]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Update to use PCI DMA aliases
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
61e015ac 49#include "pci.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
26961efe 84static struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
431b2a20
JR
91/*
92 * general struct to manage commands send to an IOMMU
93 */
d6449536 94struct iommu_cmd {
b6c02715
JR
95 u32 data[4];
96};
97
05152a04
JR
98struct kmem_cache *amd_iommu_irq_cache;
99
04bfdd84 100static void update_domain(struct protection_domain *domain);
5abcdba4 101static int __init alloc_passthrough_domain(void);
c1eee67b 102
15898bbc
JR
103/****************************************************************************
104 *
105 * Helper functions
106 *
107 ****************************************************************************/
108
f62dda66 109static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
110{
111 struct iommu_dev_data *dev_data;
112 unsigned long flags;
113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data)
116 return NULL;
117
f62dda66 118 dev_data->devid = devid;
8fa5f802
JR
119 atomic_set(&dev_data->bind, 0);
120
121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124
125 return dev_data;
126}
127
128static void free_dev_data(struct iommu_dev_data *dev_data)
129{
130 unsigned long flags;
131
132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135
78bfa9f3
AW
136 if (dev_data->group)
137 iommu_group_put(dev_data->group);
138
8fa5f802
JR
139 kfree(dev_data);
140}
141
3b03bb74
JR
142static struct iommu_dev_data *search_dev_data(u16 devid)
143{
144 struct iommu_dev_data *dev_data;
145 unsigned long flags;
146
147 spin_lock_irqsave(&dev_data_list_lock, flags);
148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 if (dev_data->devid == devid)
150 goto out_unlock;
151 }
152
153 dev_data = NULL;
154
155out_unlock:
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 return dev_data;
159}
160
161static struct iommu_dev_data *find_dev_data(u16 devid)
162{
163 struct iommu_dev_data *dev_data;
164
165 dev_data = search_dev_data(devid);
166
167 if (dev_data == NULL)
168 dev_data = alloc_dev_data(devid);
169
170 return dev_data;
171}
172
15898bbc
JR
173static inline u16 get_device_id(struct device *dev)
174{
175 struct pci_dev *pdev = to_pci_dev(dev);
176
6f2729ba 177 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
178}
179
657cbb6b
JR
180static struct iommu_dev_data *get_dev_data(struct device *dev)
181{
182 return dev->archdata.iommu;
183}
184
5abcdba4
JR
185static bool pci_iommuv2_capable(struct pci_dev *pdev)
186{
187 static const int caps[] = {
188 PCI_EXT_CAP_ID_ATS,
46277b75
JR
189 PCI_EXT_CAP_ID_PRI,
190 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
191 };
192 int i, pos;
193
194 for (i = 0; i < 3; ++i) {
195 pos = pci_find_ext_capability(pdev, caps[i]);
196 if (pos == 0)
197 return false;
198 }
199
200 return true;
201}
202
6a113ddc
JR
203static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204{
205 struct iommu_dev_data *dev_data;
206
207 dev_data = get_dev_data(&pdev->dev);
208
209 return dev_data->errata & (1 << erratum) ? true : false;
210}
211
71c70984
JR
212/*
213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device
215 */
216static struct dma_ops_domain *find_protection_domain(u16 devid)
217{
218 struct dma_ops_domain *entry, *ret = NULL;
219 unsigned long flags;
220 u16 alias = amd_iommu_alias_table[devid];
221
222 if (list_empty(&iommu_pd_list))
223 return NULL;
224
225 spin_lock_irqsave(&iommu_pd_list_lock, flags);
226
227 list_for_each_entry(entry, &iommu_pd_list, list) {
228 if (entry->target_dev == devid ||
229 entry->target_dev == alias) {
230 ret = entry;
231 break;
232 }
233 }
234
235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236
237 return ret;
238}
239
98fc5a69
JR
240/*
241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers.
243 */
244static bool check_device(struct device *dev)
245{
246 u16 devid;
247
248 if (!dev || !dev->dma_mask)
249 return false;
250
b82a2272
YW
251 /* No PCI device */
252 if (!dev_is_pci(dev))
98fc5a69
JR
253 return false;
254
255 devid = get_device_id(dev);
256
257 /* Out of our scope? */
258 if (devid > amd_iommu_last_bdf)
259 return false;
260
261 if (amd_iommu_rlookup_table[devid] == NULL)
262 return false;
263
264 return true;
265}
266
2bff6a50
AW
267static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268{
269 while (!bus->self) {
270 if (!pci_is_root_bus(bus))
271 bus = bus->parent;
272 else
273 return ERR_PTR(-ENODEV);
274 }
275
276 return bus;
277}
278
664b6003
AW
279#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280
2851db21 281static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
657cbb6b 282{
2851db21 283 struct pci_dev *dma_pdev = pdev;
9dcd6130 284
31fe9435 285 /* Account for quirked devices */
664b6003
AW
286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287
31fe9435
AW
288 /*
289 * If it's a multifunction device that does not support our
c14d2690
AW
290 * required ACS flags, add to the same group as lowest numbered
291 * function that also does not suport the required ACS flags.
31fe9435 292 */
664b6003 293 if (dma_pdev->multifunction &&
c14d2690
AW
294 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
295 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
296
297 for (i = 0; i < 8; i++) {
298 struct pci_dev *tmp;
299
300 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
301 if (!tmp)
302 continue;
303
304 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
305 swap_pci_ref(&dma_pdev, tmp);
306 break;
307 }
308 pci_dev_put(tmp);
309 }
310 }
664b6003 311
31fe9435
AW
312 /*
313 * Devices on the root bus go through the iommu. If that's not us,
314 * find the next upstream device and test ACS up to the root bus.
315 * Finding the next device may require skipping virtual buses.
316 */
664b6003 317 while (!pci_is_root_bus(dma_pdev->bus)) {
2bff6a50
AW
318 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
319 if (IS_ERR(bus))
320 break;
31fe9435
AW
321
322 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
664b6003
AW
323 break;
324
31fe9435 325 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
664b6003
AW
326 }
327
2851db21
AW
328 return dma_pdev;
329}
330
ce7ac4ab
AW
331static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
332{
333 struct iommu_group *group = iommu_group_get(&pdev->dev);
334 int ret;
335
336 if (!group) {
337 group = iommu_group_alloc();
338 if (IS_ERR(group))
339 return PTR_ERR(group);
340
341 WARN_ON(&pdev->dev != dev);
342 }
343
344 ret = iommu_group_add_device(group, dev);
345 iommu_group_put(group);
346 return ret;
347}
348
78bfa9f3
AW
349static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
350 struct device *dev)
351{
352 if (!dev_data->group) {
353 struct iommu_group *group = iommu_group_alloc();
354 if (IS_ERR(group))
355 return PTR_ERR(group);
356
357 dev_data->group = group;
358 }
359
360 return iommu_group_add_device(dev_data->group, dev);
361}
362
2851db21
AW
363static int init_iommu_group(struct device *dev)
364{
365 struct iommu_dev_data *dev_data;
366 struct iommu_group *group;
78bfa9f3 367 struct pci_dev *dma_pdev;
2851db21
AW
368 int ret;
369
370 group = iommu_group_get(dev);
371 if (group) {
372 iommu_group_put(group);
373 return 0;
374 }
375
376 dev_data = find_dev_data(get_device_id(dev));
377 if (!dev_data)
378 return -ENOMEM;
379
380 if (dev_data->alias_data) {
381 u16 alias;
78bfa9f3
AW
382 struct pci_bus *bus;
383
384 if (dev_data->alias_data->group)
385 goto use_group;
2851db21 386
78bfa9f3
AW
387 /*
388 * If the alias device exists, it's effectively just a first
389 * level quirk for finding the DMA source.
390 */
2851db21
AW
391 alias = amd_iommu_alias_table[dev_data->devid];
392 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
78bfa9f3
AW
393 if (dma_pdev) {
394 dma_pdev = get_isolation_root(dma_pdev);
395 goto use_pdev;
396 }
2851db21 397
78bfa9f3
AW
398 /*
399 * If the alias is virtual, try to find a parent device
400 * and test whether the IOMMU group is actualy rooted above
401 * the alias. Be careful to also test the parent device if
402 * we think the alias is the root of the group.
403 */
404 bus = pci_find_bus(0, alias >> 8);
405 if (!bus)
406 goto use_group;
407
408 bus = find_hosted_bus(bus);
409 if (IS_ERR(bus) || !bus->self)
410 goto use_group;
411
412 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
413 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
414 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
415 goto use_pdev;
416
417 pci_dev_put(dma_pdev);
418 goto use_group;
419 }
2851db21 420
78bfa9f3
AW
421 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
422use_pdev:
ce7ac4ab 423 ret = use_pdev_iommu_group(dma_pdev, dev);
9dcd6130 424 pci_dev_put(dma_pdev);
eb9c9527 425 return ret;
78bfa9f3
AW
426use_group:
427 return use_dev_data_iommu_group(dev_data->alias_data, dev);
eb9c9527
AW
428}
429
c1931090
AW
430static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
431{
432 *(u16 *)data = alias;
433 return 0;
434}
435
436static u16 get_alias(struct device *dev)
437{
438 struct pci_dev *pdev = to_pci_dev(dev);
439 u16 devid, ivrs_alias, pci_alias;
440
441 devid = get_device_id(dev);
442 ivrs_alias = amd_iommu_alias_table[devid];
443 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
444
445 if (ivrs_alias == pci_alias)
446 return ivrs_alias;
447
448 /*
449 * DMA alias showdown
450 *
451 * The IVRS is fairly reliable in telling us about aliases, but it
452 * can't know about every screwy device. If we don't have an IVRS
453 * reported alias, use the PCI reported alias. In that case we may
454 * still need to initialize the rlookup and dev_table entries if the
455 * alias is to a non-existent device.
456 */
457 if (ivrs_alias == devid) {
458 if (!amd_iommu_rlookup_table[pci_alias]) {
459 amd_iommu_rlookup_table[pci_alias] =
460 amd_iommu_rlookup_table[devid];
461 memcpy(amd_iommu_dev_table[pci_alias].data,
462 amd_iommu_dev_table[devid].data,
463 sizeof(amd_iommu_dev_table[pci_alias].data));
464 }
465
466 return pci_alias;
467 }
468
469 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
470 "for device %s[%04x:%04x], kernel reported alias "
471 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
472 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
473 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
474 PCI_FUNC(pci_alias));
475
476 /*
477 * If we don't have a PCI DMA alias and the IVRS alias is on the same
478 * bus, then the IVRS table may know about a quirk that we don't.
479 */
480 if (pci_alias == devid &&
481 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
482 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
483 pdev->dma_alias_devfn = ivrs_alias & 0xff;
484 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
485 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
486 dev_name(dev));
487 }
488
489 return ivrs_alias;
490}
491
eb9c9527
AW
492static int iommu_init_device(struct device *dev)
493{
494 struct pci_dev *pdev = to_pci_dev(dev);
495 struct iommu_dev_data *dev_data;
496 u16 alias;
497 int ret;
498
499 if (dev->archdata.iommu)
500 return 0;
501
502 dev_data = find_dev_data(get_device_id(dev));
503 if (!dev_data)
504 return -ENOMEM;
505
c1931090
AW
506 alias = get_alias(dev);
507
eb9c9527
AW
508 if (alias != dev_data->devid) {
509 struct iommu_dev_data *alias_data;
510
511 alias_data = find_dev_data(alias);
512 if (alias_data == NULL) {
513 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
514 dev_name(dev));
515 free_dev_data(dev_data);
516 return -ENOTSUPP;
517 }
518 dev_data->alias_data = alias_data;
519 }
520
521 ret = init_iommu_group(dev);
e644a013
RK
522 if (ret) {
523 free_dev_data(dev_data);
9dcd6130 524 return ret;
e644a013 525 }
9dcd6130 526
5abcdba4
JR
527 if (pci_iommuv2_capable(pdev)) {
528 struct amd_iommu *iommu;
529
530 iommu = amd_iommu_rlookup_table[dev_data->devid];
531 dev_data->iommu_v2 = iommu->is_iommu_v2;
532 }
533
657cbb6b
JR
534 dev->archdata.iommu = dev_data;
535
657cbb6b
JR
536 return 0;
537}
538
26018874
JR
539static void iommu_ignore_device(struct device *dev)
540{
541 u16 devid, alias;
542
543 devid = get_device_id(dev);
544 alias = amd_iommu_alias_table[devid];
545
546 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
547 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
548
549 amd_iommu_rlookup_table[devid] = NULL;
550 amd_iommu_rlookup_table[alias] = NULL;
551}
552
657cbb6b
JR
553static void iommu_uninit_device(struct device *dev)
554{
c1931090
AW
555 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
556
557 if (!dev_data)
558 return;
559
9dcd6130
AW
560 iommu_group_remove_device(dev);
561
c1931090
AW
562 /* Unlink from alias, it may change if another device is re-plugged */
563 dev_data->alias_data = NULL;
564
8fa5f802 565 /*
c1931090
AW
566 * We keep dev_data around for unplugged devices and reuse it when the
567 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 568 */
657cbb6b 569}
b7cc9554
JR
570
571void __init amd_iommu_uninit_devices(void)
572{
8fa5f802 573 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
574 struct pci_dev *pdev = NULL;
575
576 for_each_pci_dev(pdev) {
577
578 if (!check_device(&pdev->dev))
579 continue;
580
581 iommu_uninit_device(&pdev->dev);
582 }
8fa5f802
JR
583
584 /* Free all of our dev_data structures */
585 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
586 free_dev_data(dev_data);
b7cc9554
JR
587}
588
589int __init amd_iommu_init_devices(void)
590{
591 struct pci_dev *pdev = NULL;
592 int ret = 0;
593
594 for_each_pci_dev(pdev) {
595
596 if (!check_device(&pdev->dev))
597 continue;
598
599 ret = iommu_init_device(&pdev->dev);
26018874
JR
600 if (ret == -ENOTSUPP)
601 iommu_ignore_device(&pdev->dev);
602 else if (ret)
b7cc9554
JR
603 goto out_free;
604 }
605
606 return 0;
607
608out_free:
609
610 amd_iommu_uninit_devices();
611
612 return ret;
613}
7f26508b
JR
614#ifdef CONFIG_AMD_IOMMU_STATS
615
616/*
617 * Initialization code for statistics collection
618 */
619
da49f6df 620DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 621DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 622DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 623DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 624DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 625DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 626DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 627DECLARE_STATS_COUNTER(cross_page);
f57d98ae 628DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 629DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 630DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 631DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
632DECLARE_STATS_COUNTER(complete_ppr);
633DECLARE_STATS_COUNTER(invalidate_iotlb);
634DECLARE_STATS_COUNTER(invalidate_iotlb_all);
635DECLARE_STATS_COUNTER(pri_requests);
636
7f26508b 637static struct dentry *stats_dir;
7f26508b
JR
638static struct dentry *de_fflush;
639
640static void amd_iommu_stats_add(struct __iommu_counter *cnt)
641{
642 if (stats_dir == NULL)
643 return;
644
645 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
646 &cnt->value);
647}
648
649static void amd_iommu_stats_init(void)
650{
651 stats_dir = debugfs_create_dir("amd-iommu", NULL);
652 if (stats_dir == NULL)
653 return;
654
7f26508b 655 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 656 &amd_iommu_unmap_flush);
da49f6df
JR
657
658 amd_iommu_stats_add(&compl_wait);
0f2a86f2 659 amd_iommu_stats_add(&cnt_map_single);
146a6917 660 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 661 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 662 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 663 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 664 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 665 amd_iommu_stats_add(&cross_page);
f57d98ae 666 amd_iommu_stats_add(&domain_flush_single);
18811f55 667 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 668 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 669 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
670 amd_iommu_stats_add(&complete_ppr);
671 amd_iommu_stats_add(&invalidate_iotlb);
672 amd_iommu_stats_add(&invalidate_iotlb_all);
673 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
674}
675
676#endif
677
a80dc3e0
JR
678/****************************************************************************
679 *
680 * Interrupt handling functions
681 *
682 ****************************************************************************/
683
e3e59876
JR
684static void dump_dte_entry(u16 devid)
685{
686 int i;
687
ee6c2868
JR
688 for (i = 0; i < 4; ++i)
689 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
690 amd_iommu_dev_table[devid].data[i]);
691}
692
945b4ac4
JR
693static void dump_command(unsigned long phys_addr)
694{
695 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
696 int i;
697
698 for (i = 0; i < 4; ++i)
699 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
700}
701
a345b23b 702static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 703{
3d06fca8
JR
704 int type, devid, domid, flags;
705 volatile u32 *event = __evt;
706 int count = 0;
707 u64 address;
708
709retry:
710 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
711 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
712 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
713 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
714 address = (u64)(((u64)event[3]) << 32) | event[2];
715
716 if (type == 0) {
717 /* Did we hit the erratum? */
718 if (++count == LOOP_TIMEOUT) {
719 pr_err("AMD-Vi: No event written to event log\n");
720 return;
721 }
722 udelay(1);
723 goto retry;
724 }
90008ee4 725
4c6f40d4 726 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
727
728 switch (type) {
729 case EVENT_TYPE_ILL_DEV:
730 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
731 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 732 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 733 address, flags);
e3e59876 734 dump_dte_entry(devid);
90008ee4
JR
735 break;
736 case EVENT_TYPE_IO_FAULT:
737 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
738 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 739 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
740 domid, address, flags);
741 break;
742 case EVENT_TYPE_DEV_TAB_ERR:
743 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
744 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 745 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
746 address, flags);
747 break;
748 case EVENT_TYPE_PAGE_TAB_ERR:
749 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
750 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 751 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
752 domid, address, flags);
753 break;
754 case EVENT_TYPE_ILL_CMD:
755 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 756 dump_command(address);
90008ee4
JR
757 break;
758 case EVENT_TYPE_CMD_HARD_ERR:
759 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
760 "flags=0x%04x]\n", address, flags);
761 break;
762 case EVENT_TYPE_IOTLB_INV_TO:
763 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
764 "address=0x%016llx]\n",
c5081cd7 765 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
766 address);
767 break;
768 case EVENT_TYPE_INV_DEV_REQ:
769 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
770 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 771 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
772 address, flags);
773 break;
774 default:
775 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
776 }
3d06fca8
JR
777
778 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
779}
780
781static void iommu_poll_events(struct amd_iommu *iommu)
782{
783 u32 head, tail;
90008ee4
JR
784
785 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
786 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
787
788 while (head != tail) {
a345b23b 789 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
790 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
791 }
792
793 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
794}
795
eee53537 796static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
797{
798 struct amd_iommu_fault fault;
72e1dcc4 799
399be2f5
JR
800 INC_STATS_COUNTER(pri_requests);
801
72e1dcc4
JR
802 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
803 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
804 return;
805 }
806
807 fault.address = raw[1];
808 fault.pasid = PPR_PASID(raw[0]);
809 fault.device_id = PPR_DEVID(raw[0]);
810 fault.tag = PPR_TAG(raw[0]);
811 fault.flags = PPR_FLAGS(raw[0]);
812
72e1dcc4
JR
813 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
814}
815
816static void iommu_poll_ppr_log(struct amd_iommu *iommu)
817{
72e1dcc4
JR
818 u32 head, tail;
819
820 if (iommu->ppr_log == NULL)
821 return;
822
72e1dcc4
JR
823 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
824 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
825
826 while (head != tail) {
eee53537
JR
827 volatile u64 *raw;
828 u64 entry[2];
829 int i;
830
831 raw = (u64 *)(iommu->ppr_log + head);
832
833 /*
834 * Hardware bug: Interrupt may arrive before the entry is
835 * written to memory. If this happens we need to wait for the
836 * entry to arrive.
837 */
838 for (i = 0; i < LOOP_TIMEOUT; ++i) {
839 if (PPR_REQ_TYPE(raw[0]) != 0)
840 break;
841 udelay(1);
842 }
72e1dcc4 843
eee53537
JR
844 /* Avoid memcpy function-call overhead */
845 entry[0] = raw[0];
846 entry[1] = raw[1];
72e1dcc4 847
eee53537
JR
848 /*
849 * To detect the hardware bug we need to clear the entry
850 * back to zero.
851 */
852 raw[0] = raw[1] = 0UL;
853
854 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
855 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
856 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 857
eee53537
JR
858 /* Handle PPR entry */
859 iommu_handle_ppr_entry(iommu, entry);
860
eee53537
JR
861 /* Refresh ring-buffer information */
862 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
863 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
864 }
72e1dcc4
JR
865}
866
72fe00f0 867irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 868{
3f398bc7
SS
869 struct amd_iommu *iommu = (struct amd_iommu *) data;
870 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 871
3f398bc7
SS
872 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
873 /* Enable EVT and PPR interrupts again */
874 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
875 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 876
3f398bc7
SS
877 if (status & MMIO_STATUS_EVT_INT_MASK) {
878 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
879 iommu_poll_events(iommu);
880 }
90008ee4 881
3f398bc7
SS
882 if (status & MMIO_STATUS_PPR_INT_MASK) {
883 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
884 iommu_poll_ppr_log(iommu);
885 }
90008ee4 886
3f398bc7
SS
887 /*
888 * Hardware bug: ERBT1312
889 * When re-enabling interrupt (by writing 1
890 * to clear the bit), the hardware might also try to set
891 * the interrupt bit in the event status register.
892 * In this scenario, the bit will be set, and disable
893 * subsequent interrupts.
894 *
895 * Workaround: The IOMMU driver should read back the
896 * status register and check if the interrupt bits are cleared.
897 * If not, driver will need to go through the interrupt handler
898 * again and re-clear the bits
899 */
900 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
901 }
90008ee4 902 return IRQ_HANDLED;
a80dc3e0
JR
903}
904
72fe00f0
JR
905irqreturn_t amd_iommu_int_handler(int irq, void *data)
906{
907 return IRQ_WAKE_THREAD;
908}
909
431b2a20
JR
910/****************************************************************************
911 *
912 * IOMMU command queuing functions
913 *
914 ****************************************************************************/
915
ac0ea6e9
JR
916static int wait_on_sem(volatile u64 *sem)
917{
918 int i = 0;
919
920 while (*sem == 0 && i < LOOP_TIMEOUT) {
921 udelay(1);
922 i += 1;
923 }
924
925 if (i == LOOP_TIMEOUT) {
926 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
927 return -EIO;
928 }
929
930 return 0;
931}
932
933static void copy_cmd_to_buffer(struct amd_iommu *iommu,
934 struct iommu_cmd *cmd,
935 u32 tail)
a19ae1ec 936{
a19ae1ec
JR
937 u8 *target;
938
8a7c5ef3 939 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
940 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
941
942 /* Copy command to buffer */
943 memcpy(target, cmd, sizeof(*cmd));
944
945 /* Tell the IOMMU about it */
a19ae1ec 946 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 947}
a19ae1ec 948
815b33fd 949static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 950{
815b33fd
JR
951 WARN_ON(address & 0x7ULL);
952
ded46737 953 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
954 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
955 cmd->data[1] = upper_32_bits(__pa(address));
956 cmd->data[2] = 1;
ded46737
JR
957 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
958}
959
94fe79e2
JR
960static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
961{
962 memset(cmd, 0, sizeof(*cmd));
963 cmd->data[0] = devid;
964 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
965}
966
11b6402c
JR
967static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
968 size_t size, u16 domid, int pde)
969{
970 u64 pages;
971 int s;
972
973 pages = iommu_num_pages(address, size, PAGE_SIZE);
974 s = 0;
975
976 if (pages > 1) {
977 /*
978 * If we have to flush more than one page, flush all
979 * TLB entries for this domain
980 */
981 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
982 s = 1;
983 }
984
985 address &= PAGE_MASK;
986
987 memset(cmd, 0, sizeof(*cmd));
988 cmd->data[1] |= domid;
989 cmd->data[2] = lower_32_bits(address);
990 cmd->data[3] = upper_32_bits(address);
991 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
992 if (s) /* size bit - we flush more than one 4kb page */
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 994 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
995 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
996}
997
cb41ed85
JR
998static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
999 u64 address, size_t size)
1000{
1001 u64 pages;
1002 int s;
1003
1004 pages = iommu_num_pages(address, size, PAGE_SIZE);
1005 s = 0;
1006
1007 if (pages > 1) {
1008 /*
1009 * If we have to flush more than one page, flush all
1010 * TLB entries for this domain
1011 */
1012 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1013 s = 1;
1014 }
1015
1016 address &= PAGE_MASK;
1017
1018 memset(cmd, 0, sizeof(*cmd));
1019 cmd->data[0] = devid;
1020 cmd->data[0] |= (qdep & 0xff) << 24;
1021 cmd->data[1] = devid;
1022 cmd->data[2] = lower_32_bits(address);
1023 cmd->data[3] = upper_32_bits(address);
1024 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1025 if (s)
1026 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1027}
1028
22e266c7
JR
1029static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
1030 u64 address, bool size)
1031{
1032 memset(cmd, 0, sizeof(*cmd));
1033
1034 address &= ~(0xfffULL);
1035
a919a018 1036 cmd->data[0] = pasid;
22e266c7
JR
1037 cmd->data[1] = domid;
1038 cmd->data[2] = lower_32_bits(address);
1039 cmd->data[3] = upper_32_bits(address);
1040 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1041 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1042 if (size)
1043 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1044 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1045}
1046
1047static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
1048 int qdep, u64 address, bool size)
1049{
1050 memset(cmd, 0, sizeof(*cmd));
1051
1052 address &= ~(0xfffULL);
1053
1054 cmd->data[0] = devid;
e8d2d82d 1055 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
1056 cmd->data[0] |= (qdep & 0xff) << 24;
1057 cmd->data[1] = devid;
e8d2d82d 1058 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
1059 cmd->data[2] = lower_32_bits(address);
1060 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1061 cmd->data[3] = upper_32_bits(address);
1062 if (size)
1063 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1064 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1065}
1066
c99afa25
JR
1067static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1068 int status, int tag, bool gn)
1069{
1070 memset(cmd, 0, sizeof(*cmd));
1071
1072 cmd->data[0] = devid;
1073 if (gn) {
a919a018 1074 cmd->data[1] = pasid;
c99afa25
JR
1075 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1076 }
1077 cmd->data[3] = tag & 0x1ff;
1078 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1079
1080 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1081}
1082
58fc7f14
JR
1083static void build_inv_all(struct iommu_cmd *cmd)
1084{
1085 memset(cmd, 0, sizeof(*cmd));
1086 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
1087}
1088
7ef2798d
JR
1089static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1090{
1091 memset(cmd, 0, sizeof(*cmd));
1092 cmd->data[0] = devid;
1093 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1094}
1095
431b2a20 1096/*
431b2a20 1097 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 1098 * hardware about the new command.
431b2a20 1099 */
f1ca1512
JR
1100static int iommu_queue_command_sync(struct amd_iommu *iommu,
1101 struct iommu_cmd *cmd,
1102 bool sync)
a19ae1ec 1103{
ac0ea6e9 1104 u32 left, tail, head, next_tail;
a19ae1ec 1105 unsigned long flags;
a19ae1ec 1106
549c90dc 1107 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
1108
1109again:
a19ae1ec 1110 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 1111
ac0ea6e9
JR
1112 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1113 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1114 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1115 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 1116
ac0ea6e9
JR
1117 if (left <= 2) {
1118 struct iommu_cmd sync_cmd;
1119 volatile u64 sem = 0;
1120 int ret;
8d201968 1121
ac0ea6e9
JR
1122 build_completion_wait(&sync_cmd, (u64)&sem);
1123 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1124
ac0ea6e9
JR
1125 spin_unlock_irqrestore(&iommu->lock, flags);
1126
1127 if ((ret = wait_on_sem(&sem)) != 0)
1128 return ret;
1129
1130 goto again;
8d201968
JR
1131 }
1132
ac0ea6e9
JR
1133 copy_cmd_to_buffer(iommu, cmd, tail);
1134
1135 /* We need to sync now to make sure all commands are processed */
f1ca1512 1136 iommu->need_sync = sync;
ac0ea6e9 1137
a19ae1ec 1138 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1139
815b33fd 1140 return 0;
8d201968
JR
1141}
1142
f1ca1512
JR
1143static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1144{
1145 return iommu_queue_command_sync(iommu, cmd, true);
1146}
1147
8d201968
JR
1148/*
1149 * This function queues a completion wait command into the command
1150 * buffer of an IOMMU
1151 */
a19ae1ec 1152static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1153{
1154 struct iommu_cmd cmd;
815b33fd 1155 volatile u64 sem = 0;
ac0ea6e9 1156 int ret;
8d201968 1157
09ee17eb 1158 if (!iommu->need_sync)
815b33fd 1159 return 0;
09ee17eb 1160
815b33fd 1161 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1162
f1ca1512 1163 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1164 if (ret)
815b33fd 1165 return ret;
8d201968 1166
ac0ea6e9 1167 return wait_on_sem(&sem);
8d201968
JR
1168}
1169
d8c13085 1170static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1171{
d8c13085 1172 struct iommu_cmd cmd;
a19ae1ec 1173
d8c13085 1174 build_inv_dte(&cmd, devid);
7e4f88da 1175
d8c13085
JR
1176 return iommu_queue_command(iommu, &cmd);
1177}
09ee17eb 1178
7d0c5cc5
JR
1179static void iommu_flush_dte_all(struct amd_iommu *iommu)
1180{
1181 u32 devid;
09ee17eb 1182
7d0c5cc5
JR
1183 for (devid = 0; devid <= 0xffff; ++devid)
1184 iommu_flush_dte(iommu, devid);
a19ae1ec 1185
7d0c5cc5
JR
1186 iommu_completion_wait(iommu);
1187}
84df8175 1188
7d0c5cc5
JR
1189/*
1190 * This function uses heavy locking and may disable irqs for some time. But
1191 * this is no issue because it is only called during resume.
1192 */
1193static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1194{
1195 u32 dom_id;
a19ae1ec 1196
7d0c5cc5
JR
1197 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1198 struct iommu_cmd cmd;
1199 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1200 dom_id, 1);
1201 iommu_queue_command(iommu, &cmd);
1202 }
8eed9833 1203
7d0c5cc5 1204 iommu_completion_wait(iommu);
a19ae1ec
JR
1205}
1206
58fc7f14 1207static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1208{
58fc7f14 1209 struct iommu_cmd cmd;
0518a3a4 1210
58fc7f14 1211 build_inv_all(&cmd);
0518a3a4 1212
58fc7f14
JR
1213 iommu_queue_command(iommu, &cmd);
1214 iommu_completion_wait(iommu);
1215}
1216
7ef2798d
JR
1217static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1218{
1219 struct iommu_cmd cmd;
1220
1221 build_inv_irt(&cmd, devid);
1222
1223 iommu_queue_command(iommu, &cmd);
1224}
1225
1226static void iommu_flush_irt_all(struct amd_iommu *iommu)
1227{
1228 u32 devid;
1229
1230 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1231 iommu_flush_irt(iommu, devid);
1232
1233 iommu_completion_wait(iommu);
1234}
1235
7d0c5cc5
JR
1236void iommu_flush_all_caches(struct amd_iommu *iommu)
1237{
58fc7f14
JR
1238 if (iommu_feature(iommu, FEATURE_IA)) {
1239 iommu_flush_all(iommu);
1240 } else {
1241 iommu_flush_dte_all(iommu);
7ef2798d 1242 iommu_flush_irt_all(iommu);
58fc7f14 1243 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1244 }
1245}
1246
431b2a20 1247/*
cb41ed85 1248 * Command send function for flushing on-device TLB
431b2a20 1249 */
6c542047
JR
1250static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1251 u64 address, size_t size)
3fa43655
JR
1252{
1253 struct amd_iommu *iommu;
b00d3bcf 1254 struct iommu_cmd cmd;
cb41ed85 1255 int qdep;
3fa43655 1256
ea61cddb
JR
1257 qdep = dev_data->ats.qdep;
1258 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1259
ea61cddb 1260 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1261
1262 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1263}
1264
431b2a20 1265/*
431b2a20 1266 * Command send function for invalidating a device table entry
431b2a20 1267 */
6c542047 1268static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1269{
3fa43655 1270 struct amd_iommu *iommu;
ee2fa743 1271 int ret;
a19ae1ec 1272
6c542047 1273 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1274
f62dda66 1275 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1276 if (ret)
1277 return ret;
1278
ea61cddb 1279 if (dev_data->ats.enabled)
6c542047 1280 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1281
ee2fa743 1282 return ret;
a19ae1ec
JR
1283}
1284
431b2a20
JR
1285/*
1286 * TLB invalidation function which is called from the mapping functions.
1287 * It invalidates a single PTE if the range to flush is within a single
1288 * page. Otherwise it flushes the whole TLB of the IOMMU.
1289 */
17b124bf
JR
1290static void __domain_flush_pages(struct protection_domain *domain,
1291 u64 address, size_t size, int pde)
a19ae1ec 1292{
cb41ed85 1293 struct iommu_dev_data *dev_data;
11b6402c
JR
1294 struct iommu_cmd cmd;
1295 int ret = 0, i;
a19ae1ec 1296
11b6402c 1297 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1298
6de8ad9b
JR
1299 for (i = 0; i < amd_iommus_present; ++i) {
1300 if (!domain->dev_iommu[i])
1301 continue;
1302
1303 /*
1304 * Devices of this domain are behind this IOMMU
1305 * We need a TLB flush
1306 */
11b6402c 1307 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1308 }
1309
cb41ed85 1310 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1311
ea61cddb 1312 if (!dev_data->ats.enabled)
cb41ed85
JR
1313 continue;
1314
6c542047 1315 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1316 }
1317
11b6402c 1318 WARN_ON(ret);
6de8ad9b
JR
1319}
1320
17b124bf
JR
1321static void domain_flush_pages(struct protection_domain *domain,
1322 u64 address, size_t size)
6de8ad9b 1323{
17b124bf 1324 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1325}
b6c02715 1326
1c655773 1327/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1328static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1329{
17b124bf 1330 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1331}
1332
42a49f96 1333/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1334static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1335{
17b124bf 1336 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1337}
1338
17b124bf 1339static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1340{
17b124bf 1341 int i;
18811f55 1342
17b124bf
JR
1343 for (i = 0; i < amd_iommus_present; ++i) {
1344 if (!domain->dev_iommu[i])
1345 continue;
bfd1be18 1346
17b124bf
JR
1347 /*
1348 * Devices of this domain are behind this IOMMU
1349 * We need to wait for completion of all commands.
1350 */
1351 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1352 }
e394d72a
JR
1353}
1354
b00d3bcf 1355
09b42804 1356/*
b00d3bcf 1357 * This function flushes the DTEs for all devices in domain
09b42804 1358 */
17b124bf 1359static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1360{
b00d3bcf 1361 struct iommu_dev_data *dev_data;
b26e81b8 1362
b00d3bcf 1363 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1364 device_flush_dte(dev_data);
a345b23b
JR
1365}
1366
431b2a20
JR
1367/****************************************************************************
1368 *
1369 * The functions below are used the create the page table mappings for
1370 * unity mapped regions.
1371 *
1372 ****************************************************************************/
1373
308973d3
JR
1374/*
1375 * This function is used to add another level to an IO page table. Adding
1376 * another level increases the size of the address space by 9 bits to a size up
1377 * to 64 bits.
1378 */
1379static bool increase_address_space(struct protection_domain *domain,
1380 gfp_t gfp)
1381{
1382 u64 *pte;
1383
1384 if (domain->mode == PAGE_MODE_6_LEVEL)
1385 /* address space already 64 bit large */
1386 return false;
1387
1388 pte = (void *)get_zeroed_page(gfp);
1389 if (!pte)
1390 return false;
1391
1392 *pte = PM_LEVEL_PDE(domain->mode,
1393 virt_to_phys(domain->pt_root));
1394 domain->pt_root = pte;
1395 domain->mode += 1;
1396 domain->updated = true;
1397
1398 return true;
1399}
1400
1401static u64 *alloc_pte(struct protection_domain *domain,
1402 unsigned long address,
cbb9d729 1403 unsigned long page_size,
308973d3
JR
1404 u64 **pte_page,
1405 gfp_t gfp)
1406{
cbb9d729 1407 int level, end_lvl;
308973d3 1408 u64 *pte, *page;
cbb9d729
JR
1409
1410 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1411
1412 while (address > PM_LEVEL_SIZE(domain->mode))
1413 increase_address_space(domain, gfp);
1414
cbb9d729
JR
1415 level = domain->mode - 1;
1416 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1417 address = PAGE_SIZE_ALIGN(address, page_size);
1418 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1419
1420 while (level > end_lvl) {
1421 if (!IOMMU_PTE_PRESENT(*pte)) {
1422 page = (u64 *)get_zeroed_page(gfp);
1423 if (!page)
1424 return NULL;
1425 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1426 }
1427
cbb9d729
JR
1428 /* No level skipping support yet */
1429 if (PM_PTE_LEVEL(*pte) != level)
1430 return NULL;
1431
308973d3
JR
1432 level -= 1;
1433
1434 pte = IOMMU_PTE_PAGE(*pte);
1435
1436 if (pte_page && level == end_lvl)
1437 *pte_page = pte;
1438
1439 pte = &pte[PM_LEVEL_INDEX(level, address)];
1440 }
1441
1442 return pte;
1443}
1444
1445/*
1446 * This function checks if there is a PTE for a given dma address. If
1447 * there is one, it returns the pointer to it.
1448 */
24cd7723 1449static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1450{
1451 int level;
1452 u64 *pte;
1453
24cd7723
JR
1454 if (address > PM_LEVEL_SIZE(domain->mode))
1455 return NULL;
1456
1457 level = domain->mode - 1;
1458 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1459
24cd7723
JR
1460 while (level > 0) {
1461
1462 /* Not Present */
308973d3
JR
1463 if (!IOMMU_PTE_PRESENT(*pte))
1464 return NULL;
1465
24cd7723
JR
1466 /* Large PTE */
1467 if (PM_PTE_LEVEL(*pte) == 0x07) {
1468 unsigned long pte_mask, __pte;
1469
1470 /*
1471 * If we have a series of large PTEs, make
1472 * sure to return a pointer to the first one.
1473 */
1474 pte_mask = PTE_PAGE_SIZE(*pte);
1475 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1476 __pte = ((unsigned long)pte) & pte_mask;
1477
1478 return (u64 *)__pte;
1479 }
1480
1481 /* No level skipping support yet */
1482 if (PM_PTE_LEVEL(*pte) != level)
1483 return NULL;
1484
308973d3
JR
1485 level -= 1;
1486
24cd7723 1487 /* Walk to the next level */
308973d3
JR
1488 pte = IOMMU_PTE_PAGE(*pte);
1489 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1490 }
1491
1492 return pte;
1493}
1494
431b2a20
JR
1495/*
1496 * Generic mapping functions. It maps a physical address into a DMA
1497 * address space. It allocates the page table pages if necessary.
1498 * In the future it can be extended to a generic mapping function
1499 * supporting all features of AMD IOMMU page tables like level skipping
1500 * and full 64 bit address spaces.
1501 */
38e817fe
JR
1502static int iommu_map_page(struct protection_domain *dom,
1503 unsigned long bus_addr,
1504 unsigned long phys_addr,
abdc5eb3 1505 int prot,
cbb9d729 1506 unsigned long page_size)
bd0e5211 1507{
8bda3092 1508 u64 __pte, *pte;
cbb9d729 1509 int i, count;
abdc5eb3 1510
bad1cac2 1511 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1512 return -EINVAL;
1513
cbb9d729
JR
1514 bus_addr = PAGE_ALIGN(bus_addr);
1515 phys_addr = PAGE_ALIGN(phys_addr);
1516 count = PAGE_SIZE_PTE_COUNT(page_size);
1517 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1518
1519 for (i = 0; i < count; ++i)
1520 if (IOMMU_PTE_PRESENT(pte[i]))
1521 return -EBUSY;
bd0e5211 1522
cbb9d729
JR
1523 if (page_size > PAGE_SIZE) {
1524 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1525 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1526 } else
1527 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1528
bd0e5211
JR
1529 if (prot & IOMMU_PROT_IR)
1530 __pte |= IOMMU_PTE_IR;
1531 if (prot & IOMMU_PROT_IW)
1532 __pte |= IOMMU_PTE_IW;
1533
cbb9d729
JR
1534 for (i = 0; i < count; ++i)
1535 pte[i] = __pte;
bd0e5211 1536
04bfdd84
JR
1537 update_domain(dom);
1538
bd0e5211
JR
1539 return 0;
1540}
1541
24cd7723
JR
1542static unsigned long iommu_unmap_page(struct protection_domain *dom,
1543 unsigned long bus_addr,
1544 unsigned long page_size)
eb74ff6c 1545{
24cd7723
JR
1546 unsigned long long unmap_size, unmapped;
1547 u64 *pte;
1548
1549 BUG_ON(!is_power_of_2(page_size));
1550
1551 unmapped = 0;
eb74ff6c 1552
24cd7723
JR
1553 while (unmapped < page_size) {
1554
1555 pte = fetch_pte(dom, bus_addr);
1556
1557 if (!pte) {
1558 /*
1559 * No PTE for this address
1560 * move forward in 4kb steps
1561 */
1562 unmap_size = PAGE_SIZE;
1563 } else if (PM_PTE_LEVEL(*pte) == 0) {
1564 /* 4kb PTE found for this address */
1565 unmap_size = PAGE_SIZE;
1566 *pte = 0ULL;
1567 } else {
1568 int count, i;
1569
1570 /* Large PTE found which maps this address */
1571 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1572
1573 /* Only unmap from the first pte in the page */
1574 if ((unmap_size - 1) & bus_addr)
1575 break;
24cd7723
JR
1576 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1577 for (i = 0; i < count; i++)
1578 pte[i] = 0ULL;
1579 }
1580
1581 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1582 unmapped += unmap_size;
1583 }
1584
60d0ca3c 1585 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1586
24cd7723 1587 return unmapped;
eb74ff6c 1588}
eb74ff6c 1589
431b2a20
JR
1590/*
1591 * This function checks if a specific unity mapping entry is needed for
1592 * this specific IOMMU.
1593 */
bd0e5211
JR
1594static int iommu_for_unity_map(struct amd_iommu *iommu,
1595 struct unity_map_entry *entry)
1596{
1597 u16 bdf, i;
1598
1599 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1600 bdf = amd_iommu_alias_table[i];
1601 if (amd_iommu_rlookup_table[bdf] == iommu)
1602 return 1;
1603 }
1604
1605 return 0;
1606}
1607
431b2a20
JR
1608/*
1609 * This function actually applies the mapping to the page table of the
1610 * dma_ops domain.
1611 */
bd0e5211
JR
1612static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1613 struct unity_map_entry *e)
1614{
1615 u64 addr;
1616 int ret;
1617
1618 for (addr = e->address_start; addr < e->address_end;
1619 addr += PAGE_SIZE) {
abdc5eb3 1620 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1621 PAGE_SIZE);
bd0e5211
JR
1622 if (ret)
1623 return ret;
1624 /*
1625 * if unity mapping is in aperture range mark the page
1626 * as allocated in the aperture
1627 */
1628 if (addr < dma_dom->aperture_size)
c3239567 1629 __set_bit(addr >> PAGE_SHIFT,
384de729 1630 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1631 }
1632
1633 return 0;
1634}
1635
171e7b37
JR
1636/*
1637 * Init the unity mappings for a specific IOMMU in the system
1638 *
1639 * Basically iterates over all unity mapping entries and applies them to
1640 * the default domain DMA of that IOMMU if necessary.
1641 */
1642static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1643{
1644 struct unity_map_entry *entry;
1645 int ret;
1646
1647 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1648 if (!iommu_for_unity_map(iommu, entry))
1649 continue;
1650 ret = dma_ops_unity_map(iommu->default_dom, entry);
1651 if (ret)
1652 return ret;
1653 }
1654
1655 return 0;
1656}
1657
431b2a20
JR
1658/*
1659 * Inits the unity mappings required for a specific device
1660 */
bd0e5211
JR
1661static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1662 u16 devid)
1663{
1664 struct unity_map_entry *e;
1665 int ret;
1666
1667 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1668 if (!(devid >= e->devid_start && devid <= e->devid_end))
1669 continue;
1670 ret = dma_ops_unity_map(dma_dom, e);
1671 if (ret)
1672 return ret;
1673 }
1674
1675 return 0;
1676}
1677
431b2a20
JR
1678/****************************************************************************
1679 *
1680 * The next functions belong to the address allocator for the dma_ops
1681 * interface functions. They work like the allocators in the other IOMMU
1682 * drivers. Its basically a bitmap which marks the allocated pages in
1683 * the aperture. Maybe it could be enhanced in the future to a more
1684 * efficient allocator.
1685 *
1686 ****************************************************************************/
d3086444 1687
431b2a20 1688/*
384de729 1689 * The address allocator core functions.
431b2a20
JR
1690 *
1691 * called with domain->lock held
1692 */
384de729 1693
171e7b37
JR
1694/*
1695 * Used to reserve address ranges in the aperture (e.g. for exclusion
1696 * ranges.
1697 */
1698static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1699 unsigned long start_page,
1700 unsigned int pages)
1701{
1702 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1703
1704 if (start_page + pages > last_page)
1705 pages = last_page - start_page;
1706
1707 for (i = start_page; i < start_page + pages; ++i) {
1708 int index = i / APERTURE_RANGE_PAGES;
1709 int page = i % APERTURE_RANGE_PAGES;
1710 __set_bit(page, dom->aperture[index]->bitmap);
1711 }
1712}
1713
9cabe89b
JR
1714/*
1715 * This function is used to add a new aperture range to an existing
1716 * aperture in case of dma_ops domain allocation or address allocation
1717 * failure.
1718 */
576175c2 1719static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1720 bool populate, gfp_t gfp)
1721{
1722 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1723 struct amd_iommu *iommu;
17f5b569 1724 unsigned long i, old_size;
9cabe89b 1725
f5e9705c
JR
1726#ifdef CONFIG_IOMMU_STRESS
1727 populate = false;
1728#endif
1729
9cabe89b
JR
1730 if (index >= APERTURE_MAX_RANGES)
1731 return -ENOMEM;
1732
1733 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1734 if (!dma_dom->aperture[index])
1735 return -ENOMEM;
1736
1737 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1738 if (!dma_dom->aperture[index]->bitmap)
1739 goto out_free;
1740
1741 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1742
1743 if (populate) {
1744 unsigned long address = dma_dom->aperture_size;
1745 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1746 u64 *pte, *pte_page;
1747
1748 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1749 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1750 &pte_page, gfp);
1751 if (!pte)
1752 goto out_free;
1753
1754 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1755
1756 address += APERTURE_RANGE_SIZE / 64;
1757 }
1758 }
1759
17f5b569 1760 old_size = dma_dom->aperture_size;
9cabe89b
JR
1761 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1762
17f5b569
JR
1763 /* Reserve address range used for MSI messages */
1764 if (old_size < MSI_ADDR_BASE_LO &&
1765 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1766 unsigned long spage;
1767 int pages;
1768
1769 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1770 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1771
1772 dma_ops_reserve_addresses(dma_dom, spage, pages);
1773 }
1774
b595076a 1775 /* Initialize the exclusion range if necessary */
576175c2
JR
1776 for_each_iommu(iommu) {
1777 if (iommu->exclusion_start &&
1778 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1779 && iommu->exclusion_start < dma_dom->aperture_size) {
1780 unsigned long startpage;
1781 int pages = iommu_num_pages(iommu->exclusion_start,
1782 iommu->exclusion_length,
1783 PAGE_SIZE);
1784 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1785 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1786 }
00cd122a
JR
1787 }
1788
1789 /*
1790 * Check for areas already mapped as present in the new aperture
1791 * range and mark those pages as reserved in the allocator. Such
1792 * mappings may already exist as a result of requested unity
1793 * mappings for devices.
1794 */
1795 for (i = dma_dom->aperture[index]->offset;
1796 i < dma_dom->aperture_size;
1797 i += PAGE_SIZE) {
24cd7723 1798 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1799 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1800 continue;
1801
fcd0861d 1802 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1803 }
1804
04bfdd84
JR
1805 update_domain(&dma_dom->domain);
1806
9cabe89b
JR
1807 return 0;
1808
1809out_free:
04bfdd84
JR
1810 update_domain(&dma_dom->domain);
1811
9cabe89b
JR
1812 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1813
1814 kfree(dma_dom->aperture[index]);
1815 dma_dom->aperture[index] = NULL;
1816
1817 return -ENOMEM;
1818}
1819
384de729
JR
1820static unsigned long dma_ops_area_alloc(struct device *dev,
1821 struct dma_ops_domain *dom,
1822 unsigned int pages,
1823 unsigned long align_mask,
1824 u64 dma_mask,
1825 unsigned long start)
1826{
803b8cb4 1827 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1828 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1829 int i = start >> APERTURE_RANGE_SHIFT;
1830 unsigned long boundary_size;
1831 unsigned long address = -1;
1832 unsigned long limit;
1833
803b8cb4
JR
1834 next_bit >>= PAGE_SHIFT;
1835
384de729
JR
1836 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1837 PAGE_SIZE) >> PAGE_SHIFT;
1838
1839 for (;i < max_index; ++i) {
1840 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1841
1842 if (dom->aperture[i]->offset >= dma_mask)
1843 break;
1844
1845 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1846 dma_mask >> PAGE_SHIFT);
1847
1848 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1849 limit, next_bit, pages, 0,
1850 boundary_size, align_mask);
1851 if (address != -1) {
1852 address = dom->aperture[i]->offset +
1853 (address << PAGE_SHIFT);
803b8cb4 1854 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1855 break;
1856 }
1857
1858 next_bit = 0;
1859 }
1860
1861 return address;
1862}
1863
d3086444
JR
1864static unsigned long dma_ops_alloc_addresses(struct device *dev,
1865 struct dma_ops_domain *dom,
6d4f343f 1866 unsigned int pages,
832a90c3
JR
1867 unsigned long align_mask,
1868 u64 dma_mask)
d3086444 1869{
d3086444 1870 unsigned long address;
d3086444 1871
fe16f088
JR
1872#ifdef CONFIG_IOMMU_STRESS
1873 dom->next_address = 0;
1874 dom->need_flush = true;
1875#endif
d3086444 1876
384de729 1877 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1878 dma_mask, dom->next_address);
d3086444 1879
1c655773 1880 if (address == -1) {
803b8cb4 1881 dom->next_address = 0;
384de729
JR
1882 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1883 dma_mask, 0);
1c655773
JR
1884 dom->need_flush = true;
1885 }
d3086444 1886
384de729 1887 if (unlikely(address == -1))
8fd524b3 1888 address = DMA_ERROR_CODE;
d3086444
JR
1889
1890 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1891
1892 return address;
1893}
1894
431b2a20
JR
1895/*
1896 * The address free function.
1897 *
1898 * called with domain->lock held
1899 */
d3086444
JR
1900static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1901 unsigned long address,
1902 unsigned int pages)
1903{
384de729
JR
1904 unsigned i = address >> APERTURE_RANGE_SHIFT;
1905 struct aperture_range *range = dom->aperture[i];
80be308d 1906
384de729
JR
1907 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1908
47bccd6b
JR
1909#ifdef CONFIG_IOMMU_STRESS
1910 if (i < 4)
1911 return;
1912#endif
80be308d 1913
803b8cb4 1914 if (address >= dom->next_address)
80be308d 1915 dom->need_flush = true;
384de729
JR
1916
1917 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1918
a66022c4 1919 bitmap_clear(range->bitmap, address, pages);
384de729 1920
d3086444
JR
1921}
1922
431b2a20
JR
1923/****************************************************************************
1924 *
1925 * The next functions belong to the domain allocation. A domain is
1926 * allocated for every IOMMU as the default domain. If device isolation
1927 * is enabled, every device get its own domain. The most important thing
1928 * about domains is the page table mapping the DMA address space they
1929 * contain.
1930 *
1931 ****************************************************************************/
1932
aeb26f55
JR
1933/*
1934 * This function adds a protection domain to the global protection domain list
1935 */
1936static void add_domain_to_list(struct protection_domain *domain)
1937{
1938 unsigned long flags;
1939
1940 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1941 list_add(&domain->list, &amd_iommu_pd_list);
1942 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1943}
1944
1945/*
1946 * This function removes a protection domain to the global
1947 * protection domain list
1948 */
1949static void del_domain_from_list(struct protection_domain *domain)
1950{
1951 unsigned long flags;
1952
1953 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1954 list_del(&domain->list);
1955 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1956}
1957
ec487d1a
JR
1958static u16 domain_id_alloc(void)
1959{
1960 unsigned long flags;
1961 int id;
1962
1963 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1964 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1965 BUG_ON(id == 0);
1966 if (id > 0 && id < MAX_DOMAIN_ID)
1967 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1968 else
1969 id = 0;
1970 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1971
1972 return id;
1973}
1974
a2acfb75
JR
1975static void domain_id_free(int id)
1976{
1977 unsigned long flags;
1978
1979 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1980 if (id > 0 && id < MAX_DOMAIN_ID)
1981 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1982 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1983}
a2acfb75 1984
5c34c403
JR
1985#define DEFINE_FREE_PT_FN(LVL, FN) \
1986static void free_pt_##LVL (unsigned long __pt) \
1987{ \
1988 unsigned long p; \
1989 u64 *pt; \
1990 int i; \
1991 \
1992 pt = (u64 *)__pt; \
1993 \
1994 for (i = 0; i < 512; ++i) { \
1995 if (!IOMMU_PTE_PRESENT(pt[i])) \
1996 continue; \
1997 \
1998 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1999 FN(p); \
2000 } \
2001 free_page((unsigned long)pt); \
2002}
2003
2004DEFINE_FREE_PT_FN(l2, free_page)
2005DEFINE_FREE_PT_FN(l3, free_pt_l2)
2006DEFINE_FREE_PT_FN(l4, free_pt_l3)
2007DEFINE_FREE_PT_FN(l5, free_pt_l4)
2008DEFINE_FREE_PT_FN(l6, free_pt_l5)
2009
86db2e5d 2010static void free_pagetable(struct protection_domain *domain)
ec487d1a 2011{
5c34c403 2012 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 2013
5c34c403
JR
2014 switch (domain->mode) {
2015 case PAGE_MODE_NONE:
2016 break;
2017 case PAGE_MODE_1_LEVEL:
2018 free_page(root);
2019 break;
2020 case PAGE_MODE_2_LEVEL:
2021 free_pt_l2(root);
2022 break;
2023 case PAGE_MODE_3_LEVEL:
2024 free_pt_l3(root);
2025 break;
2026 case PAGE_MODE_4_LEVEL:
2027 free_pt_l4(root);
2028 break;
2029 case PAGE_MODE_5_LEVEL:
2030 free_pt_l5(root);
2031 break;
2032 case PAGE_MODE_6_LEVEL:
2033 free_pt_l6(root);
2034 break;
2035 default:
2036 BUG();
ec487d1a 2037 }
ec487d1a
JR
2038}
2039
b16137b1
JR
2040static void free_gcr3_tbl_level1(u64 *tbl)
2041{
2042 u64 *ptr;
2043 int i;
2044
2045 for (i = 0; i < 512; ++i) {
2046 if (!(tbl[i] & GCR3_VALID))
2047 continue;
2048
2049 ptr = __va(tbl[i] & PAGE_MASK);
2050
2051 free_page((unsigned long)ptr);
2052 }
2053}
2054
2055static void free_gcr3_tbl_level2(u64 *tbl)
2056{
2057 u64 *ptr;
2058 int i;
2059
2060 for (i = 0; i < 512; ++i) {
2061 if (!(tbl[i] & GCR3_VALID))
2062 continue;
2063
2064 ptr = __va(tbl[i] & PAGE_MASK);
2065
2066 free_gcr3_tbl_level1(ptr);
2067 }
2068}
2069
52815b75
JR
2070static void free_gcr3_table(struct protection_domain *domain)
2071{
b16137b1
JR
2072 if (domain->glx == 2)
2073 free_gcr3_tbl_level2(domain->gcr3_tbl);
2074 else if (domain->glx == 1)
2075 free_gcr3_tbl_level1(domain->gcr3_tbl);
2076 else if (domain->glx != 0)
2077 BUG();
2078
52815b75
JR
2079 free_page((unsigned long)domain->gcr3_tbl);
2080}
2081
431b2a20
JR
2082/*
2083 * Free a domain, only used if something went wrong in the
2084 * allocation path and we need to free an already allocated page table
2085 */
ec487d1a
JR
2086static void dma_ops_domain_free(struct dma_ops_domain *dom)
2087{
384de729
JR
2088 int i;
2089
ec487d1a
JR
2090 if (!dom)
2091 return;
2092
aeb26f55
JR
2093 del_domain_from_list(&dom->domain);
2094
86db2e5d 2095 free_pagetable(&dom->domain);
ec487d1a 2096
384de729
JR
2097 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2098 if (!dom->aperture[i])
2099 continue;
2100 free_page((unsigned long)dom->aperture[i]->bitmap);
2101 kfree(dom->aperture[i]);
2102 }
ec487d1a
JR
2103
2104 kfree(dom);
2105}
2106
431b2a20
JR
2107/*
2108 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 2109 * It also initializes the page table and the address allocator data
431b2a20
JR
2110 * structures required for the dma_ops interface
2111 */
87a64d52 2112static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2113{
2114 struct dma_ops_domain *dma_dom;
ec487d1a
JR
2115
2116 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2117 if (!dma_dom)
2118 return NULL;
2119
2120 spin_lock_init(&dma_dom->domain.lock);
2121
2122 dma_dom->domain.id = domain_id_alloc();
2123 if (dma_dom->domain.id == 0)
2124 goto free_dma_dom;
7c392cbe 2125 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2126 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2127 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2128 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2129 dma_dom->domain.priv = dma_dom;
2130 if (!dma_dom->domain.pt_root)
2131 goto free_dma_dom;
ec487d1a 2132
1c655773 2133 dma_dom->need_flush = false;
bd60b735 2134 dma_dom->target_dev = 0xffff;
1c655773 2135
aeb26f55
JR
2136 add_domain_to_list(&dma_dom->domain);
2137
576175c2 2138 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2139 goto free_dma_dom;
ec487d1a 2140
431b2a20 2141 /*
ec487d1a
JR
2142 * mark the first page as allocated so we never return 0 as
2143 * a valid dma-address. So we can use 0 as error value
431b2a20 2144 */
384de729 2145 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2146 dma_dom->next_address = 0;
ec487d1a 2147
ec487d1a
JR
2148
2149 return dma_dom;
2150
2151free_dma_dom:
2152 dma_ops_domain_free(dma_dom);
2153
2154 return NULL;
2155}
2156
5b28df6f
JR
2157/*
2158 * little helper function to check whether a given protection domain is a
2159 * dma_ops domain
2160 */
2161static bool dma_ops_domain(struct protection_domain *domain)
2162{
2163 return domain->flags & PD_DMA_OPS_MASK;
2164}
2165
fd7b5535 2166static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2167{
132bd68f 2168 u64 pte_root = 0;
ee6c2868 2169 u64 flags = 0;
863c74eb 2170
132bd68f
JR
2171 if (domain->mode != PAGE_MODE_NONE)
2172 pte_root = virt_to_phys(domain->pt_root);
2173
38ddf41b
JR
2174 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2175 << DEV_ENTRY_MODE_SHIFT;
2176 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2177
ee6c2868
JR
2178 flags = amd_iommu_dev_table[devid].data[1];
2179
fd7b5535
JR
2180 if (ats)
2181 flags |= DTE_FLAG_IOTLB;
2182
52815b75
JR
2183 if (domain->flags & PD_IOMMUV2_MASK) {
2184 u64 gcr3 = __pa(domain->gcr3_tbl);
2185 u64 glx = domain->glx;
2186 u64 tmp;
2187
2188 pte_root |= DTE_FLAG_GV;
2189 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2190
2191 /* First mask out possible old values for GCR3 table */
2192 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2193 flags &= ~tmp;
2194
2195 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2196 flags &= ~tmp;
2197
2198 /* Encode GCR3 table into DTE */
2199 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2200 pte_root |= tmp;
2201
2202 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2203 flags |= tmp;
2204
2205 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2206 flags |= tmp;
2207 }
2208
ee6c2868
JR
2209 flags &= ~(0xffffUL);
2210 flags |= domain->id;
2211
2212 amd_iommu_dev_table[devid].data[1] = flags;
2213 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2214}
2215
2216static void clear_dte_entry(u16 devid)
2217{
15898bbc
JR
2218 /* remove entry from the device table seen by the hardware */
2219 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2220 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2221
2222 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2223}
2224
ec9e79ef
JR
2225static void do_attach(struct iommu_dev_data *dev_data,
2226 struct protection_domain *domain)
7f760ddd 2227{
7f760ddd 2228 struct amd_iommu *iommu;
ec9e79ef 2229 bool ats;
fd7b5535 2230
ec9e79ef
JR
2231 iommu = amd_iommu_rlookup_table[dev_data->devid];
2232 ats = dev_data->ats.enabled;
7f760ddd
JR
2233
2234 /* Update data structures */
2235 dev_data->domain = domain;
2236 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2237 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2238
2239 /* Do reference counting */
2240 domain->dev_iommu[iommu->index] += 1;
2241 domain->dev_cnt += 1;
2242
2243 /* Flush the DTE entry */
6c542047 2244 device_flush_dte(dev_data);
7f760ddd
JR
2245}
2246
ec9e79ef 2247static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2248{
7f760ddd 2249 struct amd_iommu *iommu;
7f760ddd 2250
ec9e79ef 2251 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2252
2253 /* decrease reference counters */
7f760ddd
JR
2254 dev_data->domain->dev_iommu[iommu->index] -= 1;
2255 dev_data->domain->dev_cnt -= 1;
2256
2257 /* Update data structures */
2258 dev_data->domain = NULL;
2259 list_del(&dev_data->list);
f62dda66 2260 clear_dte_entry(dev_data->devid);
15898bbc 2261
7f760ddd 2262 /* Flush the DTE entry */
6c542047 2263 device_flush_dte(dev_data);
2b681faf
JR
2264}
2265
2266/*
2267 * If a device is not yet associated with a domain, this function does
2268 * assigns it visible for the hardware
2269 */
ec9e79ef 2270static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2271 struct protection_domain *domain)
2b681faf 2272{
84fe6c19 2273 int ret;
657cbb6b 2274
2b681faf
JR
2275 /* lock domain */
2276 spin_lock(&domain->lock);
2277
71f77580
JR
2278 if (dev_data->alias_data != NULL) {
2279 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2280
2b02b091
JR
2281 /* Some sanity checks */
2282 ret = -EBUSY;
2283 if (alias_data->domain != NULL &&
2284 alias_data->domain != domain)
2285 goto out_unlock;
eba6ac60 2286
2b02b091
JR
2287 if (dev_data->domain != NULL &&
2288 dev_data->domain != domain)
2289 goto out_unlock;
15898bbc 2290
2b02b091 2291 /* Do real assignment */
7f760ddd 2292 if (alias_data->domain == NULL)
ec9e79ef 2293 do_attach(alias_data, domain);
24100055
JR
2294
2295 atomic_inc(&alias_data->bind);
657cbb6b 2296 }
15898bbc 2297
7f760ddd 2298 if (dev_data->domain == NULL)
ec9e79ef 2299 do_attach(dev_data, domain);
eba6ac60 2300
24100055
JR
2301 atomic_inc(&dev_data->bind);
2302
84fe6c19
JL
2303 ret = 0;
2304
2305out_unlock:
2306
eba6ac60
JR
2307 /* ready */
2308 spin_unlock(&domain->lock);
15898bbc 2309
84fe6c19 2310 return ret;
0feae533 2311}
b20ac0d4 2312
52815b75
JR
2313
2314static void pdev_iommuv2_disable(struct pci_dev *pdev)
2315{
2316 pci_disable_ats(pdev);
2317 pci_disable_pri(pdev);
2318 pci_disable_pasid(pdev);
2319}
2320
6a113ddc
JR
2321/* FIXME: Change generic reset-function to do the same */
2322static int pri_reset_while_enabled(struct pci_dev *pdev)
2323{
2324 u16 control;
2325 int pos;
2326
46277b75 2327 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2328 if (!pos)
2329 return -EINVAL;
2330
46277b75
JR
2331 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2332 control |= PCI_PRI_CTRL_RESET;
2333 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2334
2335 return 0;
2336}
2337
52815b75
JR
2338static int pdev_iommuv2_enable(struct pci_dev *pdev)
2339{
6a113ddc
JR
2340 bool reset_enable;
2341 int reqs, ret;
2342
2343 /* FIXME: Hardcode number of outstanding requests for now */
2344 reqs = 32;
2345 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2346 reqs = 1;
2347 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2348
2349 /* Only allow access to user-accessible pages */
2350 ret = pci_enable_pasid(pdev, 0);
2351 if (ret)
2352 goto out_err;
2353
2354 /* First reset the PRI state of the device */
2355 ret = pci_reset_pri(pdev);
2356 if (ret)
2357 goto out_err;
2358
6a113ddc
JR
2359 /* Enable PRI */
2360 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2361 if (ret)
2362 goto out_err;
2363
6a113ddc
JR
2364 if (reset_enable) {
2365 ret = pri_reset_while_enabled(pdev);
2366 if (ret)
2367 goto out_err;
2368 }
2369
52815b75
JR
2370 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2371 if (ret)
2372 goto out_err;
2373
2374 return 0;
2375
2376out_err:
2377 pci_disable_pri(pdev);
2378 pci_disable_pasid(pdev);
2379
2380 return ret;
2381}
2382
c99afa25 2383/* FIXME: Move this to PCI code */
a3b93121 2384#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2385
98f1ad25 2386static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2387{
a3b93121 2388 u16 status;
c99afa25
JR
2389 int pos;
2390
46277b75 2391 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2392 if (!pos)
2393 return false;
2394
a3b93121 2395 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2396
a3b93121 2397 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2398}
2399
407d733e 2400/*
df805abb 2401 * If a device is not yet associated with a domain, this function
407d733e
JR
2402 * assigns it visible for the hardware
2403 */
15898bbc
JR
2404static int attach_device(struct device *dev,
2405 struct protection_domain *domain)
0feae533 2406{
fd7b5535 2407 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2408 struct iommu_dev_data *dev_data;
eba6ac60 2409 unsigned long flags;
15898bbc 2410 int ret;
eba6ac60 2411
ea61cddb
JR
2412 dev_data = get_dev_data(dev);
2413
52815b75
JR
2414 if (domain->flags & PD_IOMMUV2_MASK) {
2415 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2416 return -EINVAL;
2417
2418 if (pdev_iommuv2_enable(pdev) != 0)
2419 return -EINVAL;
2420
2421 dev_data->ats.enabled = true;
2422 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2423 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2424 } else if (amd_iommu_iotlb_sup &&
2425 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2426 dev_data->ats.enabled = true;
2427 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2428 }
fd7b5535 2429
eba6ac60 2430 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2431 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2432 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2433
0feae533
JR
2434 /*
2435 * We might boot into a crash-kernel here. The crashed kernel
2436 * left the caches in the IOMMU dirty. So we have to flush
2437 * here to evict all dirty stuff.
2438 */
17b124bf 2439 domain_flush_tlb_pde(domain);
15898bbc
JR
2440
2441 return ret;
b20ac0d4
JR
2442}
2443
355bf553
JR
2444/*
2445 * Removes a device from a protection domain (unlocked)
2446 */
ec9e79ef 2447static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2448{
2ca76279 2449 struct protection_domain *domain;
7c392cbe 2450 unsigned long flags;
c4596114 2451
7f760ddd 2452 BUG_ON(!dev_data->domain);
355bf553 2453
2ca76279
JR
2454 domain = dev_data->domain;
2455
2456 spin_lock_irqsave(&domain->lock, flags);
24100055 2457
71f77580
JR
2458 if (dev_data->alias_data != NULL) {
2459 struct iommu_dev_data *alias_data = dev_data->alias_data;
2460
7f760ddd 2461 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2462 do_detach(alias_data);
24100055
JR
2463 }
2464
7f760ddd 2465 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2466 do_detach(dev_data);
7f760ddd 2467
2ca76279 2468 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2469
2470 /*
2471 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2472 * passthrough domain if it is detached from any other domain.
2473 * Make sure we can deassign from the pt_domain itself.
21129f78 2474 */
5abcdba4 2475 if (dev_data->passthrough &&
d3ad9373 2476 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2477 __attach_device(dev_data, pt_domain);
355bf553
JR
2478}
2479
2480/*
2481 * Removes a device from a protection domain (with devtable_lock held)
2482 */
15898bbc 2483static void detach_device(struct device *dev)
355bf553 2484{
52815b75 2485 struct protection_domain *domain;
ea61cddb 2486 struct iommu_dev_data *dev_data;
355bf553
JR
2487 unsigned long flags;
2488
ec9e79ef 2489 dev_data = get_dev_data(dev);
52815b75 2490 domain = dev_data->domain;
ec9e79ef 2491
355bf553
JR
2492 /* lock device table */
2493 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2494 __detach_device(dev_data);
355bf553 2495 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2496
52815b75
JR
2497 if (domain->flags & PD_IOMMUV2_MASK)
2498 pdev_iommuv2_disable(to_pci_dev(dev));
2499 else if (dev_data->ats.enabled)
ea61cddb 2500 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2501
2502 dev_data->ats.enabled = false;
355bf553 2503}
e275a2a0 2504
15898bbc
JR
2505/*
2506 * Find out the protection domain structure for a given PCI device. This
2507 * will give us the pointer to the page table root for example.
2508 */
2509static struct protection_domain *domain_for_device(struct device *dev)
2510{
71f77580 2511 struct iommu_dev_data *dev_data;
2b02b091 2512 struct protection_domain *dom = NULL;
15898bbc 2513 unsigned long flags;
15898bbc 2514
657cbb6b 2515 dev_data = get_dev_data(dev);
15898bbc 2516
2b02b091
JR
2517 if (dev_data->domain)
2518 return dev_data->domain;
15898bbc 2519
71f77580
JR
2520 if (dev_data->alias_data != NULL) {
2521 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2522
2523 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2524 if (alias_data->domain != NULL) {
2525 __attach_device(dev_data, alias_data->domain);
2526 dom = alias_data->domain;
2527 }
2528 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2529 }
15898bbc
JR
2530
2531 return dom;
2532}
2533
e275a2a0
JR
2534static int device_change_notifier(struct notifier_block *nb,
2535 unsigned long action, void *data)
2536{
e275a2a0 2537 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2538 struct protection_domain *domain;
2539 struct iommu_dev_data *dev_data;
2540 struct device *dev = data;
e275a2a0 2541 struct amd_iommu *iommu;
1ac4cbbc 2542 unsigned long flags;
5abcdba4 2543 u16 devid;
e275a2a0 2544
98fc5a69
JR
2545 if (!check_device(dev))
2546 return 0;
e275a2a0 2547
5abcdba4
JR
2548 devid = get_device_id(dev);
2549 iommu = amd_iommu_rlookup_table[devid];
2550 dev_data = get_dev_data(dev);
e275a2a0
JR
2551
2552 switch (action) {
c1eee67b 2553 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2554
2555 domain = domain_for_device(dev);
2556
e275a2a0
JR
2557 if (!domain)
2558 goto out;
5abcdba4 2559 if (dev_data->passthrough)
a1ca331c 2560 break;
15898bbc 2561 detach_device(dev);
1ac4cbbc
JR
2562 break;
2563 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2564
2565 iommu_init_device(dev);
2566
2c9195e9
JR
2567 /*
2568 * dev_data is still NULL and
2569 * got initialized in iommu_init_device
2570 */
2571 dev_data = get_dev_data(dev);
2572
2573 if (iommu_pass_through || dev_data->iommu_v2) {
2574 dev_data->passthrough = true;
2575 attach_device(dev, pt_domain);
2576 break;
2577 }
2578
657cbb6b
JR
2579 domain = domain_for_device(dev);
2580
1ac4cbbc
JR
2581 /* allocate a protection domain if a device is added */
2582 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2583 if (!dma_domain) {
2584 dma_domain = dma_ops_domain_alloc();
2585 if (!dma_domain)
2586 goto out;
2587 dma_domain->target_dev = devid;
2588
2589 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2590 list_add_tail(&dma_domain->list, &iommu_pd_list);
2591 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2592 }
ac1534a5 2593
2c9195e9 2594 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2595
e275a2a0 2596 break;
657cbb6b
JR
2597 case BUS_NOTIFY_DEL_DEVICE:
2598
2599 iommu_uninit_device(dev);
2600
e275a2a0
JR
2601 default:
2602 goto out;
2603 }
2604
e275a2a0
JR
2605 iommu_completion_wait(iommu);
2606
2607out:
2608 return 0;
2609}
2610
b25ae679 2611static struct notifier_block device_nb = {
e275a2a0
JR
2612 .notifier_call = device_change_notifier,
2613};
355bf553 2614
8638c491
JR
2615void amd_iommu_init_notifier(void)
2616{
2617 bus_register_notifier(&pci_bus_type, &device_nb);
2618}
2619
431b2a20
JR
2620/*****************************************************************************
2621 *
2622 * The next functions belong to the dma_ops mapping/unmapping code.
2623 *
2624 *****************************************************************************/
2625
2626/*
2627 * In the dma_ops path we only have the struct device. This function
2628 * finds the corresponding IOMMU, the protection domain and the
2629 * requestor id for a given device.
2630 * If the device is not yet associated with a domain this is also done
2631 * in this function.
2632 */
94f6d190 2633static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2634{
94f6d190 2635 struct protection_domain *domain;
b20ac0d4 2636 struct dma_ops_domain *dma_dom;
94f6d190 2637 u16 devid = get_device_id(dev);
b20ac0d4 2638
f99c0f1c 2639 if (!check_device(dev))
94f6d190 2640 return ERR_PTR(-EINVAL);
b20ac0d4 2641
94f6d190
JR
2642 domain = domain_for_device(dev);
2643 if (domain != NULL && !dma_ops_domain(domain))
2644 return ERR_PTR(-EBUSY);
f99c0f1c 2645
94f6d190
JR
2646 if (domain != NULL)
2647 return domain;
b20ac0d4 2648
df805abb 2649 /* Device not bound yet - bind it */
94f6d190 2650 dma_dom = find_protection_domain(devid);
15898bbc 2651 if (!dma_dom)
94f6d190
JR
2652 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2653 attach_device(dev, &dma_dom->domain);
15898bbc 2654 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2655 dma_dom->domain.id, dev_name(dev));
f91ba190 2656
94f6d190 2657 return &dma_dom->domain;
b20ac0d4
JR
2658}
2659
04bfdd84
JR
2660static void update_device_table(struct protection_domain *domain)
2661{
492667da 2662 struct iommu_dev_data *dev_data;
04bfdd84 2663
ea61cddb
JR
2664 list_for_each_entry(dev_data, &domain->dev_list, list)
2665 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2666}
2667
2668static void update_domain(struct protection_domain *domain)
2669{
2670 if (!domain->updated)
2671 return;
2672
2673 update_device_table(domain);
17b124bf
JR
2674
2675 domain_flush_devices(domain);
2676 domain_flush_tlb_pde(domain);
04bfdd84
JR
2677
2678 domain->updated = false;
2679}
2680
8bda3092
JR
2681/*
2682 * This function fetches the PTE for a given address in the aperture
2683 */
2684static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2685 unsigned long address)
2686{
384de729 2687 struct aperture_range *aperture;
8bda3092
JR
2688 u64 *pte, *pte_page;
2689
384de729
JR
2690 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2691 if (!aperture)
2692 return NULL;
2693
2694 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2695 if (!pte) {
cbb9d729 2696 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2697 GFP_ATOMIC);
384de729
JR
2698 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2699 } else
8c8c143c 2700 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2701
04bfdd84 2702 update_domain(&dom->domain);
8bda3092
JR
2703
2704 return pte;
2705}
2706
431b2a20
JR
2707/*
2708 * This is the generic map function. It maps one 4kb page at paddr to
2709 * the given address in the DMA address space for the domain.
2710 */
680525e0 2711static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2712 unsigned long address,
2713 phys_addr_t paddr,
2714 int direction)
2715{
2716 u64 *pte, __pte;
2717
2718 WARN_ON(address > dom->aperture_size);
2719
2720 paddr &= PAGE_MASK;
2721
8bda3092 2722 pte = dma_ops_get_pte(dom, address);
53812c11 2723 if (!pte)
8fd524b3 2724 return DMA_ERROR_CODE;
cb76c322
JR
2725
2726 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2727
2728 if (direction == DMA_TO_DEVICE)
2729 __pte |= IOMMU_PTE_IR;
2730 else if (direction == DMA_FROM_DEVICE)
2731 __pte |= IOMMU_PTE_IW;
2732 else if (direction == DMA_BIDIRECTIONAL)
2733 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2734
2735 WARN_ON(*pte);
2736
2737 *pte = __pte;
2738
2739 return (dma_addr_t)address;
2740}
2741
431b2a20
JR
2742/*
2743 * The generic unmapping function for on page in the DMA address space.
2744 */
680525e0 2745static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2746 unsigned long address)
2747{
384de729 2748 struct aperture_range *aperture;
cb76c322
JR
2749 u64 *pte;
2750
2751 if (address >= dom->aperture_size)
2752 return;
2753
384de729
JR
2754 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2755 if (!aperture)
2756 return;
2757
2758 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2759 if (!pte)
2760 return;
cb76c322 2761
8c8c143c 2762 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2763
2764 WARN_ON(!*pte);
2765
2766 *pte = 0ULL;
2767}
2768
431b2a20
JR
2769/*
2770 * This function contains common code for mapping of a physically
24f81160
JR
2771 * contiguous memory region into DMA address space. It is used by all
2772 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2773 * Must be called with the domain lock held.
2774 */
cb76c322 2775static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2776 struct dma_ops_domain *dma_dom,
2777 phys_addr_t paddr,
2778 size_t size,
6d4f343f 2779 int dir,
832a90c3
JR
2780 bool align,
2781 u64 dma_mask)
cb76c322
JR
2782{
2783 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2784 dma_addr_t address, start, ret;
cb76c322 2785 unsigned int pages;
6d4f343f 2786 unsigned long align_mask = 0;
cb76c322
JR
2787 int i;
2788
e3c449f5 2789 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2790 paddr &= PAGE_MASK;
2791
8ecaf8f1
JR
2792 INC_STATS_COUNTER(total_map_requests);
2793
c1858976
JR
2794 if (pages > 1)
2795 INC_STATS_COUNTER(cross_page);
2796
6d4f343f
JR
2797 if (align)
2798 align_mask = (1UL << get_order(size)) - 1;
2799
11b83888 2800retry:
832a90c3
JR
2801 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2802 dma_mask);
8fd524b3 2803 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2804 /*
2805 * setting next_address here will let the address
2806 * allocator only scan the new allocated range in the
2807 * first run. This is a small optimization.
2808 */
2809 dma_dom->next_address = dma_dom->aperture_size;
2810
576175c2 2811 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2812 goto out;
2813
2814 /*
af901ca1 2815 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2816 * allocation again
2817 */
2818 goto retry;
2819 }
cb76c322
JR
2820
2821 start = address;
2822 for (i = 0; i < pages; ++i) {
680525e0 2823 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2824 if (ret == DMA_ERROR_CODE)
53812c11
JR
2825 goto out_unmap;
2826
cb76c322
JR
2827 paddr += PAGE_SIZE;
2828 start += PAGE_SIZE;
2829 }
2830 address += offset;
2831
5774f7c5
JR
2832 ADD_STATS_COUNTER(alloced_io_mem, size);
2833
afa9fdc2 2834 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2835 domain_flush_tlb(&dma_dom->domain);
1c655773 2836 dma_dom->need_flush = false;
318afd41 2837 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2838 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2839
cb76c322
JR
2840out:
2841 return address;
53812c11
JR
2842
2843out_unmap:
2844
2845 for (--i; i >= 0; --i) {
2846 start -= PAGE_SIZE;
680525e0 2847 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2848 }
2849
2850 dma_ops_free_addresses(dma_dom, address, pages);
2851
8fd524b3 2852 return DMA_ERROR_CODE;
cb76c322
JR
2853}
2854
431b2a20
JR
2855/*
2856 * Does the reverse of the __map_single function. Must be called with
2857 * the domain lock held too
2858 */
cd8c82e8 2859static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2860 dma_addr_t dma_addr,
2861 size_t size,
2862 int dir)
2863{
04e0463e 2864 dma_addr_t flush_addr;
cb76c322
JR
2865 dma_addr_t i, start;
2866 unsigned int pages;
2867
8fd524b3 2868 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2869 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2870 return;
2871
04e0463e 2872 flush_addr = dma_addr;
e3c449f5 2873 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2874 dma_addr &= PAGE_MASK;
2875 start = dma_addr;
2876
2877 for (i = 0; i < pages; ++i) {
680525e0 2878 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2879 start += PAGE_SIZE;
2880 }
2881
5774f7c5
JR
2882 SUB_STATS_COUNTER(alloced_io_mem, size);
2883
cb76c322 2884 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2885
80be308d 2886 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2887 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2888 dma_dom->need_flush = false;
2889 }
cb76c322
JR
2890}
2891
431b2a20
JR
2892/*
2893 * The exported map_single function for dma_ops.
2894 */
51491367
FT
2895static dma_addr_t map_page(struct device *dev, struct page *page,
2896 unsigned long offset, size_t size,
2897 enum dma_data_direction dir,
2898 struct dma_attrs *attrs)
4da70b9e
JR
2899{
2900 unsigned long flags;
4da70b9e 2901 struct protection_domain *domain;
4da70b9e 2902 dma_addr_t addr;
832a90c3 2903 u64 dma_mask;
51491367 2904 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2905
0f2a86f2
JR
2906 INC_STATS_COUNTER(cnt_map_single);
2907
94f6d190
JR
2908 domain = get_domain(dev);
2909 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2910 return (dma_addr_t)paddr;
94f6d190
JR
2911 else if (IS_ERR(domain))
2912 return DMA_ERROR_CODE;
4da70b9e 2913
f99c0f1c
JR
2914 dma_mask = *dev->dma_mask;
2915
4da70b9e 2916 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2917
cd8c82e8 2918 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2919 dma_mask);
8fd524b3 2920 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2921 goto out;
2922
17b124bf 2923 domain_flush_complete(domain);
4da70b9e
JR
2924
2925out:
2926 spin_unlock_irqrestore(&domain->lock, flags);
2927
2928 return addr;
2929}
2930
431b2a20
JR
2931/*
2932 * The exported unmap_single function for dma_ops.
2933 */
51491367
FT
2934static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2935 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2936{
2937 unsigned long flags;
4da70b9e 2938 struct protection_domain *domain;
4da70b9e 2939
146a6917
JR
2940 INC_STATS_COUNTER(cnt_unmap_single);
2941
94f6d190
JR
2942 domain = get_domain(dev);
2943 if (IS_ERR(domain))
5b28df6f
JR
2944 return;
2945
4da70b9e
JR
2946 spin_lock_irqsave(&domain->lock, flags);
2947
cd8c82e8 2948 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2949
17b124bf 2950 domain_flush_complete(domain);
4da70b9e
JR
2951
2952 spin_unlock_irqrestore(&domain->lock, flags);
2953}
2954
431b2a20
JR
2955/*
2956 * The exported map_sg function for dma_ops (handles scatter-gather
2957 * lists).
2958 */
65b050ad 2959static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2960 int nelems, enum dma_data_direction dir,
2961 struct dma_attrs *attrs)
65b050ad
JR
2962{
2963 unsigned long flags;
65b050ad 2964 struct protection_domain *domain;
65b050ad
JR
2965 int i;
2966 struct scatterlist *s;
2967 phys_addr_t paddr;
2968 int mapped_elems = 0;
832a90c3 2969 u64 dma_mask;
65b050ad 2970
d03f067a
JR
2971 INC_STATS_COUNTER(cnt_map_sg);
2972
94f6d190 2973 domain = get_domain(dev);
a0e191b2 2974 if (IS_ERR(domain))
94f6d190 2975 return 0;
dbcc112e 2976
832a90c3 2977 dma_mask = *dev->dma_mask;
65b050ad 2978
65b050ad
JR
2979 spin_lock_irqsave(&domain->lock, flags);
2980
2981 for_each_sg(sglist, s, nelems, i) {
2982 paddr = sg_phys(s);
2983
cd8c82e8 2984 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2985 paddr, s->length, dir, false,
2986 dma_mask);
65b050ad
JR
2987
2988 if (s->dma_address) {
2989 s->dma_length = s->length;
2990 mapped_elems++;
2991 } else
2992 goto unmap;
65b050ad
JR
2993 }
2994
17b124bf 2995 domain_flush_complete(domain);
65b050ad
JR
2996
2997out:
2998 spin_unlock_irqrestore(&domain->lock, flags);
2999
3000 return mapped_elems;
3001unmap:
3002 for_each_sg(sglist, s, mapped_elems, i) {
3003 if (s->dma_address)
cd8c82e8 3004 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
3005 s->dma_length, dir);
3006 s->dma_address = s->dma_length = 0;
3007 }
3008
3009 mapped_elems = 0;
3010
3011 goto out;
3012}
3013
431b2a20
JR
3014/*
3015 * The exported map_sg function for dma_ops (handles scatter-gather
3016 * lists).
3017 */
65b050ad 3018static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
3019 int nelems, enum dma_data_direction dir,
3020 struct dma_attrs *attrs)
65b050ad
JR
3021{
3022 unsigned long flags;
65b050ad
JR
3023 struct protection_domain *domain;
3024 struct scatterlist *s;
65b050ad
JR
3025 int i;
3026
55877a6b
JR
3027 INC_STATS_COUNTER(cnt_unmap_sg);
3028
94f6d190
JR
3029 domain = get_domain(dev);
3030 if (IS_ERR(domain))
5b28df6f
JR
3031 return;
3032
65b050ad
JR
3033 spin_lock_irqsave(&domain->lock, flags);
3034
3035 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 3036 __unmap_single(domain->priv, s->dma_address,
65b050ad 3037 s->dma_length, dir);
65b050ad
JR
3038 s->dma_address = s->dma_length = 0;
3039 }
3040
17b124bf 3041 domain_flush_complete(domain);
65b050ad
JR
3042
3043 spin_unlock_irqrestore(&domain->lock, flags);
3044}
3045
431b2a20
JR
3046/*
3047 * The exported alloc_coherent function for dma_ops.
3048 */
5d8b53cf 3049static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
3050 dma_addr_t *dma_addr, gfp_t flag,
3051 struct dma_attrs *attrs)
5d8b53cf
JR
3052{
3053 unsigned long flags;
3054 void *virt_addr;
5d8b53cf 3055 struct protection_domain *domain;
5d8b53cf 3056 phys_addr_t paddr;
832a90c3 3057 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 3058
c8f0fb36
JR
3059 INC_STATS_COUNTER(cnt_alloc_coherent);
3060
94f6d190
JR
3061 domain = get_domain(dev);
3062 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
3063 virt_addr = (void *)__get_free_pages(flag, get_order(size));
3064 *dma_addr = __pa(virt_addr);
3065 return virt_addr;
94f6d190
JR
3066 } else if (IS_ERR(domain))
3067 return NULL;
5d8b53cf 3068
f99c0f1c
JR
3069 dma_mask = dev->coherent_dma_mask;
3070 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
3071 flag |= __GFP_ZERO;
5d8b53cf
JR
3072
3073 virt_addr = (void *)__get_free_pages(flag, get_order(size));
3074 if (!virt_addr)
b25ae679 3075 return NULL;
5d8b53cf 3076
5d8b53cf
JR
3077 paddr = virt_to_phys(virt_addr);
3078
832a90c3
JR
3079 if (!dma_mask)
3080 dma_mask = *dev->dma_mask;
3081
5d8b53cf
JR
3082 spin_lock_irqsave(&domain->lock, flags);
3083
cd8c82e8 3084 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 3085 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 3086
8fd524b3 3087 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 3088 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 3089 goto out_free;
367d04c4 3090 }
5d8b53cf 3091
17b124bf 3092 domain_flush_complete(domain);
5d8b53cf 3093
5d8b53cf
JR
3094 spin_unlock_irqrestore(&domain->lock, flags);
3095
3096 return virt_addr;
5b28df6f
JR
3097
3098out_free:
3099
3100 free_pages((unsigned long)virt_addr, get_order(size));
3101
3102 return NULL;
5d8b53cf
JR
3103}
3104
431b2a20
JR
3105/*
3106 * The exported free_coherent function for dma_ops.
431b2a20 3107 */
5d8b53cf 3108static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
3109 void *virt_addr, dma_addr_t dma_addr,
3110 struct dma_attrs *attrs)
5d8b53cf
JR
3111{
3112 unsigned long flags;
5d8b53cf 3113 struct protection_domain *domain;
5d8b53cf 3114
5d31ee7e
JR
3115 INC_STATS_COUNTER(cnt_free_coherent);
3116
94f6d190
JR
3117 domain = get_domain(dev);
3118 if (IS_ERR(domain))
5b28df6f
JR
3119 goto free_mem;
3120
5d8b53cf
JR
3121 spin_lock_irqsave(&domain->lock, flags);
3122
cd8c82e8 3123 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3124
17b124bf 3125 domain_flush_complete(domain);
5d8b53cf
JR
3126
3127 spin_unlock_irqrestore(&domain->lock, flags);
3128
3129free_mem:
3130 free_pages((unsigned long)virt_addr, get_order(size));
3131}
3132
b39ba6ad
JR
3133/*
3134 * This function is called by the DMA layer to find out if we can handle a
3135 * particular device. It is part of the dma_ops.
3136 */
3137static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3138{
420aef8a 3139 return check_device(dev);
b39ba6ad
JR
3140}
3141
c432f3df 3142/*
431b2a20
JR
3143 * The function for pre-allocating protection domains.
3144 *
c432f3df
JR
3145 * If the driver core informs the DMA layer if a driver grabs a device
3146 * we don't need to preallocate the protection domains anymore.
3147 * For now we have to.
3148 */
943bc7e1 3149static void __init prealloc_protection_domains(void)
c432f3df 3150{
5abcdba4 3151 struct iommu_dev_data *dev_data;
c432f3df 3152 struct dma_ops_domain *dma_dom;
5abcdba4 3153 struct pci_dev *dev = NULL;
98fc5a69 3154 u16 devid;
c432f3df 3155
d18c69d3 3156 for_each_pci_dev(dev) {
98fc5a69
JR
3157
3158 /* Do we handle this device? */
3159 if (!check_device(&dev->dev))
c432f3df 3160 continue;
98fc5a69 3161
5abcdba4
JR
3162 dev_data = get_dev_data(&dev->dev);
3163 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3164 /* Make sure passthrough domain is allocated */
3165 alloc_passthrough_domain();
3166 dev_data->passthrough = true;
3167 attach_device(&dev->dev, pt_domain);
df805abb 3168 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3169 dev_name(&dev->dev));
3170 }
3171
98fc5a69 3172 /* Is there already any domain for it? */
15898bbc 3173 if (domain_for_device(&dev->dev))
c432f3df 3174 continue;
98fc5a69
JR
3175
3176 devid = get_device_id(&dev->dev);
3177
87a64d52 3178 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3179 if (!dma_dom)
3180 continue;
3181 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3182 dma_dom->target_dev = devid;
3183
15898bbc 3184 attach_device(&dev->dev, &dma_dom->domain);
be831297 3185
bd60b735 3186 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3187 }
3188}
3189
160c1d8e 3190static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3191 .alloc = alloc_coherent,
3192 .free = free_coherent,
51491367
FT
3193 .map_page = map_page,
3194 .unmap_page = unmap_page,
6631ee9d
JR
3195 .map_sg = map_sg,
3196 .unmap_sg = unmap_sg,
b39ba6ad 3197 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3198};
3199
27c2127a
JR
3200static unsigned device_dma_ops_init(void)
3201{
5abcdba4 3202 struct iommu_dev_data *dev_data;
27c2127a
JR
3203 struct pci_dev *pdev = NULL;
3204 unsigned unhandled = 0;
3205
3206 for_each_pci_dev(pdev) {
3207 if (!check_device(&pdev->dev)) {
af1be049
JR
3208
3209 iommu_ignore_device(&pdev->dev);
3210
27c2127a
JR
3211 unhandled += 1;
3212 continue;
3213 }
3214
5abcdba4
JR
3215 dev_data = get_dev_data(&pdev->dev);
3216
3217 if (!dev_data->passthrough)
3218 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3219 else
3220 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3221 }
3222
3223 return unhandled;
3224}
3225
431b2a20
JR
3226/*
3227 * The function which clues the AMD IOMMU driver into dma_ops.
3228 */
f5325094
JR
3229
3230void __init amd_iommu_init_api(void)
3231{
2cc21c42 3232 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3233}
3234
6631ee9d
JR
3235int __init amd_iommu_init_dma_ops(void)
3236{
3237 struct amd_iommu *iommu;
27c2127a 3238 int ret, unhandled;
6631ee9d 3239
431b2a20
JR
3240 /*
3241 * first allocate a default protection domain for every IOMMU we
3242 * found in the system. Devices not assigned to any other
3243 * protection domain will be assigned to the default one.
3244 */
3bd22172 3245 for_each_iommu(iommu) {
87a64d52 3246 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3247 if (iommu->default_dom == NULL)
3248 return -ENOMEM;
e2dc14a2 3249 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3250 ret = iommu_init_unity_mappings(iommu);
3251 if (ret)
3252 goto free_domains;
3253 }
3254
431b2a20 3255 /*
8793abeb 3256 * Pre-allocate the protection domains for each device.
431b2a20 3257 */
8793abeb 3258 prealloc_protection_domains();
6631ee9d
JR
3259
3260 iommu_detected = 1;
75f1cdf1 3261 swiotlb = 0;
6631ee9d 3262
431b2a20 3263 /* Make the driver finally visible to the drivers */
27c2127a
JR
3264 unhandled = device_dma_ops_init();
3265 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3266 /* There are unhandled devices - initialize swiotlb for them */
3267 swiotlb = 1;
3268 }
6631ee9d 3269
7f26508b
JR
3270 amd_iommu_stats_init();
3271
62410eeb
JR
3272 if (amd_iommu_unmap_flush)
3273 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3274 else
3275 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3276
6631ee9d
JR
3277 return 0;
3278
3279free_domains:
3280
3bd22172 3281 for_each_iommu(iommu) {
91457df7 3282 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3283 }
3284
3285 return ret;
3286}
6d98cd80
JR
3287
3288/*****************************************************************************
3289 *
3290 * The following functions belong to the exported interface of AMD IOMMU
3291 *
3292 * This interface allows access to lower level functions of the IOMMU
3293 * like protection domain handling and assignement of devices to domains
3294 * which is not possible with the dma_ops interface.
3295 *
3296 *****************************************************************************/
3297
6d98cd80
JR
3298static void cleanup_domain(struct protection_domain *domain)
3299{
492667da 3300 struct iommu_dev_data *dev_data, *next;
6d98cd80 3301 unsigned long flags;
6d98cd80
JR
3302
3303 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3304
492667da 3305 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3306 __detach_device(dev_data);
492667da
JR
3307 atomic_set(&dev_data->bind, 0);
3308 }
6d98cd80
JR
3309
3310 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3311}
3312
2650815f
JR
3313static void protection_domain_free(struct protection_domain *domain)
3314{
3315 if (!domain)
3316 return;
3317
aeb26f55
JR
3318 del_domain_from_list(domain);
3319
2650815f
JR
3320 if (domain->id)
3321 domain_id_free(domain->id);
3322
3323 kfree(domain);
3324}
3325
3326static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3327{
3328 struct protection_domain *domain;
3329
3330 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3331 if (!domain)
2650815f 3332 return NULL;
c156e347
JR
3333
3334 spin_lock_init(&domain->lock);
5d214fe6 3335 mutex_init(&domain->api_lock);
c156e347
JR
3336 domain->id = domain_id_alloc();
3337 if (!domain->id)
2650815f 3338 goto out_err;
7c392cbe 3339 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3340
aeb26f55
JR
3341 add_domain_to_list(domain);
3342
2650815f
JR
3343 return domain;
3344
3345out_err:
3346 kfree(domain);
3347
3348 return NULL;
3349}
3350
5abcdba4
JR
3351static int __init alloc_passthrough_domain(void)
3352{
3353 if (pt_domain != NULL)
3354 return 0;
3355
3356 /* allocate passthrough domain */
3357 pt_domain = protection_domain_alloc();
3358 if (!pt_domain)
3359 return -ENOMEM;
3360
3361 pt_domain->mode = PAGE_MODE_NONE;
3362
3363 return 0;
3364}
2650815f
JR
3365static int amd_iommu_domain_init(struct iommu_domain *dom)
3366{
3367 struct protection_domain *domain;
3368
3369 domain = protection_domain_alloc();
3370 if (!domain)
c156e347 3371 goto out_free;
2650815f
JR
3372
3373 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3374 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3375 if (!domain->pt_root)
3376 goto out_free;
3377
f3572db8
JR
3378 domain->iommu_domain = dom;
3379
c156e347
JR
3380 dom->priv = domain;
3381
0ff64f80
JR
3382 dom->geometry.aperture_start = 0;
3383 dom->geometry.aperture_end = ~0ULL;
3384 dom->geometry.force_aperture = true;
3385
c156e347
JR
3386 return 0;
3387
3388out_free:
2650815f 3389 protection_domain_free(domain);
c156e347
JR
3390
3391 return -ENOMEM;
3392}
3393
98383fc3
JR
3394static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3395{
3396 struct protection_domain *domain = dom->priv;
3397
3398 if (!domain)
3399 return;
3400
3401 if (domain->dev_cnt > 0)
3402 cleanup_domain(domain);
3403
3404 BUG_ON(domain->dev_cnt != 0);
3405
132bd68f
JR
3406 if (domain->mode != PAGE_MODE_NONE)
3407 free_pagetable(domain);
98383fc3 3408
52815b75
JR
3409 if (domain->flags & PD_IOMMUV2_MASK)
3410 free_gcr3_table(domain);
3411
8b408fe4 3412 protection_domain_free(domain);
98383fc3
JR
3413
3414 dom->priv = NULL;
3415}
3416
684f2888
JR
3417static void amd_iommu_detach_device(struct iommu_domain *dom,
3418 struct device *dev)
3419{
657cbb6b 3420 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3421 struct amd_iommu *iommu;
684f2888
JR
3422 u16 devid;
3423
98fc5a69 3424 if (!check_device(dev))
684f2888
JR
3425 return;
3426
98fc5a69 3427 devid = get_device_id(dev);
684f2888 3428
657cbb6b 3429 if (dev_data->domain != NULL)
15898bbc 3430 detach_device(dev);
684f2888
JR
3431
3432 iommu = amd_iommu_rlookup_table[devid];
3433 if (!iommu)
3434 return;
3435
684f2888
JR
3436 iommu_completion_wait(iommu);
3437}
3438
01106066
JR
3439static int amd_iommu_attach_device(struct iommu_domain *dom,
3440 struct device *dev)
3441{
3442 struct protection_domain *domain = dom->priv;
657cbb6b 3443 struct iommu_dev_data *dev_data;
01106066 3444 struct amd_iommu *iommu;
15898bbc 3445 int ret;
01106066 3446
98fc5a69 3447 if (!check_device(dev))
01106066
JR
3448 return -EINVAL;
3449
657cbb6b
JR
3450 dev_data = dev->archdata.iommu;
3451
f62dda66 3452 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3453 if (!iommu)
3454 return -EINVAL;
3455
657cbb6b 3456 if (dev_data->domain)
15898bbc 3457 detach_device(dev);
01106066 3458
15898bbc 3459 ret = attach_device(dev, domain);
01106066
JR
3460
3461 iommu_completion_wait(iommu);
3462
15898bbc 3463 return ret;
01106066
JR
3464}
3465
468e2366 3466static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3467 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3468{
3469 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3470 int prot = 0;
3471 int ret;
3472
132bd68f
JR
3473 if (domain->mode == PAGE_MODE_NONE)
3474 return -EINVAL;
3475
c6229ca6
JR
3476 if (iommu_prot & IOMMU_READ)
3477 prot |= IOMMU_PROT_IR;
3478 if (iommu_prot & IOMMU_WRITE)
3479 prot |= IOMMU_PROT_IW;
3480
5d214fe6 3481 mutex_lock(&domain->api_lock);
795e74f7 3482 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3483 mutex_unlock(&domain->api_lock);
3484
795e74f7 3485 return ret;
c6229ca6
JR
3486}
3487
5009065d
OBC
3488static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3489 size_t page_size)
eb74ff6c 3490{
eb74ff6c 3491 struct protection_domain *domain = dom->priv;
5009065d 3492 size_t unmap_size;
eb74ff6c 3493
132bd68f
JR
3494 if (domain->mode == PAGE_MODE_NONE)
3495 return -EINVAL;
3496
5d214fe6 3497 mutex_lock(&domain->api_lock);
468e2366 3498 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3499 mutex_unlock(&domain->api_lock);
eb74ff6c 3500
17b124bf 3501 domain_flush_tlb_pde(domain);
5d214fe6 3502
5009065d 3503 return unmap_size;
eb74ff6c
JR
3504}
3505
645c4c8d 3506static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3507 dma_addr_t iova)
645c4c8d
JR
3508{
3509 struct protection_domain *domain = dom->priv;
f03152bb 3510 unsigned long offset_mask;
645c4c8d 3511 phys_addr_t paddr;
f03152bb 3512 u64 *pte, __pte;
645c4c8d 3513
132bd68f
JR
3514 if (domain->mode == PAGE_MODE_NONE)
3515 return iova;
3516
24cd7723 3517 pte = fetch_pte(domain, iova);
645c4c8d 3518
a6d41a40 3519 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3520 return 0;
3521
f03152bb
JR
3522 if (PM_PTE_LEVEL(*pte) == 0)
3523 offset_mask = PAGE_SIZE - 1;
3524 else
3525 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3526
3527 __pte = *pte & PM_ADDR_MASK;
3528 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3529
3530 return paddr;
3531}
3532
dbb9fd86
SY
3533static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3534 unsigned long cap)
3535{
80a506b8
JR
3536 switch (cap) {
3537 case IOMMU_CAP_CACHE_COHERENCY:
3538 return 1;
bdddadcb
JR
3539 case IOMMU_CAP_INTR_REMAP:
3540 return irq_remapping_enabled;
80a506b8
JR
3541 }
3542
dbb9fd86
SY
3543 return 0;
3544}
3545
26961efe
JR
3546static struct iommu_ops amd_iommu_ops = {
3547 .domain_init = amd_iommu_domain_init,
3548 .domain_destroy = amd_iommu_domain_destroy,
3549 .attach_dev = amd_iommu_attach_device,
3550 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3551 .map = amd_iommu_map,
3552 .unmap = amd_iommu_unmap,
26961efe 3553 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3554 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3555 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3556};
3557
0feae533
JR
3558/*****************************************************************************
3559 *
3560 * The next functions do a basic initialization of IOMMU for pass through
3561 * mode
3562 *
3563 * In passthrough mode the IOMMU is initialized and enabled but not used for
3564 * DMA-API translation.
3565 *
3566 *****************************************************************************/
3567
3568int __init amd_iommu_init_passthrough(void)
3569{
5abcdba4 3570 struct iommu_dev_data *dev_data;
0feae533 3571 struct pci_dev *dev = NULL;
5abcdba4 3572 int ret;
0feae533 3573
5abcdba4
JR
3574 ret = alloc_passthrough_domain();
3575 if (ret)
3576 return ret;
0feae533 3577
6c54aabd 3578 for_each_pci_dev(dev) {
98fc5a69 3579 if (!check_device(&dev->dev))
0feae533
JR
3580 continue;
3581
5abcdba4
JR
3582 dev_data = get_dev_data(&dev->dev);
3583 dev_data->passthrough = true;
3584
15898bbc 3585 attach_device(&dev->dev, pt_domain);
0feae533
JR
3586 }
3587
2655d7a2
JR
3588 amd_iommu_stats_init();
3589
0feae533
JR
3590 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3591
3592 return 0;
3593}
72e1dcc4
JR
3594
3595/* IOMMUv2 specific functions */
3596int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3597{
3598 return atomic_notifier_chain_register(&ppr_notifier, nb);
3599}
3600EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3601
3602int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3603{
3604 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3605}
3606EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3607
3608void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3609{
3610 struct protection_domain *domain = dom->priv;
3611 unsigned long flags;
3612
3613 spin_lock_irqsave(&domain->lock, flags);
3614
3615 /* Update data structure */
3616 domain->mode = PAGE_MODE_NONE;
3617 domain->updated = true;
3618
3619 /* Make changes visible to IOMMUs */
3620 update_domain(domain);
3621
3622 /* Page-table is not visible to IOMMU anymore, so free it */
3623 free_pagetable(domain);
3624
3625 spin_unlock_irqrestore(&domain->lock, flags);
3626}
3627EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3628
3629int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3630{
3631 struct protection_domain *domain = dom->priv;
3632 unsigned long flags;
3633 int levels, ret;
3634
3635 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3636 return -EINVAL;
3637
3638 /* Number of GCR3 table levels required */
3639 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3640 levels += 1;
3641
3642 if (levels > amd_iommu_max_glx_val)
3643 return -EINVAL;
3644
3645 spin_lock_irqsave(&domain->lock, flags);
3646
3647 /*
3648 * Save us all sanity checks whether devices already in the
3649 * domain support IOMMUv2. Just force that the domain has no
3650 * devices attached when it is switched into IOMMUv2 mode.
3651 */
3652 ret = -EBUSY;
3653 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3654 goto out;
3655
3656 ret = -ENOMEM;
3657 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3658 if (domain->gcr3_tbl == NULL)
3659 goto out;
3660
3661 domain->glx = levels;
3662 domain->flags |= PD_IOMMUV2_MASK;
3663 domain->updated = true;
3664
3665 update_domain(domain);
3666
3667 ret = 0;
3668
3669out:
3670 spin_unlock_irqrestore(&domain->lock, flags);
3671
3672 return ret;
3673}
3674EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3675
3676static int __flush_pasid(struct protection_domain *domain, int pasid,
3677 u64 address, bool size)
3678{
3679 struct iommu_dev_data *dev_data;
3680 struct iommu_cmd cmd;
3681 int i, ret;
3682
3683 if (!(domain->flags & PD_IOMMUV2_MASK))
3684 return -EINVAL;
3685
3686 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3687
3688 /*
3689 * IOMMU TLB needs to be flushed before Device TLB to
3690 * prevent device TLB refill from IOMMU TLB
3691 */
3692 for (i = 0; i < amd_iommus_present; ++i) {
3693 if (domain->dev_iommu[i] == 0)
3694 continue;
3695
3696 ret = iommu_queue_command(amd_iommus[i], &cmd);
3697 if (ret != 0)
3698 goto out;
3699 }
3700
3701 /* Wait until IOMMU TLB flushes are complete */
3702 domain_flush_complete(domain);
3703
3704 /* Now flush device TLBs */
3705 list_for_each_entry(dev_data, &domain->dev_list, list) {
3706 struct amd_iommu *iommu;
3707 int qdep;
3708
3709 BUG_ON(!dev_data->ats.enabled);
3710
3711 qdep = dev_data->ats.qdep;
3712 iommu = amd_iommu_rlookup_table[dev_data->devid];
3713
3714 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3715 qdep, address, size);
3716
3717 ret = iommu_queue_command(iommu, &cmd);
3718 if (ret != 0)
3719 goto out;
3720 }
3721
3722 /* Wait until all device TLBs are flushed */
3723 domain_flush_complete(domain);
3724
3725 ret = 0;
3726
3727out:
3728
3729 return ret;
3730}
3731
3732static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3733 u64 address)
3734{
399be2f5
JR
3735 INC_STATS_COUNTER(invalidate_iotlb);
3736
22e266c7
JR
3737 return __flush_pasid(domain, pasid, address, false);
3738}
3739
3740int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3741 u64 address)
3742{
3743 struct protection_domain *domain = dom->priv;
3744 unsigned long flags;
3745 int ret;
3746
3747 spin_lock_irqsave(&domain->lock, flags);
3748 ret = __amd_iommu_flush_page(domain, pasid, address);
3749 spin_unlock_irqrestore(&domain->lock, flags);
3750
3751 return ret;
3752}
3753EXPORT_SYMBOL(amd_iommu_flush_page);
3754
3755static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3756{
399be2f5
JR
3757 INC_STATS_COUNTER(invalidate_iotlb_all);
3758
22e266c7
JR
3759 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3760 true);
3761}
3762
3763int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3764{
3765 struct protection_domain *domain = dom->priv;
3766 unsigned long flags;
3767 int ret;
3768
3769 spin_lock_irqsave(&domain->lock, flags);
3770 ret = __amd_iommu_flush_tlb(domain, pasid);
3771 spin_unlock_irqrestore(&domain->lock, flags);
3772
3773 return ret;
3774}
3775EXPORT_SYMBOL(amd_iommu_flush_tlb);
3776
b16137b1
JR
3777static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3778{
3779 int index;
3780 u64 *pte;
3781
3782 while (true) {
3783
3784 index = (pasid >> (9 * level)) & 0x1ff;
3785 pte = &root[index];
3786
3787 if (level == 0)
3788 break;
3789
3790 if (!(*pte & GCR3_VALID)) {
3791 if (!alloc)
3792 return NULL;
3793
3794 root = (void *)get_zeroed_page(GFP_ATOMIC);
3795 if (root == NULL)
3796 return NULL;
3797
3798 *pte = __pa(root) | GCR3_VALID;
3799 }
3800
3801 root = __va(*pte & PAGE_MASK);
3802
3803 level -= 1;
3804 }
3805
3806 return pte;
3807}
3808
3809static int __set_gcr3(struct protection_domain *domain, int pasid,
3810 unsigned long cr3)
3811{
3812 u64 *pte;
3813
3814 if (domain->mode != PAGE_MODE_NONE)
3815 return -EINVAL;
3816
3817 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3818 if (pte == NULL)
3819 return -ENOMEM;
3820
3821 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3822
3823 return __amd_iommu_flush_tlb(domain, pasid);
3824}
3825
3826static int __clear_gcr3(struct protection_domain *domain, int pasid)
3827{
3828 u64 *pte;
3829
3830 if (domain->mode != PAGE_MODE_NONE)
3831 return -EINVAL;
3832
3833 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3834 if (pte == NULL)
3835 return 0;
3836
3837 *pte = 0;
3838
3839 return __amd_iommu_flush_tlb(domain, pasid);
3840}
3841
3842int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3843 unsigned long cr3)
3844{
3845 struct protection_domain *domain = dom->priv;
3846 unsigned long flags;
3847 int ret;
3848
3849 spin_lock_irqsave(&domain->lock, flags);
3850 ret = __set_gcr3(domain, pasid, cr3);
3851 spin_unlock_irqrestore(&domain->lock, flags);
3852
3853 return ret;
3854}
3855EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3856
3857int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3858{
3859 struct protection_domain *domain = dom->priv;
3860 unsigned long flags;
3861 int ret;
3862
3863 spin_lock_irqsave(&domain->lock, flags);
3864 ret = __clear_gcr3(domain, pasid);
3865 spin_unlock_irqrestore(&domain->lock, flags);
3866
3867 return ret;
3868}
3869EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3870
3871int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3872 int status, int tag)
3873{
3874 struct iommu_dev_data *dev_data;
3875 struct amd_iommu *iommu;
3876 struct iommu_cmd cmd;
3877
399be2f5
JR
3878 INC_STATS_COUNTER(complete_ppr);
3879
c99afa25
JR
3880 dev_data = get_dev_data(&pdev->dev);
3881 iommu = amd_iommu_rlookup_table[dev_data->devid];
3882
3883 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3884 tag, dev_data->pri_tlp);
3885
3886 return iommu_queue_command(iommu, &cmd);
3887}
3888EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3889
3890struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3891{
3892 struct protection_domain *domain;
3893
3894 domain = get_domain(&pdev->dev);
3895 if (IS_ERR(domain))
3896 return NULL;
3897
3898 /* Only return IOMMUv2 domains */
3899 if (!(domain->flags & PD_IOMMUV2_MASK))
3900 return NULL;
3901
3902 return domain->iommu_domain;
3903}
3904EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3905
3906void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3907{
3908 struct iommu_dev_data *dev_data;
3909
3910 if (!amd_iommu_v2_supported())
3911 return;
3912
3913 dev_data = get_dev_data(&pdev->dev);
3914 dev_data->errata |= (1 << erratum);
3915}
3916EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3917
3918int amd_iommu_device_info(struct pci_dev *pdev,
3919 struct amd_iommu_device_info *info)
3920{
3921 int max_pasids;
3922 int pos;
3923
3924 if (pdev == NULL || info == NULL)
3925 return -EINVAL;
3926
3927 if (!amd_iommu_v2_supported())
3928 return -EINVAL;
3929
3930 memset(info, 0, sizeof(*info));
3931
3932 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3933 if (pos)
3934 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3935
3936 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3937 if (pos)
3938 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3939
3940 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3941 if (pos) {
3942 int features;
3943
3944 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3945 max_pasids = min(max_pasids, (1 << 20));
3946
3947 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3948 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3949
3950 features = pci_pasid_features(pdev);
3951 if (features & PCI_PASID_CAP_EXEC)
3952 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3953 if (features & PCI_PASID_CAP_PRIV)
3954 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3955 }
3956
3957 return 0;
3958}
3959EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3960
3961#ifdef CONFIG_IRQ_REMAP
3962
3963/*****************************************************************************
3964 *
3965 * Interrupt Remapping Implementation
3966 *
3967 *****************************************************************************/
3968
3969union irte {
3970 u32 val;
3971 struct {
3972 u32 valid : 1,
3973 no_fault : 1,
3974 int_type : 3,
3975 rq_eoi : 1,
3976 dm : 1,
3977 rsvd_1 : 1,
3978 destination : 8,
3979 vector : 8,
3980 rsvd_2 : 8;
3981 } fields;
3982};
3983
3984#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3985#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3986#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3987#define DTE_IRQ_REMAP_ENABLE 1ULL
3988
3989static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3990{
3991 u64 dte;
3992
3993 dte = amd_iommu_dev_table[devid].data[2];
3994 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3995 dte |= virt_to_phys(table->table);
3996 dte |= DTE_IRQ_REMAP_INTCTL;
3997 dte |= DTE_IRQ_TABLE_LEN;
3998 dte |= DTE_IRQ_REMAP_ENABLE;
3999
4000 amd_iommu_dev_table[devid].data[2] = dte;
4001}
4002
4003#define IRTE_ALLOCATED (~1U)
4004
4005static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
4006{
4007 struct irq_remap_table *table = NULL;
4008 struct amd_iommu *iommu;
4009 unsigned long flags;
4010 u16 alias;
4011
4012 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
4013
4014 iommu = amd_iommu_rlookup_table[devid];
4015 if (!iommu)
4016 goto out_unlock;
4017
4018 table = irq_lookup_table[devid];
4019 if (table)
4020 goto out;
4021
4022 alias = amd_iommu_alias_table[devid];
4023 table = irq_lookup_table[alias];
4024 if (table) {
4025 irq_lookup_table[devid] = table;
4026 set_dte_irq_entry(devid, table);
4027 iommu_flush_dte(iommu, devid);
4028 goto out;
4029 }
4030
4031 /* Nothing there yet, allocate new irq remapping table */
4032 table = kzalloc(sizeof(*table), GFP_ATOMIC);
4033 if (!table)
4034 goto out;
4035
197887f0
JR
4036 /* Initialize table spin-lock */
4037 spin_lock_init(&table->lock);
4038
2b324506
JR
4039 if (ioapic)
4040 /* Keep the first 32 indexes free for IOAPIC interrupts */
4041 table->min_index = 32;
4042
4043 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
4044 if (!table->table) {
4045 kfree(table);
821f0f68 4046 table = NULL;
2b324506
JR
4047 goto out;
4048 }
4049
4050 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
4051
4052 if (ioapic) {
4053 int i;
4054
4055 for (i = 0; i < 32; ++i)
4056 table->table[i] = IRTE_ALLOCATED;
4057 }
4058
4059 irq_lookup_table[devid] = table;
4060 set_dte_irq_entry(devid, table);
4061 iommu_flush_dte(iommu, devid);
4062 if (devid != alias) {
4063 irq_lookup_table[alias] = table;
e028a9e6 4064 set_dte_irq_entry(alias, table);
2b324506
JR
4065 iommu_flush_dte(iommu, alias);
4066 }
4067
4068out:
4069 iommu_completion_wait(iommu);
4070
4071out_unlock:
4072 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
4073
4074 return table;
4075}
4076
4077static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
4078{
4079 struct irq_remap_table *table;
4080 unsigned long flags;
4081 int index, c;
4082
4083 table = get_irq_table(devid, false);
4084 if (!table)
4085 return -ENODEV;
4086
4087 spin_lock_irqsave(&table->lock, flags);
4088
4089 /* Scan table for free entries */
4090 for (c = 0, index = table->min_index;
4091 index < MAX_IRQS_PER_TABLE;
4092 ++index) {
4093 if (table->table[index] == 0)
4094 c += 1;
4095 else
4096 c = 0;
4097
4098 if (c == count) {
0dfedd61 4099 struct irq_2_irte *irte_info;
2b324506
JR
4100
4101 for (; c != 0; --c)
4102 table->table[index - c + 1] = IRTE_ALLOCATED;
4103
4104 index -= count - 1;
4105
9b1b0e42 4106 cfg->remapped = 1;
0dfedd61
JR
4107 irte_info = &cfg->irq_2_irte;
4108 irte_info->devid = devid;
4109 irte_info->index = index;
2b324506
JR
4110
4111 goto out;
4112 }
4113 }
4114
4115 index = -ENOSPC;
4116
4117out:
4118 spin_unlock_irqrestore(&table->lock, flags);
4119
4120 return index;
4121}
4122
4123static int get_irte(u16 devid, int index, union irte *irte)
4124{
4125 struct irq_remap_table *table;
4126 unsigned long flags;
4127
4128 table = get_irq_table(devid, false);
4129 if (!table)
4130 return -ENOMEM;
4131
4132 spin_lock_irqsave(&table->lock, flags);
4133 irte->val = table->table[index];
4134 spin_unlock_irqrestore(&table->lock, flags);
4135
4136 return 0;
4137}
4138
4139static int modify_irte(u16 devid, int index, union irte irte)
4140{
4141 struct irq_remap_table *table;
4142 struct amd_iommu *iommu;
4143 unsigned long flags;
4144
4145 iommu = amd_iommu_rlookup_table[devid];
4146 if (iommu == NULL)
4147 return -EINVAL;
4148
4149 table = get_irq_table(devid, false);
4150 if (!table)
4151 return -ENOMEM;
4152
4153 spin_lock_irqsave(&table->lock, flags);
4154 table->table[index] = irte.val;
4155 spin_unlock_irqrestore(&table->lock, flags);
4156
4157 iommu_flush_irt(iommu, devid);
4158 iommu_completion_wait(iommu);
4159
4160 return 0;
4161}
4162
4163static void free_irte(u16 devid, int index)
4164{
4165 struct irq_remap_table *table;
4166 struct amd_iommu *iommu;
4167 unsigned long flags;
4168
4169 iommu = amd_iommu_rlookup_table[devid];
4170 if (iommu == NULL)
4171 return;
4172
4173 table = get_irq_table(devid, false);
4174 if (!table)
4175 return;
4176
4177 spin_lock_irqsave(&table->lock, flags);
4178 table->table[index] = 0;
4179 spin_unlock_irqrestore(&table->lock, flags);
4180
4181 iommu_flush_irt(iommu, devid);
4182 iommu_completion_wait(iommu);
4183}
4184
5527de74
JR
4185static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4186 unsigned int destination, int vector,
4187 struct io_apic_irq_attr *attr)
4188{
4189 struct irq_remap_table *table;
0dfedd61 4190 struct irq_2_irte *irte_info;
5527de74
JR
4191 struct irq_cfg *cfg;
4192 union irte irte;
4193 int ioapic_id;
4194 int index;
4195 int devid;
4196 int ret;
4197
4198 cfg = irq_get_chip_data(irq);
4199 if (!cfg)
4200 return -EINVAL;
4201
0dfedd61 4202 irte_info = &cfg->irq_2_irte;
5527de74
JR
4203 ioapic_id = mpc_ioapic_id(attr->ioapic);
4204 devid = get_ioapic_devid(ioapic_id);
4205
4206 if (devid < 0)
4207 return devid;
4208
4209 table = get_irq_table(devid, true);
4210 if (table == NULL)
4211 return -ENOMEM;
4212
4213 index = attr->ioapic_pin;
4214
4215 /* Setup IRQ remapping info */
9b1b0e42 4216 cfg->remapped = 1;
0dfedd61
JR
4217 irte_info->devid = devid;
4218 irte_info->index = index;
5527de74
JR
4219
4220 /* Setup IRTE for IOMMU */
4221 irte.val = 0;
4222 irte.fields.vector = vector;
4223 irte.fields.int_type = apic->irq_delivery_mode;
4224 irte.fields.destination = destination;
4225 irte.fields.dm = apic->irq_dest_mode;
4226 irte.fields.valid = 1;
4227
4228 ret = modify_irte(devid, index, irte);
4229 if (ret)
4230 return ret;
4231
4232 /* Setup IOAPIC entry */
4233 memset(entry, 0, sizeof(*entry));
4234
4235 entry->vector = index;
4236 entry->mask = 0;
4237 entry->trigger = attr->trigger;
4238 entry->polarity = attr->polarity;
4239
4240 /*
4241 * Mask level triggered irqs.
5527de74
JR
4242 */
4243 if (attr->trigger)
4244 entry->mask = 1;
4245
4246 return 0;
4247}
4248
4249static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4250 bool force)
4251{
0dfedd61 4252 struct irq_2_irte *irte_info;
5527de74
JR
4253 unsigned int dest, irq;
4254 struct irq_cfg *cfg;
4255 union irte irte;
4256 int err;
4257
4258 if (!config_enabled(CONFIG_SMP))
4259 return -1;
4260
4261 cfg = data->chip_data;
4262 irq = data->irq;
0dfedd61 4263 irte_info = &cfg->irq_2_irte;
5527de74
JR
4264
4265 if (!cpumask_intersects(mask, cpu_online_mask))
4266 return -EINVAL;
4267
0dfedd61 4268 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4269 return -EBUSY;
4270
4271 if (assign_irq_vector(irq, cfg, mask))
4272 return -EBUSY;
4273
4274 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4275 if (err) {
4276 if (assign_irq_vector(irq, cfg, data->affinity))
4277 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4278 return err;
4279 }
4280
4281 irte.fields.vector = cfg->vector;
4282 irte.fields.destination = dest;
4283
0dfedd61 4284 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4285
4286 if (cfg->move_in_progress)
4287 send_cleanup_vector(cfg);
4288
4289 cpumask_copy(data->affinity, mask);
4290
4291 return 0;
4292}
4293
4294static int free_irq(int irq)
4295{
0dfedd61 4296 struct irq_2_irte *irte_info;
5527de74
JR
4297 struct irq_cfg *cfg;
4298
4299 cfg = irq_get_chip_data(irq);
4300 if (!cfg)
4301 return -EINVAL;
4302
0dfedd61 4303 irte_info = &cfg->irq_2_irte;
5527de74 4304
0dfedd61 4305 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4306
4307 return 0;
4308}
4309
0b4d48cb
JR
4310static void compose_msi_msg(struct pci_dev *pdev,
4311 unsigned int irq, unsigned int dest,
4312 struct msi_msg *msg, u8 hpet_id)
4313{
0dfedd61 4314 struct irq_2_irte *irte_info;
0b4d48cb
JR
4315 struct irq_cfg *cfg;
4316 union irte irte;
4317
4318 cfg = irq_get_chip_data(irq);
4319 if (!cfg)
4320 return;
4321
0dfedd61 4322 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4323
4324 irte.val = 0;
4325 irte.fields.vector = cfg->vector;
4326 irte.fields.int_type = apic->irq_delivery_mode;
4327 irte.fields.destination = dest;
4328 irte.fields.dm = apic->irq_dest_mode;
4329 irte.fields.valid = 1;
4330
0dfedd61 4331 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4332
4333 msg->address_hi = MSI_ADDR_BASE_HI;
4334 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4335 msg->data = irte_info->index;
0b4d48cb
JR
4336}
4337
4338static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4339{
4340 struct irq_cfg *cfg;
4341 int index;
4342 u16 devid;
4343
4344 if (!pdev)
4345 return -EINVAL;
4346
4347 cfg = irq_get_chip_data(irq);
4348 if (!cfg)
4349 return -EINVAL;
4350
4351 devid = get_device_id(&pdev->dev);
4352 index = alloc_irq_index(cfg, devid, nvec);
4353
4354 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4355}
4356
4357static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4358 int index, int offset)
4359{
0dfedd61 4360 struct irq_2_irte *irte_info;
0b4d48cb
JR
4361 struct irq_cfg *cfg;
4362 u16 devid;
4363
4364 if (!pdev)
4365 return -EINVAL;
4366
4367 cfg = irq_get_chip_data(irq);
4368 if (!cfg)
4369 return -EINVAL;
4370
4371 if (index >= MAX_IRQS_PER_TABLE)
4372 return 0;
4373
4374 devid = get_device_id(&pdev->dev);
0dfedd61 4375 irte_info = &cfg->irq_2_irte;
0b4d48cb 4376
9b1b0e42 4377 cfg->remapped = 1;
0dfedd61
JR
4378 irte_info->devid = devid;
4379 irte_info->index = index + offset;
0b4d48cb
JR
4380
4381 return 0;
4382}
4383
d976195c
JR
4384static int setup_hpet_msi(unsigned int irq, unsigned int id)
4385{
0dfedd61 4386 struct irq_2_irte *irte_info;
d976195c
JR
4387 struct irq_cfg *cfg;
4388 int index, devid;
4389
4390 cfg = irq_get_chip_data(irq);
4391 if (!cfg)
4392 return -EINVAL;
4393
0dfedd61 4394 irte_info = &cfg->irq_2_irte;
d976195c
JR
4395 devid = get_hpet_devid(id);
4396 if (devid < 0)
4397 return devid;
4398
4399 index = alloc_irq_index(cfg, devid, 1);
4400 if (index < 0)
4401 return index;
4402
9b1b0e42 4403 cfg->remapped = 1;
0dfedd61
JR
4404 irte_info->devid = devid;
4405 irte_info->index = index;
d976195c
JR
4406
4407 return 0;
4408}
4409
6b474b82
JR
4410struct irq_remap_ops amd_iommu_irq_ops = {
4411 .supported = amd_iommu_supported,
4412 .prepare = amd_iommu_prepare,
4413 .enable = amd_iommu_enable,
4414 .disable = amd_iommu_disable,
4415 .reenable = amd_iommu_reenable,
4416 .enable_faulting = amd_iommu_enable_faulting,
4417 .setup_ioapic_entry = setup_ioapic_entry,
4418 .set_affinity = set_affinity,
4419 .free_irq = free_irq,
4420 .compose_msi_msg = compose_msi_msg,
4421 .msi_alloc_irq = msi_alloc_irq,
4422 .msi_setup_irq = msi_setup_irq,
4423 .setup_hpet_msi = setup_hpet_msi,
4424};
2b324506 4425#endif