]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Pass gfp-flags to iommu_map_page()
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
2bf9a0a1 22#include <linux/acpi.h>
9a4d3bf5 23#include <linux/amba/bus.h>
0076cd3d 24#include <linux/platform_device.h>
cb41ed85 25#include <linux/pci-ats.h>
a66022c4 26#include <linux/bitmap.h>
5a0e3ad6 27#include <linux/slab.h>
7f26508b 28#include <linux/debugfs.h>
b6c02715 29#include <linux/scatterlist.h>
51491367 30#include <linux/dma-mapping.h>
b6c02715 31#include <linux/iommu-helper.h>
c156e347 32#include <linux/iommu.h>
815b33fd 33#include <linux/delay.h>
403f81d8 34#include <linux/amd-iommu.h>
72e1dcc4
JR
35#include <linux/notifier.h>
36#include <linux/export.h>
2b324506
JR
37#include <linux/irq.h>
38#include <linux/msi.h>
3b839a57 39#include <linux/dma-contiguous.h>
7c71d306 40#include <linux/irqdomain.h>
5f6bed50 41#include <linux/percpu.h>
307d5851 42#include <linux/iova.h>
2b324506
JR
43#include <asm/irq_remapping.h>
44#include <asm/io_apic.h>
45#include <asm/apic.h>
46#include <asm/hw_irq.h>
17f5b569 47#include <asm/msidef.h>
b6c02715 48#include <asm/proto.h>
46a7fa27 49#include <asm/iommu.h>
1d9b16d1 50#include <asm/gart.h>
27c2127a 51#include <asm/dma.h>
403f81d8
JR
52
53#include "amd_iommu_proto.h"
54#include "amd_iommu_types.h"
6b474b82 55#include "irq_remapping.h"
b6c02715
JR
56
57#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
58
815b33fd 59#define LOOP_TIMEOUT 100000
136f78a1 60
307d5851
JR
61/* IO virtual address start page frame number */
62#define IOVA_START_PFN (1)
63#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
64#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
65
81cd07b9
JR
66/* Reserved IOVA ranges */
67#define MSI_RANGE_START (0xfee00000)
68#define MSI_RANGE_END (0xfeefffff)
69#define HT_RANGE_START (0xfd00000000ULL)
70#define HT_RANGE_END (0xffffffffffULL)
71
aa3de9c0
OBC
72/*
73 * This bitmap is used to advertise the page sizes our hardware support
74 * to the IOMMU core, which will then use this information to split
75 * physically contiguous memory regions it is mapping into page sizes
76 * that we support.
77 *
954e3dd8 78 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 79 */
954e3dd8 80#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 81
b6c02715
JR
82static DEFINE_RWLOCK(amd_iommu_devtable_lock);
83
8fa5f802
JR
84/* List of all available dev_data structures */
85static LIST_HEAD(dev_data_list);
86static DEFINE_SPINLOCK(dev_data_list_lock);
87
6efed63b
JR
88LIST_HEAD(ioapic_map);
89LIST_HEAD(hpet_map);
2a0cb4e2 90LIST_HEAD(acpihid_map);
6efed63b 91
0feae533
JR
92/*
93 * Domain for untranslated devices - only allocated
94 * if iommu=pt passed on kernel cmd line.
95 */
b22f6434 96static const struct iommu_ops amd_iommu_ops;
26961efe 97
72e1dcc4 98static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 99int amd_iommu_max_glx_val = -1;
72e1dcc4 100
ac1534a5
JR
101static struct dma_map_ops amd_iommu_dma_ops;
102
50917e26
JR
103/*
104 * This struct contains device specific data for the IOMMU
105 */
106struct iommu_dev_data {
107 struct list_head list; /* For domain->dev_list */
108 struct list_head dev_data_list; /* For global dev_data_list */
50917e26 109 struct protection_domain *domain; /* Domain the device is bound to */
50917e26 110 u16 devid; /* PCI Device ID */
e3156048 111 u16 alias; /* Alias Device ID */
50917e26 112 bool iommu_v2; /* Device can make use of IOMMUv2 */
1e6a7b04 113 bool passthrough; /* Device is identity mapped */
50917e26
JR
114 struct {
115 bool enabled;
116 int qdep;
117 } ats; /* ATS state */
118 bool pri_tlp; /* PASID TLB required for
119 PPR completions */
120 u32 errata; /* Bitmap for errata to apply */
121};
122
431b2a20
JR
123/*
124 * general struct to manage commands send to an IOMMU
125 */
d6449536 126struct iommu_cmd {
b6c02715
JR
127 u32 data[4];
128};
129
05152a04
JR
130struct kmem_cache *amd_iommu_irq_cache;
131
04bfdd84 132static void update_domain(struct protection_domain *domain);
7a5a566e 133static int protection_domain_init(struct protection_domain *domain);
b6809ee5 134static void detach_device(struct device *dev);
c1eee67b 135
007b74ba
JR
136/*
137 * For dynamic growth the aperture size is split into ranges of 128MB of
138 * DMA address space each. This struct represents one such range.
139 */
140struct aperture_range {
141
08c5fb93
JR
142 spinlock_t bitmap_lock;
143
007b74ba
JR
144 /* address allocation bitmap */
145 unsigned long *bitmap;
ae62d49c 146 unsigned long offset;
60e6a7cb 147 unsigned long next_bit;
007b74ba
JR
148
149 /*
150 * Array of PTE pages for the aperture. In this array we save all the
151 * leaf pages of the domain page table used for the aperture. This way
152 * we don't need to walk the page table to find a specific PTE. We can
153 * just calculate its address in constant time.
154 */
155 u64 *pte_pages[64];
007b74ba
JR
156};
157
158/*
159 * Data container for a dma_ops specific protection domain
160 */
161struct dma_ops_domain {
162 /* generic protection domain information */
163 struct protection_domain domain;
164
165 /* size of the aperture for the mappings */
166 unsigned long aperture_size;
167
ebaecb42 168 /* aperture index we start searching for free addresses */
5f6bed50 169 u32 __percpu *next_index;
007b74ba
JR
170
171 /* address space relevant data */
172 struct aperture_range *aperture[APERTURE_MAX_RANGES];
307d5851
JR
173
174 /* IOVA RB-Tree */
175 struct iova_domain iovad;
007b74ba
JR
176};
177
81cd07b9
JR
178static struct iova_domain reserved_iova_ranges;
179static struct lock_class_key reserved_rbtree_key;
180
15898bbc
JR
181/****************************************************************************
182 *
183 * Helper functions
184 *
185 ****************************************************************************/
186
2bf9a0a1
WZ
187static inline int match_hid_uid(struct device *dev,
188 struct acpihid_map_entry *entry)
3f4b87b9 189{
2bf9a0a1
WZ
190 const char *hid, *uid;
191
192 hid = acpi_device_hid(ACPI_COMPANION(dev));
193 uid = acpi_device_uid(ACPI_COMPANION(dev));
194
195 if (!hid || !(*hid))
196 return -ENODEV;
197
198 if (!uid || !(*uid))
199 return strcmp(hid, entry->hid);
200
201 if (!(*entry->uid))
202 return strcmp(hid, entry->hid);
203
204 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
3f4b87b9
JR
205}
206
2bf9a0a1 207static inline u16 get_pci_device_id(struct device *dev)
e3156048
JR
208{
209 struct pci_dev *pdev = to_pci_dev(dev);
210
211 return PCI_DEVID(pdev->bus->number, pdev->devfn);
212}
213
2bf9a0a1
WZ
214static inline int get_acpihid_device_id(struct device *dev,
215 struct acpihid_map_entry **entry)
216{
217 struct acpihid_map_entry *p;
218
219 list_for_each_entry(p, &acpihid_map, list) {
220 if (!match_hid_uid(dev, p)) {
221 if (entry)
222 *entry = p;
223 return p->devid;
224 }
225 }
226 return -EINVAL;
227}
228
229static inline int get_device_id(struct device *dev)
230{
231 int devid;
232
233 if (dev_is_pci(dev))
234 devid = get_pci_device_id(dev);
235 else
236 devid = get_acpihid_device_id(dev, NULL);
237
238 return devid;
239}
240
3f4b87b9
JR
241static struct protection_domain *to_pdomain(struct iommu_domain *dom)
242{
243 return container_of(dom, struct protection_domain, domain);
244}
245
f62dda66 246static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
247{
248 struct iommu_dev_data *dev_data;
249 unsigned long flags;
250
251 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
252 if (!dev_data)
253 return NULL;
254
f62dda66 255 dev_data->devid = devid;
8fa5f802
JR
256
257 spin_lock_irqsave(&dev_data_list_lock, flags);
258 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
259 spin_unlock_irqrestore(&dev_data_list_lock, flags);
260
261 return dev_data;
262}
263
3b03bb74
JR
264static struct iommu_dev_data *search_dev_data(u16 devid)
265{
266 struct iommu_dev_data *dev_data;
267 unsigned long flags;
268
269 spin_lock_irqsave(&dev_data_list_lock, flags);
270 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
271 if (dev_data->devid == devid)
272 goto out_unlock;
273 }
274
275 dev_data = NULL;
276
277out_unlock:
278 spin_unlock_irqrestore(&dev_data_list_lock, flags);
279
280 return dev_data;
281}
282
e3156048
JR
283static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
284{
285 *(u16 *)data = alias;
286 return 0;
287}
288
289static u16 get_alias(struct device *dev)
290{
291 struct pci_dev *pdev = to_pci_dev(dev);
292 u16 devid, ivrs_alias, pci_alias;
293
6c0b43df 294 /* The callers make sure that get_device_id() does not fail here */
e3156048
JR
295 devid = get_device_id(dev);
296 ivrs_alias = amd_iommu_alias_table[devid];
297 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
298
299 if (ivrs_alias == pci_alias)
300 return ivrs_alias;
301
302 /*
303 * DMA alias showdown
304 *
305 * The IVRS is fairly reliable in telling us about aliases, but it
306 * can't know about every screwy device. If we don't have an IVRS
307 * reported alias, use the PCI reported alias. In that case we may
308 * still need to initialize the rlookup and dev_table entries if the
309 * alias is to a non-existent device.
310 */
311 if (ivrs_alias == devid) {
312 if (!amd_iommu_rlookup_table[pci_alias]) {
313 amd_iommu_rlookup_table[pci_alias] =
314 amd_iommu_rlookup_table[devid];
315 memcpy(amd_iommu_dev_table[pci_alias].data,
316 amd_iommu_dev_table[devid].data,
317 sizeof(amd_iommu_dev_table[pci_alias].data));
318 }
319
320 return pci_alias;
321 }
322
323 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
324 "for device %s[%04x:%04x], kernel reported alias "
325 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
326 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
327 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
328 PCI_FUNC(pci_alias));
329
330 /*
331 * If we don't have a PCI DMA alias and the IVRS alias is on the same
332 * bus, then the IVRS table may know about a quirk that we don't.
333 */
334 if (pci_alias == devid &&
335 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
7afd16f8 336 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
e3156048
JR
337 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
338 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
339 dev_name(dev));
340 }
341
342 return ivrs_alias;
343}
344
3b03bb74
JR
345static struct iommu_dev_data *find_dev_data(u16 devid)
346{
347 struct iommu_dev_data *dev_data;
348
349 dev_data = search_dev_data(devid);
350
351 if (dev_data == NULL)
352 dev_data = alloc_dev_data(devid);
353
354 return dev_data;
355}
356
657cbb6b
JR
357static struct iommu_dev_data *get_dev_data(struct device *dev)
358{
359 return dev->archdata.iommu;
360}
361
b097d11a
WZ
362/*
363* Find or create an IOMMU group for a acpihid device.
364*/
365static struct iommu_group *acpihid_device_group(struct device *dev)
657cbb6b 366{
b097d11a 367 struct acpihid_map_entry *p, *entry = NULL;
2d8e1f03 368 int devid;
b097d11a
WZ
369
370 devid = get_acpihid_device_id(dev, &entry);
371 if (devid < 0)
372 return ERR_PTR(devid);
373
374 list_for_each_entry(p, &acpihid_map, list) {
375 if ((devid == p->devid) && p->group)
376 entry->group = p->group;
377 }
378
379 if (!entry->group)
380 entry->group = generic_device_group(dev);
381
382 return entry->group;
657cbb6b
JR
383}
384
5abcdba4
JR
385static bool pci_iommuv2_capable(struct pci_dev *pdev)
386{
387 static const int caps[] = {
388 PCI_EXT_CAP_ID_ATS,
46277b75
JR
389 PCI_EXT_CAP_ID_PRI,
390 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
391 };
392 int i, pos;
393
394 for (i = 0; i < 3; ++i) {
395 pos = pci_find_ext_capability(pdev, caps[i]);
396 if (pos == 0)
397 return false;
398 }
399
400 return true;
401}
402
6a113ddc
JR
403static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
404{
405 struct iommu_dev_data *dev_data;
406
407 dev_data = get_dev_data(&pdev->dev);
408
409 return dev_data->errata & (1 << erratum) ? true : false;
410}
411
71c70984 412/*
0bb6e243
JR
413 * This function actually applies the mapping to the page table of the
414 * dma_ops domain.
71c70984 415 */
0bb6e243
JR
416static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
417 struct unity_map_entry *e)
71c70984 418{
0bb6e243 419 u64 addr;
71c70984 420
0bb6e243
JR
421 for (addr = e->address_start; addr < e->address_end;
422 addr += PAGE_SIZE) {
423 if (addr < dma_dom->aperture_size)
424 __set_bit(addr >> PAGE_SHIFT,
425 dma_dom->aperture[0]->bitmap);
71c70984 426 }
0bb6e243 427}
71c70984 428
0bb6e243
JR
429/*
430 * Inits the unity mappings required for a specific device
431 */
432static void init_unity_mappings_for_device(struct device *dev,
433 struct dma_ops_domain *dma_dom)
434{
435 struct unity_map_entry *e;
7aba6cb9 436 int devid;
71c70984 437
0bb6e243 438 devid = get_device_id(dev);
9ee35e4c 439 if (devid < 0)
7aba6cb9 440 return;
71c70984 441
0bb6e243
JR
442 list_for_each_entry(e, &amd_iommu_unity_map, list) {
443 if (!(devid >= e->devid_start && devid <= e->devid_end))
444 continue;
445 alloc_unity_mapping(dma_dom, e);
446 }
71c70984
JR
447}
448
98fc5a69
JR
449/*
450 * This function checks if the driver got a valid device from the caller to
451 * avoid dereferencing invalid pointers.
452 */
453static bool check_device(struct device *dev)
454{
7aba6cb9 455 int devid;
98fc5a69
JR
456
457 if (!dev || !dev->dma_mask)
458 return false;
459
98fc5a69 460 devid = get_device_id(dev);
9ee35e4c 461 if (devid < 0)
7aba6cb9 462 return false;
98fc5a69
JR
463
464 /* Out of our scope? */
465 if (devid > amd_iommu_last_bdf)
466 return false;
467
468 if (amd_iommu_rlookup_table[devid] == NULL)
469 return false;
470
471 return true;
472}
473
25b11ce2 474static void init_iommu_group(struct device *dev)
2851db21 475{
0bb6e243
JR
476 struct dma_ops_domain *dma_domain;
477 struct iommu_domain *domain;
2851db21 478 struct iommu_group *group;
2851db21 479
65d5352f 480 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
481 if (IS_ERR(group))
482 return;
483
484 domain = iommu_group_default_domain(group);
485 if (!domain)
486 goto out;
487
b548e786
JR
488 if (to_pdomain(domain)->flags == PD_DMA_OPS_MASK) {
489 dma_domain = to_pdomain(domain)->priv;
490 init_unity_mappings_for_device(dev, dma_domain);
491 }
0bb6e243 492
0bb6e243
JR
493out:
494 iommu_group_put(group);
eb9c9527
AW
495}
496
497static int iommu_init_device(struct device *dev)
498{
eb9c9527 499 struct iommu_dev_data *dev_data;
7aba6cb9 500 int devid;
eb9c9527
AW
501
502 if (dev->archdata.iommu)
503 return 0;
504
7aba6cb9 505 devid = get_device_id(dev);
9ee35e4c 506 if (devid < 0)
7aba6cb9
WZ
507 return devid;
508
509 dev_data = find_dev_data(devid);
eb9c9527
AW
510 if (!dev_data)
511 return -ENOMEM;
512
e3156048
JR
513 dev_data->alias = get_alias(dev);
514
2bf9a0a1 515 if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
5abcdba4
JR
516 struct amd_iommu *iommu;
517
2bf9a0a1 518 iommu = amd_iommu_rlookup_table[dev_data->devid];
5abcdba4
JR
519 dev_data->iommu_v2 = iommu->is_iommu_v2;
520 }
521
657cbb6b
JR
522 dev->archdata.iommu = dev_data;
523
066f2e98
AW
524 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
525 dev);
526
657cbb6b
JR
527 return 0;
528}
529
26018874
JR
530static void iommu_ignore_device(struct device *dev)
531{
7aba6cb9
WZ
532 u16 alias;
533 int devid;
26018874
JR
534
535 devid = get_device_id(dev);
9ee35e4c 536 if (devid < 0)
7aba6cb9
WZ
537 return;
538
e3156048 539 alias = get_alias(dev);
26018874
JR
540
541 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
542 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
543
544 amd_iommu_rlookup_table[devid] = NULL;
545 amd_iommu_rlookup_table[alias] = NULL;
546}
547
657cbb6b
JR
548static void iommu_uninit_device(struct device *dev)
549{
7aba6cb9
WZ
550 int devid;
551 struct iommu_dev_data *dev_data;
c1931090 552
7aba6cb9 553 devid = get_device_id(dev);
9ee35e4c 554 if (devid < 0)
7aba6cb9 555 return;
c1931090 556
7aba6cb9 557 dev_data = search_dev_data(devid);
c1931090
AW
558 if (!dev_data)
559 return;
560
b6809ee5
JR
561 if (dev_data->domain)
562 detach_device(dev);
563
066f2e98
AW
564 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
565 dev);
566
9dcd6130
AW
567 iommu_group_remove_device(dev);
568
aafd8ba0
JR
569 /* Remove dma-ops */
570 dev->archdata.dma_ops = NULL;
571
8fa5f802 572 /*
c1931090
AW
573 * We keep dev_data around for unplugged devices and reuse it when the
574 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 575 */
657cbb6b 576}
b7cc9554 577
a80dc3e0
JR
578/****************************************************************************
579 *
580 * Interrupt handling functions
581 *
582 ****************************************************************************/
583
e3e59876
JR
584static void dump_dte_entry(u16 devid)
585{
586 int i;
587
ee6c2868
JR
588 for (i = 0; i < 4; ++i)
589 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
590 amd_iommu_dev_table[devid].data[i]);
591}
592
945b4ac4
JR
593static void dump_command(unsigned long phys_addr)
594{
595 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
596 int i;
597
598 for (i = 0; i < 4; ++i)
599 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
600}
601
a345b23b 602static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 603{
3d06fca8
JR
604 int type, devid, domid, flags;
605 volatile u32 *event = __evt;
606 int count = 0;
607 u64 address;
608
609retry:
610 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
611 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
612 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
613 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
614 address = (u64)(((u64)event[3]) << 32) | event[2];
615
616 if (type == 0) {
617 /* Did we hit the erratum? */
618 if (++count == LOOP_TIMEOUT) {
619 pr_err("AMD-Vi: No event written to event log\n");
620 return;
621 }
622 udelay(1);
623 goto retry;
624 }
90008ee4 625
4c6f40d4 626 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
627
628 switch (type) {
629 case EVENT_TYPE_ILL_DEV:
630 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
631 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 632 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 633 address, flags);
e3e59876 634 dump_dte_entry(devid);
90008ee4
JR
635 break;
636 case EVENT_TYPE_IO_FAULT:
637 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
638 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 639 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
640 domid, address, flags);
641 break;
642 case EVENT_TYPE_DEV_TAB_ERR:
643 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
644 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 645 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
646 address, flags);
647 break;
648 case EVENT_TYPE_PAGE_TAB_ERR:
649 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
650 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 651 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
652 domid, address, flags);
653 break;
654 case EVENT_TYPE_ILL_CMD:
655 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 656 dump_command(address);
90008ee4
JR
657 break;
658 case EVENT_TYPE_CMD_HARD_ERR:
659 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
660 "flags=0x%04x]\n", address, flags);
661 break;
662 case EVENT_TYPE_IOTLB_INV_TO:
663 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
664 "address=0x%016llx]\n",
c5081cd7 665 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
666 address);
667 break;
668 case EVENT_TYPE_INV_DEV_REQ:
669 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
670 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 671 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
672 address, flags);
673 break;
674 default:
675 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
676 }
3d06fca8
JR
677
678 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
679}
680
681static void iommu_poll_events(struct amd_iommu *iommu)
682{
683 u32 head, tail;
90008ee4
JR
684
685 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
686 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
687
688 while (head != tail) {
a345b23b 689 iommu_print_event(iommu, iommu->evt_buf + head);
deba4bce 690 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
90008ee4
JR
691 }
692
693 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
694}
695
eee53537 696static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
697{
698 struct amd_iommu_fault fault;
72e1dcc4 699
72e1dcc4
JR
700 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
701 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
702 return;
703 }
704
705 fault.address = raw[1];
706 fault.pasid = PPR_PASID(raw[0]);
707 fault.device_id = PPR_DEVID(raw[0]);
708 fault.tag = PPR_TAG(raw[0]);
709 fault.flags = PPR_FLAGS(raw[0]);
710
72e1dcc4
JR
711 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
712}
713
714static void iommu_poll_ppr_log(struct amd_iommu *iommu)
715{
72e1dcc4
JR
716 u32 head, tail;
717
718 if (iommu->ppr_log == NULL)
719 return;
720
72e1dcc4
JR
721 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
722 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
723
724 while (head != tail) {
eee53537
JR
725 volatile u64 *raw;
726 u64 entry[2];
727 int i;
728
729 raw = (u64 *)(iommu->ppr_log + head);
730
731 /*
732 * Hardware bug: Interrupt may arrive before the entry is
733 * written to memory. If this happens we need to wait for the
734 * entry to arrive.
735 */
736 for (i = 0; i < LOOP_TIMEOUT; ++i) {
737 if (PPR_REQ_TYPE(raw[0]) != 0)
738 break;
739 udelay(1);
740 }
72e1dcc4 741
eee53537
JR
742 /* Avoid memcpy function-call overhead */
743 entry[0] = raw[0];
744 entry[1] = raw[1];
72e1dcc4 745
eee53537
JR
746 /*
747 * To detect the hardware bug we need to clear the entry
748 * back to zero.
749 */
750 raw[0] = raw[1] = 0UL;
751
752 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
753 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
754 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 755
eee53537
JR
756 /* Handle PPR entry */
757 iommu_handle_ppr_entry(iommu, entry);
758
eee53537
JR
759 /* Refresh ring-buffer information */
760 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
761 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
762 }
72e1dcc4
JR
763}
764
72fe00f0 765irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 766{
3f398bc7
SS
767 struct amd_iommu *iommu = (struct amd_iommu *) data;
768 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 769
3f398bc7
SS
770 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
771 /* Enable EVT and PPR interrupts again */
772 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
773 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 774
3f398bc7
SS
775 if (status & MMIO_STATUS_EVT_INT_MASK) {
776 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
777 iommu_poll_events(iommu);
778 }
90008ee4 779
3f398bc7
SS
780 if (status & MMIO_STATUS_PPR_INT_MASK) {
781 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
782 iommu_poll_ppr_log(iommu);
783 }
90008ee4 784
3f398bc7
SS
785 /*
786 * Hardware bug: ERBT1312
787 * When re-enabling interrupt (by writing 1
788 * to clear the bit), the hardware might also try to set
789 * the interrupt bit in the event status register.
790 * In this scenario, the bit will be set, and disable
791 * subsequent interrupts.
792 *
793 * Workaround: The IOMMU driver should read back the
794 * status register and check if the interrupt bits are cleared.
795 * If not, driver will need to go through the interrupt handler
796 * again and re-clear the bits
797 */
798 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
799 }
90008ee4 800 return IRQ_HANDLED;
a80dc3e0
JR
801}
802
72fe00f0
JR
803irqreturn_t amd_iommu_int_handler(int irq, void *data)
804{
805 return IRQ_WAKE_THREAD;
806}
807
431b2a20
JR
808/****************************************************************************
809 *
810 * IOMMU command queuing functions
811 *
812 ****************************************************************************/
813
ac0ea6e9
JR
814static int wait_on_sem(volatile u64 *sem)
815{
816 int i = 0;
817
818 while (*sem == 0 && i < LOOP_TIMEOUT) {
819 udelay(1);
820 i += 1;
821 }
822
823 if (i == LOOP_TIMEOUT) {
824 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
825 return -EIO;
826 }
827
828 return 0;
829}
830
831static void copy_cmd_to_buffer(struct amd_iommu *iommu,
832 struct iommu_cmd *cmd,
833 u32 tail)
a19ae1ec 834{
a19ae1ec
JR
835 u8 *target;
836
8a7c5ef3 837 target = iommu->cmd_buf + tail;
deba4bce 838 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
ac0ea6e9
JR
839
840 /* Copy command to buffer */
841 memcpy(target, cmd, sizeof(*cmd));
842
843 /* Tell the IOMMU about it */
a19ae1ec 844 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 845}
a19ae1ec 846
815b33fd 847static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 848{
815b33fd
JR
849 WARN_ON(address & 0x7ULL);
850
ded46737 851 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
852 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
853 cmd->data[1] = upper_32_bits(__pa(address));
854 cmd->data[2] = 1;
ded46737
JR
855 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
856}
857
94fe79e2
JR
858static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
859{
860 memset(cmd, 0, sizeof(*cmd));
861 cmd->data[0] = devid;
862 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
863}
864
11b6402c
JR
865static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
866 size_t size, u16 domid, int pde)
867{
868 u64 pages;
ae0cbbb1 869 bool s;
11b6402c
JR
870
871 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 872 s = false;
11b6402c
JR
873
874 if (pages > 1) {
875 /*
876 * If we have to flush more than one page, flush all
877 * TLB entries for this domain
878 */
879 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 880 s = true;
11b6402c
JR
881 }
882
883 address &= PAGE_MASK;
884
885 memset(cmd, 0, sizeof(*cmd));
886 cmd->data[1] |= domid;
887 cmd->data[2] = lower_32_bits(address);
888 cmd->data[3] = upper_32_bits(address);
889 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
890 if (s) /* size bit - we flush more than one 4kb page */
891 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 892 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
893 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
894}
895
cb41ed85
JR
896static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
897 u64 address, size_t size)
898{
899 u64 pages;
ae0cbbb1 900 bool s;
cb41ed85
JR
901
902 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 903 s = false;
cb41ed85
JR
904
905 if (pages > 1) {
906 /*
907 * If we have to flush more than one page, flush all
908 * TLB entries for this domain
909 */
910 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 911 s = true;
cb41ed85
JR
912 }
913
914 address &= PAGE_MASK;
915
916 memset(cmd, 0, sizeof(*cmd));
917 cmd->data[0] = devid;
918 cmd->data[0] |= (qdep & 0xff) << 24;
919 cmd->data[1] = devid;
920 cmd->data[2] = lower_32_bits(address);
921 cmd->data[3] = upper_32_bits(address);
922 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
923 if (s)
924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
925}
926
22e266c7
JR
927static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
928 u64 address, bool size)
929{
930 memset(cmd, 0, sizeof(*cmd));
931
932 address &= ~(0xfffULL);
933
a919a018 934 cmd->data[0] = pasid;
22e266c7
JR
935 cmd->data[1] = domid;
936 cmd->data[2] = lower_32_bits(address);
937 cmd->data[3] = upper_32_bits(address);
938 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
940 if (size)
941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
943}
944
945static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
946 int qdep, u64 address, bool size)
947{
948 memset(cmd, 0, sizeof(*cmd));
949
950 address &= ~(0xfffULL);
951
952 cmd->data[0] = devid;
e8d2d82d 953 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
954 cmd->data[0] |= (qdep & 0xff) << 24;
955 cmd->data[1] = devid;
e8d2d82d 956 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
957 cmd->data[2] = lower_32_bits(address);
958 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
959 cmd->data[3] = upper_32_bits(address);
960 if (size)
961 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
962 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
963}
964
c99afa25
JR
965static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
966 int status, int tag, bool gn)
967{
968 memset(cmd, 0, sizeof(*cmd));
969
970 cmd->data[0] = devid;
971 if (gn) {
a919a018 972 cmd->data[1] = pasid;
c99afa25
JR
973 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
974 }
975 cmd->data[3] = tag & 0x1ff;
976 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
977
978 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
979}
980
58fc7f14
JR
981static void build_inv_all(struct iommu_cmd *cmd)
982{
983 memset(cmd, 0, sizeof(*cmd));
984 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
985}
986
7ef2798d
JR
987static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
988{
989 memset(cmd, 0, sizeof(*cmd));
990 cmd->data[0] = devid;
991 CMD_SET_TYPE(cmd, CMD_INV_IRT);
992}
993
431b2a20 994/*
431b2a20 995 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 996 * hardware about the new command.
431b2a20 997 */
f1ca1512
JR
998static int iommu_queue_command_sync(struct amd_iommu *iommu,
999 struct iommu_cmd *cmd,
1000 bool sync)
a19ae1ec 1001{
ac0ea6e9 1002 u32 left, tail, head, next_tail;
a19ae1ec 1003 unsigned long flags;
a19ae1ec 1004
ac0ea6e9 1005again:
a19ae1ec 1006 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 1007
ac0ea6e9
JR
1008 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1009 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
deba4bce
JR
1010 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1011 left = (head - next_tail) % CMD_BUFFER_SIZE;
a19ae1ec 1012
ac0ea6e9
JR
1013 if (left <= 2) {
1014 struct iommu_cmd sync_cmd;
1015 volatile u64 sem = 0;
1016 int ret;
8d201968 1017
ac0ea6e9
JR
1018 build_completion_wait(&sync_cmd, (u64)&sem);
1019 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1020
ac0ea6e9
JR
1021 spin_unlock_irqrestore(&iommu->lock, flags);
1022
1023 if ((ret = wait_on_sem(&sem)) != 0)
1024 return ret;
1025
1026 goto again;
8d201968
JR
1027 }
1028
ac0ea6e9
JR
1029 copy_cmd_to_buffer(iommu, cmd, tail);
1030
1031 /* We need to sync now to make sure all commands are processed */
f1ca1512 1032 iommu->need_sync = sync;
ac0ea6e9 1033
a19ae1ec 1034 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1035
815b33fd 1036 return 0;
8d201968
JR
1037}
1038
f1ca1512
JR
1039static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1040{
1041 return iommu_queue_command_sync(iommu, cmd, true);
1042}
1043
8d201968
JR
1044/*
1045 * This function queues a completion wait command into the command
1046 * buffer of an IOMMU
1047 */
a19ae1ec 1048static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1049{
1050 struct iommu_cmd cmd;
815b33fd 1051 volatile u64 sem = 0;
ac0ea6e9 1052 int ret;
8d201968 1053
09ee17eb 1054 if (!iommu->need_sync)
815b33fd 1055 return 0;
09ee17eb 1056
815b33fd 1057 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1058
f1ca1512 1059 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1060 if (ret)
815b33fd 1061 return ret;
8d201968 1062
ac0ea6e9 1063 return wait_on_sem(&sem);
8d201968
JR
1064}
1065
d8c13085 1066static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1067{
d8c13085 1068 struct iommu_cmd cmd;
a19ae1ec 1069
d8c13085 1070 build_inv_dte(&cmd, devid);
7e4f88da 1071
d8c13085
JR
1072 return iommu_queue_command(iommu, &cmd);
1073}
09ee17eb 1074
7d0c5cc5
JR
1075static void iommu_flush_dte_all(struct amd_iommu *iommu)
1076{
1077 u32 devid;
09ee17eb 1078
7d0c5cc5
JR
1079 for (devid = 0; devid <= 0xffff; ++devid)
1080 iommu_flush_dte(iommu, devid);
a19ae1ec 1081
7d0c5cc5
JR
1082 iommu_completion_wait(iommu);
1083}
84df8175 1084
7d0c5cc5
JR
1085/*
1086 * This function uses heavy locking and may disable irqs for some time. But
1087 * this is no issue because it is only called during resume.
1088 */
1089static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1090{
1091 u32 dom_id;
a19ae1ec 1092
7d0c5cc5
JR
1093 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1094 struct iommu_cmd cmd;
1095 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1096 dom_id, 1);
1097 iommu_queue_command(iommu, &cmd);
1098 }
8eed9833 1099
7d0c5cc5 1100 iommu_completion_wait(iommu);
a19ae1ec
JR
1101}
1102
58fc7f14 1103static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1104{
58fc7f14 1105 struct iommu_cmd cmd;
0518a3a4 1106
58fc7f14 1107 build_inv_all(&cmd);
0518a3a4 1108
58fc7f14
JR
1109 iommu_queue_command(iommu, &cmd);
1110 iommu_completion_wait(iommu);
1111}
1112
7ef2798d
JR
1113static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1114{
1115 struct iommu_cmd cmd;
1116
1117 build_inv_irt(&cmd, devid);
1118
1119 iommu_queue_command(iommu, &cmd);
1120}
1121
1122static void iommu_flush_irt_all(struct amd_iommu *iommu)
1123{
1124 u32 devid;
1125
1126 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1127 iommu_flush_irt(iommu, devid);
1128
1129 iommu_completion_wait(iommu);
1130}
1131
7d0c5cc5
JR
1132void iommu_flush_all_caches(struct amd_iommu *iommu)
1133{
58fc7f14
JR
1134 if (iommu_feature(iommu, FEATURE_IA)) {
1135 iommu_flush_all(iommu);
1136 } else {
1137 iommu_flush_dte_all(iommu);
7ef2798d 1138 iommu_flush_irt_all(iommu);
58fc7f14 1139 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1140 }
1141}
1142
431b2a20 1143/*
cb41ed85 1144 * Command send function for flushing on-device TLB
431b2a20 1145 */
6c542047
JR
1146static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1147 u64 address, size_t size)
3fa43655
JR
1148{
1149 struct amd_iommu *iommu;
b00d3bcf 1150 struct iommu_cmd cmd;
cb41ed85 1151 int qdep;
3fa43655 1152
ea61cddb
JR
1153 qdep = dev_data->ats.qdep;
1154 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1155
ea61cddb 1156 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1157
1158 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1159}
1160
431b2a20 1161/*
431b2a20 1162 * Command send function for invalidating a device table entry
431b2a20 1163 */
6c542047 1164static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1165{
3fa43655 1166 struct amd_iommu *iommu;
e25bfb56 1167 u16 alias;
ee2fa743 1168 int ret;
a19ae1ec 1169
6c542047 1170 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 1171 alias = dev_data->alias;
a19ae1ec 1172
f62dda66 1173 ret = iommu_flush_dte(iommu, dev_data->devid);
e25bfb56
JR
1174 if (!ret && alias != dev_data->devid)
1175 ret = iommu_flush_dte(iommu, alias);
cb41ed85
JR
1176 if (ret)
1177 return ret;
1178
ea61cddb 1179 if (dev_data->ats.enabled)
6c542047 1180 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1181
ee2fa743 1182 return ret;
a19ae1ec
JR
1183}
1184
431b2a20
JR
1185/*
1186 * TLB invalidation function which is called from the mapping functions.
1187 * It invalidates a single PTE if the range to flush is within a single
1188 * page. Otherwise it flushes the whole TLB of the IOMMU.
1189 */
17b124bf
JR
1190static void __domain_flush_pages(struct protection_domain *domain,
1191 u64 address, size_t size, int pde)
a19ae1ec 1192{
cb41ed85 1193 struct iommu_dev_data *dev_data;
11b6402c
JR
1194 struct iommu_cmd cmd;
1195 int ret = 0, i;
a19ae1ec 1196
11b6402c 1197 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1198
6de8ad9b
JR
1199 for (i = 0; i < amd_iommus_present; ++i) {
1200 if (!domain->dev_iommu[i])
1201 continue;
1202
1203 /*
1204 * Devices of this domain are behind this IOMMU
1205 * We need a TLB flush
1206 */
11b6402c 1207 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1208 }
1209
cb41ed85 1210 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1211
ea61cddb 1212 if (!dev_data->ats.enabled)
cb41ed85
JR
1213 continue;
1214
6c542047 1215 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1216 }
1217
11b6402c 1218 WARN_ON(ret);
6de8ad9b
JR
1219}
1220
17b124bf
JR
1221static void domain_flush_pages(struct protection_domain *domain,
1222 u64 address, size_t size)
6de8ad9b 1223{
17b124bf 1224 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1225}
b6c02715 1226
1c655773 1227/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1228static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1229{
17b124bf 1230 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1231}
1232
42a49f96 1233/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1234static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1235{
17b124bf 1236 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1237}
1238
17b124bf 1239static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1240{
17b124bf 1241 int i;
18811f55 1242
17b124bf
JR
1243 for (i = 0; i < amd_iommus_present; ++i) {
1244 if (!domain->dev_iommu[i])
1245 continue;
bfd1be18 1246
17b124bf
JR
1247 /*
1248 * Devices of this domain are behind this IOMMU
1249 * We need to wait for completion of all commands.
1250 */
1251 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1252 }
e394d72a
JR
1253}
1254
b00d3bcf 1255
09b42804 1256/*
b00d3bcf 1257 * This function flushes the DTEs for all devices in domain
09b42804 1258 */
17b124bf 1259static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1260{
b00d3bcf 1261 struct iommu_dev_data *dev_data;
b26e81b8 1262
b00d3bcf 1263 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1264 device_flush_dte(dev_data);
a345b23b
JR
1265}
1266
431b2a20
JR
1267/****************************************************************************
1268 *
1269 * The functions below are used the create the page table mappings for
1270 * unity mapped regions.
1271 *
1272 ****************************************************************************/
1273
308973d3
JR
1274/*
1275 * This function is used to add another level to an IO page table. Adding
1276 * another level increases the size of the address space by 9 bits to a size up
1277 * to 64 bits.
1278 */
1279static bool increase_address_space(struct protection_domain *domain,
1280 gfp_t gfp)
1281{
1282 u64 *pte;
1283
1284 if (domain->mode == PAGE_MODE_6_LEVEL)
1285 /* address space already 64 bit large */
1286 return false;
1287
1288 pte = (void *)get_zeroed_page(gfp);
1289 if (!pte)
1290 return false;
1291
1292 *pte = PM_LEVEL_PDE(domain->mode,
1293 virt_to_phys(domain->pt_root));
1294 domain->pt_root = pte;
1295 domain->mode += 1;
1296 domain->updated = true;
1297
1298 return true;
1299}
1300
1301static u64 *alloc_pte(struct protection_domain *domain,
1302 unsigned long address,
cbb9d729 1303 unsigned long page_size,
308973d3
JR
1304 u64 **pte_page,
1305 gfp_t gfp)
1306{
cbb9d729 1307 int level, end_lvl;
308973d3 1308 u64 *pte, *page;
cbb9d729
JR
1309
1310 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1311
1312 while (address > PM_LEVEL_SIZE(domain->mode))
1313 increase_address_space(domain, gfp);
1314
cbb9d729
JR
1315 level = domain->mode - 1;
1316 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1317 address = PAGE_SIZE_ALIGN(address, page_size);
1318 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1319
1320 while (level > end_lvl) {
7bfa5bd2
JR
1321 u64 __pte, __npte;
1322
1323 __pte = *pte;
1324
1325 if (!IOMMU_PTE_PRESENT(__pte)) {
308973d3
JR
1326 page = (u64 *)get_zeroed_page(gfp);
1327 if (!page)
1328 return NULL;
7bfa5bd2
JR
1329
1330 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1331
1332 if (cmpxchg64(pte, __pte, __npte)) {
1333 free_page((unsigned long)page);
1334 continue;
1335 }
308973d3
JR
1336 }
1337
cbb9d729
JR
1338 /* No level skipping support yet */
1339 if (PM_PTE_LEVEL(*pte) != level)
1340 return NULL;
1341
308973d3
JR
1342 level -= 1;
1343
1344 pte = IOMMU_PTE_PAGE(*pte);
1345
1346 if (pte_page && level == end_lvl)
1347 *pte_page = pte;
1348
1349 pte = &pte[PM_LEVEL_INDEX(level, address)];
1350 }
1351
1352 return pte;
1353}
1354
1355/*
1356 * This function checks if there is a PTE for a given dma address. If
1357 * there is one, it returns the pointer to it.
1358 */
3039ca1b
JR
1359static u64 *fetch_pte(struct protection_domain *domain,
1360 unsigned long address,
1361 unsigned long *page_size)
308973d3
JR
1362{
1363 int level;
1364 u64 *pte;
1365
24cd7723
JR
1366 if (address > PM_LEVEL_SIZE(domain->mode))
1367 return NULL;
1368
3039ca1b
JR
1369 level = domain->mode - 1;
1370 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1371 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1372
24cd7723
JR
1373 while (level > 0) {
1374
1375 /* Not Present */
308973d3
JR
1376 if (!IOMMU_PTE_PRESENT(*pte))
1377 return NULL;
1378
24cd7723 1379 /* Large PTE */
3039ca1b
JR
1380 if (PM_PTE_LEVEL(*pte) == 7 ||
1381 PM_PTE_LEVEL(*pte) == 0)
1382 break;
24cd7723
JR
1383
1384 /* No level skipping support yet */
1385 if (PM_PTE_LEVEL(*pte) != level)
1386 return NULL;
1387
308973d3
JR
1388 level -= 1;
1389
24cd7723 1390 /* Walk to the next level */
3039ca1b
JR
1391 pte = IOMMU_PTE_PAGE(*pte);
1392 pte = &pte[PM_LEVEL_INDEX(level, address)];
1393 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1394 }
1395
1396 if (PM_PTE_LEVEL(*pte) == 0x07) {
1397 unsigned long pte_mask;
1398
1399 /*
1400 * If we have a series of large PTEs, make
1401 * sure to return a pointer to the first one.
1402 */
1403 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1404 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1405 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1406 }
1407
1408 return pte;
1409}
1410
431b2a20
JR
1411/*
1412 * Generic mapping functions. It maps a physical address into a DMA
1413 * address space. It allocates the page table pages if necessary.
1414 * In the future it can be extended to a generic mapping function
1415 * supporting all features of AMD IOMMU page tables like level skipping
1416 * and full 64 bit address spaces.
1417 */
38e817fe
JR
1418static int iommu_map_page(struct protection_domain *dom,
1419 unsigned long bus_addr,
1420 unsigned long phys_addr,
b911b89b 1421 unsigned long page_size,
abdc5eb3 1422 int prot,
b911b89b 1423 gfp_t gfp)
bd0e5211 1424{
8bda3092 1425 u64 __pte, *pte;
cbb9d729 1426 int i, count;
abdc5eb3 1427
d4b03664
JR
1428 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1429 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1430
bad1cac2 1431 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1432 return -EINVAL;
1433
d4b03664 1434 count = PAGE_SIZE_PTE_COUNT(page_size);
b911b89b 1435 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
cbb9d729 1436
63eaa75e
ML
1437 if (!pte)
1438 return -ENOMEM;
1439
cbb9d729
JR
1440 for (i = 0; i < count; ++i)
1441 if (IOMMU_PTE_PRESENT(pte[i]))
1442 return -EBUSY;
bd0e5211 1443
d4b03664 1444 if (count > 1) {
cbb9d729
JR
1445 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1446 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1447 } else
1448 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1449
bd0e5211
JR
1450 if (prot & IOMMU_PROT_IR)
1451 __pte |= IOMMU_PTE_IR;
1452 if (prot & IOMMU_PROT_IW)
1453 __pte |= IOMMU_PTE_IW;
1454
cbb9d729
JR
1455 for (i = 0; i < count; ++i)
1456 pte[i] = __pte;
bd0e5211 1457
04bfdd84
JR
1458 update_domain(dom);
1459
bd0e5211
JR
1460 return 0;
1461}
1462
24cd7723
JR
1463static unsigned long iommu_unmap_page(struct protection_domain *dom,
1464 unsigned long bus_addr,
1465 unsigned long page_size)
eb74ff6c 1466{
71b390e9
JR
1467 unsigned long long unmapped;
1468 unsigned long unmap_size;
24cd7723
JR
1469 u64 *pte;
1470
1471 BUG_ON(!is_power_of_2(page_size));
1472
1473 unmapped = 0;
eb74ff6c 1474
24cd7723
JR
1475 while (unmapped < page_size) {
1476
71b390e9
JR
1477 pte = fetch_pte(dom, bus_addr, &unmap_size);
1478
1479 if (pte) {
1480 int i, count;
1481
1482 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1483 for (i = 0; i < count; i++)
1484 pte[i] = 0ULL;
1485 }
1486
1487 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1488 unmapped += unmap_size;
1489 }
1490
60d0ca3c 1491 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1492
24cd7723 1493 return unmapped;
eb74ff6c 1494}
eb74ff6c 1495
431b2a20
JR
1496/****************************************************************************
1497 *
1498 * The next functions belong to the address allocator for the dma_ops
1499 * interface functions. They work like the allocators in the other IOMMU
1500 * drivers. Its basically a bitmap which marks the allocated pages in
1501 * the aperture. Maybe it could be enhanced in the future to a more
1502 * efficient allocator.
1503 *
1504 ****************************************************************************/
d3086444 1505
431b2a20 1506/*
384de729 1507 * The address allocator core functions.
431b2a20
JR
1508 *
1509 * called with domain->lock held
1510 */
384de729 1511
171e7b37
JR
1512/*
1513 * Used to reserve address ranges in the aperture (e.g. for exclusion
1514 * ranges.
1515 */
1516static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1517 unsigned long start_page,
1518 unsigned int pages)
1519{
1520 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1521
1522 if (start_page + pages > last_page)
1523 pages = last_page - start_page;
1524
1525 for (i = start_page; i < start_page + pages; ++i) {
1526 int index = i / APERTURE_RANGE_PAGES;
1527 int page = i % APERTURE_RANGE_PAGES;
1528 __set_bit(page, dom->aperture[index]->bitmap);
1529 }
1530}
1531
9cabe89b
JR
1532/*
1533 * This function is used to add a new aperture range to an existing
1534 * aperture in case of dma_ops domain allocation or address allocation
1535 * failure.
1536 */
576175c2 1537static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1538 bool populate, gfp_t gfp)
1539{
1540 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
5d7c94c3 1541 unsigned long i, old_size, pte_pgsize;
a73c1566
JR
1542 struct aperture_range *range;
1543 struct amd_iommu *iommu;
1544 unsigned long flags;
9cabe89b 1545
f5e9705c
JR
1546#ifdef CONFIG_IOMMU_STRESS
1547 populate = false;
1548#endif
1549
9cabe89b
JR
1550 if (index >= APERTURE_MAX_RANGES)
1551 return -ENOMEM;
1552
a73c1566
JR
1553 range = kzalloc(sizeof(struct aperture_range), gfp);
1554 if (!range)
9cabe89b
JR
1555 return -ENOMEM;
1556
a73c1566
JR
1557 range->bitmap = (void *)get_zeroed_page(gfp);
1558 if (!range->bitmap)
9cabe89b
JR
1559 goto out_free;
1560
a73c1566 1561 range->offset = dma_dom->aperture_size;
9cabe89b 1562
a73c1566 1563 spin_lock_init(&range->bitmap_lock);
08c5fb93 1564
9cabe89b
JR
1565 if (populate) {
1566 unsigned long address = dma_dom->aperture_size;
1567 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1568 u64 *pte, *pte_page;
1569
1570 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1571 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1572 &pte_page, gfp);
1573 if (!pte)
1574 goto out_free;
1575
a73c1566 1576 range->pte_pages[i] = pte_page;
9cabe89b
JR
1577
1578 address += APERTURE_RANGE_SIZE / 64;
1579 }
1580 }
1581
92d420ec
JR
1582 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1583
a73c1566 1584 /* First take the bitmap_lock and then publish the range */
92d420ec 1585 spin_lock(&range->bitmap_lock);
a73c1566
JR
1586
1587 old_size = dma_dom->aperture_size;
1588 dma_dom->aperture[index] = range;
1589 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
9cabe89b 1590
17f5b569
JR
1591 /* Reserve address range used for MSI messages */
1592 if (old_size < MSI_ADDR_BASE_LO &&
1593 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1594 unsigned long spage;
1595 int pages;
1596
1597 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1598 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1599
1600 dma_ops_reserve_addresses(dma_dom, spage, pages);
1601 }
1602
b595076a 1603 /* Initialize the exclusion range if necessary */
576175c2
JR
1604 for_each_iommu(iommu) {
1605 if (iommu->exclusion_start &&
1606 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1607 && iommu->exclusion_start < dma_dom->aperture_size) {
1608 unsigned long startpage;
1609 int pages = iommu_num_pages(iommu->exclusion_start,
1610 iommu->exclusion_length,
1611 PAGE_SIZE);
1612 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1613 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1614 }
00cd122a
JR
1615 }
1616
1617 /*
1618 * Check for areas already mapped as present in the new aperture
1619 * range and mark those pages as reserved in the allocator. Such
1620 * mappings may already exist as a result of requested unity
1621 * mappings for devices.
1622 */
1623 for (i = dma_dom->aperture[index]->offset;
1624 i < dma_dom->aperture_size;
5d7c94c3 1625 i += pte_pgsize) {
3039ca1b 1626 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1627 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1628 continue;
1629
5d7c94c3
JR
1630 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1631 pte_pgsize >> 12);
00cd122a
JR
1632 }
1633
04bfdd84
JR
1634 update_domain(&dma_dom->domain);
1635
92d420ec
JR
1636 spin_unlock(&range->bitmap_lock);
1637
1638 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
a73c1566 1639
9cabe89b
JR
1640 return 0;
1641
1642out_free:
04bfdd84
JR
1643 update_domain(&dma_dom->domain);
1644
a73c1566 1645 free_page((unsigned long)range->bitmap);
9cabe89b 1646
a73c1566 1647 kfree(range);
9cabe89b
JR
1648
1649 return -ENOMEM;
1650}
1651
ccb50e03
JR
1652static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1653 struct aperture_range *range,
a0f51447 1654 unsigned long pages,
a0f51447
JR
1655 unsigned long dma_mask,
1656 unsigned long boundary_size,
7b5e25b8
JR
1657 unsigned long align_mask,
1658 bool trylock)
a0f51447
JR
1659{
1660 unsigned long offset, limit, flags;
1661 dma_addr_t address;
ccb50e03 1662 bool flush = false;
a0f51447
JR
1663
1664 offset = range->offset >> PAGE_SHIFT;
1665 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1666 dma_mask >> PAGE_SHIFT);
1667
7b5e25b8
JR
1668 if (trylock) {
1669 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1670 return -1;
1671 } else {
1672 spin_lock_irqsave(&range->bitmap_lock, flags);
1673 }
1674
60e6a7cb
JR
1675 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1676 pages, offset, boundary_size, align_mask);
ccb50e03 1677 if (address == -1) {
60e6a7cb
JR
1678 /* Nothing found, retry one time */
1679 address = iommu_area_alloc(range->bitmap, limit,
1680 0, pages, offset, boundary_size,
1681 align_mask);
ccb50e03
JR
1682 flush = true;
1683 }
60e6a7cb
JR
1684
1685 if (address != -1)
1686 range->next_bit = address + pages;
1687
a0f51447
JR
1688 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1689
ccb50e03
JR
1690 if (flush) {
1691 domain_flush_tlb(&dom->domain);
1692 domain_flush_complete(&dom->domain);
1693 }
1694
a0f51447
JR
1695 return address;
1696}
1697
384de729
JR
1698static unsigned long dma_ops_area_alloc(struct device *dev,
1699 struct dma_ops_domain *dom,
1700 unsigned int pages,
1701 unsigned long align_mask,
05ab49e0 1702 u64 dma_mask)
384de729 1703{
ab7032bb 1704 unsigned long boundary_size, mask;
384de729 1705 unsigned long address = -1;
7b5e25b8 1706 bool first = true;
5f6bed50
JR
1707 u32 start, i;
1708
1709 preempt_disable();
384de729 1710
e6aabee0
JR
1711 mask = dma_get_seg_boundary(dev);
1712
7b5e25b8 1713again:
5f6bed50
JR
1714 start = this_cpu_read(*dom->next_index);
1715
1716 /* Sanity check - is it really necessary? */
1717 if (unlikely(start > APERTURE_MAX_RANGES)) {
1718 start = 0;
1719 this_cpu_write(*dom->next_index, 0);
1720 }
1721
e6aabee0
JR
1722 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1723 1UL << (BITS_PER_LONG - PAGE_SHIFT);
384de729 1724
2a87442c
JR
1725 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1726 struct aperture_range *range;
5f6bed50
JR
1727 int index;
1728
1729 index = (start + i) % APERTURE_MAX_RANGES;
ccb50e03 1730
5f6bed50 1731 range = dom->aperture[index];
2a87442c
JR
1732
1733 if (!range || range->offset >= dma_mask)
1734 continue;
384de729 1735
2a87442c 1736 address = dma_ops_aperture_alloc(dom, range, pages,
60e6a7cb 1737 dma_mask, boundary_size,
7b5e25b8 1738 align_mask, first);
384de729 1739 if (address != -1) {
2a87442c 1740 address = range->offset + (address << PAGE_SHIFT);
5f6bed50 1741 this_cpu_write(*dom->next_index, index);
384de729
JR
1742 break;
1743 }
384de729
JR
1744 }
1745
7b5e25b8
JR
1746 if (address == -1 && first) {
1747 first = false;
1748 goto again;
1749 }
1750
5f6bed50
JR
1751 preempt_enable();
1752
384de729
JR
1753 return address;
1754}
1755
d3086444
JR
1756static unsigned long dma_ops_alloc_addresses(struct device *dev,
1757 struct dma_ops_domain *dom,
6d4f343f 1758 unsigned int pages,
832a90c3
JR
1759 unsigned long align_mask,
1760 u64 dma_mask)
d3086444 1761{
266a3bd2 1762 unsigned long address = -1;
d3086444 1763
266a3bd2
JR
1764 while (address == -1) {
1765 address = dma_ops_area_alloc(dev, dom, pages,
1766 align_mask, dma_mask);
1767
7bfa5bd2 1768 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
266a3bd2
JR
1769 break;
1770 }
d3086444 1771
384de729 1772 if (unlikely(address == -1))
8fd524b3 1773 address = DMA_ERROR_CODE;
d3086444
JR
1774
1775 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1776
1777 return address;
1778}
1779
431b2a20
JR
1780/*
1781 * The address free function.
1782 *
1783 * called with domain->lock held
1784 */
d3086444
JR
1785static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1786 unsigned long address,
1787 unsigned int pages)
1788{
384de729
JR
1789 unsigned i = address >> APERTURE_RANGE_SHIFT;
1790 struct aperture_range *range = dom->aperture[i];
08c5fb93 1791 unsigned long flags;
80be308d 1792
384de729
JR
1793 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1794
47bccd6b
JR
1795#ifdef CONFIG_IOMMU_STRESS
1796 if (i < 4)
1797 return;
1798#endif
80be308d 1799
4eeca8c5 1800 if (amd_iommu_unmap_flush) {
d41ab098
JR
1801 domain_flush_tlb(&dom->domain);
1802 domain_flush_complete(&dom->domain);
1803 }
384de729
JR
1804
1805 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1806
08c5fb93 1807 spin_lock_irqsave(&range->bitmap_lock, flags);
4eeca8c5
JR
1808 if (address + pages > range->next_bit)
1809 range->next_bit = address + pages;
a66022c4 1810 bitmap_clear(range->bitmap, address, pages);
08c5fb93 1811 spin_unlock_irqrestore(&range->bitmap_lock, flags);
384de729 1812
d3086444
JR
1813}
1814
431b2a20
JR
1815/****************************************************************************
1816 *
1817 * The next functions belong to the domain allocation. A domain is
1818 * allocated for every IOMMU as the default domain. If device isolation
1819 * is enabled, every device get its own domain. The most important thing
1820 * about domains is the page table mapping the DMA address space they
1821 * contain.
1822 *
1823 ****************************************************************************/
1824
aeb26f55
JR
1825/*
1826 * This function adds a protection domain to the global protection domain list
1827 */
1828static void add_domain_to_list(struct protection_domain *domain)
1829{
1830 unsigned long flags;
1831
1832 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1833 list_add(&domain->list, &amd_iommu_pd_list);
1834 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1835}
1836
1837/*
1838 * This function removes a protection domain to the global
1839 * protection domain list
1840 */
1841static void del_domain_from_list(struct protection_domain *domain)
1842{
1843 unsigned long flags;
1844
1845 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1846 list_del(&domain->list);
1847 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1848}
1849
ec487d1a
JR
1850static u16 domain_id_alloc(void)
1851{
1852 unsigned long flags;
1853 int id;
1854
1855 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1856 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1857 BUG_ON(id == 0);
1858 if (id > 0 && id < MAX_DOMAIN_ID)
1859 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1860 else
1861 id = 0;
1862 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1863
1864 return id;
1865}
1866
a2acfb75
JR
1867static void domain_id_free(int id)
1868{
1869 unsigned long flags;
1870
1871 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1872 if (id > 0 && id < MAX_DOMAIN_ID)
1873 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1874 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1875}
a2acfb75 1876
5c34c403
JR
1877#define DEFINE_FREE_PT_FN(LVL, FN) \
1878static void free_pt_##LVL (unsigned long __pt) \
1879{ \
1880 unsigned long p; \
1881 u64 *pt; \
1882 int i; \
1883 \
1884 pt = (u64 *)__pt; \
1885 \
1886 for (i = 0; i < 512; ++i) { \
0b3fff54 1887 /* PTE present? */ \
5c34c403
JR
1888 if (!IOMMU_PTE_PRESENT(pt[i])) \
1889 continue; \
1890 \
0b3fff54
JR
1891 /* Large PTE? */ \
1892 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1893 PM_PTE_LEVEL(pt[i]) == 7) \
1894 continue; \
1895 \
5c34c403
JR
1896 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1897 FN(p); \
1898 } \
1899 free_page((unsigned long)pt); \
1900}
1901
1902DEFINE_FREE_PT_FN(l2, free_page)
1903DEFINE_FREE_PT_FN(l3, free_pt_l2)
1904DEFINE_FREE_PT_FN(l4, free_pt_l3)
1905DEFINE_FREE_PT_FN(l5, free_pt_l4)
1906DEFINE_FREE_PT_FN(l6, free_pt_l5)
1907
86db2e5d 1908static void free_pagetable(struct protection_domain *domain)
ec487d1a 1909{
5c34c403 1910 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1911
5c34c403
JR
1912 switch (domain->mode) {
1913 case PAGE_MODE_NONE:
1914 break;
1915 case PAGE_MODE_1_LEVEL:
1916 free_page(root);
1917 break;
1918 case PAGE_MODE_2_LEVEL:
1919 free_pt_l2(root);
1920 break;
1921 case PAGE_MODE_3_LEVEL:
1922 free_pt_l3(root);
1923 break;
1924 case PAGE_MODE_4_LEVEL:
1925 free_pt_l4(root);
1926 break;
1927 case PAGE_MODE_5_LEVEL:
1928 free_pt_l5(root);
1929 break;
1930 case PAGE_MODE_6_LEVEL:
1931 free_pt_l6(root);
1932 break;
1933 default:
1934 BUG();
ec487d1a 1935 }
ec487d1a
JR
1936}
1937
b16137b1
JR
1938static void free_gcr3_tbl_level1(u64 *tbl)
1939{
1940 u64 *ptr;
1941 int i;
1942
1943 for (i = 0; i < 512; ++i) {
1944 if (!(tbl[i] & GCR3_VALID))
1945 continue;
1946
1947 ptr = __va(tbl[i] & PAGE_MASK);
1948
1949 free_page((unsigned long)ptr);
1950 }
1951}
1952
1953static void free_gcr3_tbl_level2(u64 *tbl)
1954{
1955 u64 *ptr;
1956 int i;
1957
1958 for (i = 0; i < 512; ++i) {
1959 if (!(tbl[i] & GCR3_VALID))
1960 continue;
1961
1962 ptr = __va(tbl[i] & PAGE_MASK);
1963
1964 free_gcr3_tbl_level1(ptr);
1965 }
1966}
1967
52815b75
JR
1968static void free_gcr3_table(struct protection_domain *domain)
1969{
b16137b1
JR
1970 if (domain->glx == 2)
1971 free_gcr3_tbl_level2(domain->gcr3_tbl);
1972 else if (domain->glx == 1)
1973 free_gcr3_tbl_level1(domain->gcr3_tbl);
23d3a98c
JR
1974 else
1975 BUG_ON(domain->glx != 0);
b16137b1 1976
52815b75
JR
1977 free_page((unsigned long)domain->gcr3_tbl);
1978}
1979
431b2a20
JR
1980/*
1981 * Free a domain, only used if something went wrong in the
1982 * allocation path and we need to free an already allocated page table
1983 */
ec487d1a
JR
1984static void dma_ops_domain_free(struct dma_ops_domain *dom)
1985{
384de729
JR
1986 int i;
1987
ec487d1a
JR
1988 if (!dom)
1989 return;
1990
307d5851
JR
1991 put_iova_domain(&dom->iovad);
1992
5f6bed50
JR
1993 free_percpu(dom->next_index);
1994
aeb26f55
JR
1995 del_domain_from_list(&dom->domain);
1996
86db2e5d 1997 free_pagetable(&dom->domain);
ec487d1a 1998
384de729
JR
1999 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2000 if (!dom->aperture[i])
2001 continue;
2002 free_page((unsigned long)dom->aperture[i]->bitmap);
2003 kfree(dom->aperture[i]);
2004 }
ec487d1a
JR
2005
2006 kfree(dom);
2007}
2008
a639a8ee
JR
2009static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
2010 int max_apertures)
2011{
2012 int ret, i, apertures;
2013
2014 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
2015 ret = 0;
2016
2017 for (i = apertures; i < max_apertures; ++i) {
2018 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
2019 if (ret)
2020 break;
2021 }
2022
2023 return ret;
2024}
2025
431b2a20
JR
2026/*
2027 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 2028 * It also initializes the page table and the address allocator data
431b2a20
JR
2029 * structures required for the dma_ops interface
2030 */
87a64d52 2031static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2032{
2033 struct dma_ops_domain *dma_dom;
5f6bed50 2034 int cpu;
ec487d1a
JR
2035
2036 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2037 if (!dma_dom)
2038 return NULL;
2039
7a5a566e 2040 if (protection_domain_init(&dma_dom->domain))
ec487d1a 2041 goto free_dma_dom;
7a5a566e 2042
5f6bed50
JR
2043 dma_dom->next_index = alloc_percpu(u32);
2044 if (!dma_dom->next_index)
2045 goto free_dma_dom;
2046
8f7a017c 2047 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2048 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2049 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2050 dma_dom->domain.priv = dma_dom;
2051 if (!dma_dom->domain.pt_root)
2052 goto free_dma_dom;
ec487d1a 2053
aeb26f55
JR
2054 add_domain_to_list(&dma_dom->domain);
2055
576175c2 2056 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2057 goto free_dma_dom;
ec487d1a 2058
431b2a20 2059 /*
ec487d1a
JR
2060 * mark the first page as allocated so we never return 0 as
2061 * a valid dma-address. So we can use 0 as error value
431b2a20 2062 */
384de729 2063 dma_dom->aperture[0]->bitmap[0] = 1;
ec487d1a 2064
5f6bed50
JR
2065 for_each_possible_cpu(cpu)
2066 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
ec487d1a 2067
307d5851
JR
2068 init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
2069 IOVA_START_PFN, DMA_32BIT_PFN);
2070
81cd07b9
JR
2071 /* Initialize reserved ranges */
2072 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
2073
ec487d1a
JR
2074 return dma_dom;
2075
2076free_dma_dom:
2077 dma_ops_domain_free(dma_dom);
2078
2079 return NULL;
2080}
2081
5b28df6f
JR
2082/*
2083 * little helper function to check whether a given protection domain is a
2084 * dma_ops domain
2085 */
2086static bool dma_ops_domain(struct protection_domain *domain)
2087{
2088 return domain->flags & PD_DMA_OPS_MASK;
2089}
2090
fd7b5535 2091static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2092{
132bd68f 2093 u64 pte_root = 0;
ee6c2868 2094 u64 flags = 0;
863c74eb 2095
132bd68f
JR
2096 if (domain->mode != PAGE_MODE_NONE)
2097 pte_root = virt_to_phys(domain->pt_root);
2098
38ddf41b
JR
2099 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2100 << DEV_ENTRY_MODE_SHIFT;
2101 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2102
ee6c2868
JR
2103 flags = amd_iommu_dev_table[devid].data[1];
2104
fd7b5535
JR
2105 if (ats)
2106 flags |= DTE_FLAG_IOTLB;
2107
52815b75
JR
2108 if (domain->flags & PD_IOMMUV2_MASK) {
2109 u64 gcr3 = __pa(domain->gcr3_tbl);
2110 u64 glx = domain->glx;
2111 u64 tmp;
2112
2113 pte_root |= DTE_FLAG_GV;
2114 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2115
2116 /* First mask out possible old values for GCR3 table */
2117 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2118 flags &= ~tmp;
2119
2120 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2121 flags &= ~tmp;
2122
2123 /* Encode GCR3 table into DTE */
2124 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2125 pte_root |= tmp;
2126
2127 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2128 flags |= tmp;
2129
2130 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2131 flags |= tmp;
2132 }
2133
ee6c2868
JR
2134 flags &= ~(0xffffUL);
2135 flags |= domain->id;
2136
2137 amd_iommu_dev_table[devid].data[1] = flags;
2138 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2139}
2140
2141static void clear_dte_entry(u16 devid)
2142{
15898bbc 2143 /* remove entry from the device table seen by the hardware */
cbf3ccd0
JR
2144 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2145 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
15898bbc
JR
2146
2147 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2148}
2149
ec9e79ef
JR
2150static void do_attach(struct iommu_dev_data *dev_data,
2151 struct protection_domain *domain)
7f760ddd 2152{
7f760ddd 2153 struct amd_iommu *iommu;
e25bfb56 2154 u16 alias;
ec9e79ef 2155 bool ats;
fd7b5535 2156
ec9e79ef 2157 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 2158 alias = dev_data->alias;
ec9e79ef 2159 ats = dev_data->ats.enabled;
7f760ddd
JR
2160
2161 /* Update data structures */
2162 dev_data->domain = domain;
2163 list_add(&dev_data->list, &domain->dev_list);
7f760ddd
JR
2164
2165 /* Do reference counting */
2166 domain->dev_iommu[iommu->index] += 1;
2167 domain->dev_cnt += 1;
2168
e25bfb56
JR
2169 /* Update device table */
2170 set_dte_entry(dev_data->devid, domain, ats);
2171 if (alias != dev_data->devid)
9b1a12d2 2172 set_dte_entry(alias, domain, ats);
e25bfb56 2173
6c542047 2174 device_flush_dte(dev_data);
7f760ddd
JR
2175}
2176
ec9e79ef 2177static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2178{
7f760ddd 2179 struct amd_iommu *iommu;
e25bfb56 2180 u16 alias;
7f760ddd 2181
5adad991
JR
2182 /*
2183 * First check if the device is still attached. It might already
2184 * be detached from its domain because the generic
2185 * iommu_detach_group code detached it and we try again here in
2186 * our alias handling.
2187 */
2188 if (!dev_data->domain)
2189 return;
2190
ec9e79ef 2191 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 2192 alias = dev_data->alias;
15898bbc
JR
2193
2194 /* decrease reference counters */
7f760ddd
JR
2195 dev_data->domain->dev_iommu[iommu->index] -= 1;
2196 dev_data->domain->dev_cnt -= 1;
2197
2198 /* Update data structures */
2199 dev_data->domain = NULL;
2200 list_del(&dev_data->list);
f62dda66 2201 clear_dte_entry(dev_data->devid);
e25bfb56
JR
2202 if (alias != dev_data->devid)
2203 clear_dte_entry(alias);
15898bbc 2204
7f760ddd 2205 /* Flush the DTE entry */
6c542047 2206 device_flush_dte(dev_data);
2b681faf
JR
2207}
2208
2209/*
2210 * If a device is not yet associated with a domain, this function does
2211 * assigns it visible for the hardware
2212 */
ec9e79ef 2213static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2214 struct protection_domain *domain)
2b681faf 2215{
84fe6c19 2216 int ret;
657cbb6b 2217
272e4f99
JR
2218 /*
2219 * Must be called with IRQs disabled. Warn here to detect early
2220 * when its not.
2221 */
2222 WARN_ON(!irqs_disabled());
2223
2b681faf
JR
2224 /* lock domain */
2225 spin_lock(&domain->lock);
2226
397111ab 2227 ret = -EBUSY;
150952f9 2228 if (dev_data->domain != NULL)
397111ab 2229 goto out_unlock;
15898bbc 2230
397111ab 2231 /* Attach alias group root */
150952f9 2232 do_attach(dev_data, domain);
24100055 2233
84fe6c19
JL
2234 ret = 0;
2235
2236out_unlock:
2237
eba6ac60
JR
2238 /* ready */
2239 spin_unlock(&domain->lock);
15898bbc 2240
84fe6c19 2241 return ret;
0feae533 2242}
b20ac0d4 2243
52815b75
JR
2244
2245static void pdev_iommuv2_disable(struct pci_dev *pdev)
2246{
2247 pci_disable_ats(pdev);
2248 pci_disable_pri(pdev);
2249 pci_disable_pasid(pdev);
2250}
2251
6a113ddc
JR
2252/* FIXME: Change generic reset-function to do the same */
2253static int pri_reset_while_enabled(struct pci_dev *pdev)
2254{
2255 u16 control;
2256 int pos;
2257
46277b75 2258 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2259 if (!pos)
2260 return -EINVAL;
2261
46277b75
JR
2262 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2263 control |= PCI_PRI_CTRL_RESET;
2264 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2265
2266 return 0;
2267}
2268
52815b75
JR
2269static int pdev_iommuv2_enable(struct pci_dev *pdev)
2270{
6a113ddc
JR
2271 bool reset_enable;
2272 int reqs, ret;
2273
2274 /* FIXME: Hardcode number of outstanding requests for now */
2275 reqs = 32;
2276 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2277 reqs = 1;
2278 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2279
2280 /* Only allow access to user-accessible pages */
2281 ret = pci_enable_pasid(pdev, 0);
2282 if (ret)
2283 goto out_err;
2284
2285 /* First reset the PRI state of the device */
2286 ret = pci_reset_pri(pdev);
2287 if (ret)
2288 goto out_err;
2289
6a113ddc
JR
2290 /* Enable PRI */
2291 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2292 if (ret)
2293 goto out_err;
2294
6a113ddc
JR
2295 if (reset_enable) {
2296 ret = pri_reset_while_enabled(pdev);
2297 if (ret)
2298 goto out_err;
2299 }
2300
52815b75
JR
2301 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2302 if (ret)
2303 goto out_err;
2304
2305 return 0;
2306
2307out_err:
2308 pci_disable_pri(pdev);
2309 pci_disable_pasid(pdev);
2310
2311 return ret;
2312}
2313
c99afa25 2314/* FIXME: Move this to PCI code */
a3b93121 2315#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2316
98f1ad25 2317static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2318{
a3b93121 2319 u16 status;
c99afa25
JR
2320 int pos;
2321
46277b75 2322 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2323 if (!pos)
2324 return false;
2325
a3b93121 2326 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2327
a3b93121 2328 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2329}
2330
407d733e 2331/*
df805abb 2332 * If a device is not yet associated with a domain, this function
407d733e
JR
2333 * assigns it visible for the hardware
2334 */
15898bbc
JR
2335static int attach_device(struct device *dev,
2336 struct protection_domain *domain)
0feae533 2337{
2bf9a0a1 2338 struct pci_dev *pdev;
ea61cddb 2339 struct iommu_dev_data *dev_data;
eba6ac60 2340 unsigned long flags;
15898bbc 2341 int ret;
eba6ac60 2342
ea61cddb
JR
2343 dev_data = get_dev_data(dev);
2344
2bf9a0a1
WZ
2345 if (!dev_is_pci(dev))
2346 goto skip_ats_check;
2347
2348 pdev = to_pci_dev(dev);
52815b75 2349 if (domain->flags & PD_IOMMUV2_MASK) {
02ca2021 2350 if (!dev_data->passthrough)
52815b75
JR
2351 return -EINVAL;
2352
02ca2021
JR
2353 if (dev_data->iommu_v2) {
2354 if (pdev_iommuv2_enable(pdev) != 0)
2355 return -EINVAL;
52815b75 2356
02ca2021
JR
2357 dev_data->ats.enabled = true;
2358 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2359 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2360 }
52815b75
JR
2361 } else if (amd_iommu_iotlb_sup &&
2362 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2363 dev_data->ats.enabled = true;
2364 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2365 }
fd7b5535 2366
2bf9a0a1 2367skip_ats_check:
eba6ac60 2368 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2369 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2370 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2371
0feae533
JR
2372 /*
2373 * We might boot into a crash-kernel here. The crashed kernel
2374 * left the caches in the IOMMU dirty. So we have to flush
2375 * here to evict all dirty stuff.
2376 */
17b124bf 2377 domain_flush_tlb_pde(domain);
15898bbc
JR
2378
2379 return ret;
b20ac0d4
JR
2380}
2381
355bf553
JR
2382/*
2383 * Removes a device from a protection domain (unlocked)
2384 */
ec9e79ef 2385static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2386{
2ca76279 2387 struct protection_domain *domain;
c4596114 2388
272e4f99
JR
2389 /*
2390 * Must be called with IRQs disabled. Warn here to detect early
2391 * when its not.
2392 */
2393 WARN_ON(!irqs_disabled());
2ca76279 2394
f34c73f5
JR
2395 if (WARN_ON(!dev_data->domain))
2396 return;
24100055 2397
2ca76279 2398 domain = dev_data->domain;
71f77580 2399
f1dd0a8b 2400 spin_lock(&domain->lock);
24100055 2401
150952f9 2402 do_detach(dev_data);
7f760ddd 2403
f1dd0a8b 2404 spin_unlock(&domain->lock);
355bf553
JR
2405}
2406
2407/*
2408 * Removes a device from a protection domain (with devtable_lock held)
2409 */
15898bbc 2410static void detach_device(struct device *dev)
355bf553 2411{
52815b75 2412 struct protection_domain *domain;
ea61cddb 2413 struct iommu_dev_data *dev_data;
355bf553
JR
2414 unsigned long flags;
2415
ec9e79ef 2416 dev_data = get_dev_data(dev);
52815b75 2417 domain = dev_data->domain;
ec9e79ef 2418
355bf553
JR
2419 /* lock device table */
2420 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2421 __detach_device(dev_data);
355bf553 2422 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2423
2bf9a0a1
WZ
2424 if (!dev_is_pci(dev))
2425 return;
2426
02ca2021 2427 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
52815b75
JR
2428 pdev_iommuv2_disable(to_pci_dev(dev));
2429 else if (dev_data->ats.enabled)
ea61cddb 2430 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2431
2432 dev_data->ats.enabled = false;
355bf553 2433}
e275a2a0 2434
aafd8ba0 2435static int amd_iommu_add_device(struct device *dev)
e275a2a0 2436{
5abcdba4 2437 struct iommu_dev_data *dev_data;
07ee8694 2438 struct iommu_domain *domain;
e275a2a0 2439 struct amd_iommu *iommu;
7aba6cb9 2440 int ret, devid;
e275a2a0 2441
aafd8ba0 2442 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2443 return 0;
e275a2a0 2444
aafd8ba0 2445 devid = get_device_id(dev);
9ee35e4c 2446 if (devid < 0)
7aba6cb9
WZ
2447 return devid;
2448
aafd8ba0 2449 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2450
aafd8ba0 2451 ret = iommu_init_device(dev);
4d58b8a6
JR
2452 if (ret) {
2453 if (ret != -ENOTSUPP)
2454 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2455 dev_name(dev));
657cbb6b 2456
aafd8ba0 2457 iommu_ignore_device(dev);
343e9cac 2458 dev->archdata.dma_ops = &nommu_dma_ops;
aafd8ba0
JR
2459 goto out;
2460 }
2461 init_iommu_group(dev);
2c9195e9 2462
07ee8694 2463 dev_data = get_dev_data(dev);
2c9195e9 2464
4d58b8a6 2465 BUG_ON(!dev_data);
657cbb6b 2466
1e6a7b04 2467 if (iommu_pass_through || dev_data->iommu_v2)
07ee8694 2468 iommu_request_dm_for_dev(dev);
ac1534a5 2469
07ee8694
JR
2470 /* Domains are initialized for this device - have a look what we ended up with */
2471 domain = iommu_get_domain_for_dev(dev);
32302324 2472 if (domain->type == IOMMU_DOMAIN_IDENTITY)
07ee8694 2473 dev_data->passthrough = true;
32302324 2474 else
2c9195e9 2475 dev->archdata.dma_ops = &amd_iommu_dma_ops;
e275a2a0 2476
aafd8ba0 2477out:
e275a2a0
JR
2478 iommu_completion_wait(iommu);
2479
e275a2a0
JR
2480 return 0;
2481}
2482
aafd8ba0 2483static void amd_iommu_remove_device(struct device *dev)
8638c491 2484{
aafd8ba0 2485 struct amd_iommu *iommu;
7aba6cb9 2486 int devid;
aafd8ba0
JR
2487
2488 if (!check_device(dev))
2489 return;
2490
2491 devid = get_device_id(dev);
9ee35e4c 2492 if (devid < 0)
7aba6cb9
WZ
2493 return;
2494
aafd8ba0
JR
2495 iommu = amd_iommu_rlookup_table[devid];
2496
2497 iommu_uninit_device(dev);
2498 iommu_completion_wait(iommu);
8638c491
JR
2499}
2500
b097d11a
WZ
2501static struct iommu_group *amd_iommu_device_group(struct device *dev)
2502{
2503 if (dev_is_pci(dev))
2504 return pci_device_group(dev);
2505
2506 return acpihid_device_group(dev);
2507}
2508
431b2a20
JR
2509/*****************************************************************************
2510 *
2511 * The next functions belong to the dma_ops mapping/unmapping code.
2512 *
2513 *****************************************************************************/
2514
2515/*
2516 * In the dma_ops path we only have the struct device. This function
2517 * finds the corresponding IOMMU, the protection domain and the
2518 * requestor id for a given device.
2519 * If the device is not yet associated with a domain this is also done
2520 * in this function.
2521 */
94f6d190 2522static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2523{
94f6d190 2524 struct protection_domain *domain;
063071df 2525 struct iommu_domain *io_domain;
b20ac0d4 2526
f99c0f1c 2527 if (!check_device(dev))
94f6d190 2528 return ERR_PTR(-EINVAL);
b20ac0d4 2529
063071df 2530 io_domain = iommu_get_domain_for_dev(dev);
0bb6e243
JR
2531 if (!io_domain)
2532 return NULL;
b20ac0d4 2533
0bb6e243
JR
2534 domain = to_pdomain(io_domain);
2535 if (!dma_ops_domain(domain))
94f6d190 2536 return ERR_PTR(-EBUSY);
f91ba190 2537
0bb6e243 2538 return domain;
b20ac0d4
JR
2539}
2540
04bfdd84
JR
2541static void update_device_table(struct protection_domain *domain)
2542{
492667da 2543 struct iommu_dev_data *dev_data;
04bfdd84 2544
ea61cddb
JR
2545 list_for_each_entry(dev_data, &domain->dev_list, list)
2546 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2547}
2548
2549static void update_domain(struct protection_domain *domain)
2550{
2551 if (!domain->updated)
2552 return;
2553
2554 update_device_table(domain);
17b124bf
JR
2555
2556 domain_flush_devices(domain);
2557 domain_flush_tlb_pde(domain);
04bfdd84
JR
2558
2559 domain->updated = false;
2560}
2561
8bda3092
JR
2562/*
2563 * This function fetches the PTE for a given address in the aperture
2564 */
2565static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2566 unsigned long address)
2567{
384de729 2568 struct aperture_range *aperture;
8bda3092
JR
2569 u64 *pte, *pte_page;
2570
384de729
JR
2571 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2572 if (!aperture)
2573 return NULL;
2574
2575 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2576 if (!pte) {
cbb9d729 2577 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2578 GFP_ATOMIC);
384de729
JR
2579 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2580 } else
8c8c143c 2581 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2582
04bfdd84 2583 update_domain(&dom->domain);
8bda3092
JR
2584
2585 return pte;
2586}
2587
431b2a20
JR
2588/*
2589 * This is the generic map function. It maps one 4kb page at paddr to
2590 * the given address in the DMA address space for the domain.
2591 */
680525e0 2592static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2593 unsigned long address,
2594 phys_addr_t paddr,
2595 int direction)
2596{
2597 u64 *pte, __pte;
2598
2599 WARN_ON(address > dom->aperture_size);
2600
2601 paddr &= PAGE_MASK;
2602
8bda3092 2603 pte = dma_ops_get_pte(dom, address);
53812c11 2604 if (!pte)
8fd524b3 2605 return DMA_ERROR_CODE;
cb76c322
JR
2606
2607 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2608
2609 if (direction == DMA_TO_DEVICE)
2610 __pte |= IOMMU_PTE_IR;
2611 else if (direction == DMA_FROM_DEVICE)
2612 __pte |= IOMMU_PTE_IW;
2613 else if (direction == DMA_BIDIRECTIONAL)
2614 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2615
a7fb668f 2616 WARN_ON_ONCE(*pte);
cb76c322
JR
2617
2618 *pte = __pte;
2619
2620 return (dma_addr_t)address;
2621}
2622
431b2a20
JR
2623/*
2624 * The generic unmapping function for on page in the DMA address space.
2625 */
680525e0 2626static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2627 unsigned long address)
2628{
384de729 2629 struct aperture_range *aperture;
cb76c322
JR
2630 u64 *pte;
2631
2632 if (address >= dom->aperture_size)
2633 return;
2634
384de729
JR
2635 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2636 if (!aperture)
2637 return;
2638
2639 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2640 if (!pte)
2641 return;
cb76c322 2642
8c8c143c 2643 pte += PM_LEVEL_INDEX(0, address);
cb76c322 2644
a7fb668f 2645 WARN_ON_ONCE(!*pte);
cb76c322
JR
2646
2647 *pte = 0ULL;
2648}
2649
431b2a20
JR
2650/*
2651 * This function contains common code for mapping of a physically
24f81160
JR
2652 * contiguous memory region into DMA address space. It is used by all
2653 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2654 * Must be called with the domain lock held.
2655 */
cb76c322 2656static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2657 struct dma_ops_domain *dma_dom,
2658 phys_addr_t paddr,
2659 size_t size,
6d4f343f 2660 int dir,
832a90c3
JR
2661 bool align,
2662 u64 dma_mask)
cb76c322
JR
2663{
2664 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2665 dma_addr_t address, start, ret;
cb76c322 2666 unsigned int pages;
6d4f343f 2667 unsigned long align_mask = 0;
cb76c322
JR
2668 int i;
2669
e3c449f5 2670 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2671 paddr &= PAGE_MASK;
2672
6d4f343f
JR
2673 if (align)
2674 align_mask = (1UL << get_order(size)) - 1;
2675
832a90c3
JR
2676 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2677 dma_mask);
ebaecb42 2678
266a3bd2
JR
2679 if (address == DMA_ERROR_CODE)
2680 goto out;
cb76c322
JR
2681
2682 start = address;
2683 for (i = 0; i < pages; ++i) {
680525e0 2684 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2685 if (ret == DMA_ERROR_CODE)
53812c11
JR
2686 goto out_unmap;
2687
cb76c322
JR
2688 paddr += PAGE_SIZE;
2689 start += PAGE_SIZE;
2690 }
2691 address += offset;
2692
ab7032bb 2693 if (unlikely(amd_iommu_np_cache)) {
17b124bf 2694 domain_flush_pages(&dma_dom->domain, address, size);
ab7032bb
JR
2695 domain_flush_complete(&dma_dom->domain);
2696 }
270cab24 2697
cb76c322
JR
2698out:
2699 return address;
53812c11
JR
2700
2701out_unmap:
2702
2703 for (--i; i >= 0; --i) {
2704 start -= PAGE_SIZE;
680525e0 2705 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2706 }
2707
2708 dma_ops_free_addresses(dma_dom, address, pages);
2709
8fd524b3 2710 return DMA_ERROR_CODE;
cb76c322
JR
2711}
2712
431b2a20
JR
2713/*
2714 * Does the reverse of the __map_single function. Must be called with
2715 * the domain lock held too
2716 */
cd8c82e8 2717static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2718 dma_addr_t dma_addr,
2719 size_t size,
2720 int dir)
2721{
04e0463e 2722 dma_addr_t flush_addr;
cb76c322
JR
2723 dma_addr_t i, start;
2724 unsigned int pages;
2725
8fd524b3 2726 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2727 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2728 return;
2729
04e0463e 2730 flush_addr = dma_addr;
e3c449f5 2731 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2732 dma_addr &= PAGE_MASK;
2733 start = dma_addr;
2734
2735 for (i = 0; i < pages; ++i) {
680525e0 2736 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2737 start += PAGE_SIZE;
2738 }
2739
84b3a0bc 2740 dma_ops_free_addresses(dma_dom, dma_addr, pages);
cb76c322
JR
2741}
2742
431b2a20
JR
2743/*
2744 * The exported map_single function for dma_ops.
2745 */
51491367
FT
2746static dma_addr_t map_page(struct device *dev, struct page *page,
2747 unsigned long offset, size_t size,
2748 enum dma_data_direction dir,
2749 struct dma_attrs *attrs)
4da70b9e 2750{
92d420ec 2751 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2752 struct protection_domain *domain;
832a90c3 2753 u64 dma_mask;
4da70b9e 2754
94f6d190
JR
2755 domain = get_domain(dev);
2756 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2757 return (dma_addr_t)paddr;
94f6d190
JR
2758 else if (IS_ERR(domain))
2759 return DMA_ERROR_CODE;
4da70b9e 2760
f99c0f1c
JR
2761 dma_mask = *dev->dma_mask;
2762
92d420ec 2763 return __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2764 dma_mask);
4da70b9e
JR
2765}
2766
431b2a20
JR
2767/*
2768 * The exported unmap_single function for dma_ops.
2769 */
51491367
FT
2770static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2771 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e 2772{
4da70b9e 2773 struct protection_domain *domain;
4da70b9e 2774
94f6d190
JR
2775 domain = get_domain(dev);
2776 if (IS_ERR(domain))
5b28df6f
JR
2777 return;
2778
cd8c82e8 2779 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e
JR
2780}
2781
431b2a20
JR
2782/*
2783 * The exported map_sg function for dma_ops (handles scatter-gather
2784 * lists).
2785 */
65b050ad 2786static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2787 int nelems, enum dma_data_direction dir,
2788 struct dma_attrs *attrs)
65b050ad 2789{
65b050ad 2790 struct protection_domain *domain;
65b050ad
JR
2791 int i;
2792 struct scatterlist *s;
2793 phys_addr_t paddr;
2794 int mapped_elems = 0;
832a90c3 2795 u64 dma_mask;
65b050ad 2796
94f6d190 2797 domain = get_domain(dev);
a0e191b2 2798 if (IS_ERR(domain))
94f6d190 2799 return 0;
dbcc112e 2800
832a90c3 2801 dma_mask = *dev->dma_mask;
65b050ad 2802
65b050ad
JR
2803 for_each_sg(sglist, s, nelems, i) {
2804 paddr = sg_phys(s);
2805
cd8c82e8 2806 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2807 paddr, s->length, dir, false,
2808 dma_mask);
65b050ad
JR
2809
2810 if (s->dma_address) {
2811 s->dma_length = s->length;
2812 mapped_elems++;
2813 } else
2814 goto unmap;
65b050ad
JR
2815 }
2816
65b050ad 2817 return mapped_elems;
92d420ec 2818
65b050ad
JR
2819unmap:
2820 for_each_sg(sglist, s, mapped_elems, i) {
2821 if (s->dma_address)
cd8c82e8 2822 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2823 s->dma_length, dir);
2824 s->dma_address = s->dma_length = 0;
2825 }
2826
92d420ec 2827 return 0;
65b050ad
JR
2828}
2829
431b2a20
JR
2830/*
2831 * The exported map_sg function for dma_ops (handles scatter-gather
2832 * lists).
2833 */
65b050ad 2834static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2835 int nelems, enum dma_data_direction dir,
2836 struct dma_attrs *attrs)
65b050ad 2837{
65b050ad
JR
2838 struct protection_domain *domain;
2839 struct scatterlist *s;
65b050ad
JR
2840 int i;
2841
94f6d190
JR
2842 domain = get_domain(dev);
2843 if (IS_ERR(domain))
5b28df6f
JR
2844 return;
2845
65b050ad 2846 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2847 __unmap_single(domain->priv, s->dma_address,
65b050ad 2848 s->dma_length, dir);
65b050ad
JR
2849 s->dma_address = s->dma_length = 0;
2850 }
65b050ad
JR
2851}
2852
431b2a20
JR
2853/*
2854 * The exported alloc_coherent function for dma_ops.
2855 */
5d8b53cf 2856static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2857 dma_addr_t *dma_addr, gfp_t flag,
2858 struct dma_attrs *attrs)
5d8b53cf 2859{
832a90c3 2860 u64 dma_mask = dev->coherent_dma_mask;
3b839a57 2861 struct protection_domain *domain;
3b839a57 2862 struct page *page;
5d8b53cf 2863
94f6d190
JR
2864 domain = get_domain(dev);
2865 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2866 page = alloc_pages(flag, get_order(size));
2867 *dma_addr = page_to_phys(page);
2868 return page_address(page);
94f6d190
JR
2869 } else if (IS_ERR(domain))
2870 return NULL;
5d8b53cf 2871
3b839a57 2872 size = PAGE_ALIGN(size);
f99c0f1c
JR
2873 dma_mask = dev->coherent_dma_mask;
2874 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2875 flag |= __GFP_ZERO;
5d8b53cf 2876
3b839a57
JR
2877 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2878 if (!page) {
d0164adc 2879 if (!gfpflags_allow_blocking(flag))
3b839a57 2880 return NULL;
5d8b53cf 2881
3b839a57
JR
2882 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2883 get_order(size));
2884 if (!page)
2885 return NULL;
2886 }
5d8b53cf 2887
832a90c3
JR
2888 if (!dma_mask)
2889 dma_mask = *dev->dma_mask;
2890
3b839a57 2891 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2892 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2893
92d420ec 2894 if (*dma_addr == DMA_ERROR_CODE)
5b28df6f 2895 goto out_free;
5d8b53cf 2896
3b839a57 2897 return page_address(page);
5b28df6f
JR
2898
2899out_free:
2900
3b839a57
JR
2901 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2902 __free_pages(page, get_order(size));
5b28df6f
JR
2903
2904 return NULL;
5d8b53cf
JR
2905}
2906
431b2a20
JR
2907/*
2908 * The exported free_coherent function for dma_ops.
431b2a20 2909 */
5d8b53cf 2910static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2911 void *virt_addr, dma_addr_t dma_addr,
2912 struct dma_attrs *attrs)
5d8b53cf 2913{
5d8b53cf 2914 struct protection_domain *domain;
3b839a57 2915 struct page *page;
5d8b53cf 2916
3b839a57
JR
2917 page = virt_to_page(virt_addr);
2918 size = PAGE_ALIGN(size);
2919
94f6d190
JR
2920 domain = get_domain(dev);
2921 if (IS_ERR(domain))
5b28df6f
JR
2922 goto free_mem;
2923
cd8c82e8 2924 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2925
5d8b53cf 2926free_mem:
3b839a57
JR
2927 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2928 __free_pages(page, get_order(size));
5d8b53cf
JR
2929}
2930
b39ba6ad
JR
2931/*
2932 * This function is called by the DMA layer to find out if we can handle a
2933 * particular device. It is part of the dma_ops.
2934 */
2935static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2936{
420aef8a 2937 return check_device(dev);
b39ba6ad
JR
2938}
2939
a639a8ee
JR
2940static int set_dma_mask(struct device *dev, u64 mask)
2941{
2942 struct protection_domain *domain;
2943 int max_apertures = 1;
2944
2945 domain = get_domain(dev);
2946 if (IS_ERR(domain))
2947 return PTR_ERR(domain);
2948
2949 if (mask == DMA_BIT_MASK(64))
2950 max_apertures = 8;
2951 else if (mask > DMA_BIT_MASK(32))
2952 max_apertures = 4;
2953
2954 /*
2955 * To prevent lock contention it doesn't make sense to allocate more
2956 * apertures than online cpus
2957 */
2958 if (max_apertures > num_online_cpus())
2959 max_apertures = num_online_cpus();
2960
2961 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2962 dev_err(dev, "Can't allocate %d iommu apertures\n",
2963 max_apertures);
2964
2965 return 0;
2966}
2967
160c1d8e 2968static struct dma_map_ops amd_iommu_dma_ops = {
a639a8ee
JR
2969 .alloc = alloc_coherent,
2970 .free = free_coherent,
2971 .map_page = map_page,
2972 .unmap_page = unmap_page,
2973 .map_sg = map_sg,
2974 .unmap_sg = unmap_sg,
2975 .dma_supported = amd_iommu_dma_supported,
2976 .set_dma_mask = set_dma_mask,
6631ee9d
JR
2977};
2978
81cd07b9
JR
2979static int init_reserved_iova_ranges(void)
2980{
2981 struct pci_dev *pdev = NULL;
2982 struct iova *val;
2983
2984 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
2985 IOVA_START_PFN, DMA_32BIT_PFN);
2986
2987 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2988 &reserved_rbtree_key);
2989
2990 /* MSI memory range */
2991 val = reserve_iova(&reserved_iova_ranges,
2992 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2993 if (!val) {
2994 pr_err("Reserving MSI range failed\n");
2995 return -ENOMEM;
2996 }
2997
2998 /* HT memory range */
2999 val = reserve_iova(&reserved_iova_ranges,
3000 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
3001 if (!val) {
3002 pr_err("Reserving HT range failed\n");
3003 return -ENOMEM;
3004 }
3005
3006 /*
3007 * Memory used for PCI resources
3008 * FIXME: Check whether we can reserve the PCI-hole completly
3009 */
3010 for_each_pci_dev(pdev) {
3011 int i;
3012
3013 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
3014 struct resource *r = &pdev->resource[i];
3015
3016 if (!(r->flags & IORESOURCE_MEM))
3017 continue;
3018
3019 val = reserve_iova(&reserved_iova_ranges,
3020 IOVA_PFN(r->start),
3021 IOVA_PFN(r->end));
3022 if (!val) {
3023 pr_err("Reserve pci-resource range failed\n");
3024 return -ENOMEM;
3025 }
3026 }
3027 }
3028
3029 return 0;
3030}
3031
3a18404c 3032int __init amd_iommu_init_api(void)
27c2127a 3033{
307d5851
JR
3034 int ret, err = 0;
3035
3036 ret = iova_cache_get();
3037 if (ret)
3038 return ret;
9a4d3bf5 3039
81cd07b9
JR
3040 ret = init_reserved_iova_ranges();
3041 if (ret)
3042 return ret;
3043
9a4d3bf5
WZ
3044 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3045 if (err)
3046 return err;
3047#ifdef CONFIG_ARM_AMBA
3048 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
3049 if (err)
3050 return err;
3051#endif
0076cd3d
WZ
3052 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
3053 if (err)
3054 return err;
9a4d3bf5 3055 return 0;
f5325094
JR
3056}
3057
6631ee9d
JR
3058int __init amd_iommu_init_dma_ops(void)
3059{
32302324 3060 swiotlb = iommu_pass_through ? 1 : 0;
6631ee9d 3061 iommu_detected = 1;
6631ee9d 3062
52717828
JR
3063 /*
3064 * In case we don't initialize SWIOTLB (actually the common case
3065 * when AMD IOMMU is enabled), make sure there are global
3066 * dma_ops set as a fall-back for devices not handled by this
3067 * driver (for example non-PCI devices).
3068 */
3069 if (!swiotlb)
3070 dma_ops = &nommu_dma_ops;
3071
62410eeb
JR
3072 if (amd_iommu_unmap_flush)
3073 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3074 else
3075 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3076
6631ee9d 3077 return 0;
6631ee9d 3078}
6d98cd80
JR
3079
3080/*****************************************************************************
3081 *
3082 * The following functions belong to the exported interface of AMD IOMMU
3083 *
3084 * This interface allows access to lower level functions of the IOMMU
3085 * like protection domain handling and assignement of devices to domains
3086 * which is not possible with the dma_ops interface.
3087 *
3088 *****************************************************************************/
3089
6d98cd80
JR
3090static void cleanup_domain(struct protection_domain *domain)
3091{
9b29d3c6 3092 struct iommu_dev_data *entry;
6d98cd80 3093 unsigned long flags;
6d98cd80
JR
3094
3095 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3096
9b29d3c6
JR
3097 while (!list_empty(&domain->dev_list)) {
3098 entry = list_first_entry(&domain->dev_list,
3099 struct iommu_dev_data, list);
3100 __detach_device(entry);
492667da 3101 }
6d98cd80
JR
3102
3103 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3104}
3105
2650815f
JR
3106static void protection_domain_free(struct protection_domain *domain)
3107{
3108 if (!domain)
3109 return;
3110
aeb26f55
JR
3111 del_domain_from_list(domain);
3112
2650815f
JR
3113 if (domain->id)
3114 domain_id_free(domain->id);
3115
3116 kfree(domain);
3117}
3118
7a5a566e
JR
3119static int protection_domain_init(struct protection_domain *domain)
3120{
3121 spin_lock_init(&domain->lock);
3122 mutex_init(&domain->api_lock);
3123 domain->id = domain_id_alloc();
3124 if (!domain->id)
3125 return -ENOMEM;
3126 INIT_LIST_HEAD(&domain->dev_list);
3127
3128 return 0;
3129}
3130
2650815f 3131static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3132{
3133 struct protection_domain *domain;
3134
3135 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3136 if (!domain)
2650815f 3137 return NULL;
c156e347 3138
7a5a566e 3139 if (protection_domain_init(domain))
2650815f
JR
3140 goto out_err;
3141
aeb26f55
JR
3142 add_domain_to_list(domain);
3143
2650815f
JR
3144 return domain;
3145
3146out_err:
3147 kfree(domain);
3148
3149 return NULL;
3150}
3151
3f4b87b9 3152static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 3153{
3f4b87b9 3154 struct protection_domain *pdomain;
0bb6e243 3155 struct dma_ops_domain *dma_domain;
2650815f 3156
0bb6e243
JR
3157 switch (type) {
3158 case IOMMU_DOMAIN_UNMANAGED:
3159 pdomain = protection_domain_alloc();
3160 if (!pdomain)
3161 return NULL;
c156e347 3162
0bb6e243
JR
3163 pdomain->mode = PAGE_MODE_3_LEVEL;
3164 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3165 if (!pdomain->pt_root) {
3166 protection_domain_free(pdomain);
3167 return NULL;
3168 }
c156e347 3169
0bb6e243
JR
3170 pdomain->domain.geometry.aperture_start = 0;
3171 pdomain->domain.geometry.aperture_end = ~0ULL;
3172 pdomain->domain.geometry.force_aperture = true;
0ff64f80 3173
0bb6e243
JR
3174 break;
3175 case IOMMU_DOMAIN_DMA:
3176 dma_domain = dma_ops_domain_alloc();
3177 if (!dma_domain) {
3178 pr_err("AMD-Vi: Failed to allocate\n");
3179 return NULL;
3180 }
3181 pdomain = &dma_domain->domain;
3182 break;
07f643a3
JR
3183 case IOMMU_DOMAIN_IDENTITY:
3184 pdomain = protection_domain_alloc();
3185 if (!pdomain)
3186 return NULL;
c156e347 3187
07f643a3
JR
3188 pdomain->mode = PAGE_MODE_NONE;
3189 break;
0bb6e243
JR
3190 default:
3191 return NULL;
3192 }
c156e347 3193
3f4b87b9 3194 return &pdomain->domain;
c156e347
JR
3195}
3196
3f4b87b9 3197static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3198{
3f4b87b9 3199 struct protection_domain *domain;
98383fc3 3200
3f4b87b9 3201 if (!dom)
98383fc3
JR
3202 return;
3203
3f4b87b9
JR
3204 domain = to_pdomain(dom);
3205
98383fc3
JR
3206 if (domain->dev_cnt > 0)
3207 cleanup_domain(domain);
3208
3209 BUG_ON(domain->dev_cnt != 0);
3210
132bd68f
JR
3211 if (domain->mode != PAGE_MODE_NONE)
3212 free_pagetable(domain);
98383fc3 3213
52815b75
JR
3214 if (domain->flags & PD_IOMMUV2_MASK)
3215 free_gcr3_table(domain);
3216
8b408fe4 3217 protection_domain_free(domain);
98383fc3
JR
3218}
3219
684f2888
JR
3220static void amd_iommu_detach_device(struct iommu_domain *dom,
3221 struct device *dev)
3222{
657cbb6b 3223 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3224 struct amd_iommu *iommu;
7aba6cb9 3225 int devid;
684f2888 3226
98fc5a69 3227 if (!check_device(dev))
684f2888
JR
3228 return;
3229
98fc5a69 3230 devid = get_device_id(dev);
9ee35e4c 3231 if (devid < 0)
7aba6cb9 3232 return;
684f2888 3233
657cbb6b 3234 if (dev_data->domain != NULL)
15898bbc 3235 detach_device(dev);
684f2888
JR
3236
3237 iommu = amd_iommu_rlookup_table[devid];
3238 if (!iommu)
3239 return;
3240
684f2888
JR
3241 iommu_completion_wait(iommu);
3242}
3243
01106066
JR
3244static int amd_iommu_attach_device(struct iommu_domain *dom,
3245 struct device *dev)
3246{
3f4b87b9 3247 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3248 struct iommu_dev_data *dev_data;
01106066 3249 struct amd_iommu *iommu;
15898bbc 3250 int ret;
01106066 3251
98fc5a69 3252 if (!check_device(dev))
01106066
JR
3253 return -EINVAL;
3254
657cbb6b
JR
3255 dev_data = dev->archdata.iommu;
3256
f62dda66 3257 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3258 if (!iommu)
3259 return -EINVAL;
3260
657cbb6b 3261 if (dev_data->domain)
15898bbc 3262 detach_device(dev);
01106066 3263
15898bbc 3264 ret = attach_device(dev, domain);
01106066
JR
3265
3266 iommu_completion_wait(iommu);
3267
15898bbc 3268 return ret;
01106066
JR
3269}
3270
468e2366 3271static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3272 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3273{
3f4b87b9 3274 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3275 int prot = 0;
3276 int ret;
3277
132bd68f
JR
3278 if (domain->mode == PAGE_MODE_NONE)
3279 return -EINVAL;
3280
c6229ca6
JR
3281 if (iommu_prot & IOMMU_READ)
3282 prot |= IOMMU_PROT_IR;
3283 if (iommu_prot & IOMMU_WRITE)
3284 prot |= IOMMU_PROT_IW;
3285
5d214fe6 3286 mutex_lock(&domain->api_lock);
b911b89b 3287 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
5d214fe6
JR
3288 mutex_unlock(&domain->api_lock);
3289
795e74f7 3290 return ret;
c6229ca6
JR
3291}
3292
5009065d
OBC
3293static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3294 size_t page_size)
eb74ff6c 3295{
3f4b87b9 3296 struct protection_domain *domain = to_pdomain(dom);
5009065d 3297 size_t unmap_size;
eb74ff6c 3298
132bd68f
JR
3299 if (domain->mode == PAGE_MODE_NONE)
3300 return -EINVAL;
3301
5d214fe6 3302 mutex_lock(&domain->api_lock);
468e2366 3303 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3304 mutex_unlock(&domain->api_lock);
eb74ff6c 3305
17b124bf 3306 domain_flush_tlb_pde(domain);
5d214fe6 3307
5009065d 3308 return unmap_size;
eb74ff6c
JR
3309}
3310
645c4c8d 3311static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3312 dma_addr_t iova)
645c4c8d 3313{
3f4b87b9 3314 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3315 unsigned long offset_mask, pte_pgsize;
f03152bb 3316 u64 *pte, __pte;
645c4c8d 3317
132bd68f
JR
3318 if (domain->mode == PAGE_MODE_NONE)
3319 return iova;
3320
3039ca1b 3321 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3322
a6d41a40 3323 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3324 return 0;
3325
b24b1b63
JR
3326 offset_mask = pte_pgsize - 1;
3327 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3328
b24b1b63 3329 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3330}
3331
ab636481 3332static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3333{
80a506b8
JR
3334 switch (cap) {
3335 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3336 return true;
bdddadcb 3337 case IOMMU_CAP_INTR_REMAP:
ab636481 3338 return (irq_remapping_enabled == 1);
cfdeec22
WD
3339 case IOMMU_CAP_NOEXEC:
3340 return false;
80a506b8
JR
3341 }
3342
ab636481 3343 return false;
dbb9fd86
SY
3344}
3345
35cf248f
JR
3346static void amd_iommu_get_dm_regions(struct device *dev,
3347 struct list_head *head)
3348{
3349 struct unity_map_entry *entry;
7aba6cb9 3350 int devid;
35cf248f
JR
3351
3352 devid = get_device_id(dev);
9ee35e4c 3353 if (devid < 0)
7aba6cb9 3354 return;
35cf248f
JR
3355
3356 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3357 struct iommu_dm_region *region;
3358
3359 if (devid < entry->devid_start || devid > entry->devid_end)
3360 continue;
3361
3362 region = kzalloc(sizeof(*region), GFP_KERNEL);
3363 if (!region) {
3364 pr_err("Out of memory allocating dm-regions for %s\n",
3365 dev_name(dev));
3366 return;
3367 }
3368
3369 region->start = entry->address_start;
3370 region->length = entry->address_end - entry->address_start;
3371 if (entry->prot & IOMMU_PROT_IR)
3372 region->prot |= IOMMU_READ;
3373 if (entry->prot & IOMMU_PROT_IW)
3374 region->prot |= IOMMU_WRITE;
3375
3376 list_add_tail(&region->list, head);
3377 }
3378}
3379
3380static void amd_iommu_put_dm_regions(struct device *dev,
3381 struct list_head *head)
3382{
3383 struct iommu_dm_region *entry, *next;
3384
3385 list_for_each_entry_safe(entry, next, head, list)
3386 kfree(entry);
3387}
3388
8d54d6c8
JR
3389static void amd_iommu_apply_dm_region(struct device *dev,
3390 struct iommu_domain *domain,
3391 struct iommu_dm_region *region)
3392{
3393 struct protection_domain *pdomain = to_pdomain(domain);
3394 struct dma_ops_domain *dma_dom = pdomain->priv;
3395 unsigned long start, end;
3396
3397 start = IOVA_PFN(region->start);
3398 end = IOVA_PFN(region->start + region->length);
3399
3400 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3401}
3402
b22f6434 3403static const struct iommu_ops amd_iommu_ops = {
ab636481 3404 .capable = amd_iommu_capable,
3f4b87b9
JR
3405 .domain_alloc = amd_iommu_domain_alloc,
3406 .domain_free = amd_iommu_domain_free,
26961efe
JR
3407 .attach_dev = amd_iommu_attach_device,
3408 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3409 .map = amd_iommu_map,
3410 .unmap = amd_iommu_unmap,
315786eb 3411 .map_sg = default_iommu_map_sg,
26961efe 3412 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3413 .add_device = amd_iommu_add_device,
3414 .remove_device = amd_iommu_remove_device,
b097d11a 3415 .device_group = amd_iommu_device_group,
35cf248f
JR
3416 .get_dm_regions = amd_iommu_get_dm_regions,
3417 .put_dm_regions = amd_iommu_put_dm_regions,
8d54d6c8 3418 .apply_dm_region = amd_iommu_apply_dm_region,
aa3de9c0 3419 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3420};
3421
0feae533
JR
3422/*****************************************************************************
3423 *
3424 * The next functions do a basic initialization of IOMMU for pass through
3425 * mode
3426 *
3427 * In passthrough mode the IOMMU is initialized and enabled but not used for
3428 * DMA-API translation.
3429 *
3430 *****************************************************************************/
3431
72e1dcc4
JR
3432/* IOMMUv2 specific functions */
3433int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3434{
3435 return atomic_notifier_chain_register(&ppr_notifier, nb);
3436}
3437EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3438
3439int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3440{
3441 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3442}
3443EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3444
3445void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3446{
3f4b87b9 3447 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3448 unsigned long flags;
3449
3450 spin_lock_irqsave(&domain->lock, flags);
3451
3452 /* Update data structure */
3453 domain->mode = PAGE_MODE_NONE;
3454 domain->updated = true;
3455
3456 /* Make changes visible to IOMMUs */
3457 update_domain(domain);
3458
3459 /* Page-table is not visible to IOMMU anymore, so free it */
3460 free_pagetable(domain);
3461
3462 spin_unlock_irqrestore(&domain->lock, flags);
3463}
3464EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3465
3466int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3467{
3f4b87b9 3468 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3469 unsigned long flags;
3470 int levels, ret;
3471
3472 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3473 return -EINVAL;
3474
3475 /* Number of GCR3 table levels required */
3476 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3477 levels += 1;
3478
3479 if (levels > amd_iommu_max_glx_val)
3480 return -EINVAL;
3481
3482 spin_lock_irqsave(&domain->lock, flags);
3483
3484 /*
3485 * Save us all sanity checks whether devices already in the
3486 * domain support IOMMUv2. Just force that the domain has no
3487 * devices attached when it is switched into IOMMUv2 mode.
3488 */
3489 ret = -EBUSY;
3490 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3491 goto out;
3492
3493 ret = -ENOMEM;
3494 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3495 if (domain->gcr3_tbl == NULL)
3496 goto out;
3497
3498 domain->glx = levels;
3499 domain->flags |= PD_IOMMUV2_MASK;
3500 domain->updated = true;
3501
3502 update_domain(domain);
3503
3504 ret = 0;
3505
3506out:
3507 spin_unlock_irqrestore(&domain->lock, flags);
3508
3509 return ret;
3510}
3511EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3512
3513static int __flush_pasid(struct protection_domain *domain, int pasid,
3514 u64 address, bool size)
3515{
3516 struct iommu_dev_data *dev_data;
3517 struct iommu_cmd cmd;
3518 int i, ret;
3519
3520 if (!(domain->flags & PD_IOMMUV2_MASK))
3521 return -EINVAL;
3522
3523 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3524
3525 /*
3526 * IOMMU TLB needs to be flushed before Device TLB to
3527 * prevent device TLB refill from IOMMU TLB
3528 */
3529 for (i = 0; i < amd_iommus_present; ++i) {
3530 if (domain->dev_iommu[i] == 0)
3531 continue;
3532
3533 ret = iommu_queue_command(amd_iommus[i], &cmd);
3534 if (ret != 0)
3535 goto out;
3536 }
3537
3538 /* Wait until IOMMU TLB flushes are complete */
3539 domain_flush_complete(domain);
3540
3541 /* Now flush device TLBs */
3542 list_for_each_entry(dev_data, &domain->dev_list, list) {
3543 struct amd_iommu *iommu;
3544 int qdep;
3545
1c1cc454
JR
3546 /*
3547 There might be non-IOMMUv2 capable devices in an IOMMUv2
3548 * domain.
3549 */
3550 if (!dev_data->ats.enabled)
3551 continue;
22e266c7
JR
3552
3553 qdep = dev_data->ats.qdep;
3554 iommu = amd_iommu_rlookup_table[dev_data->devid];
3555
3556 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3557 qdep, address, size);
3558
3559 ret = iommu_queue_command(iommu, &cmd);
3560 if (ret != 0)
3561 goto out;
3562 }
3563
3564 /* Wait until all device TLBs are flushed */
3565 domain_flush_complete(domain);
3566
3567 ret = 0;
3568
3569out:
3570
3571 return ret;
3572}
3573
3574static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3575 u64 address)
3576{
3577 return __flush_pasid(domain, pasid, address, false);
3578}
3579
3580int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3581 u64 address)
3582{
3f4b87b9 3583 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3584 unsigned long flags;
3585 int ret;
3586
3587 spin_lock_irqsave(&domain->lock, flags);
3588 ret = __amd_iommu_flush_page(domain, pasid, address);
3589 spin_unlock_irqrestore(&domain->lock, flags);
3590
3591 return ret;
3592}
3593EXPORT_SYMBOL(amd_iommu_flush_page);
3594
3595static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3596{
3597 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3598 true);
3599}
3600
3601int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3602{
3f4b87b9 3603 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3604 unsigned long flags;
3605 int ret;
3606
3607 spin_lock_irqsave(&domain->lock, flags);
3608 ret = __amd_iommu_flush_tlb(domain, pasid);
3609 spin_unlock_irqrestore(&domain->lock, flags);
3610
3611 return ret;
3612}
3613EXPORT_SYMBOL(amd_iommu_flush_tlb);
3614
b16137b1
JR
3615static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3616{
3617 int index;
3618 u64 *pte;
3619
3620 while (true) {
3621
3622 index = (pasid >> (9 * level)) & 0x1ff;
3623 pte = &root[index];
3624
3625 if (level == 0)
3626 break;
3627
3628 if (!(*pte & GCR3_VALID)) {
3629 if (!alloc)
3630 return NULL;
3631
3632 root = (void *)get_zeroed_page(GFP_ATOMIC);
3633 if (root == NULL)
3634 return NULL;
3635
3636 *pte = __pa(root) | GCR3_VALID;
3637 }
3638
3639 root = __va(*pte & PAGE_MASK);
3640
3641 level -= 1;
3642 }
3643
3644 return pte;
3645}
3646
3647static int __set_gcr3(struct protection_domain *domain, int pasid,
3648 unsigned long cr3)
3649{
3650 u64 *pte;
3651
3652 if (domain->mode != PAGE_MODE_NONE)
3653 return -EINVAL;
3654
3655 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3656 if (pte == NULL)
3657 return -ENOMEM;
3658
3659 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3660
3661 return __amd_iommu_flush_tlb(domain, pasid);
3662}
3663
3664static int __clear_gcr3(struct protection_domain *domain, int pasid)
3665{
3666 u64 *pte;
3667
3668 if (domain->mode != PAGE_MODE_NONE)
3669 return -EINVAL;
3670
3671 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3672 if (pte == NULL)
3673 return 0;
3674
3675 *pte = 0;
3676
3677 return __amd_iommu_flush_tlb(domain, pasid);
3678}
3679
3680int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3681 unsigned long cr3)
3682{
3f4b87b9 3683 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3684 unsigned long flags;
3685 int ret;
3686
3687 spin_lock_irqsave(&domain->lock, flags);
3688 ret = __set_gcr3(domain, pasid, cr3);
3689 spin_unlock_irqrestore(&domain->lock, flags);
3690
3691 return ret;
3692}
3693EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3694
3695int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3696{
3f4b87b9 3697 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3698 unsigned long flags;
3699 int ret;
3700
3701 spin_lock_irqsave(&domain->lock, flags);
3702 ret = __clear_gcr3(domain, pasid);
3703 spin_unlock_irqrestore(&domain->lock, flags);
3704
3705 return ret;
3706}
3707EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3708
3709int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3710 int status, int tag)
3711{
3712 struct iommu_dev_data *dev_data;
3713 struct amd_iommu *iommu;
3714 struct iommu_cmd cmd;
3715
3716 dev_data = get_dev_data(&pdev->dev);
3717 iommu = amd_iommu_rlookup_table[dev_data->devid];
3718
3719 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3720 tag, dev_data->pri_tlp);
3721
3722 return iommu_queue_command(iommu, &cmd);
3723}
3724EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3725
3726struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3727{
3f4b87b9 3728 struct protection_domain *pdomain;
f3572db8 3729
3f4b87b9
JR
3730 pdomain = get_domain(&pdev->dev);
3731 if (IS_ERR(pdomain))
f3572db8
JR
3732 return NULL;
3733
3734 /* Only return IOMMUv2 domains */
3f4b87b9 3735 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3736 return NULL;
3737
3f4b87b9 3738 return &pdomain->domain;
f3572db8
JR
3739}
3740EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3741
3742void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3743{
3744 struct iommu_dev_data *dev_data;
3745
3746 if (!amd_iommu_v2_supported())
3747 return;
3748
3749 dev_data = get_dev_data(&pdev->dev);
3750 dev_data->errata |= (1 << erratum);
3751}
3752EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3753
3754int amd_iommu_device_info(struct pci_dev *pdev,
3755 struct amd_iommu_device_info *info)
3756{
3757 int max_pasids;
3758 int pos;
3759
3760 if (pdev == NULL || info == NULL)
3761 return -EINVAL;
3762
3763 if (!amd_iommu_v2_supported())
3764 return -EINVAL;
3765
3766 memset(info, 0, sizeof(*info));
3767
3768 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3769 if (pos)
3770 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3771
3772 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3773 if (pos)
3774 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3775
3776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3777 if (pos) {
3778 int features;
3779
3780 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3781 max_pasids = min(max_pasids, (1 << 20));
3782
3783 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3784 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3785
3786 features = pci_pasid_features(pdev);
3787 if (features & PCI_PASID_CAP_EXEC)
3788 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3789 if (features & PCI_PASID_CAP_PRIV)
3790 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3791 }
3792
3793 return 0;
3794}
3795EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3796
3797#ifdef CONFIG_IRQ_REMAP
3798
3799/*****************************************************************************
3800 *
3801 * Interrupt Remapping Implementation
3802 *
3803 *****************************************************************************/
3804
3805union irte {
3806 u32 val;
3807 struct {
3808 u32 valid : 1,
3809 no_fault : 1,
3810 int_type : 3,
3811 rq_eoi : 1,
3812 dm : 1,
3813 rsvd_1 : 1,
3814 destination : 8,
3815 vector : 8,
3816 rsvd_2 : 8;
3817 } fields;
3818};
3819
9c724966
JL
3820struct irq_2_irte {
3821 u16 devid; /* Device ID for IRTE table */
3822 u16 index; /* Index into IRTE table*/
3823};
3824
7c71d306
JL
3825struct amd_ir_data {
3826 struct irq_2_irte irq_2_irte;
3827 union irte irte_entry;
3828 union {
3829 struct msi_msg msi_entry;
3830 };
3831};
3832
3833static struct irq_chip amd_ir_chip;
3834
2b324506
JR
3835#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3836#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3837#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3838#define DTE_IRQ_REMAP_ENABLE 1ULL
3839
3840static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3841{
3842 u64 dte;
3843
3844 dte = amd_iommu_dev_table[devid].data[2];
3845 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3846 dte |= virt_to_phys(table->table);
3847 dte |= DTE_IRQ_REMAP_INTCTL;
3848 dte |= DTE_IRQ_TABLE_LEN;
3849 dte |= DTE_IRQ_REMAP_ENABLE;
3850
3851 amd_iommu_dev_table[devid].data[2] = dte;
3852}
3853
3854#define IRTE_ALLOCATED (~1U)
3855
3856static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3857{
3858 struct irq_remap_table *table = NULL;
3859 struct amd_iommu *iommu;
3860 unsigned long flags;
3861 u16 alias;
3862
3863 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3864
3865 iommu = amd_iommu_rlookup_table[devid];
3866 if (!iommu)
3867 goto out_unlock;
3868
3869 table = irq_lookup_table[devid];
3870 if (table)
3871 goto out;
3872
3873 alias = amd_iommu_alias_table[devid];
3874 table = irq_lookup_table[alias];
3875 if (table) {
3876 irq_lookup_table[devid] = table;
3877 set_dte_irq_entry(devid, table);
3878 iommu_flush_dte(iommu, devid);
3879 goto out;
3880 }
3881
3882 /* Nothing there yet, allocate new irq remapping table */
3883 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3884 if (!table)
3885 goto out;
3886
197887f0
JR
3887 /* Initialize table spin-lock */
3888 spin_lock_init(&table->lock);
3889
2b324506
JR
3890 if (ioapic)
3891 /* Keep the first 32 indexes free for IOAPIC interrupts */
3892 table->min_index = 32;
3893
3894 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3895 if (!table->table) {
3896 kfree(table);
821f0f68 3897 table = NULL;
2b324506
JR
3898 goto out;
3899 }
3900
3901 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3902
3903 if (ioapic) {
3904 int i;
3905
3906 for (i = 0; i < 32; ++i)
3907 table->table[i] = IRTE_ALLOCATED;
3908 }
3909
3910 irq_lookup_table[devid] = table;
3911 set_dte_irq_entry(devid, table);
3912 iommu_flush_dte(iommu, devid);
3913 if (devid != alias) {
3914 irq_lookup_table[alias] = table;
e028a9e6 3915 set_dte_irq_entry(alias, table);
2b324506
JR
3916 iommu_flush_dte(iommu, alias);
3917 }
3918
3919out:
3920 iommu_completion_wait(iommu);
3921
3922out_unlock:
3923 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3924
3925 return table;
3926}
3927
3c3d4f90 3928static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3929{
3930 struct irq_remap_table *table;
3931 unsigned long flags;
3932 int index, c;
3933
3934 table = get_irq_table(devid, false);
3935 if (!table)
3936 return -ENODEV;
3937
3938 spin_lock_irqsave(&table->lock, flags);
3939
3940 /* Scan table for free entries */
3941 for (c = 0, index = table->min_index;
3942 index < MAX_IRQS_PER_TABLE;
3943 ++index) {
3944 if (table->table[index] == 0)
3945 c += 1;
3946 else
3947 c = 0;
3948
3949 if (c == count) {
2b324506
JR
3950 for (; c != 0; --c)
3951 table->table[index - c + 1] = IRTE_ALLOCATED;
3952
3953 index -= count - 1;
2b324506
JR
3954 goto out;
3955 }
3956 }
3957
3958 index = -ENOSPC;
3959
3960out:
3961 spin_unlock_irqrestore(&table->lock, flags);
3962
3963 return index;
3964}
3965
2b324506
JR
3966static int modify_irte(u16 devid, int index, union irte irte)
3967{
3968 struct irq_remap_table *table;
3969 struct amd_iommu *iommu;
3970 unsigned long flags;
3971
3972 iommu = amd_iommu_rlookup_table[devid];
3973 if (iommu == NULL)
3974 return -EINVAL;
3975
3976 table = get_irq_table(devid, false);
3977 if (!table)
3978 return -ENOMEM;
3979
3980 spin_lock_irqsave(&table->lock, flags);
3981 table->table[index] = irte.val;
3982 spin_unlock_irqrestore(&table->lock, flags);
3983
3984 iommu_flush_irt(iommu, devid);
3985 iommu_completion_wait(iommu);
3986
3987 return 0;
3988}
3989
3990static void free_irte(u16 devid, int index)
3991{
3992 struct irq_remap_table *table;
3993 struct amd_iommu *iommu;
3994 unsigned long flags;
3995
3996 iommu = amd_iommu_rlookup_table[devid];
3997 if (iommu == NULL)
3998 return;
3999
4000 table = get_irq_table(devid, false);
4001 if (!table)
4002 return;
4003
4004 spin_lock_irqsave(&table->lock, flags);
4005 table->table[index] = 0;
4006 spin_unlock_irqrestore(&table->lock, flags);
4007
4008 iommu_flush_irt(iommu, devid);
4009 iommu_completion_wait(iommu);
4010}
4011
7c71d306 4012static int get_devid(struct irq_alloc_info *info)
5527de74 4013{
7c71d306 4014 int devid = -1;
5527de74 4015
7c71d306
JL
4016 switch (info->type) {
4017 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4018 devid = get_ioapic_devid(info->ioapic_id);
4019 break;
4020 case X86_IRQ_ALLOC_TYPE_HPET:
4021 devid = get_hpet_devid(info->hpet_id);
4022 break;
4023 case X86_IRQ_ALLOC_TYPE_MSI:
4024 case X86_IRQ_ALLOC_TYPE_MSIX:
4025 devid = get_device_id(&info->msi_dev->dev);
4026 break;
4027 default:
4028 BUG_ON(1);
4029 break;
4030 }
5527de74 4031
7c71d306
JL
4032 return devid;
4033}
5527de74 4034
7c71d306
JL
4035static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4036{
4037 struct amd_iommu *iommu;
4038 int devid;
5527de74 4039
7c71d306
JL
4040 if (!info)
4041 return NULL;
5527de74 4042
7c71d306
JL
4043 devid = get_devid(info);
4044 if (devid >= 0) {
4045 iommu = amd_iommu_rlookup_table[devid];
4046 if (iommu)
4047 return iommu->ir_domain;
4048 }
5527de74 4049
7c71d306 4050 return NULL;
5527de74
JR
4051}
4052
7c71d306 4053static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 4054{
7c71d306
JL
4055 struct amd_iommu *iommu;
4056 int devid;
5527de74 4057
7c71d306
JL
4058 if (!info)
4059 return NULL;
5527de74 4060
7c71d306
JL
4061 switch (info->type) {
4062 case X86_IRQ_ALLOC_TYPE_MSI:
4063 case X86_IRQ_ALLOC_TYPE_MSIX:
4064 devid = get_device_id(&info->msi_dev->dev);
9ee35e4c 4065 if (devid < 0)
7aba6cb9
WZ
4066 return NULL;
4067
1fb260bc
DC
4068 iommu = amd_iommu_rlookup_table[devid];
4069 if (iommu)
4070 return iommu->msi_domain;
7c71d306
JL
4071 break;
4072 default:
4073 break;
4074 }
5527de74 4075
7c71d306
JL
4076 return NULL;
4077}
5527de74 4078
6b474b82 4079struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4080 .prepare = amd_iommu_prepare,
4081 .enable = amd_iommu_enable,
4082 .disable = amd_iommu_disable,
4083 .reenable = amd_iommu_reenable,
4084 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
4085 .get_ir_irq_domain = get_ir_irq_domain,
4086 .get_irq_domain = get_irq_domain,
4087};
5527de74 4088
7c71d306
JL
4089static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4090 struct irq_cfg *irq_cfg,
4091 struct irq_alloc_info *info,
4092 int devid, int index, int sub_handle)
4093{
4094 struct irq_2_irte *irte_info = &data->irq_2_irte;
4095 struct msi_msg *msg = &data->msi_entry;
4096 union irte *irte = &data->irte_entry;
4097 struct IO_APIC_route_entry *entry;
5527de74 4098
7c71d306
JL
4099 data->irq_2_irte.devid = devid;
4100 data->irq_2_irte.index = index + sub_handle;
5527de74 4101
7c71d306
JL
4102 /* Setup IRTE for IOMMU */
4103 irte->val = 0;
4104 irte->fields.vector = irq_cfg->vector;
4105 irte->fields.int_type = apic->irq_delivery_mode;
4106 irte->fields.destination = irq_cfg->dest_apicid;
4107 irte->fields.dm = apic->irq_dest_mode;
4108 irte->fields.valid = 1;
4109
4110 switch (info->type) {
4111 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4112 /* Setup IOAPIC entry */
4113 entry = info->ioapic_entry;
4114 info->ioapic_entry = NULL;
4115 memset(entry, 0, sizeof(*entry));
4116 entry->vector = index;
4117 entry->mask = 0;
4118 entry->trigger = info->ioapic_trigger;
4119 entry->polarity = info->ioapic_polarity;
4120 /* Mask level triggered irqs. */
4121 if (info->ioapic_trigger)
4122 entry->mask = 1;
4123 break;
5527de74 4124
7c71d306
JL
4125 case X86_IRQ_ALLOC_TYPE_HPET:
4126 case X86_IRQ_ALLOC_TYPE_MSI:
4127 case X86_IRQ_ALLOC_TYPE_MSIX:
4128 msg->address_hi = MSI_ADDR_BASE_HI;
4129 msg->address_lo = MSI_ADDR_BASE_LO;
4130 msg->data = irte_info->index;
4131 break;
5527de74 4132
7c71d306
JL
4133 default:
4134 BUG_ON(1);
4135 break;
4136 }
5527de74
JR
4137}
4138
7c71d306
JL
4139static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4140 unsigned int nr_irqs, void *arg)
5527de74 4141{
7c71d306
JL
4142 struct irq_alloc_info *info = arg;
4143 struct irq_data *irq_data;
4144 struct amd_ir_data *data;
5527de74 4145 struct irq_cfg *cfg;
7c71d306
JL
4146 int i, ret, devid;
4147 int index = -1;
5527de74 4148
7c71d306
JL
4149 if (!info)
4150 return -EINVAL;
4151 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4152 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
4153 return -EINVAL;
4154
7c71d306
JL
4155 /*
4156 * With IRQ remapping enabled, don't need contiguous CPU vectors
4157 * to support multiple MSI interrupts.
4158 */
4159 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4160 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 4161
7c71d306
JL
4162 devid = get_devid(info);
4163 if (devid < 0)
4164 return -EINVAL;
5527de74 4165
7c71d306
JL
4166 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4167 if (ret < 0)
4168 return ret;
0b4d48cb 4169
7c71d306
JL
4170 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4171 if (get_irq_table(devid, true))
4172 index = info->ioapic_pin;
4173 else
4174 ret = -ENOMEM;
4175 } else {
3c3d4f90 4176 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
4177 }
4178 if (index < 0) {
4179 pr_warn("Failed to allocate IRTE\n");
7c71d306
JL
4180 goto out_free_parent;
4181 }
0b4d48cb 4182
7c71d306
JL
4183 for (i = 0; i < nr_irqs; i++) {
4184 irq_data = irq_domain_get_irq_data(domain, virq + i);
4185 cfg = irqd_cfg(irq_data);
4186 if (!irq_data || !cfg) {
4187 ret = -EINVAL;
4188 goto out_free_data;
4189 }
0b4d48cb 4190
a130e69f
JR
4191 ret = -ENOMEM;
4192 data = kzalloc(sizeof(*data), GFP_KERNEL);
4193 if (!data)
4194 goto out_free_data;
4195
7c71d306
JL
4196 irq_data->hwirq = (devid << 16) + i;
4197 irq_data->chip_data = data;
4198 irq_data->chip = &amd_ir_chip;
4199 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4200 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4201 }
a130e69f 4202
7c71d306 4203 return 0;
0b4d48cb 4204
7c71d306
JL
4205out_free_data:
4206 for (i--; i >= 0; i--) {
4207 irq_data = irq_domain_get_irq_data(domain, virq + i);
4208 if (irq_data)
4209 kfree(irq_data->chip_data);
4210 }
4211 for (i = 0; i < nr_irqs; i++)
4212 free_irte(devid, index + i);
4213out_free_parent:
4214 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4215 return ret;
0b4d48cb
JR
4216}
4217
7c71d306
JL
4218static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4219 unsigned int nr_irqs)
0b4d48cb 4220{
7c71d306
JL
4221 struct irq_2_irte *irte_info;
4222 struct irq_data *irq_data;
4223 struct amd_ir_data *data;
4224 int i;
0b4d48cb 4225
7c71d306
JL
4226 for (i = 0; i < nr_irqs; i++) {
4227 irq_data = irq_domain_get_irq_data(domain, virq + i);
4228 if (irq_data && irq_data->chip_data) {
4229 data = irq_data->chip_data;
4230 irte_info = &data->irq_2_irte;
4231 free_irte(irte_info->devid, irte_info->index);
4232 kfree(data);
4233 }
4234 }
4235 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4236}
0b4d48cb 4237
7c71d306
JL
4238static void irq_remapping_activate(struct irq_domain *domain,
4239 struct irq_data *irq_data)
4240{
4241 struct amd_ir_data *data = irq_data->chip_data;
4242 struct irq_2_irte *irte_info = &data->irq_2_irte;
0b4d48cb 4243
7c71d306 4244 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
0b4d48cb
JR
4245}
4246
7c71d306
JL
4247static void irq_remapping_deactivate(struct irq_domain *domain,
4248 struct irq_data *irq_data)
0b4d48cb 4249{
7c71d306
JL
4250 struct amd_ir_data *data = irq_data->chip_data;
4251 struct irq_2_irte *irte_info = &data->irq_2_irte;
4252 union irte entry;
0b4d48cb 4253
7c71d306
JL
4254 entry.val = 0;
4255 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4256}
0b4d48cb 4257
7c71d306
JL
4258static struct irq_domain_ops amd_ir_domain_ops = {
4259 .alloc = irq_remapping_alloc,
4260 .free = irq_remapping_free,
4261 .activate = irq_remapping_activate,
4262 .deactivate = irq_remapping_deactivate,
6b474b82 4263};
0b4d48cb 4264
7c71d306
JL
4265static int amd_ir_set_affinity(struct irq_data *data,
4266 const struct cpumask *mask, bool force)
4267{
4268 struct amd_ir_data *ir_data = data->chip_data;
4269 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4270 struct irq_cfg *cfg = irqd_cfg(data);
4271 struct irq_data *parent = data->parent_data;
4272 int ret;
0b4d48cb 4273
7c71d306
JL
4274 ret = parent->chip->irq_set_affinity(parent, mask, force);
4275 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4276 return ret;
0b4d48cb 4277
7c71d306
JL
4278 /*
4279 * Atomically updates the IRTE with the new destination, vector
4280 * and flushes the interrupt entry cache.
4281 */
4282 ir_data->irte_entry.fields.vector = cfg->vector;
4283 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4284 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
0b4d48cb 4285
7c71d306
JL
4286 /*
4287 * After this point, all the interrupts will start arriving
4288 * at the new destination. So, time to cleanup the previous
4289 * vector allocation.
4290 */
c6c2002b 4291 send_cleanup_vector(cfg);
7c71d306
JL
4292
4293 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
4294}
4295
7c71d306 4296static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 4297{
7c71d306 4298 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 4299
7c71d306
JL
4300 *msg = ir_data->msi_entry;
4301}
d976195c 4302
7c71d306
JL
4303static struct irq_chip amd_ir_chip = {
4304 .irq_ack = ir_ack_apic_edge,
4305 .irq_set_affinity = amd_ir_set_affinity,
4306 .irq_compose_msi_msg = ir_compose_msi_msg,
4307};
d976195c 4308
7c71d306
JL
4309int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4310{
4311 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4312 if (!iommu->ir_domain)
4313 return -ENOMEM;
d976195c 4314
7c71d306
JL
4315 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4316 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
d976195c
JR
4317
4318 return 0;
4319}
2b324506 4320#endif