which is called from the mapping functions.
941 * It invalidates a single PTE if the range to flush is within a single
942 * page. Otherwise it flushes the whole TLB of the IOMMU.
943 */
17b124bf
JR
944static void __domain_flush_pages(struct protection_domain *domain,
945 u64 address, size_t size, int pde)
a19ae1ec 946{
cb41ed85 947 struct iommu_dev_data *dev_data;
11b6402c
JR
948 struct iommu_cmd cmd;
949 int ret = 0, i;
a19ae1ec 950
11b6402c 951 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 952
6de8ad9b
JR
953 for (i = 0; i < amd_iommus_present; ++i) {
954 if (!domain->dev_iommu[i])
955 continue;
956
957 /*
958 * Devices of this domain are behind this IOMMU
959 * We need a TLB flush
960 */
11b6402c 961 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
962 }
963
cb41ed85 964 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 965
ea61cddb 966 if (!dev_data->ats.enabled)
cb41ed85
JR
967 continue;
968
6c542047 969 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
970 }
971
11b6402c 972 WARN_ON(ret);
6de8ad9b
JR
973}
974
17b124bf
JR
975static void domain_flush_pages(struct protection_domain *domain,
976 u64 address, size_t size)
6de8ad9b 977{
17b124bf 978 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 979}
b6c02715 980
1c655773 981/* Flush the whole IO/TLB for a given protection domain */
17b124bf 982static void domain_flush_tlb(struct protection_domain *domain)
1c655773 983{
17b124bf 984 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
985}
986
42a49f96 987/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 988static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 989{
17b124bf 990 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
991}
992
17b124bf 993static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 994{
17b124bf 995 int i;
18811f55 996
17b124bf
JR
997 for (i = 0; i < amd_iommus_present; ++i) {
998 if (!domain->dev_iommu[i])
999 continue;
bfd1be18 1000
17b124bf
JR
1001 /*
1002 * Devices of this domain are behind this IOMMU
1003 * We need to wait for completion of all commands.
1004 */
1005 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1006 }
e394d72a
JR
1007}
1008
b00d3bcf 1009
09b42804 1010/*
b00d3bcf 1011 * This function flushes the DTEs for all devices in domain
09b42804 1012 */
17b124bf 1013static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1014{
b00d3bcf 1015 struct iommu_dev_data *dev_data;
b26e81b8 1016
b00d3bcf 1017 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1018 device_flush_dte(dev_data);
a345b23b
JR
1019}
1020
431b2a20
JR
1021/****************************************************************************
1022 *
1023 * The functions below are used the create the page table mappings for
1024 * unity mapped regions.
1025 *
1026 ****************************************************************************/
1027
308973d3
JR
1028/*
1029 * This function is used to add another level to an IO page table. Adding
1030 * another level increases the size of the address space by 9 bits to a size up
1031 * to 64 bits.
1032 */
1033static bool increase_address_space(struct protection_domain *domain,
1034 gfp_t gfp)
1035{
1036 u64 *pte;
1037
1038 if (domain->mode == PAGE_MODE_6_LEVEL)
1039 /* address space already 64 bit large */
1040 return false;
1041
1042 pte = (void *)get_zeroed_page(gfp);
1043 if (!pte)
1044 return false;
1045
1046 *pte = PM_LEVEL_PDE(domain->mode,
1047 virt_to_phys(domain->pt_root));
1048 domain->pt_root = pte;
1049 domain->mode += 1;
1050 domain->updated = true;
1051
1052 return true;
1053}
1054
1055static u64 *alloc_pte(struct protection_domain *domain,
1056 unsigned long address,
cbb9d729 1057 unsigned long page_size,
308973d3
JR
1058 u64 **pte_page,
1059 gfp_t gfp)
1060{
cbb9d729 1061 int level, end_lvl;
308973d3 1062 u64 *pte, *page;
cbb9d729
JR
1063
1064 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1065
1066 while (address > PM_LEVEL_SIZE(domain->mode))
1067 increase_address_space(domain, gfp);
1068
cbb9d729
JR
1069 level = domain->mode - 1;
1070 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1071 address = PAGE_SIZE_ALIGN(address, page_size);
1072 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1073
1074 while (level > end_lvl) {
1075 if (!IOMMU_PTE_PRESENT(*pte)) {
1076 page = (u64 *)get_zeroed_page(gfp);
1077 if (!page)
1078 return NULL;
1079 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1080 }
1081
cbb9d729
JR
1082 /* No level skipping support yet */
1083 if (PM_PTE_LEVEL(*pte) != level)
1084 return NULL;
1085
308973d3
JR
1086 level -= 1;
1087
1088 pte = IOMMU_PTE_PAGE(*pte);
1089
1090 if (pte_page && level == end_lvl)
1091 *pte_page = pte;
1092
1093 pte = &pte[PM_LEVEL_INDEX(level, address)];
1094 }
1095
1096 return pte;
1097}
1098
1099/*
1100 * This function checks if there is a PTE for a given dma address. If
1101 * there is one, it returns the pointer to it.
1102 */
24cd7723 1103static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1104{
1105 int level;
1106 u64 *pte;
1107
24cd7723
JR
1108 if (address > PM_LEVEL_SIZE(domain->mode))
1109 return NULL;
1110
1111 level = domain->mode - 1;
1112 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1113
24cd7723
JR
1114 while (level > 0) {
1115
1116 /* Not Present */
308973d3
JR
1117 if (!IOMMU_PTE_PRESENT(*pte))
1118 return NULL;
1119
24cd7723
JR
1120 /* Large PTE */
1121 if (PM_PTE_LEVEL(*pte) == 0x07) {
1122 unsigned long pte_mask, __pte;
1123
1124 /*
1125 * If we have a series of large PTEs, make
1126 * sure to return a pointer to the first one.
1127 */
1128 pte_mask = PTE_PAGE_SIZE(*pte);
1129 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1130 __pte = ((unsigned long)pte) & pte_mask;
1131
1132 return (u64 *)__pte;
1133 }
1134
1135 /* No level skipping support yet */
1136 if (PM_PTE_LEVEL(*pte) != level)
1137 return NULL;
1138
308973d3
JR
1139 level -= 1;
1140
24cd7723 1141 /* Walk to the next level */
308973d3
JR
1142 pte = IOMMU_PTE_PAGE(*pte);
1143 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1144 }
1145
1146 return pte;
1147}
1148
431b2a20
JR
1149/*
1150 * Generic mapping functions. It maps a physical address into a DMA
1151 * address space. It allocates the page table pages if necessary.
1152 * In the future it can be extended to a generic mapping function
1153 * supporting all features of AMD IOMMU page tables like level skipping
1154 * and full 64 bit address spaces.
1155 */
38e817fe
JR
1156static int iommu_map_page(struct protection_domain *dom,
1157 unsigned long bus_addr,
1158 unsigned long phys_addr,
abdc5eb3 1159 int prot,
cbb9d729 1160 unsigned long page_size)
bd0e5211 1161{
8bda3092 1162 u64 __pte, *pte;
cbb9d729 1163 int i, count;
abdc5eb3 1164
bad1cac2 1165 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1166 return -EINVAL;
1167
cbb9d729
JR
1168 bus_addr = PAGE_ALIGN(bus_addr);
1169 phys_addr = PAGE_ALIGN(phys_addr);
1170 count = PAGE_SIZE_PTE_COUNT(page_size);
1171 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1172
1173 for (i = 0; i < count; ++i)
1174 if (IOMMU_PTE_PRESENT(pte[i]))
1175 return -EBUSY;
bd0e5211 1176
cbb9d729
JR
1177 if (page_size > PAGE_SIZE) {
1178 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1179 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1180 } else
1181 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1182
bd0e5211
JR
1183 if (prot & IOMMU_PROT_IR)
1184 __pte |= IOMMU_PTE_IR;
1185 if (prot & IOMMU_PROT_IW)
1186 __pte |= IOMMU_PTE_IW;
1187
cbb9d729
JR
1188 for (i = 0; i < count; ++i)
1189 pte[i] = __pte;
bd0e5211 1190
04bfdd84
JR
1191 update_domain(dom);
1192
bd0e5211
JR
1193 return 0;
1194}
1195
24cd7723
JR
1196static unsigned long iommu_unmap_page(struct protection_domain *dom,
1197 unsigned long bus_addr,
1198 unsigned long page_size)
eb74ff6c 1199{
24cd7723
JR
1200 unsigned long long unmap_size, unmapped;
1201 u64 *pte;
1202
1203 BUG_ON(!is_power_of_2(page_size));
1204
1205 unmapped = 0;
eb74ff6c 1206
24cd7723
JR
1207 while (unmapped < page_size) {
1208
1209 pte = fetch_pte(dom, bus_addr);
1210
1211 if (!pte) {
1212 /*
1213 * No PTE for this address
1214 * move forward in 4kb steps
1215 */
1216 unmap_size = PAGE_SIZE;
1217 } else if (PM_PTE_LEVEL(*pte) == 0) {
1218 /* 4kb PTE found for this address */
1219 unmap_size = PAGE_SIZE;
1220 *pte = 0ULL;
1221 } else {
1222 int count, i;
1223
1224 /* Large PTE found which maps this address */
1225 unmap_size = PTE_PAGE_SIZE(*pte);
1226 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1227 for (i = 0; i < count; i++)
1228 pte[i] = 0ULL;
1229 }
1230
1231 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1232 unmapped += unmap_size;
1233 }
1234
1235 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1236
24cd7723 1237 return unmapped;
eb74ff6c 1238}
eb74ff6c 1239
431b2a20
JR
1240/*
1241 * This function checks if a specific unity mapping entry is needed for
1242 * this specific IOMMU.
1243 */
bd0e5211
JR
1244static int iommu_for_unity_map(struct amd_iommu *iommu,
1245 struct unity_map_entry *entry)
1246{
1247 u16 bdf, i;
1248
1249 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1250 bdf = amd_iommu_alias_table[i];
1251 if (amd_iommu_rlookup_table[bdf] == iommu)
1252 return 1;
1253 }
1254
1255 return 0;
1256}
1257
431b2a20
JR
1258/*
1259 * This function actually applies the mapping to the page table of the
1260 * dma_ops domain.
1261 */
bd0e5211
JR
1262static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1263 struct unity_map_entry *e)
1264{
1265 u64 addr;
1266 int ret;
1267
1268 for (addr = e->address_start; addr < e->address_end;
1269 addr += PAGE_SIZE) {
abdc5eb3 1270 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1271 PAGE_SIZE);
bd0e5211
JR
1272 if (ret)
1273 return ret;
1274 /*
1275 * if unity mapping is in aperture range mark the page
1276 * as allocated in the aperture
1277 */
1278 if (addr < dma_dom->aperture_size)
c3239567 1279 __set_bit(addr >> PAGE_SHIFT,
384de729 1280 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1281 }
1282
1283 return 0;
1284}
1285
171e7b37
JR
1286/*
1287 * Init the unity mappings for a specific IOMMU in the system
1288 *
1289 * Basically iterates over all unity mapping entries and applies them to
1290 * the default domain DMA of that IOMMU if necessary.
1291 */
1292static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1293{
1294 struct unity_map_entry *entry;
1295 int ret;
1296
1297 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1298 if (!iommu_for_unity_map(iommu, entry))
1299 continue;
1300 ret = dma_ops_unity_map(iommu->default_dom, entry);
1301 if (ret)
1302 return ret;
1303 }
1304
1305 return 0;
1306}
1307
431b2a20
JR
1308/*
1309 * Inits the unity mappings required for a specific device
1310 */
bd0e5211
JR
1311static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1312 u16 devid)
1313{
1314 struct unity_map_entry *e;
1315 int ret;
1316
1317 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1318 if (!(devid >= e->devid_start && devid <= e->devid_end))
1319 continue;
1320 ret = dma_ops_unity_map(dma_dom, e);
1321 if (ret)
1322 return ret;
1323 }
1324
1325 return 0;
1326}
1327
431b2a20
JR
1328/****************************************************************************
1329 *
1330 * The next functions belong to the address allocator for the dma_ops
1331 * interface functions. They work like the allocators in the other IOMMU
1332 * drivers. Its basically a bitmap which marks the allocated pages in
1333 * the aperture. Maybe it could be enhanced in the future to a more
1334 * efficient allocator.
1335 *
1336 ****************************************************************************/
d3086444 1337
431b2a20 1338/*
384de729 1339 * The address allocator core functions.
431b2a20
JR
1340 *
1341 * called with domain->lock held
1342 */
384de729 1343
171e7b37
JR
1344/*
1345 * Used to reserve address ranges in the aperture (e.g. for exclusion
1346 * ranges.
1347 */
1348static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1349 unsigned long start_page,
1350 unsigned int pages)
1351{
1352 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1353
1354 if (start_page + pages > last_page)
1355 pages = last_page - start_page;
1356
1357 for (i = start_page; i < start_page + pages; ++i) {
1358 int index = i / APERTURE_RANGE_PAGES;
1359 int page = i % APERTURE_RANGE_PAGES;
1360 __set_bit(page, dom->aperture[index]->bitmap);
1361 }
1362}
1363
9cabe89b
JR
1364/*
1365 * This function is used to add a new aperture range to an existing
1366 * aperture in case of dma_ops domain allocation or address allocation
1367 * failure.
1368 */
576175c2 1369static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1370 bool populate, gfp_t gfp)
1371{
1372 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1373 struct amd_iommu *iommu;
17f5b569 1374 unsigned long i, old_size;
9cabe89b 1375
f5e9705c
JR
1376#ifdef CONFIG_IOMMU_STRESS
1377 populate = false;
1378#endif
1379
9cabe89b
JR
1380 if (index >= APERTURE_MAX_RANGES)
1381 return -ENOMEM;
1382
1383 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1384 if (!dma_dom->aperture[index])
1385 return -ENOMEM;
1386
1387 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1388 if (!dma_dom->aperture[index]->bitmap)
1389 goto out_free;
1390
1391 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1392
1393 if (populate) {
1394 unsigned long address = dma_dom->aperture_size;
1395 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1396 u64 *pte, *pte_page;
1397
1398 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1399 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1400 &pte_page, gfp);
1401 if (!pte)
1402 goto out_free;
1403
1404 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1405
1406 address += APERTURE_RANGE_SIZE / 64;
1407 }
1408 }
1409
17f5b569 1410 old_size = dma_dom->aperture_size;
9cabe89b
JR
1411 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1412
17f5b569
JR
1413 /* Reserve address range used for MSI messages */
1414 if (old_size < MSI_ADDR_BASE_LO &&
1415 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1416 unsigned long spage;
1417 int pages;
1418
1419 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1420 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1421
1422 dma_ops_reserve_addresses(dma_dom, spage, pages);
1423 }
1424
b595076a 1425 /* Initialize the exclusion range if necessary */
576175c2
JR
1426 for_each_iommu(iommu) {
1427 if (iommu->exclusion_start &&
1428 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1429 && iommu->exclusion_start < dma_dom->aperture_size) {
1430 unsigned long startpage;
1431 int pages = iommu_num_pages(iommu->exclusion_start,
1432 iommu->exclusion_length,
1433 PAGE_SIZE);
1434 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1435 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1436 }
00cd122a
JR
1437 }
1438
1439 /*
1440 * Check for areas already mapped as present in the new aperture
1441 * range and mark those pages as reserved in the allocator. Such
1442 * mappings may already exist as a result of requested unity
1443 * mappings for devices.
1444 */
1445 for (i = dma_dom->aperture[index]->offset;
1446 i < dma_dom->aperture_size;
1447 i += PAGE_SIZE) {
24cd7723 1448 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1449 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1450 continue;
1451
fcd0861d 1452 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1453 }
1454
04bfdd84
JR
1455 update_domain(&dma_dom->domain);
1456
9cabe89b
JR
1457 return 0;
1458
1459out_free:
04bfdd84
JR
1460 update_domain(&dma_dom->domain);
1461
9cabe89b
JR
1462 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1463
1464 kfree(dma_dom->aperture[index]);
1465 dma_dom->aperture[index] = NULL;
1466
1467 return -ENOMEM;
1468}
1469
384de729
JR
1470static unsigned long dma_ops_area_alloc(struct device *dev,
1471 struct dma_ops_domain *dom,
1472 unsigned int pages,
1473 unsigned long align_mask,
1474 u64 dma_mask,
1475 unsigned long start)
1476{
803b8cb4 1477 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1478 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1479 int i = start >> APERTURE_RANGE_SHIFT;
1480 unsigned long boundary_size;
1481 unsigned long address = -1;
1482 unsigned long limit;
1483
803b8cb4
JR
1484 next_bit >>= PAGE_SHIFT;
1485
384de729
JR
1486 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1487 PAGE_SIZE) >> PAGE_SHIFT;
1488
1489 for (;i < max_index; ++i) {
1490 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1491
1492 if (dom->aperture[i]->offset >= dma_mask)
1493 break;
1494
1495 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1496 dma_mask >> PAGE_SHIFT);
1497
1498 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1499 limit, next_bit, pages, 0,
1500 boundary_size, align_mask);
1501 if (address != -1) {
1502 address = dom->aperture[i]->offset +
1503 (address << PAGE_SHIFT);
803b8cb4 1504 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1505 break;
1506 }
1507
1508 next_bit = 0;
1509 }
1510
1511 return address;
1512}
1513
d3086444
JR
1514static unsigned long dma_ops_alloc_addresses(struct device *dev,
1515 struct dma_ops_domain *dom,
6d4f343f 1516 unsigned int pages,
832a90c3
JR
1517 unsigned long align_mask,
1518 u64 dma_mask)
d3086444 1519{
d3086444 1520 unsigned long address;
d3086444 1521
fe16f088
JR
1522#ifdef CONFIG_IOMMU_STRESS
1523 dom->next_address = 0;
1524 dom->need_flush = true;
1525#endif
d3086444 1526
384de729 1527 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1528 dma_mask, dom->next_address);
d3086444 1529
1c655773 1530 if (address == -1) {
803b8cb4 1531 dom->next_address = 0;
384de729
JR
1532 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1533 dma_mask, 0);
1c655773
JR
1534 dom->need_flush = true;
1535 }
d3086444 1536
384de729 1537 if (unlikely(address == -1))
8fd524b3 1538 address = DMA_ERROR_CODE;
d3086444
JR
1539
1540 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1541
1542 return address;
1543}
1544
431b2a20
JR
1545/*
1546 * The address free function.
1547 *
1548 * called with domain->lock held
1549 */
d3086444
JR
1550static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1551 unsigned long address,
1552 unsigned int pages)
1553{
384de729
JR
1554 unsigned i = address >> APERTURE_RANGE_SHIFT;
1555 struct aperture_range *range = dom->aperture[i];
80be308d 1556
384de729
JR
1557 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1558
47bccd6b
JR
1559#ifdef CONFIG_IOMMU_STRESS
1560 if (i < 4)
1561 return;
1562#endif
80be308d 1563
803b8cb4 1564 if (address >= dom->next_address)
80be308d 1565 dom->need_flush = true;
384de729
JR
1566
1567 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1568
a66022c4 1569 bitmap_clear(range->bitmap, address, pages);
384de729 1570
d3086444
JR
1571}
1572
431b2a20
JR
1573/****************************************************************************
1574 *
1575 * The next functions belong to the domain allocation. A domain is
1576 * allocated for every IOMMU as the default domain. If device isolation
1577 * is enabled, every device get its own domain. The most important thing
1578 * about domains is the page table mapping the DMA address space they
1579 * contain.
1580 *
1581 ****************************************************************************/
1582
aeb26f55
JR
1583/*
1584 * This function adds a protection domain to the global protection domain list
1585 */
1586static void add_domain_to_list(struct protection_domain *domain)
1587{
1588 unsigned long flags;
1589
1590 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1591 list_add(&domain->list, &amd_iommu_pd_list);
1592 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1593}
1594
1595/*
1596 * This function removes a protection domain to the global
1597 * protection domain list
1598 */
1599static void del_domain_from_list(struct protection_domain *domain)
1600{
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1604 list_del(&domain->list);
1605 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1606}
1607
ec487d1a
JR
1608static u16 domain_id_alloc(void)
1609{
1610 unsigned long flags;
1611 int id;
1612
1613 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1614 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1615 BUG_ON(id == 0);
1616 if (id > 0 && id < MAX_DOMAIN_ID)
1617 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1618 else
1619 id = 0;
1620 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1621
1622 return id;
1623}
1624
a2acfb75
JR
1625static void domain_id_free(int id)
1626{
1627 unsigned long flags;
1628
1629 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1630 if (id > 0 && id < MAX_DOMAIN_ID)
1631 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1632 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1633}
a2acfb75 1634
86db2e5d 1635static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1636{
1637 int i, j;
1638 u64 *p1, *p2, *p3;
1639
86db2e5d 1640 p1 = domain->pt_root;
ec487d1a
JR
1641
1642 if (!p1)
1643 return;
1644
1645 for (i = 0; i < 512; ++i) {
1646 if (!IOMMU_PTE_PRESENT(p1[i]))
1647 continue;
1648
1649 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1650 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1651 if (!IOMMU_PTE_PRESENT(p2[j]))
1652 continue;
1653 p3 = IOMMU_PTE_PAGE(p2[j]);
1654 free_page((unsigned long)p3);
1655 }
1656
1657 free_page((unsigned long)p2);
1658 }
1659
1660 free_page((unsigned long)p1);
86db2e5d
JR
1661
1662 domain->pt_root = NULL;
ec487d1a
JR
1663}
1664
b16137b1
JR
1665static void free_gcr3_tbl_level1(u64 *tbl)
1666{
1667 u64 *ptr;
1668 int i;
1669
1670 for (i = 0; i < 512; ++i) {
1671 if (!(tbl[i] & GCR3_VALID))
1672 continue;
1673
1674 ptr = __va(tbl[i] & PAGE_MASK);
1675
1676 free_page((unsigned long)ptr);
1677 }
1678}
1679
1680static void free_gcr3_tbl_level2(u64 *tbl)
1681{
1682 u64 *ptr;
1683 int i;
1684
1685 for (i = 0; i < 512; ++i) {
1686 if (!(tbl[i] & GCR3_VALID))
1687 continue;
1688
1689 ptr = __va(tbl[i] & PAGE_MASK);
1690
1691 free_gcr3_tbl_level1(ptr);
1692 }
1693}
1694
52815b75
JR
1695static void free_gcr3_table(struct protection_domain *domain)
1696{
b16137b1
JR
1697 if (domain->glx == 2)
1698 free_gcr3_tbl_level2(domain->gcr3_tbl);
1699 else if (domain->glx == 1)
1700 free_gcr3_tbl_level1(domain->gcr3_tbl);
1701 else if (domain->glx != 0)
1702 BUG();
1703
52815b75
JR
1704 free_page((unsigned long)domain->gcr3_tbl);
1705}
1706
431b2a20
JR
1707/*
1708 * Free a domain, only used if something went wrong in the
1709 * allocation path and we need to free an already allocated page table
1710 */
ec487d1a
JR
1711static void dma_ops_domain_free(struct dma_ops_domain *dom)
1712{
384de729
JR
1713 int i;
1714
ec487d1a
JR
1715 if (!dom)
1716 return;
1717
aeb26f55
JR
1718 del_domain_from_list(&dom->domain);
1719
86db2e5d 1720 free_pagetable(&dom->domain);
ec487d1a 1721
384de729
JR
1722 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1723 if (!dom->aperture[i])
1724 continue;
1725 free_page((unsigned long)dom->aperture[i]->bitmap);
1726 kfree(dom->aperture[i]);
1727 }
ec487d1a
JR
1728
1729 kfree(dom);
1730}
1731
431b2a20
JR
1732/*
1733 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1734 * It also initializes the page table and the address allocator data
431b2a20
JR
1735 * structures required for the dma_ops interface
1736 */
87a64d52 1737static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1738{
1739 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1740
1741 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1742 if (!dma_dom)
1743 return NULL;
1744
1745 spin_lock_init(&dma_dom->domain.lock);
1746
1747 dma_dom->domain.id = domain_id_alloc();
1748 if (dma_dom->domain.id == 0)
1749 goto free_dma_dom;
7c392cbe 1750 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1751 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1752 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1753 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1754 dma_dom->domain.priv = dma_dom;
1755 if (!dma_dom->domain.pt_root)
1756 goto free_dma_dom;
ec487d1a 1757
1c655773 1758 dma_dom->need_flush = false;
bd60b735 1759 dma_dom->target_dev = 0xffff;
1c655773 1760
aeb26f55
JR
1761 add_domain_to_list(&dma_dom->domain);
1762
576175c2 1763 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1764 goto free_dma_dom;
ec487d1a 1765
431b2a20 1766 /*
ec487d1a
JR
1767 * mark the first page as allocated so we never return 0 as
1768 * a valid dma-address. So we can use 0 as error value
431b2a20 1769 */
384de729 1770 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1771 dma_dom->next_address = 0;
ec487d1a 1772
ec487d1a
JR
1773
1774 return dma_dom;
1775
1776free_dma_dom:
1777 dma_ops_domain_free(dma_dom);
1778
1779 return NULL;
1780}
1781
5b28df6f
JR
1782/*
1783 * little helper function to check whether a given protection domain is a
1784 * dma_ops domain
1785 */
1786static bool dma_ops_domain(struct protection_domain *domain)
1787{
1788 return domain->flags & PD_DMA_OPS_MASK;
1789}
1790
fd7b5535 1791static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1792{
132bd68f 1793 u64 pte_root = 0;
ee6c2868 1794 u64 flags = 0;
863c74eb 1795
132bd68f
JR
1796 if (domain->mode != PAGE_MODE_NONE)
1797 pte_root = virt_to_phys(domain->pt_root);
1798
38ddf41b
JR
1799 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1800 << DEV_ENTRY_MODE_SHIFT;
1801 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1802
ee6c2868
JR
1803 flags = amd_iommu_dev_table[devid].data[1];
1804
fd7b5535
JR
1805 if (ats)
1806 flags |= DTE_FLAG_IOTLB;
1807
52815b75
JR
1808 if (domain->flags & PD_IOMMUV2_MASK) {
1809 u64 gcr3 = __pa(domain->gcr3_tbl);
1810 u64 glx = domain->glx;
1811 u64 tmp;
1812
1813 pte_root |= DTE_FLAG_GV;
1814 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1815
1816 /* First mask out possible old values for GCR3 table */
1817 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1818 flags &= ~tmp;
1819
1820 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1821 flags &= ~tmp;
1822
1823 /* Encode GCR3 table into DTE */
1824 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1825 pte_root |= tmp;
1826
1827 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1828 flags |= tmp;
1829
1830 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1831 flags |= tmp;
1832 }
1833
ee6c2868
JR
1834 flags &= ~(0xffffUL);
1835 flags |= domain->id;
1836
1837 amd_iommu_dev_table[devid].data[1] = flags;
1838 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1839}
1840
1841static void clear_dte_entry(u16 devid)
1842{
15898bbc
JR
1843 /* remove entry from the device table seen by the hardware */
1844 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1845 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1846
1847 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1848}
1849
ec9e79ef
JR
1850static void do_attach(struct iommu_dev_data *dev_data,
1851 struct protection_domain *domain)
7f760ddd 1852{
7f760ddd 1853 struct amd_iommu *iommu;
ec9e79ef 1854 bool ats;
fd7b5535 1855
ec9e79ef
JR
1856 iommu = amd_iommu_rlookup_table[dev_data->devid];
1857 ats = dev_data->ats.enabled;
7f760ddd
JR
1858
1859 /* Update data structures */
1860 dev_data->domain = domain;
1861 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1862 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1863
1864 /* Do reference counting */
1865 domain->dev_iommu[iommu->index] += 1;
1866 domain->dev_cnt += 1;
1867
1868 /* Flush the DTE entry */
6c542047 1869 device_flush_dte(dev_data);
7f760ddd
JR
1870}
1871
ec9e79ef 1872static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1873{
7f760ddd 1874 struct amd_iommu *iommu;
7f760ddd 1875
ec9e79ef 1876 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
1877
1878 /* decrease reference counters */
7f760ddd
JR
1879 dev_data->domain->dev_iommu[iommu->index] -= 1;
1880 dev_data->domain->dev_cnt -= 1;
1881
1882 /* Update data structures */
1883 dev_data->domain = NULL;
1884 list_del(&dev_data->list);
f62dda66 1885 clear_dte_entry(dev_data->devid);
15898bbc 1886
7f760ddd 1887 /* Flush the DTE entry */
6c542047 1888 device_flush_dte(dev_data);
2b681faf
JR
1889}
1890
1891/*
1892 * If a device is not yet associated with a domain, this function does
1893 * assigns it visible for the hardware
1894 */
ec9e79ef 1895static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1896 struct protection_domain *domain)
2b681faf 1897{
84fe6c19 1898 int ret;
657cbb6b 1899
2b681faf
JR
1900 /* lock domain */
1901 spin_lock(&domain->lock);
1902
71f77580
JR
1903 if (dev_data->alias_data != NULL) {
1904 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 1905
2b02b091
JR
1906 /* Some sanity checks */
1907 ret = -EBUSY;
1908 if (alias_data->domain != NULL &&
1909 alias_data->domain != domain)
1910 goto out_unlock;
eba6ac60 1911
2b02b091
JR
1912 if (dev_data->domain != NULL &&
1913 dev_data->domain != domain)
1914 goto out_unlock;
15898bbc 1915
2b02b091 1916 /* Do real assignment */
7f760ddd 1917 if (alias_data->domain == NULL)
ec9e79ef 1918 do_attach(alias_data, domain);
24100055
JR
1919
1920 atomic_inc(&alias_data->bind);
657cbb6b 1921 }
15898bbc 1922
7f760ddd 1923 if (dev_data->domain == NULL)
ec9e79ef 1924 do_attach(dev_data, domain);
eba6ac60 1925
24100055
JR
1926 atomic_inc(&dev_data->bind);
1927
84fe6c19
JL
1928 ret = 0;
1929
1930out_unlock:
1931
eba6ac60
JR
1932 /* ready */
1933 spin_unlock(&domain->lock);
15898bbc 1934
84fe6c19 1935 return ret;
0feae533 1936}
b20ac0d4 1937
52815b75
JR
1938
1939static void pdev_iommuv2_disable(struct pci_dev *pdev)
1940{
1941 pci_disable_ats(pdev);
1942 pci_disable_pri(pdev);
1943 pci_disable_pasid(pdev);
1944}
1945
6a113ddc
JR
1946/* FIXME: Change generic reset-function to do the same */
1947static int pri_reset_while_enabled(struct pci_dev *pdev)
1948{
1949 u16 control;
1950 int pos;
1951
1952 pos = pci_find_ext_capability(pdev, PCI_PRI_CAP);
1953 if (!pos)
1954 return -EINVAL;
1955
1956 pci_read_config_word(pdev, pos + PCI_PRI_CONTROL_OFF, &control);
1957 control |= PCI_PRI_RESET;
1958 pci_write_config_word(pdev, pos + PCI_PRI_CONTROL_OFF, control);
1959
1960 return 0;
1961}
1962
52815b75
JR
1963static int pdev_iommuv2_enable(struct pci_dev *pdev)
1964{
6a113ddc
JR
1965 bool reset_enable;
1966 int reqs, ret;
1967
1968 /* FIXME: Hardcode number of outstanding requests for now */
1969 reqs = 32;
1970 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
1971 reqs = 1;
1972 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
1973
1974 /* Only allow access to user-accessible pages */
1975 ret = pci_enable_pasid(pdev, 0);
1976 if (ret)
1977 goto out_err;
1978
1979 /* First reset the PRI state of the device */
1980 ret = pci_reset_pri(pdev);
1981 if (ret)
1982 goto out_err;
1983
6a113ddc
JR
1984 /* Enable PRI */
1985 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
1986 if (ret)
1987 goto out_err;
1988
6a113ddc
JR
1989 if (reset_enable) {
1990 ret = pri_reset_while_enabled(pdev);
1991 if (ret)
1992 goto out_err;
1993 }
1994
52815b75
JR
1995 ret = pci_enable_ats(pdev, PAGE_SHIFT);
1996 if (ret)
1997 goto out_err;
1998
1999 return 0;
2000
2001out_err:
2002 pci_disable_pri(pdev);
2003 pci_disable_pasid(pdev);
2004
2005 return ret;
2006}
2007
c99afa25
JR
2008/* FIXME: Move this to PCI code */
2009#define PCI_PRI_TLP_OFF (1 << 2)
2010
2011bool pci_pri_tlp_required(struct pci_dev *pdev)
2012{
2013 u16 control;
2014 int pos;
2015
2016 pos = pci_find_ext_capability(pdev, PCI_PRI_CAP);
2017 if (!pos)
2018 return false;
2019
2020 pci_read_config_word(pdev, pos + PCI_PRI_CONTROL_OFF, &control);
2021
2022 return (control & PCI_PRI_TLP_OFF) ? true : false;
2023}
2024
407d733e
JR
2025/*
2026 * If a device is not yet associated with a domain, this function does
2027 * assigns it visible for the hardware
2028 */
15898bbc
JR
2029static int attach_device(struct device *dev,
2030 struct protection_domain *domain)
0feae533 2031{
fd7b5535 2032 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2033 struct iommu_dev_data *dev_data;
eba6ac60 2034 unsigned long flags;
15898bbc 2035 int ret;
eba6ac60 2036
ea61cddb
JR
2037 dev_data = get_dev_data(dev);
2038
52815b75
JR
2039 if (domain->flags & PD_IOMMUV2_MASK) {
2040 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2041 return -EINVAL;
2042
2043 if (pdev_iommuv2_enable(pdev) != 0)
2044 return -EINVAL;
2045
2046 dev_data->ats.enabled = true;
2047 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2048 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2049 } else if (amd_iommu_iotlb_sup &&
2050 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2051 dev_data->ats.enabled = true;
2052 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2053 }
fd7b5535 2054
eba6ac60 2055 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2056 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2057 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2058
0feae533
JR
2059 /*
2060 * We might boot into a crash-kernel here. The crashed kernel
2061 * left the caches in the IOMMU dirty. So we have to flush
2062 * here to evict all dirty stuff.
2063 */
17b124bf 2064 domain_flush_tlb_pde(domain);
15898bbc
JR
2065
2066 return ret;
b20ac0d4
JR
2067}
2068
355bf553
JR
2069/*
2070 * Removes a device from a protection domain (unlocked)
2071 */
ec9e79ef 2072static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2073{
2ca76279 2074 struct protection_domain *domain;
7c392cbe 2075 unsigned long flags;
c4596114 2076
7f760ddd 2077 BUG_ON(!dev_data->domain);
355bf553 2078
2ca76279
JR
2079 domain = dev_data->domain;
2080
2081 spin_lock_irqsave(&domain->lock, flags);
24100055 2082
71f77580
JR
2083 if (dev_data->alias_data != NULL) {
2084 struct iommu_dev_data *alias_data = dev_data->alias_data;
2085
7f760ddd 2086 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2087 do_detach(alias_data);
24100055
JR
2088 }
2089
7f760ddd 2090 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2091 do_detach(dev_data);
7f760ddd 2092
2ca76279 2093 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2094
2095 /*
2096 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2097 * passthrough domain if it is detached from any other domain.
2098 * Make sure we can deassign from the pt_domain itself.
21129f78 2099 */
5abcdba4 2100 if (dev_data->passthrough &&
d3ad9373 2101 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2102 __attach_device(dev_data, pt_domain);
355bf553
JR
2103}
2104
2105/*
2106 * Removes a device from a protection domain (with devtable_lock held)
2107 */
15898bbc 2108static void detach_device(struct device *dev)
355bf553 2109{
52815b75 2110 struct protection_domain *domain;
ea61cddb 2111 struct iommu_dev_data *dev_data;
355bf553
JR
2112 unsigned long flags;
2113
ec9e79ef 2114 dev_data = get_dev_data(dev);
52815b75 2115 domain = dev_data->domain;
ec9e79ef 2116
355bf553
JR
2117 /* lock device table */
2118 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2119 __detach_device(dev_data);
355bf553 2120 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2121
52815b75
JR
2122 if (domain->flags & PD_IOMMUV2_MASK)
2123 pdev_iommuv2_disable(to_pci_dev(dev));
2124 else if (dev_data->ats.enabled)
ea61cddb 2125 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2126
2127 dev_data->ats.enabled = false;
355bf553 2128}
e275a2a0 2129
15898bbc
JR
2130/*
2131 * Find out the protection domain structure for a given PCI device. This
2132 * will give us the pointer to the page table root for example.
2133 */
2134static struct protection_domain *domain_for_device(struct device *dev)
2135{
71f77580 2136 struct iommu_dev_data *dev_data;
2b02b091 2137 struct protection_domain *dom = NULL;
15898bbc 2138 unsigned long flags;
15898bbc 2139
657cbb6b 2140 dev_data = get_dev_data(dev);
15898bbc 2141
2b02b091
JR
2142 if (dev_data->domain)
2143 return dev_data->domain;
15898bbc 2144
71f77580
JR
2145 if (dev_data->alias_data != NULL) {
2146 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2147
2148 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2149 if (alias_data->domain != NULL) {
2150 __attach_device(dev_data, alias_data->domain);
2151 dom = alias_data->domain;
2152 }
2153 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154 }
15898bbc
JR
2155
2156 return dom;
2157}
2158
e275a2a0
JR
2159static int device_change_notifier(struct notifier_block *nb,
2160 unsigned long action, void *data)
2161{
e275a2a0 2162 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2163 struct protection_domain *domain;
2164 struct iommu_dev_data *dev_data;
2165 struct device *dev = data;
e275a2a0 2166 struct amd_iommu *iommu;
1ac4cbbc 2167 unsigned long flags;
5abcdba4 2168 u16 devid;
e275a2a0 2169
98fc5a69
JR
2170 if (!check_device(dev))
2171 return 0;
e275a2a0 2172
5abcdba4
JR
2173 devid = get_device_id(dev);
2174 iommu = amd_iommu_rlookup_table[devid];
2175 dev_data = get_dev_data(dev);
e275a2a0
JR
2176
2177 switch (action) {
c1eee67b 2178 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2179
2180 domain = domain_for_device(dev);
2181
e275a2a0
JR
2182 if (!domain)
2183 goto out;
5abcdba4 2184 if (dev_data->passthrough)
a1ca331c 2185 break;
15898bbc 2186 detach_device(dev);
1ac4cbbc
JR
2187 break;
2188 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2189
2190 iommu_init_device(dev);
2191
2192 domain = domain_for_device(dev);
2193
1ac4cbbc
JR
2194 /* allocate a protection domain if a device is added */
2195 dma_domain = find_protection_domain(devid);
2196 if (dma_domain)
2197 goto out;
87a64d52 2198 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
2199 if (!dma_domain)
2200 goto out;
2201 dma_domain->target_dev = devid;
2202
2203 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2204 list_add_tail(&dma_domain->list, &iommu_pd_list);
2205 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2206
e275a2a0 2207 break;
657cbb6b
JR
2208 case BUS_NOTIFY_DEL_DEVICE:
2209
2210 iommu_uninit_device(dev);
2211
e275a2a0
JR
2212 default:
2213 goto out;
2214 }
2215
e275a2a0
JR
2216 iommu_completion_wait(iommu);
2217
2218out:
2219 return 0;
2220}
2221
b25ae679 2222static struct notifier_block device_nb = {
e275a2a0
JR
2223 .notifier_call = device_change_notifier,
2224};
355bf553 2225
8638c491
JR
2226void amd_iommu_init_notifier(void)
2227{
2228 bus_register_notifier(&pci_bus_type, &device_nb);
2229}
2230
431b2a20
JR
2231/*****************************************************************************
2232 *
2233 * The next functions belong to the dma_ops mapping/unmapping code.
2234 *
2235 *****************************************************************************/
2236
2237/*
2238 * In the dma_ops path we only have the struct device. This function
2239 * finds the corresponding IOMMU, the protection domain and the
2240 * requestor id for a given device.
2241 * If the device is not yet associated with a domain this is also done
2242 * in this function.
2243 */
94f6d190 2244static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2245{
94f6d190 2246 struct protection_domain *domain;
b20ac0d4 2247 struct dma_ops_domain *dma_dom;
94f6d190 2248 u16 devid = get_device_id(dev);
b20ac0d4 2249
f99c0f1c 2250 if (!check_device(dev))
94f6d190 2251 return ERR_PTR(-EINVAL);
b20ac0d4 2252
94f6d190
JR
2253 domain = domain_for_device(dev);
2254 if (domain != NULL && !dma_ops_domain(domain))
2255 return ERR_PTR(-EBUSY);
f99c0f1c 2256
94f6d190
JR
2257 if (domain != NULL)
2258 return domain;
b20ac0d4 2259
15898bbc 2260 /* Device not bount yet - bind it */
94f6d190 2261 dma_dom = find_protection_domain(devid);
15898bbc 2262 if (!dma_dom)
94f6d190
JR
2263 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2264 attach_device(dev, &dma_dom->domain);
15898bbc 2265 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2266 dma_dom->domain.id, dev_name(dev));
f91ba190 2267
94f6d190 2268 return &dma_dom->domain;
b20ac0d4
JR
2269}
2270
04bfdd84
JR
2271static void update_device_table(struct protection_domain *domain)
2272{
492667da 2273 struct iommu_dev_data *dev_data;
04bfdd84 2274
ea61cddb
JR
2275 list_for_each_entry(dev_data, &domain->dev_list, list)
2276 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2277}
2278
2279static void update_domain(struct protection_domain *domain)
2280{
2281 if (!domain->updated)
2282 return;
2283
2284 update_device_table(domain);
17b124bf
JR
2285
2286 domain_flush_devices(domain);
2287 domain_flush_tlb_pde(domain);
04bfdd84
JR
2288
2289 domain->updated = false;
2290}
2291
8bda3092
JR
2292/*
2293 * This function fetches the PTE for a given address in the aperture
2294 */
2295static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2296 unsigned long address)
2297{
384de729 2298 struct aperture_range *aperture;
8bda3092
JR
2299 u64 *pte, *pte_page;
2300
384de729
JR
2301 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2302 if (!aperture)
2303 return NULL;
2304
2305 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2306 if (!pte) {
cbb9d729 2307 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2308 GFP_ATOMIC);
384de729
JR
2309 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2310 } else
8c8c143c 2311 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2312
04bfdd84 2313 update_domain(&dom->domain);
8bda3092
JR
2314
2315 return pte;
2316}
2317
431b2a20
JR
2318/*
2319 * This is the generic map function. It maps one 4kb page at paddr to
2320 * the given address in the DMA address space for the domain.
2321 */
680525e0 2322static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2323 unsigned long address,
2324 phys_addr_t paddr,
2325 int direction)
2326{
2327 u64 *pte, __pte;
2328
2329 WARN_ON(address > dom->aperture_size);
2330
2331 paddr &= PAGE_MASK;
2332
8bda3092 2333 pte = dma_ops_get_pte(dom, address);
53812c11 2334 if (!pte)
8fd524b3 2335 return DMA_ERROR_CODE;
cb76c322
JR
2336
2337 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2338
2339 if (direction == DMA_TO_DEVICE)
2340 __pte |= IOMMU_PTE_IR;
2341 else if (direction == DMA_FROM_DEVICE)
2342 __pte |= IOMMU_PTE_IW;
2343 else if (direction == DMA_BIDIRECTIONAL)
2344 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2345
2346 WARN_ON(*pte);
2347
2348 *pte = __pte;
2349
2350 return (dma_addr_t)address;
2351}
2352
431b2a20
JR
2353/*
2354 * The generic unmapping function for on page in the DMA address space.
2355 */
680525e0 2356static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2357 unsigned long address)
2358{
384de729 2359 struct aperture_range *aperture;
cb76c322
JR
2360 u64 *pte;
2361
2362 if (address >= dom->aperture_size)
2363 return;
2364
384de729
JR
2365 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2366 if (!aperture)
2367 return;
2368
2369 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2370 if (!pte)
2371 return;
cb76c322 2372
8c8c143c 2373 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2374
2375 WARN_ON(!*pte);
2376
2377 *pte = 0ULL;
2378}
2379
431b2a20
JR
2380/*
2381 * This function contains common code for mapping of a physically
24f81160
JR
2382 * contiguous memory region into DMA address space. It is used by all
2383 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2384 * Must be called with the domain lock held.
2385 */
cb76c322 2386static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2387 struct dma_ops_domain *dma_dom,
2388 phys_addr_t paddr,
2389 size_t size,
6d4f343f 2390 int dir,
832a90c3
JR
2391 bool align,
2392 u64 dma_mask)
cb76c322
JR
2393{
2394 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2395 dma_addr_t address, start, ret;
cb76c322 2396 unsigned int pages;
6d4f343f 2397 unsigned long align_mask = 0;
cb76c322
JR
2398 int i;
2399
e3c449f5 2400 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2401 paddr &= PAGE_MASK;
2402
8ecaf8f1
JR
2403 INC_STATS_COUNTER(total_map_requests);
2404
c1858976
JR
2405 if (pages > 1)
2406 INC_STATS_COUNTER(cross_page);
2407
6d4f343f
JR
2408 if (align)
2409 align_mask = (1UL << get_order(size)) - 1;
2410
11b83888 2411retry:
832a90c3
JR
2412 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2413 dma_mask);
8fd524b3 2414 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2415 /*
2416 * setting next_address here will let the address
2417 * allocator only scan the new allocated range in the
2418 * first run. This is a small optimization.
2419 */
2420 dma_dom->next_address = dma_dom->aperture_size;
2421
576175c2 2422 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2423 goto out;
2424
2425 /*
af901ca1 2426 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2427 * allocation again
2428 */
2429 goto retry;
2430 }
cb76c322
JR
2431
2432 start = address;
2433 for (i = 0; i < pages; ++i) {
680525e0 2434 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2435 if (ret == DMA_ERROR_CODE)
53812c11
JR
2436 goto out_unmap;
2437
cb76c322
JR
2438 paddr += PAGE_SIZE;
2439 start += PAGE_SIZE;
2440 }
2441 address += offset;
2442
5774f7c5
JR
2443 ADD_STATS_COUNTER(alloced_io_mem, size);
2444
afa9fdc2 2445 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2446 domain_flush_tlb(&dma_dom->domain);
1c655773 2447 dma_dom->need_flush = false;
318afd41 2448 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2449 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2450
cb76c322
JR
2451out:
2452 return address;
53812c11
JR
2453
2454out_unmap:
2455
2456 for (--i; i >= 0; --i) {
2457 start -= PAGE_SIZE;
680525e0 2458 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2459 }
2460
2461 dma_ops_free_addresses(dma_dom, address, pages);
2462
8fd524b3 2463 return DMA_ERROR_CODE;
cb76c322
JR
2464}
2465
431b2a20
JR
2466/*
2467 * Does the reverse of the __map_single function. Must be called with
2468 * the domain lock held too
2469 */
cd8c82e8 2470static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2471 dma_addr_t dma_addr,
2472 size_t size,
2473 int dir)
2474{
04e0463e 2475 dma_addr_t flush_addr;
cb76c322
JR
2476 dma_addr_t i, start;
2477 unsigned int pages;
2478
8fd524b3 2479 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2480 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2481 return;
2482
04e0463e 2483 flush_addr = dma_addr;
e3c449f5 2484 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2485 dma_addr &= PAGE_MASK;
2486 start = dma_addr;
2487
2488 for (i = 0; i < pages; ++i) {
680525e0 2489 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2490 start += PAGE_SIZE;
2491 }
2492
5774f7c5
JR
2493 SUB_STATS_COUNTER(alloced_io_mem, size);
2494
cb76c322 2495 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2496
80be308d 2497 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2498 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2499 dma_dom->need_flush = false;
2500 }
cb76c322
JR
2501}
2502
431b2a20
JR
2503/*
2504 * The exported map_single function for dma_ops.
2505 */
51491367
FT
2506static dma_addr_t map_page(struct device *dev, struct page *page,
2507 unsigned long offset, size_t size,
2508 enum dma_data_direction dir,
2509 struct dma_attrs *attrs)
4da70b9e
JR
2510{
2511 unsigned long flags;
4da70b9e 2512 struct protection_domain *domain;
4da70b9e 2513 dma_addr_t addr;
832a90c3 2514 u64 dma_mask;
51491367 2515 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2516
0f2a86f2
JR
2517 INC_STATS_COUNTER(cnt_map_single);
2518
94f6d190
JR
2519 domain = get_domain(dev);
2520 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2521 return (dma_addr_t)paddr;
94f6d190
JR
2522 else if (IS_ERR(domain))
2523 return DMA_ERROR_CODE;
4da70b9e 2524
f99c0f1c
JR
2525 dma_mask = *dev->dma_mask;
2526
4da70b9e 2527 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2528
cd8c82e8 2529 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2530 dma_mask);
8fd524b3 2531 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2532 goto out;
2533
17b124bf 2534 domain_flush_complete(domain);
4da70b9e
JR
2535
2536out:
2537 spin_unlock_irqrestore(&domain->lock, flags);
2538
2539 return addr;
2540}
2541
431b2a20
JR
2542/*
2543 * The exported unmap_single function for dma_ops.
2544 */
51491367
FT
2545static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2546 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2547{
2548 unsigned long flags;
4da70b9e 2549 struct protection_domain *domain;
4da70b9e 2550
146a6917
JR
2551 INC_STATS_COUNTER(cnt_unmap_single);
2552
94f6d190
JR
2553 domain = get_domain(dev);
2554 if (IS_ERR(domain))
5b28df6f
JR
2555 return;
2556
4da70b9e
JR
2557 spin_lock_irqsave(&domain->lock, flags);
2558
cd8c82e8 2559 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2560
17b124bf 2561 domain_flush_complete(domain);
4da70b9e
JR
2562
2563 spin_unlock_irqrestore(&domain->lock, flags);
2564}
2565
431b2a20
JR
2566/*
2567 * This is a special map_sg function which is used if we should map a
2568 * device which is not handled by an AMD IOMMU in the system.
2569 */
65b050ad
JR
2570static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2571 int nelems, int dir)
2572{
2573 struct scatterlist *s;
2574 int i;
2575
2576 for_each_sg(sglist, s, nelems, i) {
2577 s->dma_address = (dma_addr_t)sg_phys(s);
2578 s->dma_length = s->length;
2579 }
2580
2581 return nelems;
2582}
2583
431b2a20
JR
2584/*
2585 * The exported map_sg function for dma_ops (handles scatter-gather
2586 * lists).
2587 */
65b050ad 2588static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2589 int nelems, enum dma_data_direction dir,
2590 struct dma_attrs *attrs)
65b050ad
JR
2591{
2592 unsigned long flags;
65b050ad 2593 struct protection_domain *domain;
65b050ad
JR
2594 int i;
2595 struct scatterlist *s;
2596 phys_addr_t paddr;
2597 int mapped_elems = 0;
832a90c3 2598 u64 dma_mask;
65b050ad 2599
d03f067a
JR
2600 INC_STATS_COUNTER(cnt_map_sg);
2601
94f6d190
JR
2602 domain = get_domain(dev);
2603 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2604 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2605 else if (IS_ERR(domain))
2606 return 0;
dbcc112e 2607
832a90c3 2608 dma_mask = *dev->dma_mask;
65b050ad 2609
65b050ad
JR
2610 spin_lock_irqsave(&domain->lock, flags);
2611
2612 for_each_sg(sglist, s, nelems, i) {
2613 paddr = sg_phys(s);
2614
cd8c82e8 2615 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2616 paddr, s->length, dir, false,
2617 dma_mask);
65b050ad
JR
2618
2619 if (s->dma_address) {
2620 s->dma_length = s->length;
2621 mapped_elems++;
2622 } else
2623 goto unmap;
65b050ad
JR
2624 }
2625
17b124bf 2626 domain_flush_complete(domain);
65b050ad
JR
2627
2628out:
2629 spin_unlock_irqrestore(&domain->lock, flags);
2630
2631 return mapped_elems;
2632unmap:
2633 for_each_sg(sglist, s, mapped_elems, i) {
2634 if (s->dma_address)
cd8c82e8 2635 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2636 s->dma_length, dir);
2637 s->dma_address = s->dma_length = 0;
2638 }
2639
2640 mapped_elems = 0;
2641
2642 goto out;
2643}
2644
431b2a20
JR
2645/*
2646 * The exported map_sg function for dma_ops (handles scatter-gather
2647 * lists).
2648 */
65b050ad 2649static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2650 int nelems, enum dma_data_direction dir,
2651 struct dma_attrs *attrs)
65b050ad
JR
2652{
2653 unsigned long flags;
65b050ad
JR
2654 struct protection_domain *domain;
2655 struct scatterlist *s;
65b050ad
JR
2656 int i;
2657
55877a6b
JR
2658 INC_STATS_COUNTER(cnt_unmap_sg);
2659
94f6d190
JR
2660 domain = get_domain(dev);
2661 if (IS_ERR(domain))
5b28df6f
JR
2662 return;
2663
65b050ad
JR
2664 spin_lock_irqsave(&domain->lock, flags);
2665
2666 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2667 __unmap_single(domain->priv, s->dma_address,
65b050ad 2668 s->dma_length, dir);
65b050ad
JR
2669 s->dma_address = s->dma_length = 0;
2670 }
2671
17b124bf 2672 domain_flush_complete(domain);
65b050ad
JR
2673
2674 spin_unlock_irqrestore(&domain->lock, flags);
2675}
2676
431b2a20
JR
2677/*
2678 * The exported alloc_coherent function for dma_ops.
2679 */
5d8b53cf
JR
2680static void *alloc_coherent(struct device *dev, size_t size,
2681 dma_addr_t *dma_addr, gfp_t flag)
2682{
2683 unsigned long flags;
2684 void *virt_addr;
5d8b53cf 2685 struct protection_domain *domain;
5d8b53cf 2686 phys_addr_t paddr;
832a90c3 2687 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2688
c8f0fb36
JR
2689 INC_STATS_COUNTER(cnt_alloc_coherent);
2690
94f6d190
JR
2691 domain = get_domain(dev);
2692 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2693 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2694 *dma_addr = __pa(virt_addr);
2695 return virt_addr;
94f6d190
JR
2696 } else if (IS_ERR(domain))
2697 return NULL;
5d8b53cf 2698
f99c0f1c
JR
2699 dma_mask = dev->coherent_dma_mask;
2700 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2701 flag |= __GFP_ZERO;
5d8b53cf
JR
2702
2703 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2704 if (!virt_addr)
b25ae679 2705 return NULL;
5d8b53cf 2706
5d8b53cf
JR
2707 paddr = virt_to_phys(virt_addr);
2708
832a90c3
JR
2709 if (!dma_mask)
2710 dma_mask = *dev->dma_mask;
2711
5d8b53cf
JR
2712 spin_lock_irqsave(&domain->lock, flags);
2713
cd8c82e8 2714 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2715 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2716
8fd524b3 2717 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2718 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2719 goto out_free;
367d04c4 2720 }
5d8b53cf 2721
17b124bf 2722 domain_flush_complete(domain);
5d8b53cf 2723
5d8b53cf
JR
2724 spin_unlock_irqrestore(&domain->lock, flags);
2725
2726 return virt_addr;
5b28df6f
JR
2727
2728out_free:
2729
2730 free_pages((unsigned long)virt_addr, get_order(size));
2731
2732 return NULL;
5d8b53cf
JR
2733}
2734
431b2a20
JR
2735/*
2736 * The exported free_coherent function for dma_ops.
431b2a20 2737 */
5d8b53cf
JR
2738static void free_coherent(struct device *dev, size_t size,
2739 void *virt_addr, dma_addr_t dma_addr)
2740{
2741 unsigned long flags;
5d8b53cf 2742 struct protection_domain *domain;
5d8b53cf 2743
5d31ee7e
JR
2744 INC_STATS_COUNTER(cnt_free_coherent);
2745
94f6d190
JR
2746 domain = get_domain(dev);
2747 if (IS_ERR(domain))
5b28df6f
JR
2748 goto free_mem;
2749
5d8b53cf
JR
2750 spin_lock_irqsave(&domain->lock, flags);
2751
cd8c82e8 2752 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2753
17b124bf 2754 domain_flush_complete(domain);
5d8b53cf
JR
2755
2756 spin_unlock_irqrestore(&domain->lock, flags);
2757
2758free_mem:
2759 free_pages((unsigned long)virt_addr, get_order(size));
2760}
2761
b39ba6ad
JR
2762/*
2763 * This function is called by the DMA layer to find out if we can handle a
2764 * particular device. It is part of the dma_ops.
2765 */
2766static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2767{
420aef8a 2768 return check_device(dev);
b39ba6ad
JR
2769}
2770
c432f3df 2771/*
431b2a20
JR
2772 * The function for pre-allocating protection domains.
2773 *
c432f3df
JR
2774 * If the driver core informs the DMA layer if a driver grabs a device
2775 * we don't need to preallocate the protection domains anymore.
2776 * For now we have to.
2777 */
0e93dd88 2778static void prealloc_protection_domains(void)
c432f3df 2779{
5abcdba4 2780 struct iommu_dev_data *dev_data;
c432f3df 2781 struct dma_ops_domain *dma_dom;
5abcdba4 2782 struct pci_dev *dev = NULL;
98fc5a69 2783 u16 devid;
c432f3df 2784
d18c69d3 2785 for_each_pci_dev(dev) {
98fc5a69
JR
2786
2787 /* Do we handle this device? */
2788 if (!check_device(&dev->dev))
c432f3df 2789 continue;
98fc5a69 2790
5abcdba4
JR
2791 dev_data = get_dev_data(&dev->dev);
2792 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2793 /* Make sure passthrough domain is allocated */
2794 alloc_passthrough_domain();
2795 dev_data->passthrough = true;
2796 attach_device(&dev->dev, pt_domain);
2797 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2798 dev_name(&dev->dev));
2799 }
2800
98fc5a69 2801 /* Is there already any domain for it? */
15898bbc 2802 if (domain_for_device(&dev->dev))
c432f3df 2803 continue;
98fc5a69
JR
2804
2805 devid = get_device_id(&dev->dev);
2806
87a64d52 2807 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2808 if (!dma_dom)
2809 continue;
2810 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2811 dma_dom->target_dev = devid;
2812
15898bbc 2813 attach_device(&dev->dev, &dma_dom->domain);
be831297 2814
bd60b735 2815 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2816 }
2817}
2818
160c1d8e 2819static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2820 .alloc_coherent = alloc_coherent,
2821 .free_coherent = free_coherent,
51491367
FT
2822 .map_page = map_page,
2823 .unmap_page = unmap_page,
6631ee9d
JR
2824 .map_sg = map_sg,
2825 .unmap_sg = unmap_sg,
b39ba6ad 2826 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2827};
2828
27c2127a
JR
2829static unsigned device_dma_ops_init(void)
2830{
5abcdba4 2831 struct iommu_dev_data *dev_data;
27c2127a
JR
2832 struct pci_dev *pdev = NULL;
2833 unsigned unhandled = 0;
2834
2835 for_each_pci_dev(pdev) {
2836 if (!check_device(&pdev->dev)) {
2837 unhandled += 1;
2838 continue;
2839 }
2840
5abcdba4
JR
2841 dev_data = get_dev_data(&pdev->dev);
2842
2843 if (!dev_data->passthrough)
2844 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2845 else
2846 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
2847 }
2848
2849 return unhandled;
2850}
2851
431b2a20
JR
2852/*
2853 * The function which clues the AMD IOMMU driver into dma_ops.
2854 */
f5325094
JR
2855
2856void __init amd_iommu_init_api(void)
2857{
2cc21c42 2858 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2859}
2860
6631ee9d
JR
2861int __init amd_iommu_init_dma_ops(void)
2862{
2863 struct amd_iommu *iommu;
27c2127a 2864 int ret, unhandled;
6631ee9d 2865
431b2a20
JR
2866 /*
2867 * first allocate a default protection domain for every IOMMU we
2868 * found in the system. Devices not assigned to any other
2869 * protection domain will be assigned to the default one.
2870 */
3bd22172 2871 for_each_iommu(iommu) {
87a64d52 2872 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2873 if (iommu->default_dom == NULL)
2874 return -ENOMEM;
e2dc14a2 2875 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2876 ret = iommu_init_unity_mappings(iommu);
2877 if (ret)
2878 goto free_domains;
2879 }
2880
431b2a20 2881 /*
8793abeb 2882 * Pre-allocate the protection domains for each device.
431b2a20 2883 */
8793abeb 2884 prealloc_protection_domains();
6631ee9d
JR
2885
2886 iommu_detected = 1;
75f1cdf1 2887 swiotlb = 0;
6631ee9d 2888
431b2a20 2889 /* Make the driver finally visible to the drivers */
27c2127a
JR
2890 unhandled = device_dma_ops_init();
2891 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2892 /* There are unhandled devices - initialize swiotlb for them */
2893 swiotlb = 1;
2894 }
6631ee9d 2895
7f26508b
JR
2896 amd_iommu_stats_init();
2897
6631ee9d
JR
2898 return 0;
2899
2900free_domains:
2901
3bd22172 2902 for_each_iommu(iommu) {
6631ee9d
JR
2903 if (iommu->default_dom)
2904 dma_ops_domain_free(iommu->default_dom);
2905 }
2906
2907 return ret;
2908}
6d98cd80
JR
2909
2910/*****************************************************************************
2911 *
2912 * The following functions belong to the exported interface of AMD IOMMU
2913 *
2914 * This interface allows access to lower level functions of the IOMMU
2915 * like protection domain handling and assignement of devices to domains
2916 * which is not possible with the dma_ops interface.
2917 *
2918 *****************************************************************************/
2919
6d98cd80
JR
2920static void cleanup_domain(struct protection_domain *domain)
2921{
492667da 2922 struct iommu_dev_data *dev_data, *next;
6d98cd80 2923 unsigned long flags;
6d98cd80
JR
2924
2925 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2926
492667da 2927 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 2928 __detach_device(dev_data);
492667da
JR
2929 atomic_set(&dev_data->bind, 0);
2930 }
6d98cd80
JR
2931
2932 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2933}
2934
2650815f
JR
2935static void protection_domain_free(struct protection_domain *domain)
2936{
2937 if (!domain)
2938 return;
2939
aeb26f55
JR
2940 del_domain_from_list(domain);
2941
2650815f
JR
2942 if (domain->id)
2943 domain_id_free(domain->id);
2944
2945 kfree(domain);
2946}
2947
2948static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2949{
2950 struct protection_domain *domain;
2951
2952 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2953 if (!domain)
2650815f 2954 return NULL;
c156e347
JR
2955
2956 spin_lock_init(&domain->lock);
5d214fe6 2957 mutex_init(&domain->api_lock);
c156e347
JR
2958 domain->id = domain_id_alloc();
2959 if (!domain->id)
2650815f 2960 goto out_err;
7c392cbe 2961 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2962
aeb26f55
JR
2963 add_domain_to_list(domain);
2964
2650815f
JR
2965 return domain;
2966
2967out_err:
2968 kfree(domain);
2969
2970 return NULL;
2971}
2972
5abcdba4
JR
2973static int __init alloc_passthrough_domain(void)
2974{
2975 if (pt_domain != NULL)
2976 return 0;
2977
2978 /* allocate passthrough domain */
2979 pt_domain = protection_domain_alloc();
2980 if (!pt_domain)
2981 return -ENOMEM;
2982
2983 pt_domain->mode = PAGE_MODE_NONE;
2984
2985 return 0;
2986}
2650815f
JR
2987static int amd_iommu_domain_init(struct iommu_domain *dom)
2988{
2989 struct protection_domain *domain;
2990
2991 domain = protection_domain_alloc();
2992 if (!domain)
c156e347 2993 goto out_free;
2650815f
JR
2994
2995 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2996 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2997 if (!domain->pt_root)
2998 goto out_free;
2999
f3572db8
JR
3000 domain->iommu_domain = dom;
3001
c156e347
JR
3002 dom->priv = domain;
3003
3004 return 0;
3005
3006out_free:
2650815f 3007 protection_domain_free(domain);
c156e347
JR
3008
3009 return -ENOMEM;
3010}
3011
98383fc3
JR
3012static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3013{
3014 struct protection_domain *domain = dom->priv;
3015
3016 if (!domain)
3017 return;
3018
3019 if (domain->dev_cnt > 0)
3020 cleanup_domain(domain);
3021
3022 BUG_ON(domain->dev_cnt != 0);
3023
132bd68f
JR
3024 if (domain->mode != PAGE_MODE_NONE)
3025 free_pagetable(domain);
98383fc3 3026
52815b75
JR
3027 if (domain->flags & PD_IOMMUV2_MASK)
3028 free_gcr3_table(domain);
3029
8b408fe4 3030 protection_domain_free(domain);
98383fc3
JR
3031
3032 dom->priv = NULL;
3033}
3034
684f2888
JR
3035static void amd_iommu_detach_device(struct iommu_domain *dom,
3036 struct device *dev)
3037{
657cbb6b 3038 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3039 struct amd_iommu *iommu;
684f2888
JR
3040 u16 devid;
3041
98fc5a69 3042 if (!check_device(dev))
684f2888
JR
3043 return;
3044
98fc5a69 3045 devid = get_device_id(dev);
684f2888 3046
657cbb6b 3047 if (dev_data->domain != NULL)
15898bbc 3048 detach_device(dev);
684f2888
JR
3049
3050 iommu = amd_iommu_rlookup_table[devid];
3051 if (!iommu)
3052 return;
3053
684f2888
JR
3054 iommu_completion_wait(iommu);
3055}
3056
01106066
JR
3057static int amd_iommu_attach_device(struct iommu_domain *dom,
3058 struct device *dev)
3059{
3060 struct protection_domain *domain = dom->priv;
657cbb6b 3061 struct iommu_dev_data *dev_data;
01106066 3062 struct amd_iommu *iommu;
15898bbc 3063 int ret;
01106066 3064
98fc5a69 3065 if (!check_device(dev))
01106066
JR
3066 return -EINVAL;
3067
657cbb6b
JR
3068 dev_data = dev->archdata.iommu;
3069
f62dda66 3070 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3071 if (!iommu)
3072 return -EINVAL;
3073
657cbb6b 3074 if (dev_data->domain)
15898bbc 3075 detach_device(dev);
01106066 3076
15898bbc 3077 ret = attach_device(dev, domain);
01106066
JR
3078
3079 iommu_completion_wait(iommu);
3080
15898bbc 3081 return ret;
01106066
JR
3082}
3083
468e2366
JR
3084static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3085 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 3086{
468e2366 3087 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 3088 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3089 int prot = 0;
3090 int ret;
3091
132bd68f
JR
3092 if (domain->mode == PAGE_MODE_NONE)
3093 return -EINVAL;
3094
c6229ca6
JR
3095 if (iommu_prot & IOMMU_READ)
3096 prot |= IOMMU_PROT_IR;
3097 if (iommu_prot & IOMMU_WRITE)
3098 prot |= IOMMU_PROT_IW;
3099
5d214fe6 3100 mutex_lock(&domain->api_lock);
795e74f7 3101 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3102 mutex_unlock(&domain->api_lock);
3103
795e74f7 3104 return ret;
c6229ca6
JR
3105}
3106
468e2366
JR
3107static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3108 int gfp_order)
eb74ff6c 3109{
eb74ff6c 3110 struct protection_domain *domain = dom->priv;
468e2366 3111 unsigned long page_size, unmap_size;
eb74ff6c 3112
132bd68f
JR
3113 if (domain->mode == PAGE_MODE_NONE)
3114 return -EINVAL;
3115
468e2366 3116 page_size = 0x1000UL << gfp_order;
eb74ff6c 3117
5d214fe6 3118 mutex_lock(&domain->api_lock);
468e2366 3119 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3120 mutex_unlock(&domain->api_lock);
eb74ff6c 3121
17b124bf 3122 domain_flush_tlb_pde(domain);
5d214fe6 3123
468e2366 3124 return get_order(unmap_size);
eb74ff6c
JR
3125}
3126
645c4c8d
JR
3127static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3128 unsigned long iova)
3129{
3130 struct protection_domain *domain = dom->priv;
f03152bb 3131 unsigned long offset_mask;
645c4c8d 3132 phys_addr_t paddr;
f03152bb 3133 u64 *pte, __pte;
645c4c8d 3134
132bd68f
JR
3135 if (domain->mode == PAGE_MODE_NONE)
3136 return iova;
3137
24cd7723 3138 pte = fetch_pte(domain, iova);
645c4c8d 3139
a6d41a40 3140 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3141 return 0;
3142
f03152bb
JR
3143 if (PM_PTE_LEVEL(*pte) == 0)
3144 offset_mask = PAGE_SIZE - 1;
3145 else
3146 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3147
3148 __pte = *pte & PM_ADDR_MASK;
3149 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3150
3151 return paddr;
3152}
3153
dbb9fd86
SY
3154static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3155 unsigned long cap)
3156{
80a506b8
JR
3157 switch (cap) {
3158 case IOMMU_CAP_CACHE_COHERENCY:
3159 return 1;
3160 }
3161
dbb9fd86
SY
3162 return 0;
3163}
3164
26961efe
JR
3165static struct iommu_ops amd_iommu_ops = {
3166 .domain_init = amd_iommu_domain_init,
3167 .domain_destroy = amd_iommu_domain_destroy,
3168 .attach_dev = amd_iommu_attach_device,
3169 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3170 .map = amd_iommu_map,
3171 .unmap = amd_iommu_unmap,
26961efe 3172 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3173 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
3174};
3175
0feae533
JR
3176/*****************************************************************************
3177 *
3178 * The next functions do a basic initialization of IOMMU for pass through
3179 * mode
3180 *
3181 * In passthrough mode the IOMMU is initialized and enabled but not used for
3182 * DMA-API translation.
3183 *
3184 *****************************************************************************/
3185
3186int __init amd_iommu_init_passthrough(void)
3187{
5abcdba4 3188 struct iommu_dev_data *dev_data;
0feae533 3189 struct pci_dev *dev = NULL;
5abcdba4 3190 struct amd_iommu *iommu;
15898bbc 3191 u16 devid;
5abcdba4 3192 int ret;
0feae533 3193
5abcdba4
JR
3194 ret = alloc_passthrough_domain();
3195 if (ret)
3196 return ret;
0feae533 3197
6c54aabd 3198 for_each_pci_dev(dev) {
98fc5a69 3199 if (!check_device(&dev->dev))
0feae533
JR
3200 continue;
3201
5abcdba4
JR
3202 dev_data = get_dev_data(&dev->dev);
3203 dev_data->passthrough = true;
3204
98fc5a69
JR
3205 devid = get_device_id(&dev->dev);
3206
15898bbc 3207 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3208 if (!iommu)
3209 continue;
3210
15898bbc 3211 attach_device(&dev->dev, pt_domain);
0feae533
JR
3212 }
3213
3214 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3215
3216 return 0;
3217}
72e1dcc4
JR
3218
3219/* IOMMUv2 specific functions */
3220int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3221{
3222 return atomic_notifier_chain_register(&ppr_notifier, nb);
3223}
3224EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3225
3226int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3227{
3228 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3229}
3230EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3231
3232void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3233{
3234 struct protection_domain *domain = dom->priv;
3235 unsigned long flags;
3236
3237 spin_lock_irqsave(&domain->lock, flags);
3238
3239 /* Update data structure */
3240 domain->mode = PAGE_MODE_NONE;
3241 domain->updated = true;
3242
3243 /* Make changes visible to IOMMUs */
3244 update_domain(domain);
3245
3246 /* Page-table is not visible to IOMMU anymore, so free it */
3247 free_pagetable(domain);
3248
3249 spin_unlock_irqrestore(&domain->lock, flags);
3250}
3251EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3252
3253int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3254{
3255 struct protection_domain *domain = dom->priv;
3256 unsigned long flags;
3257 int levels, ret;
3258
3259 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3260 return -EINVAL;
3261
3262 /* Number of GCR3 table levels required */
3263 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3264 levels += 1;
3265
3266 if (levels > amd_iommu_max_glx_val)
3267 return -EINVAL;
3268
3269 spin_lock_irqsave(&domain->lock, flags);
3270
3271 /*
3272 * Save us all sanity checks whether devices already in the
3273 * domain support IOMMUv2. Just force that the domain has no
3274 * devices attached when it is switched into IOMMUv2 mode.
3275 */
3276 ret = -EBUSY;
3277 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3278 goto out;
3279
3280 ret = -ENOMEM;
3281 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3282 if (domain->gcr3_tbl == NULL)
3283 goto out;
3284
3285 domain->glx = levels;
3286 domain->flags |= PD_IOMMUV2_MASK;
3287 domain->updated = true;
3288
3289 update_domain(domain);
3290
3291 ret = 0;
3292
3293out:
3294 spin_unlock_irqrestore(&domain->lock, flags);
3295
3296 return ret;
3297}
3298EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3299
3300static int __flush_pasid(struct protection_domain *domain, int pasid,
3301 u64 address, bool size)
3302{
3303 struct iommu_dev_data *dev_data;
3304 struct iommu_cmd cmd;
3305 int i, ret;
3306
3307 if (!(domain->flags & PD_IOMMUV2_MASK))
3308 return -EINVAL;
3309
3310 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3311
3312 /*
3313 * IOMMU TLB needs to be flushed before Device TLB to
3314 * prevent device TLB refill from IOMMU TLB
3315 */
3316 for (i = 0; i < amd_iommus_present; ++i) {
3317 if (domain->dev_iommu[i] == 0)
3318 continue;
3319
3320 ret = iommu_queue_command(amd_iommus[i], &cmd);
3321 if (ret != 0)
3322 goto out;
3323 }
3324
3325 /* Wait until IOMMU TLB flushes are complete */
3326 domain_flush_complete(domain);
3327
3328 /* Now flush device TLBs */
3329 list_for_each_entry(dev_data, &domain->dev_list, list) {
3330 struct amd_iommu *iommu;
3331 int qdep;
3332
3333 BUG_ON(!dev_data->ats.enabled);
3334
3335 qdep = dev_data->ats.qdep;
3336 iommu = amd_iommu_rlookup_table[dev_data->devid];
3337
3338 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3339 qdep, address, size);
3340
3341 ret = iommu_queue_command(iommu, &cmd);
3342 if (ret != 0)
3343 goto out;
3344 }
3345
3346 /* Wait until all device TLBs are flushed */
3347 domain_flush_complete(domain);
3348
3349 ret = 0;
3350
3351out:
3352
3353 return ret;
3354}
3355
3356static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3357 u64 address)
3358{
3359 return __flush_pasid(domain, pasid, address, false);
3360}
3361
3362int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3363 u64 address)
3364{
3365 struct protection_domain *domain = dom->priv;
3366 unsigned long flags;
3367 int ret;
3368
3369 spin_lock_irqsave(&domain->lock, flags);
3370 ret = __amd_iommu_flush_page(domain, pasid, address);
3371 spin_unlock_irqrestore(&domain->lock, flags);
3372
3373 return ret;
3374}
3375EXPORT_SYMBOL(amd_iommu_flush_page);
3376
3377static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3378{
3379 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3380 true);
3381}
3382
3383int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3384{
3385 struct protection_domain *domain = dom->priv;
3386 unsigned long flags;
3387 int ret;
3388
3389 spin_lock_irqsave(&domain->lock, flags);
3390 ret = __amd_iommu_flush_tlb(domain, pasid);
3391 spin_unlock_irqrestore(&domain->lock, flags);
3392
3393 return ret;
3394}
3395EXPORT_SYMBOL(amd_iommu_flush_tlb);
3396
b16137b1
JR
3397static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3398{
3399 int index;
3400 u64 *pte;
3401
3402 while (true) {
3403
3404 index = (pasid >> (9 * level)) & 0x1ff;
3405 pte = &root[index];
3406
3407 if (level == 0)
3408 break;
3409
3410 if (!(*pte & GCR3_VALID)) {
3411 if (!alloc)
3412 return NULL;
3413
3414 root = (void *)get_zeroed_page(GFP_ATOMIC);
3415 if (root == NULL)
3416 return NULL;
3417
3418 *pte = __pa(root) | GCR3_VALID;
3419 }
3420
3421 root = __va(*pte & PAGE_MASK);
3422
3423 level -= 1;
3424 }
3425
3426 return pte;
3427}
3428
3429static int __set_gcr3(struct protection_domain *domain, int pasid,
3430 unsigned long cr3)
3431{
3432 u64 *pte;
3433
3434 if (domain->mode != PAGE_MODE_NONE)
3435 return -EINVAL;
3436
3437 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3438 if (pte == NULL)
3439 return -ENOMEM;
3440
3441 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3442
3443 return __amd_iommu_flush_tlb(domain, pasid);
3444}
3445
3446static int __clear_gcr3(struct protection_domain *domain, int pasid)
3447{
3448 u64 *pte;
3449
3450 if (domain->mode != PAGE_MODE_NONE)
3451 return -EINVAL;
3452
3453 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3454 if (pte == NULL)
3455 return 0;
3456
3457 *pte = 0;
3458
3459 return __amd_iommu_flush_tlb(domain, pasid);
3460}
3461
3462int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3463 unsigned long cr3)
3464{
3465 struct protection_domain *domain = dom->priv;
3466 unsigned long flags;
3467 int ret;
3468
3469 spin_lock_irqsave(&domain->lock, flags);
3470 ret = __set_gcr3(domain, pasid, cr3);
3471 spin_unlock_irqrestore(&domain->lock, flags);
3472
3473 return ret;
3474}
3475EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3476
3477int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3478{
3479 struct protection_domain *domain = dom->priv;
3480 unsigned long flags;
3481 int ret;
3482
3483 spin_lock_irqsave(&domain->lock, flags);
3484 ret = __clear_gcr3(domain, pasid);
3485 spin_unlock_irqrestore(&domain->lock, flags);
3486
3487 return ret;
3488}
3489EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3490
3491int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3492 int status, int tag)
3493{
3494 struct iommu_dev_data *dev_data;
3495 struct amd_iommu *iommu;
3496 struct iommu_cmd cmd;
3497
3498 dev_data = get_dev_data(&pdev->dev);
3499 iommu = amd_iommu_rlookup_table[dev_data->devid];
3500
3501 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3502 tag, dev_data->pri_tlp);
3503
3504 return iommu_queue_command(iommu, &cmd);
3505}
3506EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3507
3508struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3509{
3510 struct protection_domain *domain;
3511
3512 domain = get_domain(&pdev->dev);
3513 if (IS_ERR(domain))
3514 return NULL;
3515
3516 /* Only return IOMMUv2 domains */
3517 if (!(domain->flags & PD_IOMMUV2_MASK))
3518 return NULL;
3519
3520 return domain->iommu_domain;
3521}
3522EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3523
3524void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3525{
3526 struct iommu_dev_data *dev_data;
3527
3528 if (!amd_iommu_v2_supported())
3529 return;
3530
3531 dev_data = get_dev_data(&pdev->dev);
3532 dev_data->errata |= (1 << erratum);
3533}
3534EXPORT_SYMBOL(amd_iommu_enable_device_erratum);