]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Add IRTE invalidation routine
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
17f5b569 34#include <asm/msidef.h>
b6c02715 35#include <asm/proto.h>
46a7fa27 36#include <asm/iommu.h>
1d9b16d1 37#include <asm/gart.h>
27c2127a 38#include <asm/dma.h>
403f81d8
JR
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
b6c02715
JR
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
815b33fd 45#define LOOP_TIMEOUT 100000
136f78a1 46
aa3de9c0
OBC
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
26961efe 84static struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
431b2a20
JR
91/*
92 * general struct to manage commands send to an IOMMU
93 */
d6449536 94struct iommu_cmd {
b6c02715
JR
95 u32 data[4];
96};
97
05152a04
JR
98struct kmem_cache *amd_iommu_irq_cache;
99
04bfdd84 100static void update_domain(struct protection_domain *domain);
5abcdba4 101static int __init alloc_passthrough_domain(void);
c1eee67b 102
15898bbc
JR
103/****************************************************************************
104 *
105 * Helper functions
106 *
107 ****************************************************************************/
108
f62dda66 109static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
110{
111 struct iommu_dev_data *dev_data;
112 unsigned long flags;
113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data)
116 return NULL;
117
f62dda66 118 dev_data->devid = devid;
8fa5f802
JR
119 atomic_set(&dev_data->bind, 0);
120
121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124
125 return dev_data;
126}
127
128static void free_dev_data(struct iommu_dev_data *dev_data)
129{
130 unsigned long flags;
131
132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135
136 kfree(dev_data);
137}
138
3b03bb74
JR
139static struct iommu_dev_data *search_dev_data(u16 devid)
140{
141 struct iommu_dev_data *dev_data;
142 unsigned long flags;
143
144 spin_lock_irqsave(&dev_data_list_lock, flags);
145 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
146 if (dev_data->devid == devid)
147 goto out_unlock;
148 }
149
150 dev_data = NULL;
151
152out_unlock:
153 spin_unlock_irqrestore(&dev_data_list_lock, flags);
154
155 return dev_data;
156}
157
158static struct iommu_dev_data *find_dev_data(u16 devid)
159{
160 struct iommu_dev_data *dev_data;
161
162 dev_data = search_dev_data(devid);
163
164 if (dev_data == NULL)
165 dev_data = alloc_dev_data(devid);
166
167 return dev_data;
168}
169
15898bbc
JR
170static inline u16 get_device_id(struct device *dev)
171{
172 struct pci_dev *pdev = to_pci_dev(dev);
173
174 return calc_devid(pdev->bus->number, pdev->devfn);
175}
176
657cbb6b
JR
177static struct iommu_dev_data *get_dev_data(struct device *dev)
178{
179 return dev->archdata.iommu;
180}
181
5abcdba4
JR
182static bool pci_iommuv2_capable(struct pci_dev *pdev)
183{
184 static const int caps[] = {
185 PCI_EXT_CAP_ID_ATS,
46277b75
JR
186 PCI_EXT_CAP_ID_PRI,
187 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
188 };
189 int i, pos;
190
191 for (i = 0; i < 3; ++i) {
192 pos = pci_find_ext_capability(pdev, caps[i]);
193 if (pos == 0)
194 return false;
195 }
196
197 return true;
198}
199
6a113ddc
JR
200static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
201{
202 struct iommu_dev_data *dev_data;
203
204 dev_data = get_dev_data(&pdev->dev);
205
206 return dev_data->errata & (1 << erratum) ? true : false;
207}
208
71c70984
JR
209/*
210 * In this function the list of preallocated protection domains is traversed to
211 * find the domain for a specific device
212 */
213static struct dma_ops_domain *find_protection_domain(u16 devid)
214{
215 struct dma_ops_domain *entry, *ret = NULL;
216 unsigned long flags;
217 u16 alias = amd_iommu_alias_table[devid];
218
219 if (list_empty(&iommu_pd_list))
220 return NULL;
221
222 spin_lock_irqsave(&iommu_pd_list_lock, flags);
223
224 list_for_each_entry(entry, &iommu_pd_list, list) {
225 if (entry->target_dev == devid ||
226 entry->target_dev == alias) {
227 ret = entry;
228 break;
229 }
230 }
231
232 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
233
234 return ret;
235}
236
98fc5a69
JR
237/*
238 * This function checks if the driver got a valid device from the caller to
239 * avoid dereferencing invalid pointers.
240 */
241static bool check_device(struct device *dev)
242{
243 u16 devid;
244
245 if (!dev || !dev->dma_mask)
246 return false;
247
248 /* No device or no PCI device */
339d3261 249 if (dev->bus != &pci_bus_type)
98fc5a69
JR
250 return false;
251
252 devid = get_device_id(dev);
253
254 /* Out of our scope? */
255 if (devid > amd_iommu_last_bdf)
256 return false;
257
258 if (amd_iommu_rlookup_table[devid] == NULL)
259 return false;
260
261 return true;
262}
263
664b6003
AW
264static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
265{
266 pci_dev_put(*from);
267 *from = to;
268}
269
270#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
271
657cbb6b
JR
272static int iommu_init_device(struct device *dev)
273{
9dcd6130 274 struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
657cbb6b 275 struct iommu_dev_data *dev_data;
9dcd6130 276 struct iommu_group *group;
8fa5f802 277 u16 alias;
9dcd6130 278 int ret;
657cbb6b
JR
279
280 if (dev->archdata.iommu)
281 return 0;
282
3b03bb74 283 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
284 if (!dev_data)
285 return -ENOMEM;
286
f62dda66 287 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 288 if (alias != dev_data->devid) {
71f77580 289 struct iommu_dev_data *alias_data;
b00d3bcf 290
71f77580
JR
291 alias_data = find_dev_data(alias);
292 if (alias_data == NULL) {
293 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
294 dev_name(dev));
2b02b091
JR
295 free_dev_data(dev_data);
296 return -ENOTSUPP;
297 }
71f77580 298 dev_data->alias_data = alias_data;
9dcd6130
AW
299
300 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
301 } else
302 dma_pdev = pci_dev_get(pdev);
303
31fe9435 304 /* Account for quirked devices */
664b6003
AW
305 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
306
31fe9435
AW
307 /*
308 * If it's a multifunction device that does not support our
309 * required ACS flags, add to the same group as function 0.
310 */
664b6003
AW
311 if (dma_pdev->multifunction &&
312 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
313 swap_pci_ref(&dma_pdev,
314 pci_get_slot(dma_pdev->bus,
315 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
316 0)));
317
31fe9435
AW
318 /*
319 * Devices on the root bus go through the iommu. If that's not us,
320 * find the next upstream device and test ACS up to the root bus.
321 * Finding the next device may require skipping virtual buses.
322 */
664b6003 323 while (!pci_is_root_bus(dma_pdev->bus)) {
31fe9435
AW
324 struct pci_bus *bus = dma_pdev->bus;
325
326 while (!bus->self) {
327 if (!pci_is_root_bus(bus))
328 bus = bus->parent;
329 else
330 goto root_bus;
331 }
332
333 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
664b6003
AW
334 break;
335
31fe9435 336 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
664b6003
AW
337 }
338
31fe9435 339root_bus:
9dcd6130
AW
340 group = iommu_group_get(&dma_pdev->dev);
341 pci_dev_put(dma_pdev);
342 if (!group) {
343 group = iommu_group_alloc();
344 if (IS_ERR(group))
345 return PTR_ERR(group);
26018874 346 }
657cbb6b 347
9dcd6130
AW
348 ret = iommu_group_add_device(group, dev);
349
350 iommu_group_put(group);
351
352 if (ret)
353 return ret;
354
5abcdba4
JR
355 if (pci_iommuv2_capable(pdev)) {
356 struct amd_iommu *iommu;
357
358 iommu = amd_iommu_rlookup_table[dev_data->devid];
359 dev_data->iommu_v2 = iommu->is_iommu_v2;
360 }
361
657cbb6b
JR
362 dev->archdata.iommu = dev_data;
363
657cbb6b
JR
364 return 0;
365}
366
26018874
JR
367static void iommu_ignore_device(struct device *dev)
368{
369 u16 devid, alias;
370
371 devid = get_device_id(dev);
372 alias = amd_iommu_alias_table[devid];
373
374 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
375 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
376
377 amd_iommu_rlookup_table[devid] = NULL;
378 amd_iommu_rlookup_table[alias] = NULL;
379}
380
657cbb6b
JR
381static void iommu_uninit_device(struct device *dev)
382{
9dcd6130
AW
383 iommu_group_remove_device(dev);
384
8fa5f802
JR
385 /*
386 * Nothing to do here - we keep dev_data around for unplugged devices
387 * and reuse it when the device is re-plugged - not doing so would
388 * introduce a ton of races.
389 */
657cbb6b 390}
b7cc9554
JR
391
392void __init amd_iommu_uninit_devices(void)
393{
8fa5f802 394 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
395 struct pci_dev *pdev = NULL;
396
397 for_each_pci_dev(pdev) {
398
399 if (!check_device(&pdev->dev))
400 continue;
401
402 iommu_uninit_device(&pdev->dev);
403 }
8fa5f802
JR
404
405 /* Free all of our dev_data structures */
406 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
407 free_dev_data(dev_data);
b7cc9554
JR
408}
409
410int __init amd_iommu_init_devices(void)
411{
412 struct pci_dev *pdev = NULL;
413 int ret = 0;
414
415 for_each_pci_dev(pdev) {
416
417 if (!check_device(&pdev->dev))
418 continue;
419
420 ret = iommu_init_device(&pdev->dev);
26018874
JR
421 if (ret == -ENOTSUPP)
422 iommu_ignore_device(&pdev->dev);
423 else if (ret)
b7cc9554
JR
424 goto out_free;
425 }
426
427 return 0;
428
429out_free:
430
431 amd_iommu_uninit_devices();
432
433 return ret;
434}
7f26508b
JR
435#ifdef CONFIG_AMD_IOMMU_STATS
436
437/*
438 * Initialization code for statistics collection
439 */
440
da49f6df 441DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 442DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 443DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 444DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 445DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 446DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 447DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 448DECLARE_STATS_COUNTER(cross_page);
f57d98ae 449DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 450DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 451DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 452DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
453DECLARE_STATS_COUNTER(complete_ppr);
454DECLARE_STATS_COUNTER(invalidate_iotlb);
455DECLARE_STATS_COUNTER(invalidate_iotlb_all);
456DECLARE_STATS_COUNTER(pri_requests);
457
7f26508b 458static struct dentry *stats_dir;
7f26508b
JR
459static struct dentry *de_fflush;
460
461static void amd_iommu_stats_add(struct __iommu_counter *cnt)
462{
463 if (stats_dir == NULL)
464 return;
465
466 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
467 &cnt->value);
468}
469
470static void amd_iommu_stats_init(void)
471{
472 stats_dir = debugfs_create_dir("amd-iommu", NULL);
473 if (stats_dir == NULL)
474 return;
475
7f26508b 476 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 477 &amd_iommu_unmap_flush);
da49f6df
JR
478
479 amd_iommu_stats_add(&compl_wait);
0f2a86f2 480 amd_iommu_stats_add(&cnt_map_single);
146a6917 481 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 482 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 483 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 484 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 485 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 486 amd_iommu_stats_add(&cross_page);
f57d98ae 487 amd_iommu_stats_add(&domain_flush_single);
18811f55 488 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 489 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 490 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
491 amd_iommu_stats_add(&complete_ppr);
492 amd_iommu_stats_add(&invalidate_iotlb);
493 amd_iommu_stats_add(&invalidate_iotlb_all);
494 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
495}
496
497#endif
498
a80dc3e0
JR
499/****************************************************************************
500 *
501 * Interrupt handling functions
502 *
503 ****************************************************************************/
504
e3e59876
JR
505static void dump_dte_entry(u16 devid)
506{
507 int i;
508
ee6c2868
JR
509 for (i = 0; i < 4; ++i)
510 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
511 amd_iommu_dev_table[devid].data[i]);
512}
513
945b4ac4
JR
514static void dump_command(unsigned long phys_addr)
515{
516 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
517 int i;
518
519 for (i = 0; i < 4; ++i)
520 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
521}
522
a345b23b 523static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 524{
3d06fca8
JR
525 int type, devid, domid, flags;
526 volatile u32 *event = __evt;
527 int count = 0;
528 u64 address;
529
530retry:
531 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
532 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
533 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
534 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
535 address = (u64)(((u64)event[3]) << 32) | event[2];
536
537 if (type == 0) {
538 /* Did we hit the erratum? */
539 if (++count == LOOP_TIMEOUT) {
540 pr_err("AMD-Vi: No event written to event log\n");
541 return;
542 }
543 udelay(1);
544 goto retry;
545 }
90008ee4 546
4c6f40d4 547 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
548
549 switch (type) {
550 case EVENT_TYPE_ILL_DEV:
551 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
552 "address=0x%016llx flags=0x%04x]\n",
553 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
554 address, flags);
e3e59876 555 dump_dte_entry(devid);
90008ee4
JR
556 break;
557 case EVENT_TYPE_IO_FAULT:
558 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
559 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
560 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
561 domid, address, flags);
562 break;
563 case EVENT_TYPE_DEV_TAB_ERR:
564 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
565 "address=0x%016llx flags=0x%04x]\n",
566 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
567 address, flags);
568 break;
569 case EVENT_TYPE_PAGE_TAB_ERR:
570 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
571 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
572 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
573 domid, address, flags);
574 break;
575 case EVENT_TYPE_ILL_CMD:
576 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 577 dump_command(address);
90008ee4
JR
578 break;
579 case EVENT_TYPE_CMD_HARD_ERR:
580 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
581 "flags=0x%04x]\n", address, flags);
582 break;
583 case EVENT_TYPE_IOTLB_INV_TO:
584 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
585 "address=0x%016llx]\n",
586 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
587 address);
588 break;
589 case EVENT_TYPE_INV_DEV_REQ:
590 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
591 "address=0x%016llx flags=0x%04x]\n",
592 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
593 address, flags);
594 break;
595 default:
596 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
597 }
3d06fca8
JR
598
599 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
600}
601
602static void iommu_poll_events(struct amd_iommu *iommu)
603{
604 u32 head, tail;
605 unsigned long flags;
606
607 spin_lock_irqsave(&iommu->lock, flags);
608
609 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
610 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
611
612 while (head != tail) {
a345b23b 613 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
614 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
615 }
616
617 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
618
619 spin_unlock_irqrestore(&iommu->lock, flags);
620}
621
eee53537 622static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
623{
624 struct amd_iommu_fault fault;
72e1dcc4 625
399be2f5
JR
626 INC_STATS_COUNTER(pri_requests);
627
72e1dcc4
JR
628 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
629 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
630 return;
631 }
632
633 fault.address = raw[1];
634 fault.pasid = PPR_PASID(raw[0]);
635 fault.device_id = PPR_DEVID(raw[0]);
636 fault.tag = PPR_TAG(raw[0]);
637 fault.flags = PPR_FLAGS(raw[0]);
638
72e1dcc4
JR
639 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
640}
641
642static void iommu_poll_ppr_log(struct amd_iommu *iommu)
643{
644 unsigned long flags;
645 u32 head, tail;
646
647 if (iommu->ppr_log == NULL)
648 return;
649
eee53537
JR
650 /* enable ppr interrupts again */
651 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
652
72e1dcc4
JR
653 spin_lock_irqsave(&iommu->lock, flags);
654
655 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
656 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
657
658 while (head != tail) {
eee53537
JR
659 volatile u64 *raw;
660 u64 entry[2];
661 int i;
662
663 raw = (u64 *)(iommu->ppr_log + head);
664
665 /*
666 * Hardware bug: Interrupt may arrive before the entry is
667 * written to memory. If this happens we need to wait for the
668 * entry to arrive.
669 */
670 for (i = 0; i < LOOP_TIMEOUT; ++i) {
671 if (PPR_REQ_TYPE(raw[0]) != 0)
672 break;
673 udelay(1);
674 }
72e1dcc4 675
eee53537
JR
676 /* Avoid memcpy function-call overhead */
677 entry[0] = raw[0];
678 entry[1] = raw[1];
72e1dcc4 679
eee53537
JR
680 /*
681 * To detect the hardware bug we need to clear the entry
682 * back to zero.
683 */
684 raw[0] = raw[1] = 0UL;
685
686 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
687 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
688 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537
JR
689
690 /*
691 * Release iommu->lock because ppr-handling might need to
692 * re-aquire it
693 */
694 spin_unlock_irqrestore(&iommu->lock, flags);
695
696 /* Handle PPR entry */
697 iommu_handle_ppr_entry(iommu, entry);
698
699 spin_lock_irqsave(&iommu->lock, flags);
700
701 /* Refresh ring-buffer information */
702 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
703 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
704 }
705
72e1dcc4
JR
706 spin_unlock_irqrestore(&iommu->lock, flags);
707}
708
72fe00f0 709irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 710{
90008ee4
JR
711 struct amd_iommu *iommu;
712
72e1dcc4 713 for_each_iommu(iommu) {
90008ee4 714 iommu_poll_events(iommu);
72e1dcc4
JR
715 iommu_poll_ppr_log(iommu);
716 }
90008ee4
JR
717
718 return IRQ_HANDLED;
a80dc3e0
JR
719}
720
72fe00f0
JR
721irqreturn_t amd_iommu_int_handler(int irq, void *data)
722{
723 return IRQ_WAKE_THREAD;
724}
725
431b2a20
JR
726/****************************************************************************
727 *
728 * IOMMU command queuing functions
729 *
730 ****************************************************************************/
731
ac0ea6e9
JR
732static int wait_on_sem(volatile u64 *sem)
733{
734 int i = 0;
735
736 while (*sem == 0 && i < LOOP_TIMEOUT) {
737 udelay(1);
738 i += 1;
739 }
740
741 if (i == LOOP_TIMEOUT) {
742 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
743 return -EIO;
744 }
745
746 return 0;
747}
748
749static void copy_cmd_to_buffer(struct amd_iommu *iommu,
750 struct iommu_cmd *cmd,
751 u32 tail)
a19ae1ec 752{
a19ae1ec
JR
753 u8 *target;
754
8a7c5ef3 755 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
756 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
757
758 /* Copy command to buffer */
759 memcpy(target, cmd, sizeof(*cmd));
760
761 /* Tell the IOMMU about it */
a19ae1ec 762 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 763}
a19ae1ec 764
815b33fd 765static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 766{
815b33fd
JR
767 WARN_ON(address & 0x7ULL);
768
ded46737 769 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
770 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
771 cmd->data[1] = upper_32_bits(__pa(address));
772 cmd->data[2] = 1;
ded46737
JR
773 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
774}
775
94fe79e2
JR
776static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
777{
778 memset(cmd, 0, sizeof(*cmd));
779 cmd->data[0] = devid;
780 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
781}
782
11b6402c
JR
783static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
784 size_t size, u16 domid, int pde)
785{
786 u64 pages;
787 int s;
788
789 pages = iommu_num_pages(address, size, PAGE_SIZE);
790 s = 0;
791
792 if (pages > 1) {
793 /*
794 * If we have to flush more than one page, flush all
795 * TLB entries for this domain
796 */
797 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
798 s = 1;
799 }
800
801 address &= PAGE_MASK;
802
803 memset(cmd, 0, sizeof(*cmd));
804 cmd->data[1] |= domid;
805 cmd->data[2] = lower_32_bits(address);
806 cmd->data[3] = upper_32_bits(address);
807 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
808 if (s) /* size bit - we flush more than one 4kb page */
809 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
810 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
811 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
812}
813
cb41ed85
JR
814static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
815 u64 address, size_t size)
816{
817 u64 pages;
818 int s;
819
820 pages = iommu_num_pages(address, size, PAGE_SIZE);
821 s = 0;
822
823 if (pages > 1) {
824 /*
825 * If we have to flush more than one page, flush all
826 * TLB entries for this domain
827 */
828 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
829 s = 1;
830 }
831
832 address &= PAGE_MASK;
833
834 memset(cmd, 0, sizeof(*cmd));
835 cmd->data[0] = devid;
836 cmd->data[0] |= (qdep & 0xff) << 24;
837 cmd->data[1] = devid;
838 cmd->data[2] = lower_32_bits(address);
839 cmd->data[3] = upper_32_bits(address);
840 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
841 if (s)
842 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
843}
844
22e266c7
JR
845static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
846 u64 address, bool size)
847{
848 memset(cmd, 0, sizeof(*cmd));
849
850 address &= ~(0xfffULL);
851
852 cmd->data[0] = pasid & PASID_MASK;
853 cmd->data[1] = domid;
854 cmd->data[2] = lower_32_bits(address);
855 cmd->data[3] = upper_32_bits(address);
856 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
857 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
858 if (size)
859 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
860 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
861}
862
863static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
864 int qdep, u64 address, bool size)
865{
866 memset(cmd, 0, sizeof(*cmd));
867
868 address &= ~(0xfffULL);
869
870 cmd->data[0] = devid;
871 cmd->data[0] |= (pasid & 0xff) << 16;
872 cmd->data[0] |= (qdep & 0xff) << 24;
873 cmd->data[1] = devid;
874 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
875 cmd->data[2] = lower_32_bits(address);
876 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
877 cmd->data[3] = upper_32_bits(address);
878 if (size)
879 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
880 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
881}
882
c99afa25
JR
883static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
884 int status, int tag, bool gn)
885{
886 memset(cmd, 0, sizeof(*cmd));
887
888 cmd->data[0] = devid;
889 if (gn) {
890 cmd->data[1] = pasid & PASID_MASK;
891 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
892 }
893 cmd->data[3] = tag & 0x1ff;
894 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
895
896 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
897}
898
58fc7f14
JR
899static void build_inv_all(struct iommu_cmd *cmd)
900{
901 memset(cmd, 0, sizeof(*cmd));
902 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
903}
904
7ef2798d
JR
905static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
906{
907 memset(cmd, 0, sizeof(*cmd));
908 cmd->data[0] = devid;
909 CMD_SET_TYPE(cmd, CMD_INV_IRT);
910}
911
431b2a20 912/*
431b2a20 913 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 914 * hardware about the new command.
431b2a20 915 */
f1ca1512
JR
916static int iommu_queue_command_sync(struct amd_iommu *iommu,
917 struct iommu_cmd *cmd,
918 bool sync)
a19ae1ec 919{
ac0ea6e9 920 u32 left, tail, head, next_tail;
a19ae1ec 921 unsigned long flags;
a19ae1ec 922
549c90dc 923 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
924
925again:
a19ae1ec 926 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 927
ac0ea6e9
JR
928 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
929 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
930 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
931 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 932
ac0ea6e9
JR
933 if (left <= 2) {
934 struct iommu_cmd sync_cmd;
935 volatile u64 sem = 0;
936 int ret;
8d201968 937
ac0ea6e9
JR
938 build_completion_wait(&sync_cmd, (u64)&sem);
939 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 940
ac0ea6e9
JR
941 spin_unlock_irqrestore(&iommu->lock, flags);
942
943 if ((ret = wait_on_sem(&sem)) != 0)
944 return ret;
945
946 goto again;
8d201968
JR
947 }
948
ac0ea6e9
JR
949 copy_cmd_to_buffer(iommu, cmd, tail);
950
951 /* We need to sync now to make sure all commands are processed */
f1ca1512 952 iommu->need_sync = sync;
ac0ea6e9 953
a19ae1ec 954 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 955
815b33fd 956 return 0;
8d201968
JR
957}
958
f1ca1512
JR
959static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
960{
961 return iommu_queue_command_sync(iommu, cmd, true);
962}
963
8d201968
JR
964/*
965 * This function queues a completion wait command into the command
966 * buffer of an IOMMU
967 */
a19ae1ec 968static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
969{
970 struct iommu_cmd cmd;
815b33fd 971 volatile u64 sem = 0;
ac0ea6e9 972 int ret;
8d201968 973
09ee17eb 974 if (!iommu->need_sync)
815b33fd 975 return 0;
09ee17eb 976
815b33fd 977 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 978
f1ca1512 979 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 980 if (ret)
815b33fd 981 return ret;
8d201968 982
ac0ea6e9 983 return wait_on_sem(&sem);
8d201968
JR
984}
985
d8c13085 986static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 987{
d8c13085 988 struct iommu_cmd cmd;
a19ae1ec 989
d8c13085 990 build_inv_dte(&cmd, devid);
7e4f88da 991
d8c13085
JR
992 return iommu_queue_command(iommu, &cmd);
993}
09ee17eb 994
7d0c5cc5
JR
995static void iommu_flush_dte_all(struct amd_iommu *iommu)
996{
997 u32 devid;
09ee17eb 998
7d0c5cc5
JR
999 for (devid = 0; devid <= 0xffff; ++devid)
1000 iommu_flush_dte(iommu, devid);
a19ae1ec 1001
7d0c5cc5
JR
1002 iommu_completion_wait(iommu);
1003}
84df8175 1004
7d0c5cc5
JR
1005/*
1006 * This function uses heavy locking and may disable irqs for some time. But
1007 * this is no issue because it is only called during resume.
1008 */
1009static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1010{
1011 u32 dom_id;
a19ae1ec 1012
7d0c5cc5
JR
1013 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1014 struct iommu_cmd cmd;
1015 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1016 dom_id, 1);
1017 iommu_queue_command(iommu, &cmd);
1018 }
8eed9833 1019
7d0c5cc5 1020 iommu_completion_wait(iommu);
a19ae1ec
JR
1021}
1022
58fc7f14 1023static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1024{
58fc7f14 1025 struct iommu_cmd cmd;
0518a3a4 1026
58fc7f14 1027 build_inv_all(&cmd);
0518a3a4 1028
58fc7f14
JR
1029 iommu_queue_command(iommu, &cmd);
1030 iommu_completion_wait(iommu);
1031}
1032
7ef2798d
JR
1033static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1034{
1035 struct iommu_cmd cmd;
1036
1037 build_inv_irt(&cmd, devid);
1038
1039 iommu_queue_command(iommu, &cmd);
1040}
1041
1042static void iommu_flush_irt_all(struct amd_iommu *iommu)
1043{
1044 u32 devid;
1045
1046 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1047 iommu_flush_irt(iommu, devid);
1048
1049 iommu_completion_wait(iommu);
1050}
1051
7d0c5cc5
JR
1052void iommu_flush_all_caches(struct amd_iommu *iommu)
1053{
58fc7f14
JR
1054 if (iommu_feature(iommu, FEATURE_IA)) {
1055 iommu_flush_all(iommu);
1056 } else {
1057 iommu_flush_dte_all(iommu);
7ef2798d 1058 iommu_flush_irt_all(iommu);
58fc7f14 1059 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1060 }
1061}
1062
431b2a20 1063/*
cb41ed85 1064 * Command send function for flushing on-device TLB
431b2a20 1065 */
6c542047
JR
1066static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1067 u64 address, size_t size)
3fa43655
JR
1068{
1069 struct amd_iommu *iommu;
b00d3bcf 1070 struct iommu_cmd cmd;
cb41ed85 1071 int qdep;
3fa43655 1072
ea61cddb
JR
1073 qdep = dev_data->ats.qdep;
1074 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1075
ea61cddb 1076 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1077
1078 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1079}
1080
431b2a20 1081/*
431b2a20 1082 * Command send function for invalidating a device table entry
431b2a20 1083 */
6c542047 1084static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1085{
3fa43655 1086 struct amd_iommu *iommu;
ee2fa743 1087 int ret;
a19ae1ec 1088
6c542047 1089 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1090
f62dda66 1091 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1092 if (ret)
1093 return ret;
1094
ea61cddb 1095 if (dev_data->ats.enabled)
6c542047 1096 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1097
ee2fa743 1098 return ret;
a19ae1ec
JR
1099}
1100
431b2a20
JR
1101/*
1102 * TLB invalidation function which is called from the mapping functions.
1103 * It invalidates a single PTE if the range to flush is within a single
1104 * page. Otherwise it flushes the whole TLB of the IOMMU.
1105 */
17b124bf
JR
1106static void __domain_flush_pages(struct protection_domain *domain,
1107 u64 address, size_t size, int pde)
a19ae1ec 1108{
cb41ed85 1109 struct iommu_dev_data *dev_data;
11b6402c
JR
1110 struct iommu_cmd cmd;
1111 int ret = 0, i;
a19ae1ec 1112
11b6402c 1113 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1114
6de8ad9b
JR
1115 for (i = 0; i < amd_iommus_present; ++i) {
1116 if (!domain->dev_iommu[i])
1117 continue;
1118
1119 /*
1120 * Devices of this domain are behind this IOMMU
1121 * We need a TLB flush
1122 */
11b6402c 1123 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1124 }
1125
cb41ed85 1126 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1127
ea61cddb 1128 if (!dev_data->ats.enabled)
cb41ed85
JR
1129 continue;
1130
6c542047 1131 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1132 }
1133
11b6402c 1134 WARN_ON(ret);
6de8ad9b
JR
1135}
1136
17b124bf
JR
1137static void domain_flush_pages(struct protection_domain *domain,
1138 u64 address, size_t size)
6de8ad9b 1139{
17b124bf 1140 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1141}
b6c02715 1142
1c655773 1143/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1144static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1145{
17b124bf 1146 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1147}
1148
42a49f96 1149/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1150static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1151{
17b124bf 1152 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1153}
1154
17b124bf 1155static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1156{
17b124bf 1157 int i;
18811f55 1158
17b124bf
JR
1159 for (i = 0; i < amd_iommus_present; ++i) {
1160 if (!domain->dev_iommu[i])
1161 continue;
bfd1be18 1162
17b124bf
JR
1163 /*
1164 * Devices of this domain are behind this IOMMU
1165 * We need to wait for completion of all commands.
1166 */
1167 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1168 }
e394d72a
JR
1169}
1170
b00d3bcf 1171
09b42804 1172/*
b00d3bcf 1173 * This function flushes the DTEs for all devices in domain
09b42804 1174 */
17b124bf 1175static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1176{
b00d3bcf 1177 struct iommu_dev_data *dev_data;
b26e81b8 1178
b00d3bcf 1179 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1180 device_flush_dte(dev_data);
a345b23b
JR
1181}
1182
431b2a20
JR
1183/****************************************************************************
1184 *
1185 * The functions below are used the create the page table mappings for
1186 * unity mapped regions.
1187 *
1188 ****************************************************************************/
1189
308973d3
JR
1190/*
1191 * This function is used to add another level to an IO page table. Adding
1192 * another level increases the size of the address space by 9 bits to a size up
1193 * to 64 bits.
1194 */
1195static bool increase_address_space(struct protection_domain *domain,
1196 gfp_t gfp)
1197{
1198 u64 *pte;
1199
1200 if (domain->mode == PAGE_MODE_6_LEVEL)
1201 /* address space already 64 bit large */
1202 return false;
1203
1204 pte = (void *)get_zeroed_page(gfp);
1205 if (!pte)
1206 return false;
1207
1208 *pte = PM_LEVEL_PDE(domain->mode,
1209 virt_to_phys(domain->pt_root));
1210 domain->pt_root = pte;
1211 domain->mode += 1;
1212 domain->updated = true;
1213
1214 return true;
1215}
1216
1217static u64 *alloc_pte(struct protection_domain *domain,
1218 unsigned long address,
cbb9d729 1219 unsigned long page_size,
308973d3
JR
1220 u64 **pte_page,
1221 gfp_t gfp)
1222{
cbb9d729 1223 int level, end_lvl;
308973d3 1224 u64 *pte, *page;
cbb9d729
JR
1225
1226 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1227
1228 while (address > PM_LEVEL_SIZE(domain->mode))
1229 increase_address_space(domain, gfp);
1230
cbb9d729
JR
1231 level = domain->mode - 1;
1232 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1233 address = PAGE_SIZE_ALIGN(address, page_size);
1234 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1235
1236 while (level > end_lvl) {
1237 if (!IOMMU_PTE_PRESENT(*pte)) {
1238 page = (u64 *)get_zeroed_page(gfp);
1239 if (!page)
1240 return NULL;
1241 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1242 }
1243
cbb9d729
JR
1244 /* No level skipping support yet */
1245 if (PM_PTE_LEVEL(*pte) != level)
1246 return NULL;
1247
308973d3
JR
1248 level -= 1;
1249
1250 pte = IOMMU_PTE_PAGE(*pte);
1251
1252 if (pte_page && level == end_lvl)
1253 *pte_page = pte;
1254
1255 pte = &pte[PM_LEVEL_INDEX(level, address)];
1256 }
1257
1258 return pte;
1259}
1260
1261/*
1262 * This function checks if there is a PTE for a given dma address. If
1263 * there is one, it returns the pointer to it.
1264 */
24cd7723 1265static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1266{
1267 int level;
1268 u64 *pte;
1269
24cd7723
JR
1270 if (address > PM_LEVEL_SIZE(domain->mode))
1271 return NULL;
1272
1273 level = domain->mode - 1;
1274 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1275
24cd7723
JR
1276 while (level > 0) {
1277
1278 /* Not Present */
308973d3
JR
1279 if (!IOMMU_PTE_PRESENT(*pte))
1280 return NULL;
1281
24cd7723
JR
1282 /* Large PTE */
1283 if (PM_PTE_LEVEL(*pte) == 0x07) {
1284 unsigned long pte_mask, __pte;
1285
1286 /*
1287 * If we have a series of large PTEs, make
1288 * sure to return a pointer to the first one.
1289 */
1290 pte_mask = PTE_PAGE_SIZE(*pte);
1291 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1292 __pte = ((unsigned long)pte) & pte_mask;
1293
1294 return (u64 *)__pte;
1295 }
1296
1297 /* No level skipping support yet */
1298 if (PM_PTE_LEVEL(*pte) != level)
1299 return NULL;
1300
308973d3
JR
1301 level -= 1;
1302
24cd7723 1303 /* Walk to the next level */
308973d3
JR
1304 pte = IOMMU_PTE_PAGE(*pte);
1305 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1306 }
1307
1308 return pte;
1309}
1310
431b2a20
JR
1311/*
1312 * Generic mapping functions. It maps a physical address into a DMA
1313 * address space. It allocates the page table pages if necessary.
1314 * In the future it can be extended to a generic mapping function
1315 * supporting all features of AMD IOMMU page tables like level skipping
1316 * and full 64 bit address spaces.
1317 */
38e817fe
JR
1318static int iommu_map_page(struct protection_domain *dom,
1319 unsigned long bus_addr,
1320 unsigned long phys_addr,
abdc5eb3 1321 int prot,
cbb9d729 1322 unsigned long page_size)
bd0e5211 1323{
8bda3092 1324 u64 __pte, *pte;
cbb9d729 1325 int i, count;
abdc5eb3 1326
bad1cac2 1327 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1328 return -EINVAL;
1329
cbb9d729
JR
1330 bus_addr = PAGE_ALIGN(bus_addr);
1331 phys_addr = PAGE_ALIGN(phys_addr);
1332 count = PAGE_SIZE_PTE_COUNT(page_size);
1333 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1334
1335 for (i = 0; i < count; ++i)
1336 if (IOMMU_PTE_PRESENT(pte[i]))
1337 return -EBUSY;
bd0e5211 1338
cbb9d729
JR
1339 if (page_size > PAGE_SIZE) {
1340 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1341 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1342 } else
1343 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1344
bd0e5211
JR
1345 if (prot & IOMMU_PROT_IR)
1346 __pte |= IOMMU_PTE_IR;
1347 if (prot & IOMMU_PROT_IW)
1348 __pte |= IOMMU_PTE_IW;
1349
cbb9d729
JR
1350 for (i = 0; i < count; ++i)
1351 pte[i] = __pte;
bd0e5211 1352
04bfdd84
JR
1353 update_domain(dom);
1354
bd0e5211
JR
1355 return 0;
1356}
1357
24cd7723
JR
1358static unsigned long iommu_unmap_page(struct protection_domain *dom,
1359 unsigned long bus_addr,
1360 unsigned long page_size)
eb74ff6c 1361{
24cd7723
JR
1362 unsigned long long unmap_size, unmapped;
1363 u64 *pte;
1364
1365 BUG_ON(!is_power_of_2(page_size));
1366
1367 unmapped = 0;
eb74ff6c 1368
24cd7723
JR
1369 while (unmapped < page_size) {
1370
1371 pte = fetch_pte(dom, bus_addr);
1372
1373 if (!pte) {
1374 /*
1375 * No PTE for this address
1376 * move forward in 4kb steps
1377 */
1378 unmap_size = PAGE_SIZE;
1379 } else if (PM_PTE_LEVEL(*pte) == 0) {
1380 /* 4kb PTE found for this address */
1381 unmap_size = PAGE_SIZE;
1382 *pte = 0ULL;
1383 } else {
1384 int count, i;
1385
1386 /* Large PTE found which maps this address */
1387 unmap_size = PTE_PAGE_SIZE(*pte);
1388 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1389 for (i = 0; i < count; i++)
1390 pte[i] = 0ULL;
1391 }
1392
1393 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1394 unmapped += unmap_size;
1395 }
1396
1397 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1398
24cd7723 1399 return unmapped;
eb74ff6c 1400}
eb74ff6c 1401
431b2a20
JR
1402/*
1403 * This function checks if a specific unity mapping entry is needed for
1404 * this specific IOMMU.
1405 */
bd0e5211
JR
1406static int iommu_for_unity_map(struct amd_iommu *iommu,
1407 struct unity_map_entry *entry)
1408{
1409 u16 bdf, i;
1410
1411 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1412 bdf = amd_iommu_alias_table[i];
1413 if (amd_iommu_rlookup_table[bdf] == iommu)
1414 return 1;
1415 }
1416
1417 return 0;
1418}
1419
431b2a20
JR
1420/*
1421 * This function actually applies the mapping to the page table of the
1422 * dma_ops domain.
1423 */
bd0e5211
JR
1424static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1425 struct unity_map_entry *e)
1426{
1427 u64 addr;
1428 int ret;
1429
1430 for (addr = e->address_start; addr < e->address_end;
1431 addr += PAGE_SIZE) {
abdc5eb3 1432 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1433 PAGE_SIZE);
bd0e5211
JR
1434 if (ret)
1435 return ret;
1436 /*
1437 * if unity mapping is in aperture range mark the page
1438 * as allocated in the aperture
1439 */
1440 if (addr < dma_dom->aperture_size)
c3239567 1441 __set_bit(addr >> PAGE_SHIFT,
384de729 1442 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1443 }
1444
1445 return 0;
1446}
1447
171e7b37
JR
1448/*
1449 * Init the unity mappings for a specific IOMMU in the system
1450 *
1451 * Basically iterates over all unity mapping entries and applies them to
1452 * the default domain DMA of that IOMMU if necessary.
1453 */
1454static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1455{
1456 struct unity_map_entry *entry;
1457 int ret;
1458
1459 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1460 if (!iommu_for_unity_map(iommu, entry))
1461 continue;
1462 ret = dma_ops_unity_map(iommu->default_dom, entry);
1463 if (ret)
1464 return ret;
1465 }
1466
1467 return 0;
1468}
1469
431b2a20
JR
1470/*
1471 * Inits the unity mappings required for a specific device
1472 */
bd0e5211
JR
1473static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1474 u16 devid)
1475{
1476 struct unity_map_entry *e;
1477 int ret;
1478
1479 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1480 if (!(devid >= e->devid_start && devid <= e->devid_end))
1481 continue;
1482 ret = dma_ops_unity_map(dma_dom, e);
1483 if (ret)
1484 return ret;
1485 }
1486
1487 return 0;
1488}
1489
431b2a20
JR
1490/****************************************************************************
1491 *
1492 * The next functions belong to the address allocator for the dma_ops
1493 * interface functions. They work like the allocators in the other IOMMU
1494 * drivers. Its basically a bitmap which marks the allocated pages in
1495 * the aperture. Maybe it could be enhanced in the future to a more
1496 * efficient allocator.
1497 *
1498 ****************************************************************************/
d3086444 1499
431b2a20 1500/*
384de729 1501 * The address allocator core functions.
431b2a20
JR
1502 *
1503 * called with domain->lock held
1504 */
384de729 1505
171e7b37
JR
1506/*
1507 * Used to reserve address ranges in the aperture (e.g. for exclusion
1508 * ranges.
1509 */
1510static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1511 unsigned long start_page,
1512 unsigned int pages)
1513{
1514 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1515
1516 if (start_page + pages > last_page)
1517 pages = last_page - start_page;
1518
1519 for (i = start_page; i < start_page + pages; ++i) {
1520 int index = i / APERTURE_RANGE_PAGES;
1521 int page = i % APERTURE_RANGE_PAGES;
1522 __set_bit(page, dom->aperture[index]->bitmap);
1523 }
1524}
1525
9cabe89b
JR
1526/*
1527 * This function is used to add a new aperture range to an existing
1528 * aperture in case of dma_ops domain allocation or address allocation
1529 * failure.
1530 */
576175c2 1531static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1532 bool populate, gfp_t gfp)
1533{
1534 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1535 struct amd_iommu *iommu;
17f5b569 1536 unsigned long i, old_size;
9cabe89b 1537
f5e9705c
JR
1538#ifdef CONFIG_IOMMU_STRESS
1539 populate = false;
1540#endif
1541
9cabe89b
JR
1542 if (index >= APERTURE_MAX_RANGES)
1543 return -ENOMEM;
1544
1545 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1546 if (!dma_dom->aperture[index])
1547 return -ENOMEM;
1548
1549 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1550 if (!dma_dom->aperture[index]->bitmap)
1551 goto out_free;
1552
1553 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1554
1555 if (populate) {
1556 unsigned long address = dma_dom->aperture_size;
1557 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1558 u64 *pte, *pte_page;
1559
1560 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1561 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1562 &pte_page, gfp);
1563 if (!pte)
1564 goto out_free;
1565
1566 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1567
1568 address += APERTURE_RANGE_SIZE / 64;
1569 }
1570 }
1571
17f5b569 1572 old_size = dma_dom->aperture_size;
9cabe89b
JR
1573 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1574
17f5b569
JR
1575 /* Reserve address range used for MSI messages */
1576 if (old_size < MSI_ADDR_BASE_LO &&
1577 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1578 unsigned long spage;
1579 int pages;
1580
1581 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1582 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1583
1584 dma_ops_reserve_addresses(dma_dom, spage, pages);
1585 }
1586
b595076a 1587 /* Initialize the exclusion range if necessary */
576175c2
JR
1588 for_each_iommu(iommu) {
1589 if (iommu->exclusion_start &&
1590 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1591 && iommu->exclusion_start < dma_dom->aperture_size) {
1592 unsigned long startpage;
1593 int pages = iommu_num_pages(iommu->exclusion_start,
1594 iommu->exclusion_length,
1595 PAGE_SIZE);
1596 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1597 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1598 }
00cd122a
JR
1599 }
1600
1601 /*
1602 * Check for areas already mapped as present in the new aperture
1603 * range and mark those pages as reserved in the allocator. Such
1604 * mappings may already exist as a result of requested unity
1605 * mappings for devices.
1606 */
1607 for (i = dma_dom->aperture[index]->offset;
1608 i < dma_dom->aperture_size;
1609 i += PAGE_SIZE) {
24cd7723 1610 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1611 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1612 continue;
1613
fcd0861d 1614 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1615 }
1616
04bfdd84
JR
1617 update_domain(&dma_dom->domain);
1618
9cabe89b
JR
1619 return 0;
1620
1621out_free:
04bfdd84
JR
1622 update_domain(&dma_dom->domain);
1623
9cabe89b
JR
1624 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1625
1626 kfree(dma_dom->aperture[index]);
1627 dma_dom->aperture[index] = NULL;
1628
1629 return -ENOMEM;
1630}
1631
384de729
JR
1632static unsigned long dma_ops_area_alloc(struct device *dev,
1633 struct dma_ops_domain *dom,
1634 unsigned int pages,
1635 unsigned long align_mask,
1636 u64 dma_mask,
1637 unsigned long start)
1638{
803b8cb4 1639 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1640 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1641 int i = start >> APERTURE_RANGE_SHIFT;
1642 unsigned long boundary_size;
1643 unsigned long address = -1;
1644 unsigned long limit;
1645
803b8cb4
JR
1646 next_bit >>= PAGE_SHIFT;
1647
384de729
JR
1648 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1649 PAGE_SIZE) >> PAGE_SHIFT;
1650
1651 for (;i < max_index; ++i) {
1652 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1653
1654 if (dom->aperture[i]->offset >= dma_mask)
1655 break;
1656
1657 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1658 dma_mask >> PAGE_SHIFT);
1659
1660 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1661 limit, next_bit, pages, 0,
1662 boundary_size, align_mask);
1663 if (address != -1) {
1664 address = dom->aperture[i]->offset +
1665 (address << PAGE_SHIFT);
803b8cb4 1666 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1667 break;
1668 }
1669
1670 next_bit = 0;
1671 }
1672
1673 return address;
1674}
1675
d3086444
JR
1676static unsigned long dma_ops_alloc_addresses(struct device *dev,
1677 struct dma_ops_domain *dom,
6d4f343f 1678 unsigned int pages,
832a90c3
JR
1679 unsigned long align_mask,
1680 u64 dma_mask)
d3086444 1681{
d3086444 1682 unsigned long address;
d3086444 1683
fe16f088
JR
1684#ifdef CONFIG_IOMMU_STRESS
1685 dom->next_address = 0;
1686 dom->need_flush = true;
1687#endif
d3086444 1688
384de729 1689 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1690 dma_mask, dom->next_address);
d3086444 1691
1c655773 1692 if (address == -1) {
803b8cb4 1693 dom->next_address = 0;
384de729
JR
1694 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1695 dma_mask, 0);
1c655773
JR
1696 dom->need_flush = true;
1697 }
d3086444 1698
384de729 1699 if (unlikely(address == -1))
8fd524b3 1700 address = DMA_ERROR_CODE;
d3086444
JR
1701
1702 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1703
1704 return address;
1705}
1706
431b2a20
JR
1707/*
1708 * The address free function.
1709 *
1710 * called with domain->lock held
1711 */
d3086444
JR
1712static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1713 unsigned long address,
1714 unsigned int pages)
1715{
384de729
JR
1716 unsigned i = address >> APERTURE_RANGE_SHIFT;
1717 struct aperture_range *range = dom->aperture[i];
80be308d 1718
384de729
JR
1719 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1720
47bccd6b
JR
1721#ifdef CONFIG_IOMMU_STRESS
1722 if (i < 4)
1723 return;
1724#endif
80be308d 1725
803b8cb4 1726 if (address >= dom->next_address)
80be308d 1727 dom->need_flush = true;
384de729
JR
1728
1729 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1730
a66022c4 1731 bitmap_clear(range->bitmap, address, pages);
384de729 1732
d3086444
JR
1733}
1734
431b2a20
JR
1735/****************************************************************************
1736 *
1737 * The next functions belong to the domain allocation. A domain is
1738 * allocated for every IOMMU as the default domain. If device isolation
1739 * is enabled, every device get its own domain. The most important thing
1740 * about domains is the page table mapping the DMA address space they
1741 * contain.
1742 *
1743 ****************************************************************************/
1744
aeb26f55
JR
1745/*
1746 * This function adds a protection domain to the global protection domain list
1747 */
1748static void add_domain_to_list(struct protection_domain *domain)
1749{
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1753 list_add(&domain->list, &amd_iommu_pd_list);
1754 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1755}
1756
1757/*
1758 * This function removes a protection domain to the global
1759 * protection domain list
1760 */
1761static void del_domain_from_list(struct protection_domain *domain)
1762{
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1766 list_del(&domain->list);
1767 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1768}
1769
ec487d1a
JR
1770static u16 domain_id_alloc(void)
1771{
1772 unsigned long flags;
1773 int id;
1774
1775 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1776 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1777 BUG_ON(id == 0);
1778 if (id > 0 && id < MAX_DOMAIN_ID)
1779 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1780 else
1781 id = 0;
1782 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1783
1784 return id;
1785}
1786
a2acfb75
JR
1787static void domain_id_free(int id)
1788{
1789 unsigned long flags;
1790
1791 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1792 if (id > 0 && id < MAX_DOMAIN_ID)
1793 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1794 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1795}
a2acfb75 1796
86db2e5d 1797static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1798{
1799 int i, j;
1800 u64 *p1, *p2, *p3;
1801
86db2e5d 1802 p1 = domain->pt_root;
ec487d1a
JR
1803
1804 if (!p1)
1805 return;
1806
1807 for (i = 0; i < 512; ++i) {
1808 if (!IOMMU_PTE_PRESENT(p1[i]))
1809 continue;
1810
1811 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1812 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1813 if (!IOMMU_PTE_PRESENT(p2[j]))
1814 continue;
1815 p3 = IOMMU_PTE_PAGE(p2[j]);
1816 free_page((unsigned long)p3);
1817 }
1818
1819 free_page((unsigned long)p2);
1820 }
1821
1822 free_page((unsigned long)p1);
86db2e5d
JR
1823
1824 domain->pt_root = NULL;
ec487d1a
JR
1825}
1826
b16137b1
JR
1827static void free_gcr3_tbl_level1(u64 *tbl)
1828{
1829 u64 *ptr;
1830 int i;
1831
1832 for (i = 0; i < 512; ++i) {
1833 if (!(tbl[i] & GCR3_VALID))
1834 continue;
1835
1836 ptr = __va(tbl[i] & PAGE_MASK);
1837
1838 free_page((unsigned long)ptr);
1839 }
1840}
1841
1842static void free_gcr3_tbl_level2(u64 *tbl)
1843{
1844 u64 *ptr;
1845 int i;
1846
1847 for (i = 0; i < 512; ++i) {
1848 if (!(tbl[i] & GCR3_VALID))
1849 continue;
1850
1851 ptr = __va(tbl[i] & PAGE_MASK);
1852
1853 free_gcr3_tbl_level1(ptr);
1854 }
1855}
1856
52815b75
JR
1857static void free_gcr3_table(struct protection_domain *domain)
1858{
b16137b1
JR
1859 if (domain->glx == 2)
1860 free_gcr3_tbl_level2(domain->gcr3_tbl);
1861 else if (domain->glx == 1)
1862 free_gcr3_tbl_level1(domain->gcr3_tbl);
1863 else if (domain->glx != 0)
1864 BUG();
1865
52815b75
JR
1866 free_page((unsigned long)domain->gcr3_tbl);
1867}
1868
431b2a20
JR
1869/*
1870 * Free a domain, only used if something went wrong in the
1871 * allocation path and we need to free an already allocated page table
1872 */
ec487d1a
JR
1873static void dma_ops_domain_free(struct dma_ops_domain *dom)
1874{
384de729
JR
1875 int i;
1876
ec487d1a
JR
1877 if (!dom)
1878 return;
1879
aeb26f55
JR
1880 del_domain_from_list(&dom->domain);
1881
86db2e5d 1882 free_pagetable(&dom->domain);
ec487d1a 1883
384de729
JR
1884 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1885 if (!dom->aperture[i])
1886 continue;
1887 free_page((unsigned long)dom->aperture[i]->bitmap);
1888 kfree(dom->aperture[i]);
1889 }
ec487d1a
JR
1890
1891 kfree(dom);
1892}
1893
431b2a20
JR
1894/*
1895 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1896 * It also initializes the page table and the address allocator data
431b2a20
JR
1897 * structures required for the dma_ops interface
1898 */
87a64d52 1899static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1900{
1901 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1902
1903 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1904 if (!dma_dom)
1905 return NULL;
1906
1907 spin_lock_init(&dma_dom->domain.lock);
1908
1909 dma_dom->domain.id = domain_id_alloc();
1910 if (dma_dom->domain.id == 0)
1911 goto free_dma_dom;
7c392cbe 1912 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1913 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1914 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1915 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1916 dma_dom->domain.priv = dma_dom;
1917 if (!dma_dom->domain.pt_root)
1918 goto free_dma_dom;
ec487d1a 1919
1c655773 1920 dma_dom->need_flush = false;
bd60b735 1921 dma_dom->target_dev = 0xffff;
1c655773 1922
aeb26f55
JR
1923 add_domain_to_list(&dma_dom->domain);
1924
576175c2 1925 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1926 goto free_dma_dom;
ec487d1a 1927
431b2a20 1928 /*
ec487d1a
JR
1929 * mark the first page as allocated so we never return 0 as
1930 * a valid dma-address. So we can use 0 as error value
431b2a20 1931 */
384de729 1932 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1933 dma_dom->next_address = 0;
ec487d1a 1934
ec487d1a
JR
1935
1936 return dma_dom;
1937
1938free_dma_dom:
1939 dma_ops_domain_free(dma_dom);
1940
1941 return NULL;
1942}
1943
5b28df6f
JR
1944/*
1945 * little helper function to check whether a given protection domain is a
1946 * dma_ops domain
1947 */
1948static bool dma_ops_domain(struct protection_domain *domain)
1949{
1950 return domain->flags & PD_DMA_OPS_MASK;
1951}
1952
fd7b5535 1953static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1954{
132bd68f 1955 u64 pte_root = 0;
ee6c2868 1956 u64 flags = 0;
863c74eb 1957
132bd68f
JR
1958 if (domain->mode != PAGE_MODE_NONE)
1959 pte_root = virt_to_phys(domain->pt_root);
1960
38ddf41b
JR
1961 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1962 << DEV_ENTRY_MODE_SHIFT;
1963 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1964
ee6c2868
JR
1965 flags = amd_iommu_dev_table[devid].data[1];
1966
fd7b5535
JR
1967 if (ats)
1968 flags |= DTE_FLAG_IOTLB;
1969
52815b75
JR
1970 if (domain->flags & PD_IOMMUV2_MASK) {
1971 u64 gcr3 = __pa(domain->gcr3_tbl);
1972 u64 glx = domain->glx;
1973 u64 tmp;
1974
1975 pte_root |= DTE_FLAG_GV;
1976 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1977
1978 /* First mask out possible old values for GCR3 table */
1979 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1980 flags &= ~tmp;
1981
1982 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1983 flags &= ~tmp;
1984
1985 /* Encode GCR3 table into DTE */
1986 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1987 pte_root |= tmp;
1988
1989 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1990 flags |= tmp;
1991
1992 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1993 flags |= tmp;
1994 }
1995
ee6c2868
JR
1996 flags &= ~(0xffffUL);
1997 flags |= domain->id;
1998
1999 amd_iommu_dev_table[devid].data[1] = flags;
2000 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2001}
2002
2003static void clear_dte_entry(u16 devid)
2004{
15898bbc
JR
2005 /* remove entry from the device table seen by the hardware */
2006 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2007 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2008
2009 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2010}
2011
ec9e79ef
JR
2012static void do_attach(struct iommu_dev_data *dev_data,
2013 struct protection_domain *domain)
7f760ddd 2014{
7f760ddd 2015 struct amd_iommu *iommu;
ec9e79ef 2016 bool ats;
fd7b5535 2017
ec9e79ef
JR
2018 iommu = amd_iommu_rlookup_table[dev_data->devid];
2019 ats = dev_data->ats.enabled;
7f760ddd
JR
2020
2021 /* Update data structures */
2022 dev_data->domain = domain;
2023 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2024 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2025
2026 /* Do reference counting */
2027 domain->dev_iommu[iommu->index] += 1;
2028 domain->dev_cnt += 1;
2029
2030 /* Flush the DTE entry */
6c542047 2031 device_flush_dte(dev_data);
7f760ddd
JR
2032}
2033
ec9e79ef 2034static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2035{
7f760ddd 2036 struct amd_iommu *iommu;
7f760ddd 2037
ec9e79ef 2038 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2039
2040 /* decrease reference counters */
7f760ddd
JR
2041 dev_data->domain->dev_iommu[iommu->index] -= 1;
2042 dev_data->domain->dev_cnt -= 1;
2043
2044 /* Update data structures */
2045 dev_data->domain = NULL;
2046 list_del(&dev_data->list);
f62dda66 2047 clear_dte_entry(dev_data->devid);
15898bbc 2048
7f760ddd 2049 /* Flush the DTE entry */
6c542047 2050 device_flush_dte(dev_data);
2b681faf
JR
2051}
2052
2053/*
2054 * If a device is not yet associated with a domain, this function does
2055 * assigns it visible for the hardware
2056 */
ec9e79ef 2057static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2058 struct protection_domain *domain)
2b681faf 2059{
84fe6c19 2060 int ret;
657cbb6b 2061
2b681faf
JR
2062 /* lock domain */
2063 spin_lock(&domain->lock);
2064
71f77580
JR
2065 if (dev_data->alias_data != NULL) {
2066 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2067
2b02b091
JR
2068 /* Some sanity checks */
2069 ret = -EBUSY;
2070 if (alias_data->domain != NULL &&
2071 alias_data->domain != domain)
2072 goto out_unlock;
eba6ac60 2073
2b02b091
JR
2074 if (dev_data->domain != NULL &&
2075 dev_data->domain != domain)
2076 goto out_unlock;
15898bbc 2077
2b02b091 2078 /* Do real assignment */
7f760ddd 2079 if (alias_data->domain == NULL)
ec9e79ef 2080 do_attach(alias_data, domain);
24100055
JR
2081
2082 atomic_inc(&alias_data->bind);
657cbb6b 2083 }
15898bbc 2084
7f760ddd 2085 if (dev_data->domain == NULL)
ec9e79ef 2086 do_attach(dev_data, domain);
eba6ac60 2087
24100055
JR
2088 atomic_inc(&dev_data->bind);
2089
84fe6c19
JL
2090 ret = 0;
2091
2092out_unlock:
2093
eba6ac60
JR
2094 /* ready */
2095 spin_unlock(&domain->lock);
15898bbc 2096
84fe6c19 2097 return ret;
0feae533 2098}
b20ac0d4 2099
52815b75
JR
2100
2101static void pdev_iommuv2_disable(struct pci_dev *pdev)
2102{
2103 pci_disable_ats(pdev);
2104 pci_disable_pri(pdev);
2105 pci_disable_pasid(pdev);
2106}
2107
6a113ddc
JR
2108/* FIXME: Change generic reset-function to do the same */
2109static int pri_reset_while_enabled(struct pci_dev *pdev)
2110{
2111 u16 control;
2112 int pos;
2113
46277b75 2114 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2115 if (!pos)
2116 return -EINVAL;
2117
46277b75
JR
2118 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2119 control |= PCI_PRI_CTRL_RESET;
2120 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2121
2122 return 0;
2123}
2124
52815b75
JR
2125static int pdev_iommuv2_enable(struct pci_dev *pdev)
2126{
6a113ddc
JR
2127 bool reset_enable;
2128 int reqs, ret;
2129
2130 /* FIXME: Hardcode number of outstanding requests for now */
2131 reqs = 32;
2132 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2133 reqs = 1;
2134 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2135
2136 /* Only allow access to user-accessible pages */
2137 ret = pci_enable_pasid(pdev, 0);
2138 if (ret)
2139 goto out_err;
2140
2141 /* First reset the PRI state of the device */
2142 ret = pci_reset_pri(pdev);
2143 if (ret)
2144 goto out_err;
2145
6a113ddc
JR
2146 /* Enable PRI */
2147 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2148 if (ret)
2149 goto out_err;
2150
6a113ddc
JR
2151 if (reset_enable) {
2152 ret = pri_reset_while_enabled(pdev);
2153 if (ret)
2154 goto out_err;
2155 }
2156
52815b75
JR
2157 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2158 if (ret)
2159 goto out_err;
2160
2161 return 0;
2162
2163out_err:
2164 pci_disable_pri(pdev);
2165 pci_disable_pasid(pdev);
2166
2167 return ret;
2168}
2169
c99afa25 2170/* FIXME: Move this to PCI code */
a3b93121 2171#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2172
98f1ad25 2173static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2174{
a3b93121 2175 u16 status;
c99afa25
JR
2176 int pos;
2177
46277b75 2178 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2179 if (!pos)
2180 return false;
2181
a3b93121 2182 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2183
a3b93121 2184 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2185}
2186
407d733e
JR
2187/*
2188 * If a device is not yet associated with a domain, this function does
2189 * assigns it visible for the hardware
2190 */
15898bbc
JR
2191static int attach_device(struct device *dev,
2192 struct protection_domain *domain)
0feae533 2193{
fd7b5535 2194 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2195 struct iommu_dev_data *dev_data;
eba6ac60 2196 unsigned long flags;
15898bbc 2197 int ret;
eba6ac60 2198
ea61cddb
JR
2199 dev_data = get_dev_data(dev);
2200
52815b75
JR
2201 if (domain->flags & PD_IOMMUV2_MASK) {
2202 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2203 return -EINVAL;
2204
2205 if (pdev_iommuv2_enable(pdev) != 0)
2206 return -EINVAL;
2207
2208 dev_data->ats.enabled = true;
2209 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2210 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2211 } else if (amd_iommu_iotlb_sup &&
2212 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2213 dev_data->ats.enabled = true;
2214 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2215 }
fd7b5535 2216
eba6ac60 2217 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2218 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2219 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2220
0feae533
JR
2221 /*
2222 * We might boot into a crash-kernel here. The crashed kernel
2223 * left the caches in the IOMMU dirty. So we have to flush
2224 * here to evict all dirty stuff.
2225 */
17b124bf 2226 domain_flush_tlb_pde(domain);
15898bbc
JR
2227
2228 return ret;
b20ac0d4
JR
2229}
2230
355bf553
JR
2231/*
2232 * Removes a device from a protection domain (unlocked)
2233 */
ec9e79ef 2234static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2235{
2ca76279 2236 struct protection_domain *domain;
7c392cbe 2237 unsigned long flags;
c4596114 2238
7f760ddd 2239 BUG_ON(!dev_data->domain);
355bf553 2240
2ca76279
JR
2241 domain = dev_data->domain;
2242
2243 spin_lock_irqsave(&domain->lock, flags);
24100055 2244
71f77580
JR
2245 if (dev_data->alias_data != NULL) {
2246 struct iommu_dev_data *alias_data = dev_data->alias_data;
2247
7f760ddd 2248 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2249 do_detach(alias_data);
24100055
JR
2250 }
2251
7f760ddd 2252 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2253 do_detach(dev_data);
7f760ddd 2254
2ca76279 2255 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2256
2257 /*
2258 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2259 * passthrough domain if it is detached from any other domain.
2260 * Make sure we can deassign from the pt_domain itself.
21129f78 2261 */
5abcdba4 2262 if (dev_data->passthrough &&
d3ad9373 2263 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2264 __attach_device(dev_data, pt_domain);
355bf553
JR
2265}
2266
2267/*
2268 * Removes a device from a protection domain (with devtable_lock held)
2269 */
15898bbc 2270static void detach_device(struct device *dev)
355bf553 2271{
52815b75 2272 struct protection_domain *domain;
ea61cddb 2273 struct iommu_dev_data *dev_data;
355bf553
JR
2274 unsigned long flags;
2275
ec9e79ef 2276 dev_data = get_dev_data(dev);
52815b75 2277 domain = dev_data->domain;
ec9e79ef 2278
355bf553
JR
2279 /* lock device table */
2280 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2281 __detach_device(dev_data);
355bf553 2282 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2283
52815b75
JR
2284 if (domain->flags & PD_IOMMUV2_MASK)
2285 pdev_iommuv2_disable(to_pci_dev(dev));
2286 else if (dev_data->ats.enabled)
ea61cddb 2287 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2288
2289 dev_data->ats.enabled = false;
355bf553 2290}
e275a2a0 2291
15898bbc
JR
2292/*
2293 * Find out the protection domain structure for a given PCI device. This
2294 * will give us the pointer to the page table root for example.
2295 */
2296static struct protection_domain *domain_for_device(struct device *dev)
2297{
71f77580 2298 struct iommu_dev_data *dev_data;
2b02b091 2299 struct protection_domain *dom = NULL;
15898bbc 2300 unsigned long flags;
15898bbc 2301
657cbb6b 2302 dev_data = get_dev_data(dev);
15898bbc 2303
2b02b091
JR
2304 if (dev_data->domain)
2305 return dev_data->domain;
15898bbc 2306
71f77580
JR
2307 if (dev_data->alias_data != NULL) {
2308 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2309
2310 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2311 if (alias_data->domain != NULL) {
2312 __attach_device(dev_data, alias_data->domain);
2313 dom = alias_data->domain;
2314 }
2315 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2316 }
15898bbc
JR
2317
2318 return dom;
2319}
2320
e275a2a0
JR
2321static int device_change_notifier(struct notifier_block *nb,
2322 unsigned long action, void *data)
2323{
e275a2a0 2324 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2325 struct protection_domain *domain;
2326 struct iommu_dev_data *dev_data;
2327 struct device *dev = data;
e275a2a0 2328 struct amd_iommu *iommu;
1ac4cbbc 2329 unsigned long flags;
5abcdba4 2330 u16 devid;
e275a2a0 2331
98fc5a69
JR
2332 if (!check_device(dev))
2333 return 0;
e275a2a0 2334
5abcdba4
JR
2335 devid = get_device_id(dev);
2336 iommu = amd_iommu_rlookup_table[devid];
2337 dev_data = get_dev_data(dev);
e275a2a0
JR
2338
2339 switch (action) {
c1eee67b 2340 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2341
2342 domain = domain_for_device(dev);
2343
e275a2a0
JR
2344 if (!domain)
2345 goto out;
5abcdba4 2346 if (dev_data->passthrough)
a1ca331c 2347 break;
15898bbc 2348 detach_device(dev);
1ac4cbbc
JR
2349 break;
2350 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2351
2352 iommu_init_device(dev);
2353
2c9195e9
JR
2354 /*
2355 * dev_data is still NULL and
2356 * got initialized in iommu_init_device
2357 */
2358 dev_data = get_dev_data(dev);
2359
2360 if (iommu_pass_through || dev_data->iommu_v2) {
2361 dev_data->passthrough = true;
2362 attach_device(dev, pt_domain);
2363 break;
2364 }
2365
657cbb6b
JR
2366 domain = domain_for_device(dev);
2367
1ac4cbbc
JR
2368 /* allocate a protection domain if a device is added */
2369 dma_domain = find_protection_domain(devid);
2370 if (dma_domain)
2371 goto out;
87a64d52 2372 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
2373 if (!dma_domain)
2374 goto out;
2375 dma_domain->target_dev = devid;
2376
2377 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2378 list_add_tail(&dma_domain->list, &iommu_pd_list);
2379 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2380
ac1534a5
JR
2381 dev_data = get_dev_data(dev);
2382
2c9195e9 2383 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2384
e275a2a0 2385 break;
657cbb6b
JR
2386 case BUS_NOTIFY_DEL_DEVICE:
2387
2388 iommu_uninit_device(dev);
2389
e275a2a0
JR
2390 default:
2391 goto out;
2392 }
2393
e275a2a0
JR
2394 iommu_completion_wait(iommu);
2395
2396out:
2397 return 0;
2398}
2399
b25ae679 2400static struct notifier_block device_nb = {
e275a2a0
JR
2401 .notifier_call = device_change_notifier,
2402};
355bf553 2403
8638c491
JR
2404void amd_iommu_init_notifier(void)
2405{
2406 bus_register_notifier(&pci_bus_type, &device_nb);
2407}
2408
431b2a20
JR
2409/*****************************************************************************
2410 *
2411 * The next functions belong to the dma_ops mapping/unmapping code.
2412 *
2413 *****************************************************************************/
2414
2415/*
2416 * In the dma_ops path we only have the struct device. This function
2417 * finds the corresponding IOMMU, the protection domain and the
2418 * requestor id for a given device.
2419 * If the device is not yet associated with a domain this is also done
2420 * in this function.
2421 */
94f6d190 2422static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2423{
94f6d190 2424 struct protection_domain *domain;
b20ac0d4 2425 struct dma_ops_domain *dma_dom;
94f6d190 2426 u16 devid = get_device_id(dev);
b20ac0d4 2427
f99c0f1c 2428 if (!check_device(dev))
94f6d190 2429 return ERR_PTR(-EINVAL);
b20ac0d4 2430
94f6d190
JR
2431 domain = domain_for_device(dev);
2432 if (domain != NULL && !dma_ops_domain(domain))
2433 return ERR_PTR(-EBUSY);
f99c0f1c 2434
94f6d190
JR
2435 if (domain != NULL)
2436 return domain;
b20ac0d4 2437
15898bbc 2438 /* Device not bount yet - bind it */
94f6d190 2439 dma_dom = find_protection_domain(devid);
15898bbc 2440 if (!dma_dom)
94f6d190
JR
2441 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2442 attach_device(dev, &dma_dom->domain);
15898bbc 2443 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2444 dma_dom->domain.id, dev_name(dev));
f91ba190 2445
94f6d190 2446 return &dma_dom->domain;
b20ac0d4
JR
2447}
2448
04bfdd84
JR
2449static void update_device_table(struct protection_domain *domain)
2450{
492667da 2451 struct iommu_dev_data *dev_data;
04bfdd84 2452
ea61cddb
JR
2453 list_for_each_entry(dev_data, &domain->dev_list, list)
2454 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2455}
2456
2457static void update_domain(struct protection_domain *domain)
2458{
2459 if (!domain->updated)
2460 return;
2461
2462 update_device_table(domain);
17b124bf
JR
2463
2464 domain_flush_devices(domain);
2465 domain_flush_tlb_pde(domain);
04bfdd84
JR
2466
2467 domain->updated = false;
2468}
2469
8bda3092
JR
2470/*
2471 * This function fetches the PTE for a given address in the aperture
2472 */
2473static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2474 unsigned long address)
2475{
384de729 2476 struct aperture_range *aperture;
8bda3092
JR
2477 u64 *pte, *pte_page;
2478
384de729
JR
2479 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2480 if (!aperture)
2481 return NULL;
2482
2483 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2484 if (!pte) {
cbb9d729 2485 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2486 GFP_ATOMIC);
384de729
JR
2487 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2488 } else
8c8c143c 2489 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2490
04bfdd84 2491 update_domain(&dom->domain);
8bda3092
JR
2492
2493 return pte;
2494}
2495
431b2a20
JR
2496/*
2497 * This is the generic map function. It maps one 4kb page at paddr to
2498 * the given address in the DMA address space for the domain.
2499 */
680525e0 2500static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2501 unsigned long address,
2502 phys_addr_t paddr,
2503 int direction)
2504{
2505 u64 *pte, __pte;
2506
2507 WARN_ON(address > dom->aperture_size);
2508
2509 paddr &= PAGE_MASK;
2510
8bda3092 2511 pte = dma_ops_get_pte(dom, address);
53812c11 2512 if (!pte)
8fd524b3 2513 return DMA_ERROR_CODE;
cb76c322
JR
2514
2515 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2516
2517 if (direction == DMA_TO_DEVICE)
2518 __pte |= IOMMU_PTE_IR;
2519 else if (direction == DMA_FROM_DEVICE)
2520 __pte |= IOMMU_PTE_IW;
2521 else if (direction == DMA_BIDIRECTIONAL)
2522 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2523
2524 WARN_ON(*pte);
2525
2526 *pte = __pte;
2527
2528 return (dma_addr_t)address;
2529}
2530
431b2a20
JR
2531/*
2532 * The generic unmapping function for on page in the DMA address space.
2533 */
680525e0 2534static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2535 unsigned long address)
2536{
384de729 2537 struct aperture_range *aperture;
cb76c322
JR
2538 u64 *pte;
2539
2540 if (address >= dom->aperture_size)
2541 return;
2542
384de729
JR
2543 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2544 if (!aperture)
2545 return;
2546
2547 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2548 if (!pte)
2549 return;
cb76c322 2550
8c8c143c 2551 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2552
2553 WARN_ON(!*pte);
2554
2555 *pte = 0ULL;
2556}
2557
431b2a20
JR
2558/*
2559 * This function contains common code for mapping of a physically
24f81160
JR
2560 * contiguous memory region into DMA address space. It is used by all
2561 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2562 * Must be called with the domain lock held.
2563 */
cb76c322 2564static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2565 struct dma_ops_domain *dma_dom,
2566 phys_addr_t paddr,
2567 size_t size,
6d4f343f 2568 int dir,
832a90c3
JR
2569 bool align,
2570 u64 dma_mask)
cb76c322
JR
2571{
2572 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2573 dma_addr_t address, start, ret;
cb76c322 2574 unsigned int pages;
6d4f343f 2575 unsigned long align_mask = 0;
cb76c322
JR
2576 int i;
2577
e3c449f5 2578 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2579 paddr &= PAGE_MASK;
2580
8ecaf8f1
JR
2581 INC_STATS_COUNTER(total_map_requests);
2582
c1858976
JR
2583 if (pages > 1)
2584 INC_STATS_COUNTER(cross_page);
2585
6d4f343f
JR
2586 if (align)
2587 align_mask = (1UL << get_order(size)) - 1;
2588
11b83888 2589retry:
832a90c3
JR
2590 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2591 dma_mask);
8fd524b3 2592 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2593 /*
2594 * setting next_address here will let the address
2595 * allocator only scan the new allocated range in the
2596 * first run. This is a small optimization.
2597 */
2598 dma_dom->next_address = dma_dom->aperture_size;
2599
576175c2 2600 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2601 goto out;
2602
2603 /*
af901ca1 2604 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2605 * allocation again
2606 */
2607 goto retry;
2608 }
cb76c322
JR
2609
2610 start = address;
2611 for (i = 0; i < pages; ++i) {
680525e0 2612 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2613 if (ret == DMA_ERROR_CODE)
53812c11
JR
2614 goto out_unmap;
2615
cb76c322
JR
2616 paddr += PAGE_SIZE;
2617 start += PAGE_SIZE;
2618 }
2619 address += offset;
2620
5774f7c5
JR
2621 ADD_STATS_COUNTER(alloced_io_mem, size);
2622
afa9fdc2 2623 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2624 domain_flush_tlb(&dma_dom->domain);
1c655773 2625 dma_dom->need_flush = false;
318afd41 2626 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2627 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2628
cb76c322
JR
2629out:
2630 return address;
53812c11
JR
2631
2632out_unmap:
2633
2634 for (--i; i >= 0; --i) {
2635 start -= PAGE_SIZE;
680525e0 2636 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2637 }
2638
2639 dma_ops_free_addresses(dma_dom, address, pages);
2640
8fd524b3 2641 return DMA_ERROR_CODE;
cb76c322
JR
2642}
2643
431b2a20
JR
2644/*
2645 * Does the reverse of the __map_single function. Must be called with
2646 * the domain lock held too
2647 */
cd8c82e8 2648static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2649 dma_addr_t dma_addr,
2650 size_t size,
2651 int dir)
2652{
04e0463e 2653 dma_addr_t flush_addr;
cb76c322
JR
2654 dma_addr_t i, start;
2655 unsigned int pages;
2656
8fd524b3 2657 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2658 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2659 return;
2660
04e0463e 2661 flush_addr = dma_addr;
e3c449f5 2662 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2663 dma_addr &= PAGE_MASK;
2664 start = dma_addr;
2665
2666 for (i = 0; i < pages; ++i) {
680525e0 2667 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2668 start += PAGE_SIZE;
2669 }
2670
5774f7c5
JR
2671 SUB_STATS_COUNTER(alloced_io_mem, size);
2672
cb76c322 2673 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2674
80be308d 2675 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2676 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2677 dma_dom->need_flush = false;
2678 }
cb76c322
JR
2679}
2680
431b2a20
JR
2681/*
2682 * The exported map_single function for dma_ops.
2683 */
51491367
FT
2684static dma_addr_t map_page(struct device *dev, struct page *page,
2685 unsigned long offset, size_t size,
2686 enum dma_data_direction dir,
2687 struct dma_attrs *attrs)
4da70b9e
JR
2688{
2689 unsigned long flags;
4da70b9e 2690 struct protection_domain *domain;
4da70b9e 2691 dma_addr_t addr;
832a90c3 2692 u64 dma_mask;
51491367 2693 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2694
0f2a86f2
JR
2695 INC_STATS_COUNTER(cnt_map_single);
2696
94f6d190
JR
2697 domain = get_domain(dev);
2698 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2699 return (dma_addr_t)paddr;
94f6d190
JR
2700 else if (IS_ERR(domain))
2701 return DMA_ERROR_CODE;
4da70b9e 2702
f99c0f1c
JR
2703 dma_mask = *dev->dma_mask;
2704
4da70b9e 2705 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2706
cd8c82e8 2707 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2708 dma_mask);
8fd524b3 2709 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2710 goto out;
2711
17b124bf 2712 domain_flush_complete(domain);
4da70b9e
JR
2713
2714out:
2715 spin_unlock_irqrestore(&domain->lock, flags);
2716
2717 return addr;
2718}
2719
431b2a20
JR
2720/*
2721 * The exported unmap_single function for dma_ops.
2722 */
51491367
FT
2723static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2724 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2725{
2726 unsigned long flags;
4da70b9e 2727 struct protection_domain *domain;
4da70b9e 2728
146a6917
JR
2729 INC_STATS_COUNTER(cnt_unmap_single);
2730
94f6d190
JR
2731 domain = get_domain(dev);
2732 if (IS_ERR(domain))
5b28df6f
JR
2733 return;
2734
4da70b9e
JR
2735 spin_lock_irqsave(&domain->lock, flags);
2736
cd8c82e8 2737 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2738
17b124bf 2739 domain_flush_complete(domain);
4da70b9e
JR
2740
2741 spin_unlock_irqrestore(&domain->lock, flags);
2742}
2743
431b2a20
JR
2744/*
2745 * This is a special map_sg function which is used if we should map a
2746 * device which is not handled by an AMD IOMMU in the system.
2747 */
65b050ad
JR
2748static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2749 int nelems, int dir)
2750{
2751 struct scatterlist *s;
2752 int i;
2753
2754 for_each_sg(sglist, s, nelems, i) {
2755 s->dma_address = (dma_addr_t)sg_phys(s);
2756 s->dma_length = s->length;
2757 }
2758
2759 return nelems;
2760}
2761
431b2a20
JR
2762/*
2763 * The exported map_sg function for dma_ops (handles scatter-gather
2764 * lists).
2765 */
65b050ad 2766static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2767 int nelems, enum dma_data_direction dir,
2768 struct dma_attrs *attrs)
65b050ad
JR
2769{
2770 unsigned long flags;
65b050ad 2771 struct protection_domain *domain;
65b050ad
JR
2772 int i;
2773 struct scatterlist *s;
2774 phys_addr_t paddr;
2775 int mapped_elems = 0;
832a90c3 2776 u64 dma_mask;
65b050ad 2777
d03f067a
JR
2778 INC_STATS_COUNTER(cnt_map_sg);
2779
94f6d190
JR
2780 domain = get_domain(dev);
2781 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2782 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2783 else if (IS_ERR(domain))
2784 return 0;
dbcc112e 2785
832a90c3 2786 dma_mask = *dev->dma_mask;
65b050ad 2787
65b050ad
JR
2788 spin_lock_irqsave(&domain->lock, flags);
2789
2790 for_each_sg(sglist, s, nelems, i) {
2791 paddr = sg_phys(s);
2792
cd8c82e8 2793 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2794 paddr, s->length, dir, false,
2795 dma_mask);
65b050ad
JR
2796
2797 if (s->dma_address) {
2798 s->dma_length = s->length;
2799 mapped_elems++;
2800 } else
2801 goto unmap;
65b050ad
JR
2802 }
2803
17b124bf 2804 domain_flush_complete(domain);
65b050ad
JR
2805
2806out:
2807 spin_unlock_irqrestore(&domain->lock, flags);
2808
2809 return mapped_elems;
2810unmap:
2811 for_each_sg(sglist, s, mapped_elems, i) {
2812 if (s->dma_address)
cd8c82e8 2813 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2814 s->dma_length, dir);
2815 s->dma_address = s->dma_length = 0;
2816 }
2817
2818 mapped_elems = 0;
2819
2820 goto out;
2821}
2822
431b2a20
JR
2823/*
2824 * The exported map_sg function for dma_ops (handles scatter-gather
2825 * lists).
2826 */
65b050ad 2827static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2828 int nelems, enum dma_data_direction dir,
2829 struct dma_attrs *attrs)
65b050ad
JR
2830{
2831 unsigned long flags;
65b050ad
JR
2832 struct protection_domain *domain;
2833 struct scatterlist *s;
65b050ad
JR
2834 int i;
2835
55877a6b
JR
2836 INC_STATS_COUNTER(cnt_unmap_sg);
2837
94f6d190
JR
2838 domain = get_domain(dev);
2839 if (IS_ERR(domain))
5b28df6f
JR
2840 return;
2841
65b050ad
JR
2842 spin_lock_irqsave(&domain->lock, flags);
2843
2844 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2845 __unmap_single(domain->priv, s->dma_address,
65b050ad 2846 s->dma_length, dir);
65b050ad
JR
2847 s->dma_address = s->dma_length = 0;
2848 }
2849
17b124bf 2850 domain_flush_complete(domain);
65b050ad
JR
2851
2852 spin_unlock_irqrestore(&domain->lock, flags);
2853}
2854
431b2a20
JR
2855/*
2856 * The exported alloc_coherent function for dma_ops.
2857 */
5d8b53cf 2858static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2859 dma_addr_t *dma_addr, gfp_t flag,
2860 struct dma_attrs *attrs)
5d8b53cf
JR
2861{
2862 unsigned long flags;
2863 void *virt_addr;
5d8b53cf 2864 struct protection_domain *domain;
5d8b53cf 2865 phys_addr_t paddr;
832a90c3 2866 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2867
c8f0fb36
JR
2868 INC_STATS_COUNTER(cnt_alloc_coherent);
2869
94f6d190
JR
2870 domain = get_domain(dev);
2871 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2872 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2873 *dma_addr = __pa(virt_addr);
2874 return virt_addr;
94f6d190
JR
2875 } else if (IS_ERR(domain))
2876 return NULL;
5d8b53cf 2877
f99c0f1c
JR
2878 dma_mask = dev->coherent_dma_mask;
2879 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2880 flag |= __GFP_ZERO;
5d8b53cf
JR
2881
2882 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2883 if (!virt_addr)
b25ae679 2884 return NULL;
5d8b53cf 2885
5d8b53cf
JR
2886 paddr = virt_to_phys(virt_addr);
2887
832a90c3
JR
2888 if (!dma_mask)
2889 dma_mask = *dev->dma_mask;
2890
5d8b53cf
JR
2891 spin_lock_irqsave(&domain->lock, flags);
2892
cd8c82e8 2893 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2894 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2895
8fd524b3 2896 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2897 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2898 goto out_free;
367d04c4 2899 }
5d8b53cf 2900
17b124bf 2901 domain_flush_complete(domain);
5d8b53cf 2902
5d8b53cf
JR
2903 spin_unlock_irqrestore(&domain->lock, flags);
2904
2905 return virt_addr;
5b28df6f
JR
2906
2907out_free:
2908
2909 free_pages((unsigned long)virt_addr, get_order(size));
2910
2911 return NULL;
5d8b53cf
JR
2912}
2913
431b2a20
JR
2914/*
2915 * The exported free_coherent function for dma_ops.
431b2a20 2916 */
5d8b53cf 2917static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2918 void *virt_addr, dma_addr_t dma_addr,
2919 struct dma_attrs *attrs)
5d8b53cf
JR
2920{
2921 unsigned long flags;
5d8b53cf 2922 struct protection_domain *domain;
5d8b53cf 2923
5d31ee7e
JR
2924 INC_STATS_COUNTER(cnt_free_coherent);
2925
94f6d190
JR
2926 domain = get_domain(dev);
2927 if (IS_ERR(domain))
5b28df6f
JR
2928 goto free_mem;
2929
5d8b53cf
JR
2930 spin_lock_irqsave(&domain->lock, flags);
2931
cd8c82e8 2932 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2933
17b124bf 2934 domain_flush_complete(domain);
5d8b53cf
JR
2935
2936 spin_unlock_irqrestore(&domain->lock, flags);
2937
2938free_mem:
2939 free_pages((unsigned long)virt_addr, get_order(size));
2940}
2941
b39ba6ad
JR
2942/*
2943 * This function is called by the DMA layer to find out if we can handle a
2944 * particular device. It is part of the dma_ops.
2945 */
2946static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2947{
420aef8a 2948 return check_device(dev);
b39ba6ad
JR
2949}
2950
c432f3df 2951/*
431b2a20
JR
2952 * The function for pre-allocating protection domains.
2953 *
c432f3df
JR
2954 * If the driver core informs the DMA layer if a driver grabs a device
2955 * we don't need to preallocate the protection domains anymore.
2956 * For now we have to.
2957 */
943bc7e1 2958static void __init prealloc_protection_domains(void)
c432f3df 2959{
5abcdba4 2960 struct iommu_dev_data *dev_data;
c432f3df 2961 struct dma_ops_domain *dma_dom;
5abcdba4 2962 struct pci_dev *dev = NULL;
98fc5a69 2963 u16 devid;
c432f3df 2964
d18c69d3 2965 for_each_pci_dev(dev) {
98fc5a69
JR
2966
2967 /* Do we handle this device? */
2968 if (!check_device(&dev->dev))
c432f3df 2969 continue;
98fc5a69 2970
5abcdba4
JR
2971 dev_data = get_dev_data(&dev->dev);
2972 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2973 /* Make sure passthrough domain is allocated */
2974 alloc_passthrough_domain();
2975 dev_data->passthrough = true;
2976 attach_device(&dev->dev, pt_domain);
2977 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2978 dev_name(&dev->dev));
2979 }
2980
98fc5a69 2981 /* Is there already any domain for it? */
15898bbc 2982 if (domain_for_device(&dev->dev))
c432f3df 2983 continue;
98fc5a69
JR
2984
2985 devid = get_device_id(&dev->dev);
2986
87a64d52 2987 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2988 if (!dma_dom)
2989 continue;
2990 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2991 dma_dom->target_dev = devid;
2992
15898bbc 2993 attach_device(&dev->dev, &dma_dom->domain);
be831297 2994
bd60b735 2995 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2996 }
2997}
2998
160c1d8e 2999static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3000 .alloc = alloc_coherent,
3001 .free = free_coherent,
51491367
FT
3002 .map_page = map_page,
3003 .unmap_page = unmap_page,
6631ee9d
JR
3004 .map_sg = map_sg,
3005 .unmap_sg = unmap_sg,
b39ba6ad 3006 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3007};
3008
27c2127a
JR
3009static unsigned device_dma_ops_init(void)
3010{
5abcdba4 3011 struct iommu_dev_data *dev_data;
27c2127a
JR
3012 struct pci_dev *pdev = NULL;
3013 unsigned unhandled = 0;
3014
3015 for_each_pci_dev(pdev) {
3016 if (!check_device(&pdev->dev)) {
af1be049
JR
3017
3018 iommu_ignore_device(&pdev->dev);
3019
27c2127a
JR
3020 unhandled += 1;
3021 continue;
3022 }
3023
5abcdba4
JR
3024 dev_data = get_dev_data(&pdev->dev);
3025
3026 if (!dev_data->passthrough)
3027 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3028 else
3029 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3030 }
3031
3032 return unhandled;
3033}
3034
431b2a20
JR
3035/*
3036 * The function which clues the AMD IOMMU driver into dma_ops.
3037 */
f5325094
JR
3038
3039void __init amd_iommu_init_api(void)
3040{
2cc21c42 3041 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3042}
3043
6631ee9d
JR
3044int __init amd_iommu_init_dma_ops(void)
3045{
3046 struct amd_iommu *iommu;
27c2127a 3047 int ret, unhandled;
6631ee9d 3048
431b2a20
JR
3049 /*
3050 * first allocate a default protection domain for every IOMMU we
3051 * found in the system. Devices not assigned to any other
3052 * protection domain will be assigned to the default one.
3053 */
3bd22172 3054 for_each_iommu(iommu) {
87a64d52 3055 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3056 if (iommu->default_dom == NULL)
3057 return -ENOMEM;
e2dc14a2 3058 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3059 ret = iommu_init_unity_mappings(iommu);
3060 if (ret)
3061 goto free_domains;
3062 }
3063
431b2a20 3064 /*
8793abeb 3065 * Pre-allocate the protection domains for each device.
431b2a20 3066 */
8793abeb 3067 prealloc_protection_domains();
6631ee9d
JR
3068
3069 iommu_detected = 1;
75f1cdf1 3070 swiotlb = 0;
6631ee9d 3071
431b2a20 3072 /* Make the driver finally visible to the drivers */
27c2127a
JR
3073 unhandled = device_dma_ops_init();
3074 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3075 /* There are unhandled devices - initialize swiotlb for them */
3076 swiotlb = 1;
3077 }
6631ee9d 3078
7f26508b
JR
3079 amd_iommu_stats_init();
3080
62410eeb
JR
3081 if (amd_iommu_unmap_flush)
3082 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3083 else
3084 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3085
6631ee9d
JR
3086 return 0;
3087
3088free_domains:
3089
3bd22172 3090 for_each_iommu(iommu) {
6631ee9d
JR
3091 if (iommu->default_dom)
3092 dma_ops_domain_free(iommu->default_dom);
3093 }
3094
3095 return ret;
3096}
6d98cd80
JR
3097
3098/*****************************************************************************
3099 *
3100 * The following functions belong to the exported interface of AMD IOMMU
3101 *
3102 * This interface allows access to lower level functions of the IOMMU
3103 * like protection domain handling and assignement of devices to domains
3104 * which is not possible with the dma_ops interface.
3105 *
3106 *****************************************************************************/
3107
6d98cd80
JR
3108static void cleanup_domain(struct protection_domain *domain)
3109{
492667da 3110 struct iommu_dev_data *dev_data, *next;
6d98cd80 3111 unsigned long flags;
6d98cd80
JR
3112
3113 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3114
492667da 3115 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3116 __detach_device(dev_data);
492667da
JR
3117 atomic_set(&dev_data->bind, 0);
3118 }
6d98cd80
JR
3119
3120 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3121}
3122
2650815f
JR
3123static void protection_domain_free(struct protection_domain *domain)
3124{
3125 if (!domain)
3126 return;
3127
aeb26f55
JR
3128 del_domain_from_list(domain);
3129
2650815f
JR
3130 if (domain->id)
3131 domain_id_free(domain->id);
3132
3133 kfree(domain);
3134}
3135
3136static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3137{
3138 struct protection_domain *domain;
3139
3140 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3141 if (!domain)
2650815f 3142 return NULL;
c156e347
JR
3143
3144 spin_lock_init(&domain->lock);
5d214fe6 3145 mutex_init(&domain->api_lock);
c156e347
JR
3146 domain->id = domain_id_alloc();
3147 if (!domain->id)
2650815f 3148 goto out_err;
7c392cbe 3149 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3150
aeb26f55
JR
3151 add_domain_to_list(domain);
3152
2650815f
JR
3153 return domain;
3154
3155out_err:
3156 kfree(domain);
3157
3158 return NULL;
3159}
3160
5abcdba4
JR
3161static int __init alloc_passthrough_domain(void)
3162{
3163 if (pt_domain != NULL)
3164 return 0;
3165
3166 /* allocate passthrough domain */
3167 pt_domain = protection_domain_alloc();
3168 if (!pt_domain)
3169 return -ENOMEM;
3170
3171 pt_domain->mode = PAGE_MODE_NONE;
3172
3173 return 0;
3174}
2650815f
JR
3175static int amd_iommu_domain_init(struct iommu_domain *dom)
3176{
3177 struct protection_domain *domain;
3178
3179 domain = protection_domain_alloc();
3180 if (!domain)
c156e347 3181 goto out_free;
2650815f
JR
3182
3183 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3184 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3185 if (!domain->pt_root)
3186 goto out_free;
3187
f3572db8
JR
3188 domain->iommu_domain = dom;
3189
c156e347
JR
3190 dom->priv = domain;
3191
0ff64f80
JR
3192 dom->geometry.aperture_start = 0;
3193 dom->geometry.aperture_end = ~0ULL;
3194 dom->geometry.force_aperture = true;
3195
c156e347
JR
3196 return 0;
3197
3198out_free:
2650815f 3199 protection_domain_free(domain);
c156e347
JR
3200
3201 return -ENOMEM;
3202}
3203
98383fc3
JR
3204static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3205{
3206 struct protection_domain *domain = dom->priv;
3207
3208 if (!domain)
3209 return;
3210
3211 if (domain->dev_cnt > 0)
3212 cleanup_domain(domain);
3213
3214 BUG_ON(domain->dev_cnt != 0);
3215
132bd68f
JR
3216 if (domain->mode != PAGE_MODE_NONE)
3217 free_pagetable(domain);
98383fc3 3218
52815b75
JR
3219 if (domain->flags & PD_IOMMUV2_MASK)
3220 free_gcr3_table(domain);
3221
8b408fe4 3222 protection_domain_free(domain);
98383fc3
JR
3223
3224 dom->priv = NULL;
3225}
3226
684f2888
JR
3227static void amd_iommu_detach_device(struct iommu_domain *dom,
3228 struct device *dev)
3229{
657cbb6b 3230 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3231 struct amd_iommu *iommu;
684f2888
JR
3232 u16 devid;
3233
98fc5a69 3234 if (!check_device(dev))
684f2888
JR
3235 return;
3236
98fc5a69 3237 devid = get_device_id(dev);
684f2888 3238
657cbb6b 3239 if (dev_data->domain != NULL)
15898bbc 3240 detach_device(dev);
684f2888
JR
3241
3242 iommu = amd_iommu_rlookup_table[devid];
3243 if (!iommu)
3244 return;
3245
684f2888
JR
3246 iommu_completion_wait(iommu);
3247}
3248
01106066
JR
3249static int amd_iommu_attach_device(struct iommu_domain *dom,
3250 struct device *dev)
3251{
3252 struct protection_domain *domain = dom->priv;
657cbb6b 3253 struct iommu_dev_data *dev_data;
01106066 3254 struct amd_iommu *iommu;
15898bbc 3255 int ret;
01106066 3256
98fc5a69 3257 if (!check_device(dev))
01106066
JR
3258 return -EINVAL;
3259
657cbb6b
JR
3260 dev_data = dev->archdata.iommu;
3261
f62dda66 3262 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3263 if (!iommu)
3264 return -EINVAL;
3265
657cbb6b 3266 if (dev_data->domain)
15898bbc 3267 detach_device(dev);
01106066 3268
15898bbc 3269 ret = attach_device(dev, domain);
01106066
JR
3270
3271 iommu_completion_wait(iommu);
3272
15898bbc 3273 return ret;
01106066
JR
3274}
3275
468e2366 3276static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3277 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3278{
3279 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3280 int prot = 0;
3281 int ret;
3282
132bd68f
JR
3283 if (domain->mode == PAGE_MODE_NONE)
3284 return -EINVAL;
3285
c6229ca6
JR
3286 if (iommu_prot & IOMMU_READ)
3287 prot |= IOMMU_PROT_IR;
3288 if (iommu_prot & IOMMU_WRITE)
3289 prot |= IOMMU_PROT_IW;
3290
5d214fe6 3291 mutex_lock(&domain->api_lock);
795e74f7 3292 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3293 mutex_unlock(&domain->api_lock);
3294
795e74f7 3295 return ret;
c6229ca6
JR
3296}
3297
5009065d
OBC
3298static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3299 size_t page_size)
eb74ff6c 3300{
eb74ff6c 3301 struct protection_domain *domain = dom->priv;
5009065d 3302 size_t unmap_size;
eb74ff6c 3303
132bd68f
JR
3304 if (domain->mode == PAGE_MODE_NONE)
3305 return -EINVAL;
3306
5d214fe6 3307 mutex_lock(&domain->api_lock);
468e2366 3308 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3309 mutex_unlock(&domain->api_lock);
eb74ff6c 3310
17b124bf 3311 domain_flush_tlb_pde(domain);
5d214fe6 3312
5009065d 3313 return unmap_size;
eb74ff6c
JR
3314}
3315
645c4c8d
JR
3316static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3317 unsigned long iova)
3318{
3319 struct protection_domain *domain = dom->priv;
f03152bb 3320 unsigned long offset_mask;
645c4c8d 3321 phys_addr_t paddr;
f03152bb 3322 u64 *pte, __pte;
645c4c8d 3323
132bd68f
JR
3324 if (domain->mode == PAGE_MODE_NONE)
3325 return iova;
3326
24cd7723 3327 pte = fetch_pte(domain, iova);
645c4c8d 3328
a6d41a40 3329 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3330 return 0;
3331
f03152bb
JR
3332 if (PM_PTE_LEVEL(*pte) == 0)
3333 offset_mask = PAGE_SIZE - 1;
3334 else
3335 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3336
3337 __pte = *pte & PM_ADDR_MASK;
3338 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3339
3340 return paddr;
3341}
3342
dbb9fd86
SY
3343static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3344 unsigned long cap)
3345{
80a506b8
JR
3346 switch (cap) {
3347 case IOMMU_CAP_CACHE_COHERENCY:
3348 return 1;
3349 }
3350
dbb9fd86
SY
3351 return 0;
3352}
3353
26961efe
JR
3354static struct iommu_ops amd_iommu_ops = {
3355 .domain_init = amd_iommu_domain_init,
3356 .domain_destroy = amd_iommu_domain_destroy,
3357 .attach_dev = amd_iommu_attach_device,
3358 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3359 .map = amd_iommu_map,
3360 .unmap = amd_iommu_unmap,
26961efe 3361 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3362 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3363 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3364};
3365
0feae533
JR
3366/*****************************************************************************
3367 *
3368 * The next functions do a basic initialization of IOMMU for pass through
3369 * mode
3370 *
3371 * In passthrough mode the IOMMU is initialized and enabled but not used for
3372 * DMA-API translation.
3373 *
3374 *****************************************************************************/
3375
3376int __init amd_iommu_init_passthrough(void)
3377{
5abcdba4 3378 struct iommu_dev_data *dev_data;
0feae533 3379 struct pci_dev *dev = NULL;
5abcdba4 3380 struct amd_iommu *iommu;
15898bbc 3381 u16 devid;
5abcdba4 3382 int ret;
0feae533 3383
5abcdba4
JR
3384 ret = alloc_passthrough_domain();
3385 if (ret)
3386 return ret;
0feae533 3387
6c54aabd 3388 for_each_pci_dev(dev) {
98fc5a69 3389 if (!check_device(&dev->dev))
0feae533
JR
3390 continue;
3391
5abcdba4
JR
3392 dev_data = get_dev_data(&dev->dev);
3393 dev_data->passthrough = true;
3394
98fc5a69
JR
3395 devid = get_device_id(&dev->dev);
3396
15898bbc 3397 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3398 if (!iommu)
3399 continue;
3400
15898bbc 3401 attach_device(&dev->dev, pt_domain);
0feae533
JR
3402 }
3403
2655d7a2
JR
3404 amd_iommu_stats_init();
3405
0feae533
JR
3406 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3407
3408 return 0;
3409}
72e1dcc4
JR
3410
3411/* IOMMUv2 specific functions */
3412int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3413{
3414 return atomic_notifier_chain_register(&ppr_notifier, nb);
3415}
3416EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3417
3418int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3419{
3420 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3421}
3422EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3423
3424void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3425{
3426 struct protection_domain *domain = dom->priv;
3427 unsigned long flags;
3428
3429 spin_lock_irqsave(&domain->lock, flags);
3430
3431 /* Update data structure */
3432 domain->mode = PAGE_MODE_NONE;
3433 domain->updated = true;
3434
3435 /* Make changes visible to IOMMUs */
3436 update_domain(domain);
3437
3438 /* Page-table is not visible to IOMMU anymore, so free it */
3439 free_pagetable(domain);
3440
3441 spin_unlock_irqrestore(&domain->lock, flags);
3442}
3443EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3444
3445int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3446{
3447 struct protection_domain *domain = dom->priv;
3448 unsigned long flags;
3449 int levels, ret;
3450
3451 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3452 return -EINVAL;
3453
3454 /* Number of GCR3 table levels required */
3455 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3456 levels += 1;
3457
3458 if (levels > amd_iommu_max_glx_val)
3459 return -EINVAL;
3460
3461 spin_lock_irqsave(&domain->lock, flags);
3462
3463 /*
3464 * Save us all sanity checks whether devices already in the
3465 * domain support IOMMUv2. Just force that the domain has no
3466 * devices attached when it is switched into IOMMUv2 mode.
3467 */
3468 ret = -EBUSY;
3469 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3470 goto out;
3471
3472 ret = -ENOMEM;
3473 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3474 if (domain->gcr3_tbl == NULL)
3475 goto out;
3476
3477 domain->glx = levels;
3478 domain->flags |= PD_IOMMUV2_MASK;
3479 domain->updated = true;
3480
3481 update_domain(domain);
3482
3483 ret = 0;
3484
3485out:
3486 spin_unlock_irqrestore(&domain->lock, flags);
3487
3488 return ret;
3489}
3490EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3491
3492static int __flush_pasid(struct protection_domain *domain, int pasid,
3493 u64 address, bool size)
3494{
3495 struct iommu_dev_data *dev_data;
3496 struct iommu_cmd cmd;
3497 int i, ret;
3498
3499 if (!(domain->flags & PD_IOMMUV2_MASK))
3500 return -EINVAL;
3501
3502 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3503
3504 /*
3505 * IOMMU TLB needs to be flushed before Device TLB to
3506 * prevent device TLB refill from IOMMU TLB
3507 */
3508 for (i = 0; i < amd_iommus_present; ++i) {
3509 if (domain->dev_iommu[i] == 0)
3510 continue;
3511
3512 ret = iommu_queue_command(amd_iommus[i], &cmd);
3513 if (ret != 0)
3514 goto out;
3515 }
3516
3517 /* Wait until IOMMU TLB flushes are complete */
3518 domain_flush_complete(domain);
3519
3520 /* Now flush device TLBs */
3521 list_for_each_entry(dev_data, &domain->dev_list, list) {
3522 struct amd_iommu *iommu;
3523 int qdep;
3524
3525 BUG_ON(!dev_data->ats.enabled);
3526
3527 qdep = dev_data->ats.qdep;
3528 iommu = amd_iommu_rlookup_table[dev_data->devid];
3529
3530 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3531 qdep, address, size);
3532
3533 ret = iommu_queue_command(iommu, &cmd);
3534 if (ret != 0)
3535 goto out;
3536 }
3537
3538 /* Wait until all device TLBs are flushed */
3539 domain_flush_complete(domain);
3540
3541 ret = 0;
3542
3543out:
3544
3545 return ret;
3546}
3547
3548static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3549 u64 address)
3550{
399be2f5
JR
3551 INC_STATS_COUNTER(invalidate_iotlb);
3552
22e266c7
JR
3553 return __flush_pasid(domain, pasid, address, false);
3554}
3555
3556int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3557 u64 address)
3558{
3559 struct protection_domain *domain = dom->priv;
3560 unsigned long flags;
3561 int ret;
3562
3563 spin_lock_irqsave(&domain->lock, flags);
3564 ret = __amd_iommu_flush_page(domain, pasid, address);
3565 spin_unlock_irqrestore(&domain->lock, flags);
3566
3567 return ret;
3568}
3569EXPORT_SYMBOL(amd_iommu_flush_page);
3570
3571static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3572{
399be2f5
JR
3573 INC_STATS_COUNTER(invalidate_iotlb_all);
3574
22e266c7
JR
3575 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3576 true);
3577}
3578
3579int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3580{
3581 struct protection_domain *domain = dom->priv;
3582 unsigned long flags;
3583 int ret;
3584
3585 spin_lock_irqsave(&domain->lock, flags);
3586 ret = __amd_iommu_flush_tlb(domain, pasid);
3587 spin_unlock_irqrestore(&domain->lock, flags);
3588
3589 return ret;
3590}
3591EXPORT_SYMBOL(amd_iommu_flush_tlb);
3592
b16137b1
JR
3593static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3594{
3595 int index;
3596 u64 *pte;
3597
3598 while (true) {
3599
3600 index = (pasid >> (9 * level)) & 0x1ff;
3601 pte = &root[index];
3602
3603 if (level == 0)
3604 break;
3605
3606 if (!(*pte & GCR3_VALID)) {
3607 if (!alloc)
3608 return NULL;
3609
3610 root = (void *)get_zeroed_page(GFP_ATOMIC);
3611 if (root == NULL)
3612 return NULL;
3613
3614 *pte = __pa(root) | GCR3_VALID;
3615 }
3616
3617 root = __va(*pte & PAGE_MASK);
3618
3619 level -= 1;
3620 }
3621
3622 return pte;
3623}
3624
3625static int __set_gcr3(struct protection_domain *domain, int pasid,
3626 unsigned long cr3)
3627{
3628 u64 *pte;
3629
3630 if (domain->mode != PAGE_MODE_NONE)
3631 return -EINVAL;
3632
3633 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3634 if (pte == NULL)
3635 return -ENOMEM;
3636
3637 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3638
3639 return __amd_iommu_flush_tlb(domain, pasid);
3640}
3641
3642static int __clear_gcr3(struct protection_domain *domain, int pasid)
3643{
3644 u64 *pte;
3645
3646 if (domain->mode != PAGE_MODE_NONE)
3647 return -EINVAL;
3648
3649 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3650 if (pte == NULL)
3651 return 0;
3652
3653 *pte = 0;
3654
3655 return __amd_iommu_flush_tlb(domain, pasid);
3656}
3657
3658int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3659 unsigned long cr3)
3660{
3661 struct protection_domain *domain = dom->priv;
3662 unsigned long flags;
3663 int ret;
3664
3665 spin_lock_irqsave(&domain->lock, flags);
3666 ret = __set_gcr3(domain, pasid, cr3);
3667 spin_unlock_irqrestore(&domain->lock, flags);
3668
3669 return ret;
3670}
3671EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3672
3673int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3674{
3675 struct protection_domain *domain = dom->priv;
3676 unsigned long flags;
3677 int ret;
3678
3679 spin_lock_irqsave(&domain->lock, flags);
3680 ret = __clear_gcr3(domain, pasid);
3681 spin_unlock_irqrestore(&domain->lock, flags);
3682
3683 return ret;
3684}
3685EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3686
3687int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3688 int status, int tag)
3689{
3690 struct iommu_dev_data *dev_data;
3691 struct amd_iommu *iommu;
3692 struct iommu_cmd cmd;
3693
399be2f5
JR
3694 INC_STATS_COUNTER(complete_ppr);
3695
c99afa25
JR
3696 dev_data = get_dev_data(&pdev->dev);
3697 iommu = amd_iommu_rlookup_table[dev_data->devid];
3698
3699 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3700 tag, dev_data->pri_tlp);
3701
3702 return iommu_queue_command(iommu, &cmd);
3703}
3704EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3705
3706struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3707{
3708 struct protection_domain *domain;
3709
3710 domain = get_domain(&pdev->dev);
3711 if (IS_ERR(domain))
3712 return NULL;
3713
3714 /* Only return IOMMUv2 domains */
3715 if (!(domain->flags & PD_IOMMUV2_MASK))
3716 return NULL;
3717
3718 return domain->iommu_domain;
3719}
3720EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3721
3722void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3723{
3724 struct iommu_dev_data *dev_data;
3725
3726 if (!amd_iommu_v2_supported())
3727 return;
3728
3729 dev_data = get_dev_data(&pdev->dev);
3730 dev_data->errata |= (1 << erratum);
3731}
3732EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3733
3734int amd_iommu_device_info(struct pci_dev *pdev,
3735 struct amd_iommu_device_info *info)
3736{
3737 int max_pasids;
3738 int pos;
3739
3740 if (pdev == NULL || info == NULL)
3741 return -EINVAL;
3742
3743 if (!amd_iommu_v2_supported())
3744 return -EINVAL;
3745
3746 memset(info, 0, sizeof(*info));
3747
3748 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3749 if (pos)
3750 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3751
3752 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3753 if (pos)
3754 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3755
3756 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3757 if (pos) {
3758 int features;
3759
3760 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3761 max_pasids = min(max_pasids, (1 << 20));
3762
3763 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3764 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3765
3766 features = pci_pasid_features(pdev);
3767 if (features & PCI_PASID_CAP_EXEC)
3768 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3769 if (features & PCI_PASID_CAP_PRIV)
3770 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3771 }
3772
3773 return 0;
3774}
3775EXPORT_SYMBOL(amd_iommu_device_info);