]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/iommu/amd_iommu.c
iommu/amd: Workaround for ERBT1312
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
b6c02715
JR
49
50#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51
815b33fd 52#define LOOP_TIMEOUT 100000
136f78a1 53
aa3de9c0
OBC
54/*
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
58 * that we support.
59 *
954e3dd8 60 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 61 */
954e3dd8 62#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 63
b6c02715
JR
64static DEFINE_RWLOCK(amd_iommu_devtable_lock);
65
bd60b735
JR
66/* A list of preallocated protection domains */
67static LIST_HEAD(iommu_pd_list);
68static DEFINE_SPINLOCK(iommu_pd_list_lock);
69
8fa5f802
JR
70/* List of all available dev_data structures */
71static LIST_HEAD(dev_data_list);
72static DEFINE_SPINLOCK(dev_data_list_lock);
73
6efed63b
JR
74LIST_HEAD(ioapic_map);
75LIST_HEAD(hpet_map);
76
0feae533
JR
77/*
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
80 */
81static struct protection_domain *pt_domain;
82
26961efe 83static struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
431b2a20
JR
90/*
91 * general struct to manage commands send to an IOMMU
92 */
d6449536 93struct iommu_cmd {
b6c02715
JR
94 u32 data[4];
95};
96
05152a04
JR
97struct kmem_cache *amd_iommu_irq_cache;
98
04bfdd84 99static void update_domain(struct protection_domain *domain);
5abcdba4 100static int __init alloc_passthrough_domain(void);
c1eee67b 101
15898bbc
JR
102/****************************************************************************
103 *
104 * Helper functions
105 *
106 ****************************************************************************/
107
f62dda66 108static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
109{
110 struct iommu_dev_data *dev_data;
111 unsigned long flags;
112
113 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
114 if (!dev_data)
115 return NULL;
116
f62dda66 117 dev_data->devid = devid;
8fa5f802
JR
118 atomic_set(&dev_data->bind, 0);
119
120 spin_lock_irqsave(&dev_data_list_lock, flags);
121 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
122 spin_unlock_irqrestore(&dev_data_list_lock, flags);
123
124 return dev_data;
125}
126
127static void free_dev_data(struct iommu_dev_data *dev_data)
128{
129 unsigned long flags;
130
131 spin_lock_irqsave(&dev_data_list_lock, flags);
132 list_del(&dev_data->dev_data_list);
133 spin_unlock_irqrestore(&dev_data_list_lock, flags);
134
78bfa9f3
AW
135 if (dev_data->group)
136 iommu_group_put(dev_data->group);
137
8fa5f802
JR
138 kfree(dev_data);
139}
140
3b03bb74
JR
141static struct iommu_dev_data *search_dev_data(u16 devid)
142{
143 struct iommu_dev_data *dev_data;
144 unsigned long flags;
145
146 spin_lock_irqsave(&dev_data_list_lock, flags);
147 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
148 if (dev_data->devid == devid)
149 goto out_unlock;
150 }
151
152 dev_data = NULL;
153
154out_unlock:
155 spin_unlock_irqrestore(&dev_data_list_lock, flags);
156
157 return dev_data;
158}
159
160static struct iommu_dev_data *find_dev_data(u16 devid)
161{
162 struct iommu_dev_data *dev_data;
163
164 dev_data = search_dev_data(devid);
165
166 if (dev_data == NULL)
167 dev_data = alloc_dev_data(devid);
168
169 return dev_data;
170}
171
15898bbc
JR
172static inline u16 get_device_id(struct device *dev)
173{
174 struct pci_dev *pdev = to_pci_dev(dev);
175
176 return calc_devid(pdev->bus->number, pdev->devfn);
177}
178
657cbb6b
JR
179static struct iommu_dev_data *get_dev_data(struct device *dev)
180{
181 return dev->archdata.iommu;
182}
183
5abcdba4
JR
184static bool pci_iommuv2_capable(struct pci_dev *pdev)
185{
186 static const int caps[] = {
187 PCI_EXT_CAP_ID_ATS,
46277b75
JR
188 PCI_EXT_CAP_ID_PRI,
189 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
190 };
191 int i, pos;
192
193 for (i = 0; i < 3; ++i) {
194 pos = pci_find_ext_capability(pdev, caps[i]);
195 if (pos == 0)
196 return false;
197 }
198
199 return true;
200}
201
6a113ddc
JR
202static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
203{
204 struct iommu_dev_data *dev_data;
205
206 dev_data = get_dev_data(&pdev->dev);
207
208 return dev_data->errata & (1 << erratum) ? true : false;
209}
210
71c70984
JR
211/*
212 * In this function the list of preallocated protection domains is traversed to
213 * find the domain for a specific device
214 */
215static struct dma_ops_domain *find_protection_domain(u16 devid)
216{
217 struct dma_ops_domain *entry, *ret = NULL;
218 unsigned long flags;
219 u16 alias = amd_iommu_alias_table[devid];
220
221 if (list_empty(&iommu_pd_list))
222 return NULL;
223
224 spin_lock_irqsave(&iommu_pd_list_lock, flags);
225
226 list_for_each_entry(entry, &iommu_pd_list, list) {
227 if (entry->target_dev == devid ||
228 entry->target_dev == alias) {
229 ret = entry;
230 break;
231 }
232 }
233
234 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
235
236 return ret;
237}
238
98fc5a69
JR
239/*
240 * This function checks if the driver got a valid device from the caller to
241 * avoid dereferencing invalid pointers.
242 */
243static bool check_device(struct device *dev)
244{
245 u16 devid;
246
247 if (!dev || !dev->dma_mask)
248 return false;
249
250 /* No device or no PCI device */
339d3261 251 if (dev->bus != &pci_bus_type)
98fc5a69
JR
252 return false;
253
254 devid = get_device_id(dev);
255
256 /* Out of our scope? */
257 if (devid > amd_iommu_last_bdf)
258 return false;
259
260 if (amd_iommu_rlookup_table[devid] == NULL)
261 return false;
262
263 return true;
264}
265
664b6003
AW
266static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
267{
268 pci_dev_put(*from);
269 *from = to;
270}
271
2bff6a50
AW
272static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
273{
274 while (!bus->self) {
275 if (!pci_is_root_bus(bus))
276 bus = bus->parent;
277 else
278 return ERR_PTR(-ENODEV);
279 }
280
281 return bus;
282}
283
664b6003
AW
284#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
285
2851db21 286static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
657cbb6b 287{
2851db21 288 struct pci_dev *dma_pdev = pdev;
9dcd6130 289
31fe9435 290 /* Account for quirked devices */
664b6003
AW
291 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
292
31fe9435
AW
293 /*
294 * If it's a multifunction device that does not support our
295 * required ACS flags, add to the same group as function 0.
296 */
664b6003
AW
297 if (dma_pdev->multifunction &&
298 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
299 swap_pci_ref(&dma_pdev,
300 pci_get_slot(dma_pdev->bus,
301 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
302 0)));
303
31fe9435
AW
304 /*
305 * Devices on the root bus go through the iommu. If that's not us,
306 * find the next upstream device and test ACS up to the root bus.
307 * Finding the next device may require skipping virtual buses.
308 */
664b6003 309 while (!pci_is_root_bus(dma_pdev->bus)) {
2bff6a50
AW
310 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
311 if (IS_ERR(bus))
312 break;
31fe9435
AW
313
314 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
664b6003
AW
315 break;
316
31fe9435 317 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
664b6003
AW
318 }
319
2851db21
AW
320 return dma_pdev;
321}
322
ce7ac4ab
AW
323static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
324{
325 struct iommu_group *group = iommu_group_get(&pdev->dev);
326 int ret;
327
328 if (!group) {
329 group = iommu_group_alloc();
330 if (IS_ERR(group))
331 return PTR_ERR(group);
332
333 WARN_ON(&pdev->dev != dev);
334 }
335
336 ret = iommu_group_add_device(group, dev);
337 iommu_group_put(group);
338 return ret;
339}
340
78bfa9f3
AW
341static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
342 struct device *dev)
343{
344 if (!dev_data->group) {
345 struct iommu_group *group = iommu_group_alloc();
346 if (IS_ERR(group))
347 return PTR_ERR(group);
348
349 dev_data->group = group;
350 }
351
352 return iommu_group_add_device(dev_data->group, dev);
353}
354
2851db21
AW
355static int init_iommu_group(struct device *dev)
356{
357 struct iommu_dev_data *dev_data;
358 struct iommu_group *group;
78bfa9f3 359 struct pci_dev *dma_pdev;
2851db21
AW
360 int ret;
361
362 group = iommu_group_get(dev);
363 if (group) {
364 iommu_group_put(group);
365 return 0;
366 }
367
368 dev_data = find_dev_data(get_device_id(dev));
369 if (!dev_data)
370 return -ENOMEM;
371
372 if (dev_data->alias_data) {
373 u16 alias;
78bfa9f3
AW
374 struct pci_bus *bus;
375
376 if (dev_data->alias_data->group)
377 goto use_group;
2851db21 378
78bfa9f3
AW
379 /*
380 * If the alias device exists, it's effectively just a first
381 * level quirk for finding the DMA source.
382 */
2851db21
AW
383 alias = amd_iommu_alias_table[dev_data->devid];
384 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
78bfa9f3
AW
385 if (dma_pdev) {
386 dma_pdev = get_isolation_root(dma_pdev);
387 goto use_pdev;
388 }
2851db21 389
78bfa9f3
AW
390 /*
391 * If the alias is virtual, try to find a parent device
392 * and test whether the IOMMU group is actualy rooted above
393 * the alias. Be careful to also test the parent device if
394 * we think the alias is the root of the group.
395 */
396 bus = pci_find_bus(0, alias >> 8);
397 if (!bus)
398 goto use_group;
399
400 bus = find_hosted_bus(bus);
401 if (IS_ERR(bus) || !bus->self)
402 goto use_group;
403
404 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
405 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
406 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
407 goto use_pdev;
408
409 pci_dev_put(dma_pdev);
410 goto use_group;
411 }
2851db21 412
78bfa9f3
AW
413 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
414use_pdev:
ce7ac4ab 415 ret = use_pdev_iommu_group(dma_pdev, dev);
9dcd6130 416 pci_dev_put(dma_pdev);
eb9c9527 417 return ret;
78bfa9f3
AW
418use_group:
419 return use_dev_data_iommu_group(dev_data->alias_data, dev);
eb9c9527
AW
420}
421
422static int iommu_init_device(struct device *dev)
423{
424 struct pci_dev *pdev = to_pci_dev(dev);
425 struct iommu_dev_data *dev_data;
426 u16 alias;
427 int ret;
428
429 if (dev->archdata.iommu)
430 return 0;
431
432 dev_data = find_dev_data(get_device_id(dev));
433 if (!dev_data)
434 return -ENOMEM;
435
436 alias = amd_iommu_alias_table[dev_data->devid];
437 if (alias != dev_data->devid) {
438 struct iommu_dev_data *alias_data;
439
440 alias_data = find_dev_data(alias);
441 if (alias_data == NULL) {
442 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
443 dev_name(dev));
444 free_dev_data(dev_data);
445 return -ENOTSUPP;
446 }
447 dev_data->alias_data = alias_data;
448 }
449
450 ret = init_iommu_group(dev);
9dcd6130
AW
451 if (ret)
452 return ret;
453
5abcdba4
JR
454 if (pci_iommuv2_capable(pdev)) {
455 struct amd_iommu *iommu;
456
457 iommu = amd_iommu_rlookup_table[dev_data->devid];
458 dev_data->iommu_v2 = iommu->is_iommu_v2;
459 }
460
657cbb6b
JR
461 dev->archdata.iommu = dev_data;
462
657cbb6b
JR
463 return 0;
464}
465
26018874
JR
466static void iommu_ignore_device(struct device *dev)
467{
468 u16 devid, alias;
469
470 devid = get_device_id(dev);
471 alias = amd_iommu_alias_table[devid];
472
473 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
474 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
475
476 amd_iommu_rlookup_table[devid] = NULL;
477 amd_iommu_rlookup_table[alias] = NULL;
478}
479
657cbb6b
JR
480static void iommu_uninit_device(struct device *dev)
481{
9dcd6130
AW
482 iommu_group_remove_device(dev);
483
8fa5f802
JR
484 /*
485 * Nothing to do here - we keep dev_data around for unplugged devices
486 * and reuse it when the device is re-plugged - not doing so would
487 * introduce a ton of races.
488 */
657cbb6b 489}
b7cc9554
JR
490
491void __init amd_iommu_uninit_devices(void)
492{
8fa5f802 493 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
494 struct pci_dev *pdev = NULL;
495
496 for_each_pci_dev(pdev) {
497
498 if (!check_device(&pdev->dev))
499 continue;
500
501 iommu_uninit_device(&pdev->dev);
502 }
8fa5f802
JR
503
504 /* Free all of our dev_data structures */
505 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
506 free_dev_data(dev_data);
b7cc9554
JR
507}
508
509int __init amd_iommu_init_devices(void)
510{
511 struct pci_dev *pdev = NULL;
512 int ret = 0;
513
514 for_each_pci_dev(pdev) {
515
516 if (!check_device(&pdev->dev))
517 continue;
518
519 ret = iommu_init_device(&pdev->dev);
26018874
JR
520 if (ret == -ENOTSUPP)
521 iommu_ignore_device(&pdev->dev);
522 else if (ret)
b7cc9554
JR
523 goto out_free;
524 }
525
526 return 0;
527
528out_free:
529
530 amd_iommu_uninit_devices();
531
532 return ret;
533}
7f26508b
JR
534#ifdef CONFIG_AMD_IOMMU_STATS
535
536/*
537 * Initialization code for statistics collection
538 */
539
da49f6df 540DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 541DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 542DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 543DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 544DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 545DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 546DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 547DECLARE_STATS_COUNTER(cross_page);
f57d98ae 548DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 549DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 550DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 551DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
552DECLARE_STATS_COUNTER(complete_ppr);
553DECLARE_STATS_COUNTER(invalidate_iotlb);
554DECLARE_STATS_COUNTER(invalidate_iotlb_all);
555DECLARE_STATS_COUNTER(pri_requests);
556
7f26508b 557static struct dentry *stats_dir;
7f26508b
JR
558static struct dentry *de_fflush;
559
560static void amd_iommu_stats_add(struct __iommu_counter *cnt)
561{
562 if (stats_dir == NULL)
563 return;
564
565 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
566 &cnt->value);
567}
568
569static void amd_iommu_stats_init(void)
570{
571 stats_dir = debugfs_create_dir("amd-iommu", NULL);
572 if (stats_dir == NULL)
573 return;
574
7f26508b 575 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 576 &amd_iommu_unmap_flush);
da49f6df
JR
577
578 amd_iommu_stats_add(&compl_wait);
0f2a86f2 579 amd_iommu_stats_add(&cnt_map_single);
146a6917 580 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 581 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 582 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 583 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 584 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 585 amd_iommu_stats_add(&cross_page);
f57d98ae 586 amd_iommu_stats_add(&domain_flush_single);
18811f55 587 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 588 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 589 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
590 amd_iommu_stats_add(&complete_ppr);
591 amd_iommu_stats_add(&invalidate_iotlb);
592 amd_iommu_stats_add(&invalidate_iotlb_all);
593 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
594}
595
596#endif
597
a80dc3e0
JR
598/****************************************************************************
599 *
600 * Interrupt handling functions
601 *
602 ****************************************************************************/
603
e3e59876
JR
604static void dump_dte_entry(u16 devid)
605{
606 int i;
607
ee6c2868
JR
608 for (i = 0; i < 4; ++i)
609 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
610 amd_iommu_dev_table[devid].data[i]);
611}
612
945b4ac4
JR
613static void dump_command(unsigned long phys_addr)
614{
615 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
616 int i;
617
618 for (i = 0; i < 4; ++i)
619 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
620}
621
a345b23b 622static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 623{
3d06fca8
JR
624 int type, devid, domid, flags;
625 volatile u32 *event = __evt;
626 int count = 0;
627 u64 address;
628
629retry:
630 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
631 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
632 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
633 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
634 address = (u64)(((u64)event[3]) << 32) | event[2];
635
636 if (type == 0) {
637 /* Did we hit the erratum? */
638 if (++count == LOOP_TIMEOUT) {
639 pr_err("AMD-Vi: No event written to event log\n");
640 return;
641 }
642 udelay(1);
643 goto retry;
644 }
90008ee4 645
4c6f40d4 646 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
647
648 switch (type) {
649 case EVENT_TYPE_ILL_DEV:
650 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
651 "address=0x%016llx flags=0x%04x]\n",
652 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
653 address, flags);
e3e59876 654 dump_dte_entry(devid);
90008ee4
JR
655 break;
656 case EVENT_TYPE_IO_FAULT:
657 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
658 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
659 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
660 domid, address, flags);
661 break;
662 case EVENT_TYPE_DEV_TAB_ERR:
663 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
664 "address=0x%016llx flags=0x%04x]\n",
665 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
666 address, flags);
667 break;
668 case EVENT_TYPE_PAGE_TAB_ERR:
669 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
670 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
671 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 domid, address, flags);
673 break;
674 case EVENT_TYPE_ILL_CMD:
675 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 676 dump_command(address);
90008ee4
JR
677 break;
678 case EVENT_TYPE_CMD_HARD_ERR:
679 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
680 "flags=0x%04x]\n", address, flags);
681 break;
682 case EVENT_TYPE_IOTLB_INV_TO:
683 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
684 "address=0x%016llx]\n",
685 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
686 address);
687 break;
688 case EVENT_TYPE_INV_DEV_REQ:
689 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
690 "address=0x%016llx flags=0x%04x]\n",
691 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
692 address, flags);
693 break;
694 default:
695 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
696 }
3d06fca8
JR
697
698 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
699}
700
701static void iommu_poll_events(struct amd_iommu *iommu)
702{
d3263bc2 703 u32 head, tail, status;
90008ee4
JR
704 unsigned long flags;
705
706 spin_lock_irqsave(&iommu->lock, flags);
707
d3263bc2
JR
708 /* enable event interrupts again */
709 do {
710 /*
711 * Workaround for Erratum ERBT1312
712 * Clearing the EVT_INT bit may race in the hardware, so read
713 * it again and make sure it was really cleared
714 */
715 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
716 writel(MMIO_STATUS_EVT_INT_MASK,
717 iommu->mmio_base + MMIO_STATUS_OFFSET);
718 } while (status & MMIO_STATUS_EVT_INT_MASK);
719
90008ee4
JR
720 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
721 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
722
723 while (head != tail) {
a345b23b 724 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
725 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
726 }
727
728 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
729
730 spin_unlock_irqrestore(&iommu->lock, flags);
731}
732
eee53537 733static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
734{
735 struct amd_iommu_fault fault;
72e1dcc4 736
399be2f5
JR
737 INC_STATS_COUNTER(pri_requests);
738
72e1dcc4
JR
739 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
740 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
741 return;
742 }
743
744 fault.address = raw[1];
745 fault.pasid = PPR_PASID(raw[0]);
746 fault.device_id = PPR_DEVID(raw[0]);
747 fault.tag = PPR_TAG(raw[0]);
748 fault.flags = PPR_FLAGS(raw[0]);
749
72e1dcc4
JR
750 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
751}
752
753static void iommu_poll_ppr_log(struct amd_iommu *iommu)
754{
755 unsigned long flags;
d3263bc2 756 u32 head, tail, status;
72e1dcc4
JR
757
758 if (iommu->ppr_log == NULL)
759 return;
760
761 spin_lock_irqsave(&iommu->lock, flags);
762
d3263bc2
JR
763 /* enable ppr interrupts again */
764 do {
765 /*
766 * Workaround for Erratum ERBT1312
767 * Clearing the PPR_INT bit may race in the hardware, so read
768 * it again and make sure it was really cleared
769 */
770 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
771 writel(MMIO_STATUS_PPR_INT_MASK,
772 iommu->mmio_base + MMIO_STATUS_OFFSET);
773 } while (status & MMIO_STATUS_PPR_INT_MASK);
774
72e1dcc4
JR
775 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
776 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
777
778 while (head != tail) {
eee53537
JR
779 volatile u64 *raw;
780 u64 entry[2];
781 int i;
782
783 raw = (u64 *)(iommu->ppr_log + head);
784
785 /*
786 * Hardware bug: Interrupt may arrive before the entry is
787 * written to memory. If this happens we need to wait for the
788 * entry to arrive.
789 */
790 for (i = 0; i < LOOP_TIMEOUT; ++i) {
791 if (PPR_REQ_TYPE(raw[0]) != 0)
792 break;
793 udelay(1);
794 }
72e1dcc4 795
eee53537
JR
796 /* Avoid memcpy function-call overhead */
797 entry[0] = raw[0];
798 entry[1] = raw[1];
72e1dcc4 799
eee53537
JR
800 /*
801 * To detect the hardware bug we need to clear the entry
802 * back to zero.
803 */
804 raw[0] = raw[1] = 0UL;
805
806 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
807 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
808 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537
JR
809
810 /*
811 * Release iommu->lock because ppr-handling might need to
df805abb 812 * re-acquire it
eee53537
JR
813 */
814 spin_unlock_irqrestore(&iommu->lock, flags);
815
816 /* Handle PPR entry */
817 iommu_handle_ppr_entry(iommu, entry);
818
819 spin_lock_irqsave(&iommu->lock, flags);
820
821 /* Refresh ring-buffer information */
822 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
823 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
824 }
825
72e1dcc4
JR
826 spin_unlock_irqrestore(&iommu->lock, flags);
827}
828
72fe00f0 829irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 830{
90008ee4
JR
831 struct amd_iommu *iommu;
832
72e1dcc4 833 for_each_iommu(iommu) {
90008ee4 834 iommu_poll_events(iommu);
72e1dcc4
JR
835 iommu_poll_ppr_log(iommu);
836 }
90008ee4
JR
837
838 return IRQ_HANDLED;
a80dc3e0
JR
839}
840
72fe00f0
JR
841irqreturn_t amd_iommu_int_handler(int irq, void *data)
842{
843 return IRQ_WAKE_THREAD;
844}
845
431b2a20
JR
846/****************************************************************************
847 *
848 * IOMMU command queuing functions
849 *
850 ****************************************************************************/
851
ac0ea6e9
JR
852static int wait_on_sem(volatile u64 *sem)
853{
854 int i = 0;
855
856 while (*sem == 0 && i < LOOP_TIMEOUT) {
857 udelay(1);
858 i += 1;
859 }
860
861 if (i == LOOP_TIMEOUT) {
862 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
863 return -EIO;
864 }
865
866 return 0;
867}
868
869static void copy_cmd_to_buffer(struct amd_iommu *iommu,
870 struct iommu_cmd *cmd,
871 u32 tail)
a19ae1ec 872{
a19ae1ec
JR
873 u8 *target;
874
8a7c5ef3 875 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
876 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
877
878 /* Copy command to buffer */
879 memcpy(target, cmd, sizeof(*cmd));
880
881 /* Tell the IOMMU about it */
a19ae1ec 882 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 883}
a19ae1ec 884
815b33fd 885static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 886{
815b33fd
JR
887 WARN_ON(address & 0x7ULL);
888
ded46737 889 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
890 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
891 cmd->data[1] = upper_32_bits(__pa(address));
892 cmd->data[2] = 1;
ded46737
JR
893 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
894}
895
94fe79e2
JR
896static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
897{
898 memset(cmd, 0, sizeof(*cmd));
899 cmd->data[0] = devid;
900 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
901}
902
11b6402c
JR
903static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
904 size_t size, u16 domid, int pde)
905{
906 u64 pages;
907 int s;
908
909 pages = iommu_num_pages(address, size, PAGE_SIZE);
910 s = 0;
911
912 if (pages > 1) {
913 /*
914 * If we have to flush more than one page, flush all
915 * TLB entries for this domain
916 */
917 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
918 s = 1;
919 }
920
921 address &= PAGE_MASK;
922
923 memset(cmd, 0, sizeof(*cmd));
924 cmd->data[1] |= domid;
925 cmd->data[2] = lower_32_bits(address);
926 cmd->data[3] = upper_32_bits(address);
927 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
928 if (s) /* size bit - we flush more than one 4kb page */
929 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 930 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
931 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
932}
933
cb41ed85
JR
934static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
935 u64 address, size_t size)
936{
937 u64 pages;
938 int s;
939
940 pages = iommu_num_pages(address, size, PAGE_SIZE);
941 s = 0;
942
943 if (pages > 1) {
944 /*
945 * If we have to flush more than one page, flush all
946 * TLB entries for this domain
947 */
948 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
949 s = 1;
950 }
951
952 address &= PAGE_MASK;
953
954 memset(cmd, 0, sizeof(*cmd));
955 cmd->data[0] = devid;
956 cmd->data[0] |= (qdep & 0xff) << 24;
957 cmd->data[1] = devid;
958 cmd->data[2] = lower_32_bits(address);
959 cmd->data[3] = upper_32_bits(address);
960 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
961 if (s)
962 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
963}
964
22e266c7
JR
965static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
966 u64 address, bool size)
967{
968 memset(cmd, 0, sizeof(*cmd));
969
970 address &= ~(0xfffULL);
971
972 cmd->data[0] = pasid & PASID_MASK;
973 cmd->data[1] = domid;
974 cmd->data[2] = lower_32_bits(address);
975 cmd->data[3] = upper_32_bits(address);
976 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
977 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
978 if (size)
979 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
980 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
981}
982
983static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
984 int qdep, u64 address, bool size)
985{
986 memset(cmd, 0, sizeof(*cmd));
987
988 address &= ~(0xfffULL);
989
990 cmd->data[0] = devid;
991 cmd->data[0] |= (pasid & 0xff) << 16;
992 cmd->data[0] |= (qdep & 0xff) << 24;
993 cmd->data[1] = devid;
994 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
995 cmd->data[2] = lower_32_bits(address);
996 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
997 cmd->data[3] = upper_32_bits(address);
998 if (size)
999 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1000 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1001}
1002
c99afa25
JR
1003static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1004 int status, int tag, bool gn)
1005{
1006 memset(cmd, 0, sizeof(*cmd));
1007
1008 cmd->data[0] = devid;
1009 if (gn) {
1010 cmd->data[1] = pasid & PASID_MASK;
1011 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1012 }
1013 cmd->data[3] = tag & 0x1ff;
1014 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1015
1016 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1017}
1018
58fc7f14
JR
1019static void build_inv_all(struct iommu_cmd *cmd)
1020{
1021 memset(cmd, 0, sizeof(*cmd));
1022 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
1023}
1024
7ef2798d
JR
1025static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1026{
1027 memset(cmd, 0, sizeof(*cmd));
1028 cmd->data[0] = devid;
1029 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1030}
1031
431b2a20 1032/*
431b2a20 1033 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 1034 * hardware about the new command.
431b2a20 1035 */
f1ca1512
JR
1036static int iommu_queue_command_sync(struct amd_iommu *iommu,
1037 struct iommu_cmd *cmd,
1038 bool sync)
a19ae1ec 1039{
ac0ea6e9 1040 u32 left, tail, head, next_tail;
a19ae1ec 1041 unsigned long flags;
a19ae1ec 1042
549c90dc 1043 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
1044
1045again:
a19ae1ec 1046 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 1047
ac0ea6e9
JR
1048 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1049 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1050 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1051 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 1052
ac0ea6e9
JR
1053 if (left <= 2) {
1054 struct iommu_cmd sync_cmd;
1055 volatile u64 sem = 0;
1056 int ret;
8d201968 1057
ac0ea6e9
JR
1058 build_completion_wait(&sync_cmd, (u64)&sem);
1059 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1060
ac0ea6e9
JR
1061 spin_unlock_irqrestore(&iommu->lock, flags);
1062
1063 if ((ret = wait_on_sem(&sem)) != 0)
1064 return ret;
1065
1066 goto again;
8d201968
JR
1067 }
1068
ac0ea6e9
JR
1069 copy_cmd_to_buffer(iommu, cmd, tail);
1070
1071 /* We need to sync now to make sure all commands are processed */
f1ca1512 1072 iommu->need_sync = sync;
ac0ea6e9 1073
a19ae1ec 1074 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1075
815b33fd 1076 return 0;
8d201968
JR
1077}
1078
f1ca1512
JR
1079static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1080{
1081 return iommu_queue_command_sync(iommu, cmd, true);
1082}
1083
8d201968
JR
1084/*
1085 * This function queues a completion wait command into the command
1086 * buffer of an IOMMU
1087 */
a19ae1ec 1088static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1089{
1090 struct iommu_cmd cmd;
815b33fd 1091 volatile u64 sem = 0;
ac0ea6e9 1092 int ret;
8d201968 1093
09ee17eb 1094 if (!iommu->need_sync)
815b33fd 1095 return 0;
09ee17eb 1096
815b33fd 1097 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1098
f1ca1512 1099 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1100 if (ret)
815b33fd 1101 return ret;
8d201968 1102
ac0ea6e9 1103 return wait_on_sem(&sem);
8d201968
JR
1104}
1105
d8c13085 1106static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1107{
d8c13085 1108 struct iommu_cmd cmd;
a19ae1ec 1109
d8c13085 1110 build_inv_dte(&cmd, devid);
7e4f88da 1111
d8c13085
JR
1112 return iommu_queue_command(iommu, &cmd);
1113}
09ee17eb 1114
7d0c5cc5
JR
1115static void iommu_flush_dte_all(struct amd_iommu *iommu)
1116{
1117 u32 devid;
09ee17eb 1118
7d0c5cc5
JR
1119 for (devid = 0; devid <= 0xffff; ++devid)
1120 iommu_flush_dte(iommu, devid);
a19ae1ec 1121
7d0c5cc5
JR
1122 iommu_completion_wait(iommu);
1123}
84df8175 1124
7d0c5cc5
JR
1125/*
1126 * This function uses heavy locking and may disable irqs for some time. But
1127 * this is no issue because it is only called during resume.
1128 */
1129static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1130{
1131 u32 dom_id;
a19ae1ec 1132
7d0c5cc5
JR
1133 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1134 struct iommu_cmd cmd;
1135 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1136 dom_id, 1);
1137 iommu_queue_command(iommu, &cmd);
1138 }
8eed9833 1139
7d0c5cc5 1140 iommu_completion_wait(iommu);
a19ae1ec
JR
1141}
1142
58fc7f14 1143static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1144{
58fc7f14 1145 struct iommu_cmd cmd;
0518a3a4 1146
58fc7f14 1147 build_inv_all(&cmd);
0518a3a4 1148
58fc7f14
JR
1149 iommu_queue_command(iommu, &cmd);
1150 iommu_completion_wait(iommu);
1151}
1152
7ef2798d
JR
1153static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1154{
1155 struct iommu_cmd cmd;
1156
1157 build_inv_irt(&cmd, devid);
1158
1159 iommu_queue_command(iommu, &cmd);
1160}
1161
1162static void iommu_flush_irt_all(struct amd_iommu *iommu)
1163{
1164 u32 devid;
1165
1166 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1167 iommu_flush_irt(iommu, devid);
1168
1169 iommu_completion_wait(iommu);
1170}
1171
7d0c5cc5
JR
1172void iommu_flush_all_caches(struct amd_iommu *iommu)
1173{
58fc7f14
JR
1174 if (iommu_feature(iommu, FEATURE_IA)) {
1175 iommu_flush_all(iommu);
1176 } else {
1177 iommu_flush_dte_all(iommu);
7ef2798d 1178 iommu_flush_irt_all(iommu);
58fc7f14 1179 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1180 }
1181}
1182
431b2a20 1183/*
cb41ed85 1184 * Command send function for flushing on-device TLB
431b2a20 1185 */
6c542047
JR
1186static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1187 u64 address, size_t size)
3fa43655
JR
1188{
1189 struct amd_iommu *iommu;
b00d3bcf 1190 struct iommu_cmd cmd;
cb41ed85 1191 int qdep;
3fa43655 1192
ea61cddb
JR
1193 qdep = dev_data->ats.qdep;
1194 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1195
ea61cddb 1196 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1197
1198 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1199}
1200
431b2a20 1201/*
431b2a20 1202 * Command send function for invalidating a device table entry
431b2a20 1203 */
6c542047 1204static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1205{
3fa43655 1206 struct amd_iommu *iommu;
ee2fa743 1207 int ret;
a19ae1ec 1208
6c542047 1209 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1210
f62dda66 1211 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1212 if (ret)
1213 return ret;
1214
ea61cddb 1215 if (dev_data->ats.enabled)
6c542047 1216 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1217
ee2fa743 1218 return ret;
a19ae1ec
JR
1219}
1220
431b2a20
JR
1221/*
1222 * TLB invalidation function which is called from the mapping functions.
1223 * It invalidates a single PTE if the range to flush is within a single
1224 * page. Otherwise it flushes the whole TLB of the IOMMU.
1225 */
17b124bf
JR
1226static void __domain_flush_pages(struct protection_domain *domain,
1227 u64 address, size_t size, int pde)
a19ae1ec 1228{
cb41ed85 1229 struct iommu_dev_data *dev_data;
11b6402c
JR
1230 struct iommu_cmd cmd;
1231 int ret = 0, i;
a19ae1ec 1232
11b6402c 1233 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1234
6de8ad9b
JR
1235 for (i = 0; i < amd_iommus_present; ++i) {
1236 if (!domain->dev_iommu[i])
1237 continue;
1238
1239 /*
1240 * Devices of this domain are behind this IOMMU
1241 * We need a TLB flush
1242 */
11b6402c 1243 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1244 }
1245
cb41ed85 1246 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1247
ea61cddb 1248 if (!dev_data->ats.enabled)
cb41ed85
JR
1249 continue;
1250
6c542047 1251 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1252 }
1253
11b6402c 1254 WARN_ON(ret);
6de8ad9b
JR
1255}
1256
17b124bf
JR
1257static void domain_flush_pages(struct protection_domain *domain,
1258 u64 address, size_t size)
6de8ad9b 1259{
17b124bf 1260 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1261}
b6c02715 1262
1c655773 1263/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1264static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1265{
17b124bf 1266 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1267}
1268
42a49f96 1269/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1270static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1271{
17b124bf 1272 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1273}
1274
17b124bf 1275static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1276{
17b124bf 1277 int i;
18811f55 1278
17b124bf
JR
1279 for (i = 0; i < amd_iommus_present; ++i) {
1280 if (!domain->dev_iommu[i])
1281 continue;
bfd1be18 1282
17b124bf
JR
1283 /*
1284 * Devices of this domain are behind this IOMMU
1285 * We need to wait for completion of all commands.
1286 */
1287 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1288 }
e394d72a
JR
1289}
1290
b00d3bcf 1291
09b42804 1292/*
b00d3bcf 1293 * This function flushes the DTEs for all devices in domain
09b42804 1294 */
17b124bf 1295static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1296{
b00d3bcf 1297 struct iommu_dev_data *dev_data;
b26e81b8 1298
b00d3bcf 1299 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1300 device_flush_dte(dev_data);
a345b23b
JR
1301}
1302
431b2a20
JR
1303/****************************************************************************
1304 *
1305 * The functions below are used the create the page table mappings for
1306 * unity mapped regions.
1307 *
1308 ****************************************************************************/
1309
308973d3
JR
1310/*
1311 * This function is used to add another level to an IO page table. Adding
1312 * another level increases the size of the address space by 9 bits to a size up
1313 * to 64 bits.
1314 */
1315static bool increase_address_space(struct protection_domain *domain,
1316 gfp_t gfp)
1317{
1318 u64 *pte;
1319
1320 if (domain->mode == PAGE_MODE_6_LEVEL)
1321 /* address space already 64 bit large */
1322 return false;
1323
1324 pte = (void *)get_zeroed_page(gfp);
1325 if (!pte)
1326 return false;
1327
1328 *pte = PM_LEVEL_PDE(domain->mode,
1329 virt_to_phys(domain->pt_root));
1330 domain->pt_root = pte;
1331 domain->mode += 1;
1332 domain->updated = true;
1333
1334 return true;
1335}
1336
1337static u64 *alloc_pte(struct protection_domain *domain,
1338 unsigned long address,
cbb9d729 1339 unsigned long page_size,
308973d3
JR
1340 u64 **pte_page,
1341 gfp_t gfp)
1342{
cbb9d729 1343 int level, end_lvl;
308973d3 1344 u64 *pte, *page;
cbb9d729
JR
1345
1346 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1347
1348 while (address > PM_LEVEL_SIZE(domain->mode))
1349 increase_address_space(domain, gfp);
1350
cbb9d729
JR
1351 level = domain->mode - 1;
1352 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1353 address = PAGE_SIZE_ALIGN(address, page_size);
1354 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1355
1356 while (level > end_lvl) {
1357 if (!IOMMU_PTE_PRESENT(*pte)) {
1358 page = (u64 *)get_zeroed_page(gfp);
1359 if (!page)
1360 return NULL;
1361 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1362 }
1363
cbb9d729
JR
1364 /* No level skipping support yet */
1365 if (PM_PTE_LEVEL(*pte) != level)
1366 return NULL;
1367
308973d3
JR
1368 level -= 1;
1369
1370 pte = IOMMU_PTE_PAGE(*pte);
1371
1372 if (pte_page && level == end_lvl)
1373 *pte_page = pte;
1374
1375 pte = &pte[PM_LEVEL_INDEX(level, address)];
1376 }
1377
1378 return pte;
1379}
1380
1381/*
1382 * This function checks if there is a PTE for a given dma address. If
1383 * there is one, it returns the pointer to it.
1384 */
24cd7723 1385static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1386{
1387 int level;
1388 u64 *pte;
1389
24cd7723
JR
1390 if (address > PM_LEVEL_SIZE(domain->mode))
1391 return NULL;
1392
1393 level = domain->mode - 1;
1394 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1395
24cd7723
JR
1396 while (level > 0) {
1397
1398 /* Not Present */
308973d3
JR
1399 if (!IOMMU_PTE_PRESENT(*pte))
1400 return NULL;
1401
24cd7723
JR
1402 /* Large PTE */
1403 if (PM_PTE_LEVEL(*pte) == 0x07) {
1404 unsigned long pte_mask, __pte;
1405
1406 /*
1407 * If we have a series of large PTEs, make
1408 * sure to return a pointer to the first one.
1409 */
1410 pte_mask = PTE_PAGE_SIZE(*pte);
1411 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1412 __pte = ((unsigned long)pte) & pte_mask;
1413
1414 return (u64 *)__pte;
1415 }
1416
1417 /* No level skipping support yet */
1418 if (PM_PTE_LEVEL(*pte) != level)
1419 return NULL;
1420
308973d3
JR
1421 level -= 1;
1422
24cd7723 1423 /* Walk to the next level */
308973d3
JR
1424 pte = IOMMU_PTE_PAGE(*pte);
1425 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1426 }
1427
1428 return pte;
1429}
1430
431b2a20
JR
1431/*
1432 * Generic mapping functions. It maps a physical address into a DMA
1433 * address space. It allocates the page table pages if necessary.
1434 * In the future it can be extended to a generic mapping function
1435 * supporting all features of AMD IOMMU page tables like level skipping
1436 * and full 64 bit address spaces.
1437 */
38e817fe
JR
1438static int iommu_map_page(struct protection_domain *dom,
1439 unsigned long bus_addr,
1440 unsigned long phys_addr,
abdc5eb3 1441 int prot,
cbb9d729 1442 unsigned long page_size)
bd0e5211 1443{
8bda3092 1444 u64 __pte, *pte;
cbb9d729 1445 int i, count;
abdc5eb3 1446
bad1cac2 1447 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1448 return -EINVAL;
1449
cbb9d729
JR
1450 bus_addr = PAGE_ALIGN(bus_addr);
1451 phys_addr = PAGE_ALIGN(phys_addr);
1452 count = PAGE_SIZE_PTE_COUNT(page_size);
1453 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1454
1455 for (i = 0; i < count; ++i)
1456 if (IOMMU_PTE_PRESENT(pte[i]))
1457 return -EBUSY;
bd0e5211 1458
cbb9d729
JR
1459 if (page_size > PAGE_SIZE) {
1460 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1461 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1462 } else
1463 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1464
bd0e5211
JR
1465 if (prot & IOMMU_PROT_IR)
1466 __pte |= IOMMU_PTE_IR;
1467 if (prot & IOMMU_PROT_IW)
1468 __pte |= IOMMU_PTE_IW;
1469
cbb9d729
JR
1470 for (i = 0; i < count; ++i)
1471 pte[i] = __pte;
bd0e5211 1472
04bfdd84
JR
1473 update_domain(dom);
1474
bd0e5211
JR
1475 return 0;
1476}
1477
24cd7723
JR
1478static unsigned long iommu_unmap_page(struct protection_domain *dom,
1479 unsigned long bus_addr,
1480 unsigned long page_size)
eb74ff6c 1481{
24cd7723
JR
1482 unsigned long long unmap_size, unmapped;
1483 u64 *pte;
1484
1485 BUG_ON(!is_power_of_2(page_size));
1486
1487 unmapped = 0;
eb74ff6c 1488
24cd7723
JR
1489 while (unmapped < page_size) {
1490
1491 pte = fetch_pte(dom, bus_addr);
1492
1493 if (!pte) {
1494 /*
1495 * No PTE for this address
1496 * move forward in 4kb steps
1497 */
1498 unmap_size = PAGE_SIZE;
1499 } else if (PM_PTE_LEVEL(*pte) == 0) {
1500 /* 4kb PTE found for this address */
1501 unmap_size = PAGE_SIZE;
1502 *pte = 0ULL;
1503 } else {
1504 int count, i;
1505
1506 /* Large PTE found which maps this address */
1507 unmap_size = PTE_PAGE_SIZE(*pte);
1508 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1509 for (i = 0; i < count; i++)
1510 pte[i] = 0ULL;
1511 }
1512
1513 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1514 unmapped += unmap_size;
1515 }
1516
1517 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1518
24cd7723 1519 return unmapped;
eb74ff6c 1520}
eb74ff6c 1521
431b2a20
JR
1522/*
1523 * This function checks if a specific unity mapping entry is needed for
1524 * this specific IOMMU.
1525 */
bd0e5211
JR
1526static int iommu_for_unity_map(struct amd_iommu *iommu,
1527 struct unity_map_entry *entry)
1528{
1529 u16 bdf, i;
1530
1531 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1532 bdf = amd_iommu_alias_table[i];
1533 if (amd_iommu_rlookup_table[bdf] == iommu)
1534 return 1;
1535 }
1536
1537 return 0;
1538}
1539
431b2a20
JR
1540/*
1541 * This function actually applies the mapping to the page table of the
1542 * dma_ops domain.
1543 */
bd0e5211
JR
1544static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1545 struct unity_map_entry *e)
1546{
1547 u64 addr;
1548 int ret;
1549
1550 for (addr = e->address_start; addr < e->address_end;
1551 addr += PAGE_SIZE) {
abdc5eb3 1552 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1553 PAGE_SIZE);
bd0e5211
JR
1554 if (ret)
1555 return ret;
1556 /*
1557 * if unity mapping is in aperture range mark the page
1558 * as allocated in the aperture
1559 */
1560 if (addr < dma_dom->aperture_size)
c3239567 1561 __set_bit(addr >> PAGE_SHIFT,
384de729 1562 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1563 }
1564
1565 return 0;
1566}
1567
171e7b37
JR
1568/*
1569 * Init the unity mappings for a specific IOMMU in the system
1570 *
1571 * Basically iterates over all unity mapping entries and applies them to
1572 * the default domain DMA of that IOMMU if necessary.
1573 */
1574static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1575{
1576 struct unity_map_entry *entry;
1577 int ret;
1578
1579 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1580 if (!iommu_for_unity_map(iommu, entry))
1581 continue;
1582 ret = dma_ops_unity_map(iommu->default_dom, entry);
1583 if (ret)
1584 return ret;
1585 }
1586
1587 return 0;
1588}
1589
431b2a20
JR
1590/*
1591 * Inits the unity mappings required for a specific device
1592 */
bd0e5211
JR
1593static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1594 u16 devid)
1595{
1596 struct unity_map_entry *e;
1597 int ret;
1598
1599 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1600 if (!(devid >= e->devid_start && devid <= e->devid_end))
1601 continue;
1602 ret = dma_ops_unity_map(dma_dom, e);
1603 if (ret)
1604 return ret;
1605 }
1606
1607 return 0;
1608}
1609
431b2a20
JR
1610/****************************************************************************
1611 *
1612 * The next functions belong to the address allocator for the dma_ops
1613 * interface functions. They work like the allocators in the other IOMMU
1614 * drivers. Its basically a bitmap which marks the allocated pages in
1615 * the aperture. Maybe it could be enhanced in the future to a more
1616 * efficient allocator.
1617 *
1618 ****************************************************************************/
d3086444 1619
431b2a20 1620/*
384de729 1621 * The address allocator core functions.
431b2a20
JR
1622 *
1623 * called with domain->lock held
1624 */
384de729 1625
171e7b37
JR
1626/*
1627 * Used to reserve address ranges in the aperture (e.g. for exclusion
1628 * ranges.
1629 */
1630static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1631 unsigned long start_page,
1632 unsigned int pages)
1633{
1634 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1635
1636 if (start_page + pages > last_page)
1637 pages = last_page - start_page;
1638
1639 for (i = start_page; i < start_page + pages; ++i) {
1640 int index = i / APERTURE_RANGE_PAGES;
1641 int page = i % APERTURE_RANGE_PAGES;
1642 __set_bit(page, dom->aperture[index]->bitmap);
1643 }
1644}
1645
9cabe89b
JR
1646/*
1647 * This function is used to add a new aperture range to an existing
1648 * aperture in case of dma_ops domain allocation or address allocation
1649 * failure.
1650 */
576175c2 1651static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1652 bool populate, gfp_t gfp)
1653{
1654 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1655 struct amd_iommu *iommu;
17f5b569 1656 unsigned long i, old_size;
9cabe89b 1657
f5e9705c
JR
1658#ifdef CONFIG_IOMMU_STRESS
1659 populate = false;
1660#endif
1661
9cabe89b
JR
1662 if (index >= APERTURE_MAX_RANGES)
1663 return -ENOMEM;
1664
1665 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1666 if (!dma_dom->aperture[index])
1667 return -ENOMEM;
1668
1669 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1670 if (!dma_dom->aperture[index]->bitmap)
1671 goto out_free;
1672
1673 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1674
1675 if (populate) {
1676 unsigned long address = dma_dom->aperture_size;
1677 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1678 u64 *pte, *pte_page;
1679
1680 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1681 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1682 &pte_page, gfp);
1683 if (!pte)
1684 goto out_free;
1685
1686 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1687
1688 address += APERTURE_RANGE_SIZE / 64;
1689 }
1690 }
1691
17f5b569 1692 old_size = dma_dom->aperture_size;
9cabe89b
JR
1693 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1694
17f5b569
JR
1695 /* Reserve address range used for MSI messages */
1696 if (old_size < MSI_ADDR_BASE_LO &&
1697 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1698 unsigned long spage;
1699 int pages;
1700
1701 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1702 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1703
1704 dma_ops_reserve_addresses(dma_dom, spage, pages);
1705 }
1706
b595076a 1707 /* Initialize the exclusion range if necessary */
576175c2
JR
1708 for_each_iommu(iommu) {
1709 if (iommu->exclusion_start &&
1710 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1711 && iommu->exclusion_start < dma_dom->aperture_size) {
1712 unsigned long startpage;
1713 int pages = iommu_num_pages(iommu->exclusion_start,
1714 iommu->exclusion_length,
1715 PAGE_SIZE);
1716 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1717 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1718 }
00cd122a
JR
1719 }
1720
1721 /*
1722 * Check for areas already mapped as present in the new aperture
1723 * range and mark those pages as reserved in the allocator. Such
1724 * mappings may already exist as a result of requested unity
1725 * mappings for devices.
1726 */
1727 for (i = dma_dom->aperture[index]->offset;
1728 i < dma_dom->aperture_size;
1729 i += PAGE_SIZE) {
24cd7723 1730 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1731 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1732 continue;
1733
fcd0861d 1734 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1735 }
1736
04bfdd84
JR
1737 update_domain(&dma_dom->domain);
1738
9cabe89b
JR
1739 return 0;
1740
1741out_free:
04bfdd84
JR
1742 update_domain(&dma_dom->domain);
1743
9cabe89b
JR
1744 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1745
1746 kfree(dma_dom->aperture[index]);
1747 dma_dom->aperture[index] = NULL;
1748
1749 return -ENOMEM;
1750}
1751
384de729
JR
1752static unsigned long dma_ops_area_alloc(struct device *dev,
1753 struct dma_ops_domain *dom,
1754 unsigned int pages,
1755 unsigned long align_mask,
1756 u64 dma_mask,
1757 unsigned long start)
1758{
803b8cb4 1759 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1760 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1761 int i = start >> APERTURE_RANGE_SHIFT;
1762 unsigned long boundary_size;
1763 unsigned long address = -1;
1764 unsigned long limit;
1765
803b8cb4
JR
1766 next_bit >>= PAGE_SHIFT;
1767
384de729
JR
1768 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1769 PAGE_SIZE) >> PAGE_SHIFT;
1770
1771 for (;i < max_index; ++i) {
1772 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1773
1774 if (dom->aperture[i]->offset >= dma_mask)
1775 break;
1776
1777 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1778 dma_mask >> PAGE_SHIFT);
1779
1780 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1781 limit, next_bit, pages, 0,
1782 boundary_size, align_mask);
1783 if (address != -1) {
1784 address = dom->aperture[i]->offset +
1785 (address << PAGE_SHIFT);
803b8cb4 1786 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1787 break;
1788 }
1789
1790 next_bit = 0;
1791 }
1792
1793 return address;
1794}
1795
d3086444
JR
1796static unsigned long dma_ops_alloc_addresses(struct device *dev,
1797 struct dma_ops_domain *dom,
6d4f343f 1798 unsigned int pages,
832a90c3
JR
1799 unsigned long align_mask,
1800 u64 dma_mask)
d3086444 1801{
d3086444 1802 unsigned long address;
d3086444 1803
fe16f088
JR
1804#ifdef CONFIG_IOMMU_STRESS
1805 dom->next_address = 0;
1806 dom->need_flush = true;
1807#endif
d3086444 1808
384de729 1809 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1810 dma_mask, dom->next_address);
d3086444 1811
1c655773 1812 if (address == -1) {
803b8cb4 1813 dom->next_address = 0;
384de729
JR
1814 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1815 dma_mask, 0);
1c655773
JR
1816 dom->need_flush = true;
1817 }
d3086444 1818
384de729 1819 if (unlikely(address == -1))
8fd524b3 1820 address = DMA_ERROR_CODE;
d3086444
JR
1821
1822 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1823
1824 return address;
1825}
1826
431b2a20
JR
1827/*
1828 * The address free function.
1829 *
1830 * called with domain->lock held
1831 */
d3086444
JR
1832static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1833 unsigned long address,
1834 unsigned int pages)
1835{
384de729
JR
1836 unsigned i = address >> APERTURE_RANGE_SHIFT;
1837 struct aperture_range *range = dom->aperture[i];
80be308d 1838
384de729
JR
1839 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1840
47bccd6b
JR
1841#ifdef CONFIG_IOMMU_STRESS
1842 if (i < 4)
1843 return;
1844#endif
80be308d 1845
803b8cb4 1846 if (address >= dom->next_address)
80be308d 1847 dom->need_flush = true;
384de729
JR
1848
1849 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1850
a66022c4 1851 bitmap_clear(range->bitmap, address, pages);
384de729 1852
d3086444
JR
1853}
1854
431b2a20
JR
1855/****************************************************************************
1856 *
1857 * The next functions belong to the domain allocation. A domain is
1858 * allocated for every IOMMU as the default domain. If device isolation
1859 * is enabled, every device get its own domain. The most important thing
1860 * about domains is the page table mapping the DMA address space they
1861 * contain.
1862 *
1863 ****************************************************************************/
1864
aeb26f55
JR
1865/*
1866 * This function adds a protection domain to the global protection domain list
1867 */
1868static void add_domain_to_list(struct protection_domain *domain)
1869{
1870 unsigned long flags;
1871
1872 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1873 list_add(&domain->list, &amd_iommu_pd_list);
1874 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1875}
1876
1877/*
1878 * This function removes a protection domain to the global
1879 * protection domain list
1880 */
1881static void del_domain_from_list(struct protection_domain *domain)
1882{
1883 unsigned long flags;
1884
1885 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1886 list_del(&domain->list);
1887 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1888}
1889
ec487d1a
JR
1890static u16 domain_id_alloc(void)
1891{
1892 unsigned long flags;
1893 int id;
1894
1895 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1896 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1897 BUG_ON(id == 0);
1898 if (id > 0 && id < MAX_DOMAIN_ID)
1899 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1900 else
1901 id = 0;
1902 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1903
1904 return id;
1905}
1906
a2acfb75
JR
1907static void domain_id_free(int id)
1908{
1909 unsigned long flags;
1910
1911 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1912 if (id > 0 && id < MAX_DOMAIN_ID)
1913 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1914 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1915}
a2acfb75 1916
86db2e5d 1917static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1918{
1919 int i, j;
1920 u64 *p1, *p2, *p3;
1921
86db2e5d 1922 p1 = domain->pt_root;
ec487d1a
JR
1923
1924 if (!p1)
1925 return;
1926
1927 for (i = 0; i < 512; ++i) {
1928 if (!IOMMU_PTE_PRESENT(p1[i]))
1929 continue;
1930
1931 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1932 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1933 if (!IOMMU_PTE_PRESENT(p2[j]))
1934 continue;
1935 p3 = IOMMU_PTE_PAGE(p2[j]);
1936 free_page((unsigned long)p3);
1937 }
1938
1939 free_page((unsigned long)p2);
1940 }
1941
1942 free_page((unsigned long)p1);
86db2e5d
JR
1943
1944 domain->pt_root = NULL;
ec487d1a
JR
1945}
1946
b16137b1
JR
1947static void free_gcr3_tbl_level1(u64 *tbl)
1948{
1949 u64 *ptr;
1950 int i;
1951
1952 for (i = 0; i < 512; ++i) {
1953 if (!(tbl[i] & GCR3_VALID))
1954 continue;
1955
1956 ptr = __va(tbl[i] & PAGE_MASK);
1957
1958 free_page((unsigned long)ptr);
1959 }
1960}
1961
1962static void free_gcr3_tbl_level2(u64 *tbl)
1963{
1964 u64 *ptr;
1965 int i;
1966
1967 for (i = 0; i < 512; ++i) {
1968 if (!(tbl[i] & GCR3_VALID))
1969 continue;
1970
1971 ptr = __va(tbl[i] & PAGE_MASK);
1972
1973 free_gcr3_tbl_level1(ptr);
1974 }
1975}
1976
52815b75
JR
1977static void free_gcr3_table(struct protection_domain *domain)
1978{
b16137b1
JR
1979 if (domain->glx == 2)
1980 free_gcr3_tbl_level2(domain->gcr3_tbl);
1981 else if (domain->glx == 1)
1982 free_gcr3_tbl_level1(domain->gcr3_tbl);
1983 else if (domain->glx != 0)
1984 BUG();
1985
52815b75
JR
1986 free_page((unsigned long)domain->gcr3_tbl);
1987}
1988
431b2a20
JR
1989/*
1990 * Free a domain, only used if something went wrong in the
1991 * allocation path and we need to free an already allocated page table
1992 */
ec487d1a
JR
1993static void dma_ops_domain_free(struct dma_ops_domain *dom)
1994{
384de729
JR
1995 int i;
1996
ec487d1a
JR
1997 if (!dom)
1998 return;
1999
aeb26f55
JR
2000 del_domain_from_list(&dom->domain);
2001
86db2e5d 2002 free_pagetable(&dom->domain);
ec487d1a 2003
384de729
JR
2004 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2005 if (!dom->aperture[i])
2006 continue;
2007 free_page((unsigned long)dom->aperture[i]->bitmap);
2008 kfree(dom->aperture[i]);
2009 }
ec487d1a
JR
2010
2011 kfree(dom);
2012}
2013
431b2a20
JR
2014/*
2015 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 2016 * It also initializes the page table and the address allocator data
431b2a20
JR
2017 * structures required for the dma_ops interface
2018 */
87a64d52 2019static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2020{
2021 struct dma_ops_domain *dma_dom;
ec487d1a
JR
2022
2023 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2024 if (!dma_dom)
2025 return NULL;
2026
2027 spin_lock_init(&dma_dom->domain.lock);
2028
2029 dma_dom->domain.id = domain_id_alloc();
2030 if (dma_dom->domain.id == 0)
2031 goto free_dma_dom;
7c392cbe 2032 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2033 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2034 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2035 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2036 dma_dom->domain.priv = dma_dom;
2037 if (!dma_dom->domain.pt_root)
2038 goto free_dma_dom;
ec487d1a 2039
1c655773 2040 dma_dom->need_flush = false;
bd60b735 2041 dma_dom->target_dev = 0xffff;
1c655773 2042
aeb26f55
JR
2043 add_domain_to_list(&dma_dom->domain);
2044
576175c2 2045 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2046 goto free_dma_dom;
ec487d1a 2047
431b2a20 2048 /*
ec487d1a
JR
2049 * mark the first page as allocated so we never return 0 as
2050 * a valid dma-address. So we can use 0 as error value
431b2a20 2051 */
384de729 2052 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2053 dma_dom->next_address = 0;
ec487d1a 2054
ec487d1a
JR
2055
2056 return dma_dom;
2057
2058free_dma_dom:
2059 dma_ops_domain_free(dma_dom);
2060
2061 return NULL;
2062}
2063
5b28df6f
JR
2064/*
2065 * little helper function to check whether a given protection domain is a
2066 * dma_ops domain
2067 */
2068static bool dma_ops_domain(struct protection_domain *domain)
2069{
2070 return domain->flags & PD_DMA_OPS_MASK;
2071}
2072
fd7b5535 2073static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2074{
132bd68f 2075 u64 pte_root = 0;
ee6c2868 2076 u64 flags = 0;
863c74eb 2077
132bd68f
JR
2078 if (domain->mode != PAGE_MODE_NONE)
2079 pte_root = virt_to_phys(domain->pt_root);
2080
38ddf41b
JR
2081 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2082 << DEV_ENTRY_MODE_SHIFT;
2083 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2084
ee6c2868
JR
2085 flags = amd_iommu_dev_table[devid].data[1];
2086
fd7b5535
JR
2087 if (ats)
2088 flags |= DTE_FLAG_IOTLB;
2089
52815b75
JR
2090 if (domain->flags & PD_IOMMUV2_MASK) {
2091 u64 gcr3 = __pa(domain->gcr3_tbl);
2092 u64 glx = domain->glx;
2093 u64 tmp;
2094
2095 pte_root |= DTE_FLAG_GV;
2096 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2097
2098 /* First mask out possible old values for GCR3 table */
2099 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2100 flags &= ~tmp;
2101
2102 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2103 flags &= ~tmp;
2104
2105 /* Encode GCR3 table into DTE */
2106 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2107 pte_root |= tmp;
2108
2109 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2110 flags |= tmp;
2111
2112 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2113 flags |= tmp;
2114 }
2115
ee6c2868
JR
2116 flags &= ~(0xffffUL);
2117 flags |= domain->id;
2118
2119 amd_iommu_dev_table[devid].data[1] = flags;
2120 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2121}
2122
2123static void clear_dte_entry(u16 devid)
2124{
15898bbc
JR
2125 /* remove entry from the device table seen by the hardware */
2126 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2127 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2128
2129 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2130}
2131
ec9e79ef
JR
2132static void do_attach(struct iommu_dev_data *dev_data,
2133 struct protection_domain *domain)
7f760ddd 2134{
7f760ddd 2135 struct amd_iommu *iommu;
ec9e79ef 2136 bool ats;
fd7b5535 2137
ec9e79ef
JR
2138 iommu = amd_iommu_rlookup_table[dev_data->devid];
2139 ats = dev_data->ats.enabled;
7f760ddd
JR
2140
2141 /* Update data structures */
2142 dev_data->domain = domain;
2143 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2144 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2145
2146 /* Do reference counting */
2147 domain->dev_iommu[iommu->index] += 1;
2148 domain->dev_cnt += 1;
2149
2150 /* Flush the DTE entry */
6c542047 2151 device_flush_dte(dev_data);
7f760ddd
JR
2152}
2153
ec9e79ef 2154static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2155{
7f760ddd 2156 struct amd_iommu *iommu;
7f760ddd 2157
ec9e79ef 2158 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2159
2160 /* decrease reference counters */
7f760ddd
JR
2161 dev_data->domain->dev_iommu[iommu->index] -= 1;
2162 dev_data->domain->dev_cnt -= 1;
2163
2164 /* Update data structures */
2165 dev_data->domain = NULL;
2166 list_del(&dev_data->list);
f62dda66 2167 clear_dte_entry(dev_data->devid);
15898bbc 2168
7f760ddd 2169 /* Flush the DTE entry */
6c542047 2170 device_flush_dte(dev_data);
2b681faf
JR
2171}
2172
2173/*
2174 * If a device is not yet associated with a domain, this function does
2175 * assigns it visible for the hardware
2176 */
ec9e79ef 2177static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2178 struct protection_domain *domain)
2b681faf 2179{
84fe6c19 2180 int ret;
657cbb6b 2181
2b681faf
JR
2182 /* lock domain */
2183 spin_lock(&domain->lock);
2184
71f77580
JR
2185 if (dev_data->alias_data != NULL) {
2186 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2187
2b02b091
JR
2188 /* Some sanity checks */
2189 ret = -EBUSY;
2190 if (alias_data->domain != NULL &&
2191 alias_data->domain != domain)
2192 goto out_unlock;
eba6ac60 2193
2b02b091
JR
2194 if (dev_data->domain != NULL &&
2195 dev_data->domain != domain)
2196 goto out_unlock;
15898bbc 2197
2b02b091 2198 /* Do real assignment */
7f760ddd 2199 if (alias_data->domain == NULL)
ec9e79ef 2200 do_attach(alias_data, domain);
24100055
JR
2201
2202 atomic_inc(&alias_data->bind);
657cbb6b 2203 }
15898bbc 2204
7f760ddd 2205 if (dev_data->domain == NULL)
ec9e79ef 2206 do_attach(dev_data, domain);
eba6ac60 2207
24100055
JR
2208 atomic_inc(&dev_data->bind);
2209
84fe6c19
JL
2210 ret = 0;
2211
2212out_unlock:
2213
eba6ac60
JR
2214 /* ready */
2215 spin_unlock(&domain->lock);
15898bbc 2216
84fe6c19 2217 return ret;
0feae533 2218}
b20ac0d4 2219
52815b75
JR
2220
2221static void pdev_iommuv2_disable(struct pci_dev *pdev)
2222{
2223 pci_disable_ats(pdev);
2224 pci_disable_pri(pdev);
2225 pci_disable_pasid(pdev);
2226}
2227
6a113ddc
JR
2228/* FIXME: Change generic reset-function to do the same */
2229static int pri_reset_while_enabled(struct pci_dev *pdev)
2230{
2231 u16 control;
2232 int pos;
2233
46277b75 2234 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2235 if (!pos)
2236 return -EINVAL;
2237
46277b75
JR
2238 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2239 control |= PCI_PRI_CTRL_RESET;
2240 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2241
2242 return 0;
2243}
2244
52815b75
JR
2245static int pdev_iommuv2_enable(struct pci_dev *pdev)
2246{
6a113ddc
JR
2247 bool reset_enable;
2248 int reqs, ret;
2249
2250 /* FIXME: Hardcode number of outstanding requests for now */
2251 reqs = 32;
2252 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2253 reqs = 1;
2254 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2255
2256 /* Only allow access to user-accessible pages */
2257 ret = pci_enable_pasid(pdev, 0);
2258 if (ret)
2259 goto out_err;
2260
2261 /* First reset the PRI state of the device */
2262 ret = pci_reset_pri(pdev);
2263 if (ret)
2264 goto out_err;
2265
6a113ddc
JR
2266 /* Enable PRI */
2267 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2268 if (ret)
2269 goto out_err;
2270
6a113ddc
JR
2271 if (reset_enable) {
2272 ret = pri_reset_while_enabled(pdev);
2273 if (ret)
2274 goto out_err;
2275 }
2276
52815b75
JR
2277 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2278 if (ret)
2279 goto out_err;
2280
2281 return 0;
2282
2283out_err:
2284 pci_disable_pri(pdev);
2285 pci_disable_pasid(pdev);
2286
2287 return ret;
2288}
2289
c99afa25 2290/* FIXME: Move this to PCI code */
a3b93121 2291#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2292
98f1ad25 2293static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2294{
a3b93121 2295 u16 status;
c99afa25
JR
2296 int pos;
2297
46277b75 2298 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2299 if (!pos)
2300 return false;
2301
a3b93121 2302 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2303
a3b93121 2304 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2305}
2306
407d733e 2307/*
df805abb 2308 * If a device is not yet associated with a domain, this function
407d733e
JR
2309 * assigns it visible for the hardware
2310 */
15898bbc
JR
2311static int attach_device(struct device *dev,
2312 struct protection_domain *domain)
0feae533 2313{
fd7b5535 2314 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2315 struct iommu_dev_data *dev_data;
eba6ac60 2316 unsigned long flags;
15898bbc 2317 int ret;
eba6ac60 2318
ea61cddb
JR
2319 dev_data = get_dev_data(dev);
2320
52815b75
JR
2321 if (domain->flags & PD_IOMMUV2_MASK) {
2322 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2323 return -EINVAL;
2324
2325 if (pdev_iommuv2_enable(pdev) != 0)
2326 return -EINVAL;
2327
2328 dev_data->ats.enabled = true;
2329 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2330 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2331 } else if (amd_iommu_iotlb_sup &&
2332 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2333 dev_data->ats.enabled = true;
2334 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2335 }
fd7b5535 2336
eba6ac60 2337 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2338 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2339 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2340
0feae533
JR
2341 /*
2342 * We might boot into a crash-kernel here. The crashed kernel
2343 * left the caches in the IOMMU dirty. So we have to flush
2344 * here to evict all dirty stuff.
2345 */
17b124bf 2346 domain_flush_tlb_pde(domain);
15898bbc
JR
2347
2348 return ret;
b20ac0d4
JR
2349}
2350
355bf553
JR
2351/*
2352 * Removes a device from a protection domain (unlocked)
2353 */
ec9e79ef 2354static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2355{
2ca76279 2356 struct protection_domain *domain;
7c392cbe 2357 unsigned long flags;
c4596114 2358
7f760ddd 2359 BUG_ON(!dev_data->domain);
355bf553 2360
2ca76279
JR
2361 domain = dev_data->domain;
2362
2363 spin_lock_irqsave(&domain->lock, flags);
24100055 2364
71f77580
JR
2365 if (dev_data->alias_data != NULL) {
2366 struct iommu_dev_data *alias_data = dev_data->alias_data;
2367
7f760ddd 2368 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2369 do_detach(alias_data);
24100055
JR
2370 }
2371
7f760ddd 2372 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2373 do_detach(dev_data);
7f760ddd 2374
2ca76279 2375 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2376
2377 /*
2378 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2379 * passthrough domain if it is detached from any other domain.
2380 * Make sure we can deassign from the pt_domain itself.
21129f78 2381 */
5abcdba4 2382 if (dev_data->passthrough &&
d3ad9373 2383 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2384 __attach_device(dev_data, pt_domain);
355bf553
JR
2385}
2386
2387/*
2388 * Removes a device from a protection domain (with devtable_lock held)
2389 */
15898bbc 2390static void detach_device(struct device *dev)
355bf553 2391{
52815b75 2392 struct protection_domain *domain;
ea61cddb 2393 struct iommu_dev_data *dev_data;
355bf553
JR
2394 unsigned long flags;
2395
ec9e79ef 2396 dev_data = get_dev_data(dev);
52815b75 2397 domain = dev_data->domain;
ec9e79ef 2398
355bf553
JR
2399 /* lock device table */
2400 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2401 __detach_device(dev_data);
355bf553 2402 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2403
52815b75
JR
2404 if (domain->flags & PD_IOMMUV2_MASK)
2405 pdev_iommuv2_disable(to_pci_dev(dev));
2406 else if (dev_data->ats.enabled)
ea61cddb 2407 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2408
2409 dev_data->ats.enabled = false;
355bf553 2410}
e275a2a0 2411
15898bbc
JR
2412/*
2413 * Find out the protection domain structure for a given PCI device. This
2414 * will give us the pointer to the page table root for example.
2415 */
2416static struct protection_domain *domain_for_device(struct device *dev)
2417{
71f77580 2418 struct iommu_dev_data *dev_data;
2b02b091 2419 struct protection_domain *dom = NULL;
15898bbc 2420 unsigned long flags;
15898bbc 2421
657cbb6b 2422 dev_data = get_dev_data(dev);
15898bbc 2423
2b02b091
JR
2424 if (dev_data->domain)
2425 return dev_data->domain;
15898bbc 2426
71f77580
JR
2427 if (dev_data->alias_data != NULL) {
2428 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2429
2430 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2431 if (alias_data->domain != NULL) {
2432 __attach_device(dev_data, alias_data->domain);
2433 dom = alias_data->domain;
2434 }
2435 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2436 }
15898bbc
JR
2437
2438 return dom;
2439}
2440
e275a2a0
JR
2441static int device_change_notifier(struct notifier_block *nb,
2442 unsigned long action, void *data)
2443{
e275a2a0 2444 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2445 struct protection_domain *domain;
2446 struct iommu_dev_data *dev_data;
2447 struct device *dev = data;
e275a2a0 2448 struct amd_iommu *iommu;
1ac4cbbc 2449 unsigned long flags;
5abcdba4 2450 u16 devid;
e275a2a0 2451
98fc5a69
JR
2452 if (!check_device(dev))
2453 return 0;
e275a2a0 2454
5abcdba4
JR
2455 devid = get_device_id(dev);
2456 iommu = amd_iommu_rlookup_table[devid];
2457 dev_data = get_dev_data(dev);
e275a2a0
JR
2458
2459 switch (action) {
c1eee67b 2460 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2461
2462 domain = domain_for_device(dev);
2463
e275a2a0
JR
2464 if (!domain)
2465 goto out;
5abcdba4 2466 if (dev_data->passthrough)
a1ca331c 2467 break;
15898bbc 2468 detach_device(dev);
1ac4cbbc
JR
2469 break;
2470 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2471
2472 iommu_init_device(dev);
2473
2c9195e9
JR
2474 /*
2475 * dev_data is still NULL and
2476 * got initialized in iommu_init_device
2477 */
2478 dev_data = get_dev_data(dev);
2479
2480 if (iommu_pass_through || dev_data->iommu_v2) {
2481 dev_data->passthrough = true;
2482 attach_device(dev, pt_domain);
2483 break;
2484 }
2485
657cbb6b
JR
2486 domain = domain_for_device(dev);
2487
1ac4cbbc
JR
2488 /* allocate a protection domain if a device is added */
2489 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2490 if (!dma_domain) {
2491 dma_domain = dma_ops_domain_alloc();
2492 if (!dma_domain)
2493 goto out;
2494 dma_domain->target_dev = devid;
2495
2496 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2497 list_add_tail(&dma_domain->list, &iommu_pd_list);
2498 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2499 }
ac1534a5 2500
2c9195e9 2501 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2502
e275a2a0 2503 break;
657cbb6b
JR
2504 case BUS_NOTIFY_DEL_DEVICE:
2505
2506 iommu_uninit_device(dev);
2507
e275a2a0
JR
2508 default:
2509 goto out;
2510 }
2511
e275a2a0
JR
2512 iommu_completion_wait(iommu);
2513
2514out:
2515 return 0;
2516}
2517
b25ae679 2518static struct notifier_block device_nb = {
e275a2a0
JR
2519 .notifier_call = device_change_notifier,
2520};
355bf553 2521
8638c491
JR
2522void amd_iommu_init_notifier(void)
2523{
2524 bus_register_notifier(&pci_bus_type, &device_nb);
2525}
2526
431b2a20
JR
2527/*****************************************************************************
2528 *
2529 * The next functions belong to the dma_ops mapping/unmapping code.
2530 *
2531 *****************************************************************************/
2532
2533/*
2534 * In the dma_ops path we only have the struct device. This function
2535 * finds the corresponding IOMMU, the protection domain and the
2536 * requestor id for a given device.
2537 * If the device is not yet associated with a domain this is also done
2538 * in this function.
2539 */
94f6d190 2540static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2541{
94f6d190 2542 struct protection_domain *domain;
b20ac0d4 2543 struct dma_ops_domain *dma_dom;
94f6d190 2544 u16 devid = get_device_id(dev);
b20ac0d4 2545
f99c0f1c 2546 if (!check_device(dev))
94f6d190 2547 return ERR_PTR(-EINVAL);
b20ac0d4 2548
94f6d190
JR
2549 domain = domain_for_device(dev);
2550 if (domain != NULL && !dma_ops_domain(domain))
2551 return ERR_PTR(-EBUSY);
f99c0f1c 2552
94f6d190
JR
2553 if (domain != NULL)
2554 return domain;
b20ac0d4 2555
df805abb 2556 /* Device not bound yet - bind it */
94f6d190 2557 dma_dom = find_protection_domain(devid);
15898bbc 2558 if (!dma_dom)
94f6d190
JR
2559 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2560 attach_device(dev, &dma_dom->domain);
15898bbc 2561 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2562 dma_dom->domain.id, dev_name(dev));
f91ba190 2563
94f6d190 2564 return &dma_dom->domain;
b20ac0d4
JR
2565}
2566
04bfdd84
JR
2567static void update_device_table(struct protection_domain *domain)
2568{
492667da 2569 struct iommu_dev_data *dev_data;
04bfdd84 2570
ea61cddb
JR
2571 list_for_each_entry(dev_data, &domain->dev_list, list)
2572 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2573}
2574
2575static void update_domain(struct protection_domain *domain)
2576{
2577 if (!domain->updated)
2578 return;
2579
2580 update_device_table(domain);
17b124bf
JR
2581
2582 domain_flush_devices(domain);
2583 domain_flush_tlb_pde(domain);
04bfdd84
JR
2584
2585 domain->updated = false;
2586}
2587
8bda3092
JR
2588/*
2589 * This function fetches the PTE for a given address in the aperture
2590 */
2591static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2592 unsigned long address)
2593{
384de729 2594 struct aperture_range *aperture;
8bda3092
JR
2595 u64 *pte, *pte_page;
2596
384de729
JR
2597 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2598 if (!aperture)
2599 return NULL;
2600
2601 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2602 if (!pte) {
cbb9d729 2603 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2604 GFP_ATOMIC);
384de729
JR
2605 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2606 } else
8c8c143c 2607 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2608
04bfdd84 2609 update_domain(&dom->domain);
8bda3092
JR
2610
2611 return pte;
2612}
2613
431b2a20
JR
2614/*
2615 * This is the generic map function. It maps one 4kb page at paddr to
2616 * the given address in the DMA address space for the domain.
2617 */
680525e0 2618static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2619 unsigned long address,
2620 phys_addr_t paddr,
2621 int direction)
2622{
2623 u64 *pte, __pte;
2624
2625 WARN_ON(address > dom->aperture_size);
2626
2627 paddr &= PAGE_MASK;
2628
8bda3092 2629 pte = dma_ops_get_pte(dom, address);
53812c11 2630 if (!pte)
8fd524b3 2631 return DMA_ERROR_CODE;
cb76c322
JR
2632
2633 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2634
2635 if (direction == DMA_TO_DEVICE)
2636 __pte |= IOMMU_PTE_IR;
2637 else if (direction == DMA_FROM_DEVICE)
2638 __pte |= IOMMU_PTE_IW;
2639 else if (direction == DMA_BIDIRECTIONAL)
2640 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2641
2642 WARN_ON(*pte);
2643
2644 *pte = __pte;
2645
2646 return (dma_addr_t)address;
2647}
2648
431b2a20
JR
2649/*
2650 * The generic unmapping function for on page in the DMA address space.
2651 */
680525e0 2652static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2653 unsigned long address)
2654{
384de729 2655 struct aperture_range *aperture;
cb76c322
JR
2656 u64 *pte;
2657
2658 if (address >= dom->aperture_size)
2659 return;
2660
384de729
JR
2661 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2662 if (!aperture)
2663 return;
2664
2665 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2666 if (!pte)
2667 return;
cb76c322 2668
8c8c143c 2669 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2670
2671 WARN_ON(!*pte);
2672
2673 *pte = 0ULL;
2674}
2675
431b2a20
JR
2676/*
2677 * This function contains common code for mapping of a physically
24f81160
JR
2678 * contiguous memory region into DMA address space. It is used by all
2679 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2680 * Must be called with the domain lock held.
2681 */
cb76c322 2682static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2683 struct dma_ops_domain *dma_dom,
2684 phys_addr_t paddr,
2685 size_t size,
6d4f343f 2686 int dir,
832a90c3
JR
2687 bool align,
2688 u64 dma_mask)
cb76c322
JR
2689{
2690 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2691 dma_addr_t address, start, ret;
cb76c322 2692 unsigned int pages;
6d4f343f 2693 unsigned long align_mask = 0;
cb76c322
JR
2694 int i;
2695
e3c449f5 2696 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2697 paddr &= PAGE_MASK;
2698
8ecaf8f1
JR
2699 INC_STATS_COUNTER(total_map_requests);
2700
c1858976
JR
2701 if (pages > 1)
2702 INC_STATS_COUNTER(cross_page);
2703
6d4f343f
JR
2704 if (align)
2705 align_mask = (1UL << get_order(size)) - 1;
2706
11b83888 2707retry:
832a90c3
JR
2708 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2709 dma_mask);
8fd524b3 2710 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2711 /*
2712 * setting next_address here will let the address
2713 * allocator only scan the new allocated range in the
2714 * first run. This is a small optimization.
2715 */
2716 dma_dom->next_address = dma_dom->aperture_size;
2717
576175c2 2718 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2719 goto out;
2720
2721 /*
af901ca1 2722 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2723 * allocation again
2724 */
2725 goto retry;
2726 }
cb76c322
JR
2727
2728 start = address;
2729 for (i = 0; i < pages; ++i) {
680525e0 2730 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2731 if (ret == DMA_ERROR_CODE)
53812c11
JR
2732 goto out_unmap;
2733
cb76c322
JR
2734 paddr += PAGE_SIZE;
2735 start += PAGE_SIZE;
2736 }
2737 address += offset;
2738
5774f7c5
JR
2739 ADD_STATS_COUNTER(alloced_io_mem, size);
2740
afa9fdc2 2741 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2742 domain_flush_tlb(&dma_dom->domain);
1c655773 2743 dma_dom->need_flush = false;
318afd41 2744 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2745 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2746
cb76c322
JR
2747out:
2748 return address;
53812c11
JR
2749
2750out_unmap:
2751
2752 for (--i; i >= 0; --i) {
2753 start -= PAGE_SIZE;
680525e0 2754 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2755 }
2756
2757 dma_ops_free_addresses(dma_dom, address, pages);
2758
8fd524b3 2759 return DMA_ERROR_CODE;
cb76c322
JR
2760}
2761
431b2a20
JR
2762/*
2763 * Does the reverse of the __map_single function. Must be called with
2764 * the domain lock held too
2765 */
cd8c82e8 2766static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2767 dma_addr_t dma_addr,
2768 size_t size,
2769 int dir)
2770{
04e0463e 2771 dma_addr_t flush_addr;
cb76c322
JR
2772 dma_addr_t i, start;
2773 unsigned int pages;
2774
8fd524b3 2775 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2776 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2777 return;
2778
04e0463e 2779 flush_addr = dma_addr;
e3c449f5 2780 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2781 dma_addr &= PAGE_MASK;
2782 start = dma_addr;
2783
2784 for (i = 0; i < pages; ++i) {
680525e0 2785 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2786 start += PAGE_SIZE;
2787 }
2788
5774f7c5
JR
2789 SUB_STATS_COUNTER(alloced_io_mem, size);
2790
cb76c322 2791 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2792
80be308d 2793 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2794 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2795 dma_dom->need_flush = false;
2796 }
cb76c322
JR
2797}
2798
431b2a20
JR
2799/*
2800 * The exported map_single function for dma_ops.
2801 */
51491367
FT
2802static dma_addr_t map_page(struct device *dev, struct page *page,
2803 unsigned long offset, size_t size,
2804 enum dma_data_direction dir,
2805 struct dma_attrs *attrs)
4da70b9e
JR
2806{
2807 unsigned long flags;
4da70b9e 2808 struct protection_domain *domain;
4da70b9e 2809 dma_addr_t addr;
832a90c3 2810 u64 dma_mask;
51491367 2811 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2812
0f2a86f2
JR
2813 INC_STATS_COUNTER(cnt_map_single);
2814
94f6d190
JR
2815 domain = get_domain(dev);
2816 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2817 return (dma_addr_t)paddr;
94f6d190
JR
2818 else if (IS_ERR(domain))
2819 return DMA_ERROR_CODE;
4da70b9e 2820
f99c0f1c
JR
2821 dma_mask = *dev->dma_mask;
2822
4da70b9e 2823 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2824
cd8c82e8 2825 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2826 dma_mask);
8fd524b3 2827 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2828 goto out;
2829
17b124bf 2830 domain_flush_complete(domain);
4da70b9e
JR
2831
2832out:
2833 spin_unlock_irqrestore(&domain->lock, flags);
2834
2835 return addr;
2836}
2837
431b2a20
JR
2838/*
2839 * The exported unmap_single function for dma_ops.
2840 */
51491367
FT
2841static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2842 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2843{
2844 unsigned long flags;
4da70b9e 2845 struct protection_domain *domain;
4da70b9e 2846
146a6917
JR
2847 INC_STATS_COUNTER(cnt_unmap_single);
2848
94f6d190
JR
2849 domain = get_domain(dev);
2850 if (IS_ERR(domain))
5b28df6f
JR
2851 return;
2852
4da70b9e
JR
2853 spin_lock_irqsave(&domain->lock, flags);
2854
cd8c82e8 2855 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2856
17b124bf 2857 domain_flush_complete(domain);
4da70b9e
JR
2858
2859 spin_unlock_irqrestore(&domain->lock, flags);
2860}
2861
431b2a20
JR
2862/*
2863 * The exported map_sg function for dma_ops (handles scatter-gather
2864 * lists).
2865 */
65b050ad 2866static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2867 int nelems, enum dma_data_direction dir,
2868 struct dma_attrs *attrs)
65b050ad
JR
2869{
2870 unsigned long flags;
65b050ad 2871 struct protection_domain *domain;
65b050ad
JR
2872 int i;
2873 struct scatterlist *s;
2874 phys_addr_t paddr;
2875 int mapped_elems = 0;
832a90c3 2876 u64 dma_mask;
65b050ad 2877
d03f067a
JR
2878 INC_STATS_COUNTER(cnt_map_sg);
2879
94f6d190 2880 domain = get_domain(dev);
a0e191b2 2881 if (IS_ERR(domain))
94f6d190 2882 return 0;
dbcc112e 2883
832a90c3 2884 dma_mask = *dev->dma_mask;
65b050ad 2885
65b050ad
JR
2886 spin_lock_irqsave(&domain->lock, flags);
2887
2888 for_each_sg(sglist, s, nelems, i) {
2889 paddr = sg_phys(s);
2890
cd8c82e8 2891 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2892 paddr, s->length, dir, false,
2893 dma_mask);
65b050ad
JR
2894
2895 if (s->dma_address) {
2896 s->dma_length = s->length;
2897 mapped_elems++;
2898 } else
2899 goto unmap;
65b050ad
JR
2900 }
2901
17b124bf 2902 domain_flush_complete(domain);
65b050ad
JR
2903
2904out:
2905 spin_unlock_irqrestore(&domain->lock, flags);
2906
2907 return mapped_elems;
2908unmap:
2909 for_each_sg(sglist, s, mapped_elems, i) {
2910 if (s->dma_address)
cd8c82e8 2911 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2912 s->dma_length, dir);
2913 s->dma_address = s->dma_length = 0;
2914 }
2915
2916 mapped_elems = 0;
2917
2918 goto out;
2919}
2920
431b2a20
JR
2921/*
2922 * The exported map_sg function for dma_ops (handles scatter-gather
2923 * lists).
2924 */
65b050ad 2925static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2926 int nelems, enum dma_data_direction dir,
2927 struct dma_attrs *attrs)
65b050ad
JR
2928{
2929 unsigned long flags;
65b050ad
JR
2930 struct protection_domain *domain;
2931 struct scatterlist *s;
65b050ad
JR
2932 int i;
2933
55877a6b
JR
2934 INC_STATS_COUNTER(cnt_unmap_sg);
2935
94f6d190
JR
2936 domain = get_domain(dev);
2937 if (IS_ERR(domain))
5b28df6f
JR
2938 return;
2939
65b050ad
JR
2940 spin_lock_irqsave(&domain->lock, flags);
2941
2942 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2943 __unmap_single(domain->priv, s->dma_address,
65b050ad 2944 s->dma_length, dir);
65b050ad
JR
2945 s->dma_address = s->dma_length = 0;
2946 }
2947
17b124bf 2948 domain_flush_complete(domain);
65b050ad
JR
2949
2950 spin_unlock_irqrestore(&domain->lock, flags);
2951}
2952
431b2a20
JR
2953/*
2954 * The exported alloc_coherent function for dma_ops.
2955 */
5d8b53cf 2956static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2957 dma_addr_t *dma_addr, gfp_t flag,
2958 struct dma_attrs *attrs)
5d8b53cf
JR
2959{
2960 unsigned long flags;
2961 void *virt_addr;
5d8b53cf 2962 struct protection_domain *domain;
5d8b53cf 2963 phys_addr_t paddr;
832a90c3 2964 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2965
c8f0fb36
JR
2966 INC_STATS_COUNTER(cnt_alloc_coherent);
2967
94f6d190
JR
2968 domain = get_domain(dev);
2969 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2970 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2971 *dma_addr = __pa(virt_addr);
2972 return virt_addr;
94f6d190
JR
2973 } else if (IS_ERR(domain))
2974 return NULL;
5d8b53cf 2975
f99c0f1c
JR
2976 dma_mask = dev->coherent_dma_mask;
2977 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2978 flag |= __GFP_ZERO;
5d8b53cf
JR
2979
2980 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2981 if (!virt_addr)
b25ae679 2982 return NULL;
5d8b53cf 2983
5d8b53cf
JR
2984 paddr = virt_to_phys(virt_addr);
2985
832a90c3
JR
2986 if (!dma_mask)
2987 dma_mask = *dev->dma_mask;
2988
5d8b53cf
JR
2989 spin_lock_irqsave(&domain->lock, flags);
2990
cd8c82e8 2991 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2992 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2993
8fd524b3 2994 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2995 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2996 goto out_free;
367d04c4 2997 }
5d8b53cf 2998
17b124bf 2999 domain_flush_complete(domain);
5d8b53cf 3000
5d8b53cf
JR
3001 spin_unlock_irqrestore(&domain->lock, flags);
3002
3003 return virt_addr;
5b28df6f
JR
3004
3005out_free:
3006
3007 free_pages((unsigned long)virt_addr, get_order(size));
3008
3009 return NULL;
5d8b53cf
JR
3010}
3011
431b2a20
JR
3012/*
3013 * The exported free_coherent function for dma_ops.
431b2a20 3014 */
5d8b53cf 3015static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
3016 void *virt_addr, dma_addr_t dma_addr,
3017 struct dma_attrs *attrs)
5d8b53cf
JR
3018{
3019 unsigned long flags;
5d8b53cf 3020 struct protection_domain *domain;
5d8b53cf 3021
5d31ee7e
JR
3022 INC_STATS_COUNTER(cnt_free_coherent);
3023
94f6d190
JR
3024 domain = get_domain(dev);
3025 if (IS_ERR(domain))
5b28df6f
JR
3026 goto free_mem;
3027
5d8b53cf
JR
3028 spin_lock_irqsave(&domain->lock, flags);
3029
cd8c82e8 3030 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3031
17b124bf 3032 domain_flush_complete(domain);
5d8b53cf
JR
3033
3034 spin_unlock_irqrestore(&domain->lock, flags);
3035
3036free_mem:
3037 free_pages((unsigned long)virt_addr, get_order(size));
3038}
3039
b39ba6ad
JR
3040/*
3041 * This function is called by the DMA layer to find out if we can handle a
3042 * particular device. It is part of the dma_ops.
3043 */
3044static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3045{
420aef8a 3046 return check_device(dev);
b39ba6ad
JR
3047}
3048
c432f3df 3049/*
431b2a20
JR
3050 * The function for pre-allocating protection domains.
3051 *
c432f3df
JR
3052 * If the driver core informs the DMA layer if a driver grabs a device
3053 * we don't need to preallocate the protection domains anymore.
3054 * For now we have to.
3055 */
943bc7e1 3056static void __init prealloc_protection_domains(void)
c432f3df 3057{
5abcdba4 3058 struct iommu_dev_data *dev_data;
c432f3df 3059 struct dma_ops_domain *dma_dom;
5abcdba4 3060 struct pci_dev *dev = NULL;
98fc5a69 3061 u16 devid;
c432f3df 3062
d18c69d3 3063 for_each_pci_dev(dev) {
98fc5a69
JR
3064
3065 /* Do we handle this device? */
3066 if (!check_device(&dev->dev))
c432f3df 3067 continue;
98fc5a69 3068
5abcdba4
JR
3069 dev_data = get_dev_data(&dev->dev);
3070 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3071 /* Make sure passthrough domain is allocated */
3072 alloc_passthrough_domain();
3073 dev_data->passthrough = true;
3074 attach_device(&dev->dev, pt_domain);
df805abb 3075 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3076 dev_name(&dev->dev));
3077 }
3078
98fc5a69 3079 /* Is there already any domain for it? */
15898bbc 3080 if (domain_for_device(&dev->dev))
c432f3df 3081 continue;
98fc5a69
JR
3082
3083 devid = get_device_id(&dev->dev);
3084
87a64d52 3085 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3086 if (!dma_dom)
3087 continue;
3088 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3089 dma_dom->target_dev = devid;
3090
15898bbc 3091 attach_device(&dev->dev, &dma_dom->domain);
be831297 3092
bd60b735 3093 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3094 }
3095}
3096
160c1d8e 3097static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3098 .alloc = alloc_coherent,
3099 .free = free_coherent,
51491367
FT
3100 .map_page = map_page,
3101 .unmap_page = unmap_page,
6631ee9d
JR
3102 .map_sg = map_sg,
3103 .unmap_sg = unmap_sg,
b39ba6ad 3104 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3105};
3106
27c2127a
JR
3107static unsigned device_dma_ops_init(void)
3108{
5abcdba4 3109 struct iommu_dev_data *dev_data;
27c2127a
JR
3110 struct pci_dev *pdev = NULL;
3111 unsigned unhandled = 0;
3112
3113 for_each_pci_dev(pdev) {
3114 if (!check_device(&pdev->dev)) {
af1be049
JR
3115
3116 iommu_ignore_device(&pdev->dev);
3117
27c2127a
JR
3118 unhandled += 1;
3119 continue;
3120 }
3121
5abcdba4
JR
3122 dev_data = get_dev_data(&pdev->dev);
3123
3124 if (!dev_data->passthrough)
3125 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3126 else
3127 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3128 }
3129
3130 return unhandled;
3131}
3132
431b2a20
JR
3133/*
3134 * The function which clues the AMD IOMMU driver into dma_ops.
3135 */
f5325094
JR
3136
3137void __init amd_iommu_init_api(void)
3138{
2cc21c42 3139 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3140}
3141
6631ee9d
JR
3142int __init amd_iommu_init_dma_ops(void)
3143{
3144 struct amd_iommu *iommu;
27c2127a 3145 int ret, unhandled;
6631ee9d 3146
431b2a20
JR
3147 /*
3148 * first allocate a default protection domain for every IOMMU we
3149 * found in the system. Devices not assigned to any other
3150 * protection domain will be assigned to the default one.
3151 */
3bd22172 3152 for_each_iommu(iommu) {
87a64d52 3153 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3154 if (iommu->default_dom == NULL)
3155 return -ENOMEM;
e2dc14a2 3156 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3157 ret = iommu_init_unity_mappings(iommu);
3158 if (ret)
3159 goto free_domains;
3160 }
3161
431b2a20 3162 /*
8793abeb 3163 * Pre-allocate the protection domains for each device.
431b2a20 3164 */
8793abeb 3165 prealloc_protection_domains();
6631ee9d
JR
3166
3167 iommu_detected = 1;
75f1cdf1 3168 swiotlb = 0;
6631ee9d 3169
431b2a20 3170 /* Make the driver finally visible to the drivers */
27c2127a
JR
3171 unhandled = device_dma_ops_init();
3172 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3173 /* There are unhandled devices - initialize swiotlb for them */
3174 swiotlb = 1;
3175 }
6631ee9d 3176
7f26508b
JR
3177 amd_iommu_stats_init();
3178
62410eeb
JR
3179 if (amd_iommu_unmap_flush)
3180 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3181 else
3182 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3183
6631ee9d
JR
3184 return 0;
3185
3186free_domains:
3187
3bd22172 3188 for_each_iommu(iommu) {
91457df7 3189 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3190 }
3191
3192 return ret;
3193}
6d98cd80
JR
3194
3195/*****************************************************************************
3196 *
3197 * The following functions belong to the exported interface of AMD IOMMU
3198 *
3199 * This interface allows access to lower level functions of the IOMMU
3200 * like protection domain handling and assignement of devices to domains
3201 * which is not possible with the dma_ops interface.
3202 *
3203 *****************************************************************************/
3204
6d98cd80
JR
3205static void cleanup_domain(struct protection_domain *domain)
3206{
492667da 3207 struct iommu_dev_data *dev_data, *next;
6d98cd80 3208 unsigned long flags;
6d98cd80
JR
3209
3210 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3211
492667da 3212 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3213 __detach_device(dev_data);
492667da
JR
3214 atomic_set(&dev_data->bind, 0);
3215 }
6d98cd80
JR
3216
3217 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3218}
3219
2650815f
JR
3220static void protection_domain_free(struct protection_domain *domain)
3221{
3222 if (!domain)
3223 return;
3224
aeb26f55
JR
3225 del_domain_from_list(domain);
3226
2650815f
JR
3227 if (domain->id)
3228 domain_id_free(domain->id);
3229
3230 kfree(domain);
3231}
3232
3233static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3234{
3235 struct protection_domain *domain;
3236
3237 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3238 if (!domain)
2650815f 3239 return NULL;
c156e347
JR
3240
3241 spin_lock_init(&domain->lock);
5d214fe6 3242 mutex_init(&domain->api_lock);
c156e347
JR
3243 domain->id = domain_id_alloc();
3244 if (!domain->id)
2650815f 3245 goto out_err;
7c392cbe 3246 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3247
aeb26f55
JR
3248 add_domain_to_list(domain);
3249
2650815f
JR
3250 return domain;
3251
3252out_err:
3253 kfree(domain);
3254
3255 return NULL;
3256}
3257
5abcdba4
JR
3258static int __init alloc_passthrough_domain(void)
3259{
3260 if (pt_domain != NULL)
3261 return 0;
3262
3263 /* allocate passthrough domain */
3264 pt_domain = protection_domain_alloc();
3265 if (!pt_domain)
3266 return -ENOMEM;
3267
3268 pt_domain->mode = PAGE_MODE_NONE;
3269
3270 return 0;
3271}
2650815f
JR
3272static int amd_iommu_domain_init(struct iommu_domain *dom)
3273{
3274 struct protection_domain *domain;
3275
3276 domain = protection_domain_alloc();
3277 if (!domain)
c156e347 3278 goto out_free;
2650815f
JR
3279
3280 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3281 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3282 if (!domain->pt_root)
3283 goto out_free;
3284
f3572db8
JR
3285 domain->iommu_domain = dom;
3286
c156e347
JR
3287 dom->priv = domain;
3288
0ff64f80
JR
3289 dom->geometry.aperture_start = 0;
3290 dom->geometry.aperture_end = ~0ULL;
3291 dom->geometry.force_aperture = true;
3292
c156e347
JR
3293 return 0;
3294
3295out_free:
2650815f 3296 protection_domain_free(domain);
c156e347
JR
3297
3298 return -ENOMEM;
3299}
3300
98383fc3
JR
3301static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3302{
3303 struct protection_domain *domain = dom->priv;
3304
3305 if (!domain)
3306 return;
3307
3308 if (domain->dev_cnt > 0)
3309 cleanup_domain(domain);
3310
3311 BUG_ON(domain->dev_cnt != 0);
3312
132bd68f
JR
3313 if (domain->mode != PAGE_MODE_NONE)
3314 free_pagetable(domain);
98383fc3 3315
52815b75
JR
3316 if (domain->flags & PD_IOMMUV2_MASK)
3317 free_gcr3_table(domain);
3318
8b408fe4 3319 protection_domain_free(domain);
98383fc3
JR
3320
3321 dom->priv = NULL;
3322}
3323
684f2888
JR
3324static void amd_iommu_detach_device(struct iommu_domain *dom,
3325 struct device *dev)
3326{
657cbb6b 3327 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3328 struct amd_iommu *iommu;
684f2888
JR
3329 u16 devid;
3330
98fc5a69 3331 if (!check_device(dev))
684f2888
JR
3332 return;
3333
98fc5a69 3334 devid = get_device_id(dev);
684f2888 3335
657cbb6b 3336 if (dev_data->domain != NULL)
15898bbc 3337 detach_device(dev);
684f2888
JR
3338
3339 iommu = amd_iommu_rlookup_table[devid];
3340 if (!iommu)
3341 return;
3342
684f2888
JR
3343 iommu_completion_wait(iommu);
3344}
3345
01106066
JR
3346static int amd_iommu_attach_device(struct iommu_domain *dom,
3347 struct device *dev)
3348{
3349 struct protection_domain *domain = dom->priv;
657cbb6b 3350 struct iommu_dev_data *dev_data;
01106066 3351 struct amd_iommu *iommu;
15898bbc 3352 int ret;
01106066 3353
98fc5a69 3354 if (!check_device(dev))
01106066
JR
3355 return -EINVAL;
3356
657cbb6b
JR
3357 dev_data = dev->archdata.iommu;
3358
f62dda66 3359 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3360 if (!iommu)
3361 return -EINVAL;
3362
657cbb6b 3363 if (dev_data->domain)
15898bbc 3364 detach_device(dev);
01106066 3365
15898bbc 3366 ret = attach_device(dev, domain);
01106066
JR
3367
3368 iommu_completion_wait(iommu);
3369
15898bbc 3370 return ret;
01106066
JR
3371}
3372
468e2366 3373static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3374 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3375{
3376 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3377 int prot = 0;
3378 int ret;
3379
132bd68f
JR
3380 if (domain->mode == PAGE_MODE_NONE)
3381 return -EINVAL;
3382
c6229ca6
JR
3383 if (iommu_prot & IOMMU_READ)
3384 prot |= IOMMU_PROT_IR;
3385 if (iommu_prot & IOMMU_WRITE)
3386 prot |= IOMMU_PROT_IW;
3387
5d214fe6 3388 mutex_lock(&domain->api_lock);
795e74f7 3389 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3390 mutex_unlock(&domain->api_lock);
3391
795e74f7 3392 return ret;
c6229ca6
JR
3393}
3394
5009065d
OBC
3395static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3396 size_t page_size)
eb74ff6c 3397{
eb74ff6c 3398 struct protection_domain *domain = dom->priv;
5009065d 3399 size_t unmap_size;
eb74ff6c 3400
132bd68f
JR
3401 if (domain->mode == PAGE_MODE_NONE)
3402 return -EINVAL;
3403
5d214fe6 3404 mutex_lock(&domain->api_lock);
468e2366 3405 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3406 mutex_unlock(&domain->api_lock);
eb74ff6c 3407
17b124bf 3408 domain_flush_tlb_pde(domain);
5d214fe6 3409
5009065d 3410 return unmap_size;
eb74ff6c
JR
3411}
3412
645c4c8d
JR
3413static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3414 unsigned long iova)
3415{
3416 struct protection_domain *domain = dom->priv;
f03152bb 3417 unsigned long offset_mask;
645c4c8d 3418 phys_addr_t paddr;
f03152bb 3419 u64 *pte, __pte;
645c4c8d 3420
132bd68f
JR
3421 if (domain->mode == PAGE_MODE_NONE)
3422 return iova;
3423
24cd7723 3424 pte = fetch_pte(domain, iova);
645c4c8d 3425
a6d41a40 3426 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3427 return 0;
3428
f03152bb
JR
3429 if (PM_PTE_LEVEL(*pte) == 0)
3430 offset_mask = PAGE_SIZE - 1;
3431 else
3432 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3433
3434 __pte = *pte & PM_ADDR_MASK;
3435 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3436
3437 return paddr;
3438}
3439
dbb9fd86
SY
3440static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3441 unsigned long cap)
3442{
80a506b8
JR
3443 switch (cap) {
3444 case IOMMU_CAP_CACHE_COHERENCY:
3445 return 1;
bdddadcb
JR
3446 case IOMMU_CAP_INTR_REMAP:
3447 return irq_remapping_enabled;
80a506b8
JR
3448 }
3449
dbb9fd86
SY
3450 return 0;
3451}
3452
26961efe
JR
3453static struct iommu_ops amd_iommu_ops = {
3454 .domain_init = amd_iommu_domain_init,
3455 .domain_destroy = amd_iommu_domain_destroy,
3456 .attach_dev = amd_iommu_attach_device,
3457 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3458 .map = amd_iommu_map,
3459 .unmap = amd_iommu_unmap,
26961efe 3460 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3461 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3462 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3463};
3464
0feae533
JR
3465/*****************************************************************************
3466 *
3467 * The next functions do a basic initialization of IOMMU for pass through
3468 * mode
3469 *
3470 * In passthrough mode the IOMMU is initialized and enabled but not used for
3471 * DMA-API translation.
3472 *
3473 *****************************************************************************/
3474
3475int __init amd_iommu_init_passthrough(void)
3476{
5abcdba4 3477 struct iommu_dev_data *dev_data;
0feae533 3478 struct pci_dev *dev = NULL;
5abcdba4 3479 struct amd_iommu *iommu;
15898bbc 3480 u16 devid;
5abcdba4 3481 int ret;
0feae533 3482
5abcdba4
JR
3483 ret = alloc_passthrough_domain();
3484 if (ret)
3485 return ret;
0feae533 3486
6c54aabd 3487 for_each_pci_dev(dev) {
98fc5a69 3488 if (!check_device(&dev->dev))
0feae533
JR
3489 continue;
3490
5abcdba4
JR
3491 dev_data = get_dev_data(&dev->dev);
3492 dev_data->passthrough = true;
3493
98fc5a69
JR
3494 devid = get_device_id(&dev->dev);
3495
15898bbc 3496 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3497 if (!iommu)
3498 continue;
3499
15898bbc 3500 attach_device(&dev->dev, pt_domain);
0feae533
JR
3501 }
3502
2655d7a2
JR
3503 amd_iommu_stats_init();
3504
0feae533
JR
3505 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3506
3507 return 0;
3508}
72e1dcc4
JR
3509
3510/* IOMMUv2 specific functions */
3511int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3512{
3513 return atomic_notifier_chain_register(&ppr_notifier, nb);
3514}
3515EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3516
3517int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3518{
3519 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3520}
3521EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3522
3523void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3524{
3525 struct protection_domain *domain = dom->priv;
3526 unsigned long flags;
3527
3528 spin_lock_irqsave(&domain->lock, flags);
3529
3530 /* Update data structure */
3531 domain->mode = PAGE_MODE_NONE;
3532 domain->updated = true;
3533
3534 /* Make changes visible to IOMMUs */
3535 update_domain(domain);
3536
3537 /* Page-table is not visible to IOMMU anymore, so free it */
3538 free_pagetable(domain);
3539
3540 spin_unlock_irqrestore(&domain->lock, flags);
3541}
3542EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3543
3544int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3545{
3546 struct protection_domain *domain = dom->priv;
3547 unsigned long flags;
3548 int levels, ret;
3549
3550 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3551 return -EINVAL;
3552
3553 /* Number of GCR3 table levels required */
3554 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3555 levels += 1;
3556
3557 if (levels > amd_iommu_max_glx_val)
3558 return -EINVAL;
3559
3560 spin_lock_irqsave(&domain->lock, flags);
3561
3562 /*
3563 * Save us all sanity checks whether devices already in the
3564 * domain support IOMMUv2. Just force that the domain has no
3565 * devices attached when it is switched into IOMMUv2 mode.
3566 */
3567 ret = -EBUSY;
3568 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3569 goto out;
3570
3571 ret = -ENOMEM;
3572 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3573 if (domain->gcr3_tbl == NULL)
3574 goto out;
3575
3576 domain->glx = levels;
3577 domain->flags |= PD_IOMMUV2_MASK;
3578 domain->updated = true;
3579
3580 update_domain(domain);
3581
3582 ret = 0;
3583
3584out:
3585 spin_unlock_irqrestore(&domain->lock, flags);
3586
3587 return ret;
3588}
3589EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3590
3591static int __flush_pasid(struct protection_domain *domain, int pasid,
3592 u64 address, bool size)
3593{
3594 struct iommu_dev_data *dev_data;
3595 struct iommu_cmd cmd;
3596 int i, ret;
3597
3598 if (!(domain->flags & PD_IOMMUV2_MASK))
3599 return -EINVAL;
3600
3601 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3602
3603 /*
3604 * IOMMU TLB needs to be flushed before Device TLB to
3605 * prevent device TLB refill from IOMMU TLB
3606 */
3607 for (i = 0; i < amd_iommus_present; ++i) {
3608 if (domain->dev_iommu[i] == 0)
3609 continue;
3610
3611 ret = iommu_queue_command(amd_iommus[i], &cmd);
3612 if (ret != 0)
3613 goto out;
3614 }
3615
3616 /* Wait until IOMMU TLB flushes are complete */
3617 domain_flush_complete(domain);
3618
3619 /* Now flush device TLBs */
3620 list_for_each_entry(dev_data, &domain->dev_list, list) {
3621 struct amd_iommu *iommu;
3622 int qdep;
3623
3624 BUG_ON(!dev_data->ats.enabled);
3625
3626 qdep = dev_data->ats.qdep;
3627 iommu = amd_iommu_rlookup_table[dev_data->devid];
3628
3629 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3630 qdep, address, size);
3631
3632 ret = iommu_queue_command(iommu, &cmd);
3633 if (ret != 0)
3634 goto out;
3635 }
3636
3637 /* Wait until all device TLBs are flushed */
3638 domain_flush_complete(domain);
3639
3640 ret = 0;
3641
3642out:
3643
3644 return ret;
3645}
3646
3647static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3648 u64 address)
3649{
399be2f5
JR
3650 INC_STATS_COUNTER(invalidate_iotlb);
3651
22e266c7
JR
3652 return __flush_pasid(domain, pasid, address, false);
3653}
3654
3655int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3656 u64 address)
3657{
3658 struct protection_domain *domain = dom->priv;
3659 unsigned long flags;
3660 int ret;
3661
3662 spin_lock_irqsave(&domain->lock, flags);
3663 ret = __amd_iommu_flush_page(domain, pasid, address);
3664 spin_unlock_irqrestore(&domain->lock, flags);
3665
3666 return ret;
3667}
3668EXPORT_SYMBOL(amd_iommu_flush_page);
3669
3670static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3671{
399be2f5
JR
3672 INC_STATS_COUNTER(invalidate_iotlb_all);
3673
22e266c7
JR
3674 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3675 true);
3676}
3677
3678int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3679{
3680 struct protection_domain *domain = dom->priv;
3681 unsigned long flags;
3682 int ret;
3683
3684 spin_lock_irqsave(&domain->lock, flags);
3685 ret = __amd_iommu_flush_tlb(domain, pasid);
3686 spin_unlock_irqrestore(&domain->lock, flags);
3687
3688 return ret;
3689}
3690EXPORT_SYMBOL(amd_iommu_flush_tlb);
3691
b16137b1
JR
3692static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3693{
3694 int index;
3695 u64 *pte;
3696
3697 while (true) {
3698
3699 index = (pasid >> (9 * level)) & 0x1ff;
3700 pte = &root[index];
3701
3702 if (level == 0)
3703 break;
3704
3705 if (!(*pte & GCR3_VALID)) {
3706 if (!alloc)
3707 return NULL;
3708
3709 root = (void *)get_zeroed_page(GFP_ATOMIC);
3710 if (root == NULL)
3711 return NULL;
3712
3713 *pte = __pa(root) | GCR3_VALID;
3714 }
3715
3716 root = __va(*pte & PAGE_MASK);
3717
3718 level -= 1;
3719 }
3720
3721 return pte;
3722}
3723
3724static int __set_gcr3(struct protection_domain *domain, int pasid,
3725 unsigned long cr3)
3726{
3727 u64 *pte;
3728
3729 if (domain->mode != PAGE_MODE_NONE)
3730 return -EINVAL;
3731
3732 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3733 if (pte == NULL)
3734 return -ENOMEM;
3735
3736 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3737
3738 return __amd_iommu_flush_tlb(domain, pasid);
3739}
3740
3741static int __clear_gcr3(struct protection_domain *domain, int pasid)
3742{
3743 u64 *pte;
3744
3745 if (domain->mode != PAGE_MODE_NONE)
3746 return -EINVAL;
3747
3748 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3749 if (pte == NULL)
3750 return 0;
3751
3752 *pte = 0;
3753
3754 return __amd_iommu_flush_tlb(domain, pasid);
3755}
3756
3757int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3758 unsigned long cr3)
3759{
3760 struct protection_domain *domain = dom->priv;
3761 unsigned long flags;
3762 int ret;
3763
3764 spin_lock_irqsave(&domain->lock, flags);
3765 ret = __set_gcr3(domain, pasid, cr3);
3766 spin_unlock_irqrestore(&domain->lock, flags);
3767
3768 return ret;
3769}
3770EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3771
3772int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3773{
3774 struct protection_domain *domain = dom->priv;
3775 unsigned long flags;
3776 int ret;
3777
3778 spin_lock_irqsave(&domain->lock, flags);
3779 ret = __clear_gcr3(domain, pasid);
3780 spin_unlock_irqrestore(&domain->lock, flags);
3781
3782 return ret;
3783}
3784EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3785
3786int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3787 int status, int tag)
3788{
3789 struct iommu_dev_data *dev_data;
3790 struct amd_iommu *iommu;
3791 struct iommu_cmd cmd;
3792
399be2f5
JR
3793 INC_STATS_COUNTER(complete_ppr);
3794
c99afa25
JR
3795 dev_data = get_dev_data(&pdev->dev);
3796 iommu = amd_iommu_rlookup_table[dev_data->devid];
3797
3798 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3799 tag, dev_data->pri_tlp);
3800
3801 return iommu_queue_command(iommu, &cmd);
3802}
3803EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3804
3805struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3806{
3807 struct protection_domain *domain;
3808
3809 domain = get_domain(&pdev->dev);
3810 if (IS_ERR(domain))
3811 return NULL;
3812
3813 /* Only return IOMMUv2 domains */
3814 if (!(domain->flags & PD_IOMMUV2_MASK))
3815 return NULL;
3816
3817 return domain->iommu_domain;
3818}
3819EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3820
3821void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3822{
3823 struct iommu_dev_data *dev_data;
3824
3825 if (!amd_iommu_v2_supported())
3826 return;
3827
3828 dev_data = get_dev_data(&pdev->dev);
3829 dev_data->errata |= (1 << erratum);
3830}
3831EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3832
3833int amd_iommu_device_info(struct pci_dev *pdev,
3834 struct amd_iommu_device_info *info)
3835{
3836 int max_pasids;
3837 int pos;
3838
3839 if (pdev == NULL || info == NULL)
3840 return -EINVAL;
3841
3842 if (!amd_iommu_v2_supported())
3843 return -EINVAL;
3844
3845 memset(info, 0, sizeof(*info));
3846
3847 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3848 if (pos)
3849 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3850
3851 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3852 if (pos)
3853 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3854
3855 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3856 if (pos) {
3857 int features;
3858
3859 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3860 max_pasids = min(max_pasids, (1 << 20));
3861
3862 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3863 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3864
3865 features = pci_pasid_features(pdev);
3866 if (features & PCI_PASID_CAP_EXEC)
3867 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3868 if (features & PCI_PASID_CAP_PRIV)
3869 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3870 }
3871
3872 return 0;
3873}
3874EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3875
3876#ifdef CONFIG_IRQ_REMAP
3877
3878/*****************************************************************************
3879 *
3880 * Interrupt Remapping Implementation
3881 *
3882 *****************************************************************************/
3883
3884union irte {
3885 u32 val;
3886 struct {
3887 u32 valid : 1,
3888 no_fault : 1,
3889 int_type : 3,
3890 rq_eoi : 1,
3891 dm : 1,
3892 rsvd_1 : 1,
3893 destination : 8,
3894 vector : 8,
3895 rsvd_2 : 8;
3896 } fields;
3897};
3898
3899#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3900#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3901#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3902#define DTE_IRQ_REMAP_ENABLE 1ULL
3903
3904static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3905{
3906 u64 dte;
3907
3908 dte = amd_iommu_dev_table[devid].data[2];
3909 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3910 dte |= virt_to_phys(table->table);
3911 dte |= DTE_IRQ_REMAP_INTCTL;
3912 dte |= DTE_IRQ_TABLE_LEN;
3913 dte |= DTE_IRQ_REMAP_ENABLE;
3914
3915 amd_iommu_dev_table[devid].data[2] = dte;
3916}
3917
3918#define IRTE_ALLOCATED (~1U)
3919
3920static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3921{
3922 struct irq_remap_table *table = NULL;
3923 struct amd_iommu *iommu;
3924 unsigned long flags;
3925 u16 alias;
3926
3927 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3928
3929 iommu = amd_iommu_rlookup_table[devid];
3930 if (!iommu)
3931 goto out_unlock;
3932
3933 table = irq_lookup_table[devid];
3934 if (table)
3935 goto out;
3936
3937 alias = amd_iommu_alias_table[devid];
3938 table = irq_lookup_table[alias];
3939 if (table) {
3940 irq_lookup_table[devid] = table;
3941 set_dte_irq_entry(devid, table);
3942 iommu_flush_dte(iommu, devid);
3943 goto out;
3944 }
3945
3946 /* Nothing there yet, allocate new irq remapping table */
3947 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3948 if (!table)
3949 goto out;
3950
197887f0
JR
3951 /* Initialize table spin-lock */
3952 spin_lock_init(&table->lock);
3953
2b324506
JR
3954 if (ioapic)
3955 /* Keep the first 32 indexes free for IOAPIC interrupts */
3956 table->min_index = 32;
3957
3958 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3959 if (!table->table) {
3960 kfree(table);
821f0f68 3961 table = NULL;
2b324506
JR
3962 goto out;
3963 }
3964
3965 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3966
3967 if (ioapic) {
3968 int i;
3969
3970 for (i = 0; i < 32; ++i)
3971 table->table[i] = IRTE_ALLOCATED;
3972 }
3973
3974 irq_lookup_table[devid] = table;
3975 set_dte_irq_entry(devid, table);
3976 iommu_flush_dte(iommu, devid);
3977 if (devid != alias) {
3978 irq_lookup_table[alias] = table;
3979 set_dte_irq_entry(devid, table);
3980 iommu_flush_dte(iommu, alias);
3981 }
3982
3983out:
3984 iommu_completion_wait(iommu);
3985
3986out_unlock:
3987 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3988
3989 return table;
3990}
3991
3992static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3993{
3994 struct irq_remap_table *table;
3995 unsigned long flags;
3996 int index, c;
3997
3998 table = get_irq_table(devid, false);
3999 if (!table)
4000 return -ENODEV;
4001
4002 spin_lock_irqsave(&table->lock, flags);
4003
4004 /* Scan table for free entries */
4005 for (c = 0, index = table->min_index;
4006 index < MAX_IRQS_PER_TABLE;
4007 ++index) {
4008 if (table->table[index] == 0)
4009 c += 1;
4010 else
4011 c = 0;
4012
4013 if (c == count) {
0dfedd61 4014 struct irq_2_irte *irte_info;
2b324506
JR
4015
4016 for (; c != 0; --c)
4017 table->table[index - c + 1] = IRTE_ALLOCATED;
4018
4019 index -= count - 1;
4020
9b1b0e42 4021 cfg->remapped = 1;
0dfedd61
JR
4022 irte_info = &cfg->irq_2_irte;
4023 irte_info->devid = devid;
4024 irte_info->index = index;
2b324506
JR
4025
4026 goto out;
4027 }
4028 }
4029
4030 index = -ENOSPC;
4031
4032out:
4033 spin_unlock_irqrestore(&table->lock, flags);
4034
4035 return index;
4036}
4037
4038static int get_irte(u16 devid, int index, union irte *irte)
4039{
4040 struct irq_remap_table *table;
4041 unsigned long flags;
4042
4043 table = get_irq_table(devid, false);
4044 if (!table)
4045 return -ENOMEM;
4046
4047 spin_lock_irqsave(&table->lock, flags);
4048 irte->val = table->table[index];
4049 spin_unlock_irqrestore(&table->lock, flags);
4050
4051 return 0;
4052}
4053
4054static int modify_irte(u16 devid, int index, union irte irte)
4055{
4056 struct irq_remap_table *table;
4057 struct amd_iommu *iommu;
4058 unsigned long flags;
4059
4060 iommu = amd_iommu_rlookup_table[devid];
4061 if (iommu == NULL)
4062 return -EINVAL;
4063
4064 table = get_irq_table(devid, false);
4065 if (!table)
4066 return -ENOMEM;
4067
4068 spin_lock_irqsave(&table->lock, flags);
4069 table->table[index] = irte.val;
4070 spin_unlock_irqrestore(&table->lock, flags);
4071
4072 iommu_flush_irt(iommu, devid);
4073 iommu_completion_wait(iommu);
4074
4075 return 0;
4076}
4077
4078static void free_irte(u16 devid, int index)
4079{
4080 struct irq_remap_table *table;
4081 struct amd_iommu *iommu;
4082 unsigned long flags;
4083
4084 iommu = amd_iommu_rlookup_table[devid];
4085 if (iommu == NULL)
4086 return;
4087
4088 table = get_irq_table(devid, false);
4089 if (!table)
4090 return;
4091
4092 spin_lock_irqsave(&table->lock, flags);
4093 table->table[index] = 0;
4094 spin_unlock_irqrestore(&table->lock, flags);
4095
4096 iommu_flush_irt(iommu, devid);
4097 iommu_completion_wait(iommu);
4098}
4099
5527de74
JR
4100static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4101 unsigned int destination, int vector,
4102 struct io_apic_irq_attr *attr)
4103{
4104 struct irq_remap_table *table;
0dfedd61 4105 struct irq_2_irte *irte_info;
5527de74
JR
4106 struct irq_cfg *cfg;
4107 union irte irte;
4108 int ioapic_id;
4109 int index;
4110 int devid;
4111 int ret;
4112
4113 cfg = irq_get_chip_data(irq);
4114 if (!cfg)
4115 return -EINVAL;
4116
0dfedd61 4117 irte_info = &cfg->irq_2_irte;
5527de74
JR
4118 ioapic_id = mpc_ioapic_id(attr->ioapic);
4119 devid = get_ioapic_devid(ioapic_id);
4120
4121 if (devid < 0)
4122 return devid;
4123
4124 table = get_irq_table(devid, true);
4125 if (table == NULL)
4126 return -ENOMEM;
4127
4128 index = attr->ioapic_pin;
4129
4130 /* Setup IRQ remapping info */
9b1b0e42 4131 cfg->remapped = 1;
0dfedd61
JR
4132 irte_info->devid = devid;
4133 irte_info->index = index;
5527de74
JR
4134
4135 /* Setup IRTE for IOMMU */
4136 irte.val = 0;
4137 irte.fields.vector = vector;
4138 irte.fields.int_type = apic->irq_delivery_mode;
4139 irte.fields.destination = destination;
4140 irte.fields.dm = apic->irq_dest_mode;
4141 irte.fields.valid = 1;
4142
4143 ret = modify_irte(devid, index, irte);
4144 if (ret)
4145 return ret;
4146
4147 /* Setup IOAPIC entry */
4148 memset(entry, 0, sizeof(*entry));
4149
4150 entry->vector = index;
4151 entry->mask = 0;
4152 entry->trigger = attr->trigger;
4153 entry->polarity = attr->polarity;
4154
4155 /*
4156 * Mask level triggered irqs.
5527de74
JR
4157 */
4158 if (attr->trigger)
4159 entry->mask = 1;
4160
4161 return 0;
4162}
4163
4164static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4165 bool force)
4166{
0dfedd61 4167 struct irq_2_irte *irte_info;
5527de74
JR
4168 unsigned int dest, irq;
4169 struct irq_cfg *cfg;
4170 union irte irte;
4171 int err;
4172
4173 if (!config_enabled(CONFIG_SMP))
4174 return -1;
4175
4176 cfg = data->chip_data;
4177 irq = data->irq;
0dfedd61 4178 irte_info = &cfg->irq_2_irte;
5527de74
JR
4179
4180 if (!cpumask_intersects(mask, cpu_online_mask))
4181 return -EINVAL;
4182
0dfedd61 4183 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4184 return -EBUSY;
4185
4186 if (assign_irq_vector(irq, cfg, mask))
4187 return -EBUSY;
4188
4189 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4190 if (err) {
4191 if (assign_irq_vector(irq, cfg, data->affinity))
4192 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4193 return err;
4194 }
4195
4196 irte.fields.vector = cfg->vector;
4197 irte.fields.destination = dest;
4198
0dfedd61 4199 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4200
4201 if (cfg->move_in_progress)
4202 send_cleanup_vector(cfg);
4203
4204 cpumask_copy(data->affinity, mask);
4205
4206 return 0;
4207}
4208
4209static int free_irq(int irq)
4210{
0dfedd61 4211 struct irq_2_irte *irte_info;
5527de74
JR
4212 struct irq_cfg *cfg;
4213
4214 cfg = irq_get_chip_data(irq);
4215 if (!cfg)
4216 return -EINVAL;
4217
0dfedd61 4218 irte_info = &cfg->irq_2_irte;
5527de74 4219
0dfedd61 4220 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4221
4222 return 0;
4223}
4224
0b4d48cb
JR
4225static void compose_msi_msg(struct pci_dev *pdev,
4226 unsigned int irq, unsigned int dest,
4227 struct msi_msg *msg, u8 hpet_id)
4228{
0dfedd61 4229 struct irq_2_irte *irte_info;
0b4d48cb
JR
4230 struct irq_cfg *cfg;
4231 union irte irte;
4232
4233 cfg = irq_get_chip_data(irq);
4234 if (!cfg)
4235 return;
4236
0dfedd61 4237 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4238
4239 irte.val = 0;
4240 irte.fields.vector = cfg->vector;
4241 irte.fields.int_type = apic->irq_delivery_mode;
4242 irte.fields.destination = dest;
4243 irte.fields.dm = apic->irq_dest_mode;
4244 irte.fields.valid = 1;
4245
0dfedd61 4246 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4247
4248 msg->address_hi = MSI_ADDR_BASE_HI;
4249 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4250 msg->data = irte_info->index;
0b4d48cb
JR
4251}
4252
4253static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4254{
4255 struct irq_cfg *cfg;
4256 int index;
4257 u16 devid;
4258
4259 if (!pdev)
4260 return -EINVAL;
4261
4262 cfg = irq_get_chip_data(irq);
4263 if (!cfg)
4264 return -EINVAL;
4265
4266 devid = get_device_id(&pdev->dev);
4267 index = alloc_irq_index(cfg, devid, nvec);
4268
4269 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4270}
4271
4272static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4273 int index, int offset)
4274{
0dfedd61 4275 struct irq_2_irte *irte_info;
0b4d48cb
JR
4276 struct irq_cfg *cfg;
4277 u16 devid;
4278
4279 if (!pdev)
4280 return -EINVAL;
4281
4282 cfg = irq_get_chip_data(irq);
4283 if (!cfg)
4284 return -EINVAL;
4285
4286 if (index >= MAX_IRQS_PER_TABLE)
4287 return 0;
4288
4289 devid = get_device_id(&pdev->dev);
0dfedd61 4290 irte_info = &cfg->irq_2_irte;
0b4d48cb 4291
9b1b0e42 4292 cfg->remapped = 1;
0dfedd61
JR
4293 irte_info->devid = devid;
4294 irte_info->index = index + offset;
0b4d48cb
JR
4295
4296 return 0;
4297}
4298
d976195c
JR
4299static int setup_hpet_msi(unsigned int irq, unsigned int id)
4300{
0dfedd61 4301 struct irq_2_irte *irte_info;
d976195c
JR
4302 struct irq_cfg *cfg;
4303 int index, devid;
4304
4305 cfg = irq_get_chip_data(irq);
4306 if (!cfg)
4307 return -EINVAL;
4308
0dfedd61 4309 irte_info = &cfg->irq_2_irte;
d976195c
JR
4310 devid = get_hpet_devid(id);
4311 if (devid < 0)
4312 return devid;
4313
4314 index = alloc_irq_index(cfg, devid, 1);
4315 if (index < 0)
4316 return index;
4317
9b1b0e42 4318 cfg->remapped = 1;
0dfedd61
JR
4319 irte_info->devid = devid;
4320 irte_info->index = index;
d976195c
JR
4321
4322 return 0;
4323}
4324
6b474b82
JR
4325struct irq_remap_ops amd_iommu_irq_ops = {
4326 .supported = amd_iommu_supported,
4327 .prepare = amd_iommu_prepare,
4328 .enable = amd_iommu_enable,
4329 .disable = amd_iommu_disable,
4330 .reenable = amd_iommu_reenable,
4331 .enable_faulting = amd_iommu_enable_faulting,
4332 .setup_ioapic_entry = setup_ioapic_entry,
4333 .set_affinity = set_affinity,
4334 .free_irq = free_irq,
4335 .compose_msi_msg = compose_msi_msg,
4336 .msi_alloc_irq = msi_alloc_irq,
4337 .msi_setup_irq = msi_setup_irq,
4338 .setup_hpet_msi = setup_hpet_msi,
4339};
2b324506 4340#endif