]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/amd_iommu.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
2bf9a0a1 22#include <linux/acpi.h>
9a4d3bf5 23#include <linux/amba/bus.h>
0076cd3d 24#include <linux/platform_device.h>
cb41ed85 25#include <linux/pci-ats.h>
a66022c4 26#include <linux/bitmap.h>
5a0e3ad6 27#include <linux/slab.h>
7f26508b 28#include <linux/debugfs.h>
b6c02715 29#include <linux/scatterlist.h>
51491367 30#include <linux/dma-mapping.h>
b6c02715 31#include <linux/iommu-helper.h>
c156e347 32#include <linux/iommu.h>
815b33fd 33#include <linux/delay.h>
403f81d8 34#include <linux/amd-iommu.h>
72e1dcc4
JR
35#include <linux/notifier.h>
36#include <linux/export.h>
2b324506
JR
37#include <linux/irq.h>
38#include <linux/msi.h>
3b839a57 39#include <linux/dma-contiguous.h>
7c71d306 40#include <linux/irqdomain.h>
5f6bed50 41#include <linux/percpu.h>
307d5851 42#include <linux/iova.h>
2b324506
JR
43#include <asm/irq_remapping.h>
44#include <asm/io_apic.h>
45#include <asm/apic.h>
46#include <asm/hw_irq.h>
17f5b569 47#include <asm/msidef.h>
b6c02715 48#include <asm/proto.h>
46a7fa27 49#include <asm/iommu.h>
1d9b16d1 50#include <asm/gart.h>
27c2127a 51#include <asm/dma.h>
403f81d8
JR
52
53#include "amd_iommu_proto.h"
54#include "amd_iommu_types.h"
6b474b82 55#include "irq_remapping.h"
b6c02715 56
a869572c
CH
57#define AMD_IOMMU_MAPPING_ERROR 0
58
b6c02715
JR
59#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
60
815b33fd 61#define LOOP_TIMEOUT 100000
136f78a1 62
307d5851
JR
63/* IO virtual address start page frame number */
64#define IOVA_START_PFN (1)
65#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
66#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
67
81cd07b9
JR
68/* Reserved IOVA ranges */
69#define MSI_RANGE_START (0xfee00000)
70#define MSI_RANGE_END (0xfeefffff)
71#define HT_RANGE_START (0xfd00000000ULL)
72#define HT_RANGE_END (0xffffffffffULL)
73
aa3de9c0
OBC
74/*
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
78 * that we support.
79 *
954e3dd8 80 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 81 */
954e3dd8 82#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 83
b6c02715
JR
84static DEFINE_RWLOCK(amd_iommu_devtable_lock);
85
8fa5f802
JR
86/* List of all available dev_data structures */
87static LIST_HEAD(dev_data_list);
88static DEFINE_SPINLOCK(dev_data_list_lock);
89
6efed63b
JR
90LIST_HEAD(ioapic_map);
91LIST_HEAD(hpet_map);
2a0cb4e2 92LIST_HEAD(acpihid_map);
6efed63b 93
0feae533
JR
94/*
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
97 */
b0119e87 98const struct iommu_ops amd_iommu_ops;
26961efe 99
72e1dcc4 100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 101int amd_iommu_max_glx_val = -1;
72e1dcc4 102
5299709d 103static const struct dma_map_ops amd_iommu_dma_ops;
ac1534a5 104
50917e26
JR
105/*
106 * This struct contains device specific data for the IOMMU
107 */
108struct iommu_dev_data {
109 struct list_head list; /* For domain->dev_list */
110 struct list_head dev_data_list; /* For global dev_data_list */
50917e26 111 struct protection_domain *domain; /* Domain the device is bound to */
50917e26 112 u16 devid; /* PCI Device ID */
e3156048 113 u16 alias; /* Alias Device ID */
50917e26 114 bool iommu_v2; /* Device can make use of IOMMUv2 */
1e6a7b04 115 bool passthrough; /* Device is identity mapped */
50917e26
JR
116 struct {
117 bool enabled;
118 int qdep;
119 } ats; /* ATS state */
120 bool pri_tlp; /* PASID TLB required for
121 PPR completions */
122 u32 errata; /* Bitmap for errata to apply */
d98de49a 123 bool use_vapic; /* Enable device to use vapic mode */
30bf2df6
JR
124
125 struct ratelimit_state rs; /* Ratelimit IOPF messages */
50917e26
JR
126};
127
431b2a20
JR
128/*
129 * general struct to manage commands send to an IOMMU
130 */
d6449536 131struct iommu_cmd {
b6c02715
JR
132 u32 data[4];
133};
134
05152a04
JR
135struct kmem_cache *amd_iommu_irq_cache;
136
04bfdd84 137static void update_domain(struct protection_domain *domain);
7a5a566e 138static int protection_domain_init(struct protection_domain *domain);
b6809ee5 139static void detach_device(struct device *dev);
c1eee67b 140
d4241a27
JR
141#define FLUSH_QUEUE_SIZE 256
142
143struct flush_queue_entry {
144 unsigned long iova_pfn;
145 unsigned long pages;
a6e3f6f0 146 u64 counter; /* Flush counter when this entry was added to the queue */
d4241a27
JR
147};
148
149struct flush_queue {
150 struct flush_queue_entry *entries;
151 unsigned head, tail;
e241f8e7 152 spinlock_t lock;
d4241a27
JR
153};
154
007b74ba
JR
155/*
156 * Data container for a dma_ops specific protection domain
157 */
158struct dma_ops_domain {
159 /* generic protection domain information */
160 struct protection_domain domain;
161
307d5851
JR
162 /* IOVA RB-Tree */
163 struct iova_domain iovad;
d4241a27
JR
164
165 struct flush_queue __percpu *flush_queue;
a6e3f6f0
JR
166
167 /*
168 * We need two counter here to be race-free wrt. IOTLB flushing and
169 * adding entries to the flush queue.
170 *
171 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
172 * New entries added to the flush ring-buffer get their 'counter' value
173 * from here. This way we can make sure that entries added to the queue
174 * (or other per-cpu queues of the same domain) while the TLB is about
175 * to be flushed are not considered to be flushed already.
176 */
177 atomic64_t flush_start_cnt;
178
179 /*
180 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
181 * This value is always smaller than flush_start_cnt. The queue_add
182 * function frees all IOVAs that have a counter value smaller than
183 * flush_finish_cnt. This makes sure that we only free IOVAs that are
184 * flushed out of the IOTLB of the domain.
185 */
186 atomic64_t flush_finish_cnt;
fca6af6a
JR
187
188 /*
189 * Timer to make sure we don't keep IOVAs around unflushed
190 * for too long
191 */
192 struct timer_list flush_timer;
193 atomic_t flush_timer_on;
007b74ba
JR
194};
195
81cd07b9
JR
196static struct iova_domain reserved_iova_ranges;
197static struct lock_class_key reserved_rbtree_key;
198
15898bbc
JR
199/****************************************************************************
200 *
201 * Helper functions
202 *
203 ****************************************************************************/
204
2bf9a0a1
WZ
205static inline int match_hid_uid(struct device *dev,
206 struct acpihid_map_entry *entry)
3f4b87b9 207{
2bf9a0a1
WZ
208 const char *hid, *uid;
209
210 hid = acpi_device_hid(ACPI_COMPANION(dev));
211 uid = acpi_device_uid(ACPI_COMPANION(dev));
212
213 if (!hid || !(*hid))
214 return -ENODEV;
215
216 if (!uid || !(*uid))
217 return strcmp(hid, entry->hid);
218
219 if (!(*entry->uid))
220 return strcmp(hid, entry->hid);
221
222 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
3f4b87b9
JR
223}
224
2bf9a0a1 225static inline u16 get_pci_device_id(struct device *dev)
e3156048
JR
226{
227 struct pci_dev *pdev = to_pci_dev(dev);
228
229 return PCI_DEVID(pdev->bus->number, pdev->devfn);
230}
231
2bf9a0a1
WZ
232static inline int get_acpihid_device_id(struct device *dev,
233 struct acpihid_map_entry **entry)
234{
235 struct acpihid_map_entry *p;
236
237 list_for_each_entry(p, &acpihid_map, list) {
238 if (!match_hid_uid(dev, p)) {
239 if (entry)
240 *entry = p;
241 return p->devid;
242 }
243 }
244 return -EINVAL;
245}
246
247static inline int get_device_id(struct device *dev)
248{
249 int devid;
250
251 if (dev_is_pci(dev))
252 devid = get_pci_device_id(dev);
253 else
254 devid = get_acpihid_device_id(dev, NULL);
255
256 return devid;
257}
258
3f4b87b9
JR
259static struct protection_domain *to_pdomain(struct iommu_domain *dom)
260{
261 return container_of(dom, struct protection_domain, domain);
262}
263
b3311b06
JR
264static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
265{
266 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
267 return container_of(domain, struct dma_ops_domain, domain);
268}
269
f62dda66 270static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
271{
272 struct iommu_dev_data *dev_data;
273 unsigned long flags;
274
275 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
276 if (!dev_data)
277 return NULL;
278
f62dda66 279 dev_data->devid = devid;
8fa5f802
JR
280
281 spin_lock_irqsave(&dev_data_list_lock, flags);
282 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
283 spin_unlock_irqrestore(&dev_data_list_lock, flags);
284
30bf2df6
JR
285 ratelimit_default_init(&dev_data->rs);
286
8fa5f802
JR
287 return dev_data;
288}
289
3b03bb74
JR
290static struct iommu_dev_data *search_dev_data(u16 devid)
291{
292 struct iommu_dev_data *dev_data;
293 unsigned long flags;
294
295 spin_lock_irqsave(&dev_data_list_lock, flags);
296 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
297 if (dev_data->devid == devid)
298 goto out_unlock;
299 }
300
301 dev_data = NULL;
302
303out_unlock:
304 spin_unlock_irqrestore(&dev_data_list_lock, flags);
305
306 return dev_data;
307}
308
e3156048
JR
309static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
310{
311 *(u16 *)data = alias;
312 return 0;
313}
314
315static u16 get_alias(struct device *dev)
316{
317 struct pci_dev *pdev = to_pci_dev(dev);
318 u16 devid, ivrs_alias, pci_alias;
319
6c0b43df 320 /* The callers make sure that get_device_id() does not fail here */
e3156048
JR
321 devid = get_device_id(dev);
322 ivrs_alias = amd_iommu_alias_table[devid];
323 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
324
325 if (ivrs_alias == pci_alias)
326 return ivrs_alias;
327
328 /*
329 * DMA alias showdown
330 *
331 * The IVRS is fairly reliable in telling us about aliases, but it
332 * can't know about every screwy device. If we don't have an IVRS
333 * reported alias, use the PCI reported alias. In that case we may
334 * still need to initialize the rlookup and dev_table entries if the
335 * alias is to a non-existent device.
336 */
337 if (ivrs_alias == devid) {
338 if (!amd_iommu_rlookup_table[pci_alias]) {
339 amd_iommu_rlookup_table[pci_alias] =
340 amd_iommu_rlookup_table[devid];
341 memcpy(amd_iommu_dev_table[pci_alias].data,
342 amd_iommu_dev_table[devid].data,
343 sizeof(amd_iommu_dev_table[pci_alias].data));
344 }
345
346 return pci_alias;
347 }
348
349 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
350 "for device %s[%04x:%04x], kernel reported alias "
351 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
352 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
353 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
354 PCI_FUNC(pci_alias));
355
356 /*
357 * If we don't have a PCI DMA alias and the IVRS alias is on the same
358 * bus, then the IVRS table may know about a quirk that we don't.
359 */
360 if (pci_alias == devid &&
361 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
7afd16f8 362 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
e3156048
JR
363 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
364 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
365 dev_name(dev));
366 }
367
368 return ivrs_alias;
369}
370
3b03bb74
JR
371static struct iommu_dev_data *find_dev_data(u16 devid)
372{
373 struct iommu_dev_data *dev_data;
374
375 dev_data = search_dev_data(devid);
376
377 if (dev_data == NULL)
378 dev_data = alloc_dev_data(devid);
379
380 return dev_data;
381}
382
657cbb6b
JR
383static struct iommu_dev_data *get_dev_data(struct device *dev)
384{
385 return dev->archdata.iommu;
386}
387
b097d11a
WZ
388/*
389* Find or create an IOMMU group for a acpihid device.
390*/
391static struct iommu_group *acpihid_device_group(struct device *dev)
657cbb6b 392{
b097d11a 393 struct acpihid_map_entry *p, *entry = NULL;
2d8e1f03 394 int devid;
b097d11a
WZ
395
396 devid = get_acpihid_device_id(dev, &entry);
397 if (devid < 0)
398 return ERR_PTR(devid);
399
400 list_for_each_entry(p, &acpihid_map, list) {
401 if ((devid == p->devid) && p->group)
402 entry->group = p->group;
403 }
404
405 if (!entry->group)
406 entry->group = generic_device_group(dev);
f2f101f6
RM
407 else
408 iommu_group_ref_get(entry->group);
b097d11a
WZ
409
410 return entry->group;
657cbb6b
JR
411}
412
5abcdba4
JR
413static bool pci_iommuv2_capable(struct pci_dev *pdev)
414{
415 static const int caps[] = {
416 PCI_EXT_CAP_ID_ATS,
46277b75
JR
417 PCI_EXT_CAP_ID_PRI,
418 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
419 };
420 int i, pos;
421
422 for (i = 0; i < 3; ++i) {
423 pos = pci_find_ext_capability(pdev, caps[i]);
424 if (pos == 0)
425 return false;
426 }
427
428 return true;
429}
430
6a113ddc
JR
431static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
432{
433 struct iommu_dev_data *dev_data;
434
435 dev_data = get_dev_data(&pdev->dev);
436
437 return dev_data->errata & (1 << erratum) ? true : false;
438}
439
98fc5a69
JR
440/*
441 * This function checks if the driver got a valid device from the caller to
442 * avoid dereferencing invalid pointers.
443 */
444static bool check_device(struct device *dev)
445{
7aba6cb9 446 int devid;
98fc5a69
JR
447
448 if (!dev || !dev->dma_mask)
449 return false;
450
98fc5a69 451 devid = get_device_id(dev);
9ee35e4c 452 if (devid < 0)
7aba6cb9 453 return false;
98fc5a69
JR
454
455 /* Out of our scope? */
456 if (devid > amd_iommu_last_bdf)
457 return false;
458
459 if (amd_iommu_rlookup_table[devid] == NULL)
460 return false;
461
462 return true;
463}
464
25b11ce2 465static void init_iommu_group(struct device *dev)
2851db21 466{
2851db21 467 struct iommu_group *group;
2851db21 468
65d5352f 469 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
470 if (IS_ERR(group))
471 return;
472
0bb6e243 473 iommu_group_put(group);
eb9c9527
AW
474}
475
476static int iommu_init_device(struct device *dev)
477{
eb9c9527 478 struct iommu_dev_data *dev_data;
39ab9555 479 struct amd_iommu *iommu;
7aba6cb9 480 int devid;
eb9c9527
AW
481
482 if (dev->archdata.iommu)
483 return 0;
484
7aba6cb9 485 devid = get_device_id(dev);
9ee35e4c 486 if (devid < 0)
7aba6cb9
WZ
487 return devid;
488
39ab9555
JR
489 iommu = amd_iommu_rlookup_table[devid];
490
7aba6cb9 491 dev_data = find_dev_data(devid);
eb9c9527
AW
492 if (!dev_data)
493 return -ENOMEM;
494
e3156048
JR
495 dev_data->alias = get_alias(dev);
496
2bf9a0a1 497 if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
5abcdba4
JR
498 struct amd_iommu *iommu;
499
2bf9a0a1 500 iommu = amd_iommu_rlookup_table[dev_data->devid];
5abcdba4
JR
501 dev_data->iommu_v2 = iommu->is_iommu_v2;
502 }
503
657cbb6b
JR
504 dev->archdata.iommu = dev_data;
505
e3d10af1 506 iommu_device_link(&iommu->iommu, dev);
066f2e98 507
657cbb6b
JR
508 return 0;
509}
510
26018874
JR
511static void iommu_ignore_device(struct device *dev)
512{
7aba6cb9
WZ
513 u16 alias;
514 int devid;
26018874
JR
515
516 devid = get_device_id(dev);
9ee35e4c 517 if (devid < 0)
7aba6cb9
WZ
518 return;
519
e3156048 520 alias = get_alias(dev);
26018874
JR
521
522 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
523 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
524
525 amd_iommu_rlookup_table[devid] = NULL;
526 amd_iommu_rlookup_table[alias] = NULL;
527}
528
657cbb6b
JR
529static void iommu_uninit_device(struct device *dev)
530{
7aba6cb9 531 struct iommu_dev_data *dev_data;
39ab9555
JR
532 struct amd_iommu *iommu;
533 int devid;
c1931090 534
7aba6cb9 535 devid = get_device_id(dev);
9ee35e4c 536 if (devid < 0)
7aba6cb9 537 return;
c1931090 538
39ab9555
JR
539 iommu = amd_iommu_rlookup_table[devid];
540
7aba6cb9 541 dev_data = search_dev_data(devid);
c1931090
AW
542 if (!dev_data)
543 return;
544
b6809ee5
JR
545 if (dev_data->domain)
546 detach_device(dev);
547
e3d10af1 548 iommu_device_unlink(&iommu->iommu, dev);
066f2e98 549
9dcd6130
AW
550 iommu_group_remove_device(dev);
551
aafd8ba0 552 /* Remove dma-ops */
5657933d 553 dev->dma_ops = NULL;
aafd8ba0 554
8fa5f802 555 /*
c1931090
AW
556 * We keep dev_data around for unplugged devices and reuse it when the
557 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 558 */
657cbb6b 559}
b7cc9554 560
a80dc3e0
JR
561/****************************************************************************
562 *
563 * Interrupt handling functions
564 *
565 ****************************************************************************/
566
e3e59876
JR
567static void dump_dte_entry(u16 devid)
568{
569 int i;
570
ee6c2868
JR
571 for (i = 0; i < 4; ++i)
572 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
573 amd_iommu_dev_table[devid].data[i]);
574}
575
945b4ac4
JR
576static void dump_command(unsigned long phys_addr)
577{
578 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
579 int i;
580
581 for (i = 0; i < 4; ++i)
582 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
583}
584
30bf2df6
JR
585static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
586 u64 address, int flags)
587{
588 struct iommu_dev_data *dev_data = NULL;
589 struct pci_dev *pdev;
590
591 pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
592 if (pdev)
593 dev_data = get_dev_data(&pdev->dev);
594
595 if (dev_data && __ratelimit(&dev_data->rs)) {
596 dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 domain_id, address, flags);
598 } else if (printk_ratelimit()) {
599 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 domain_id, address, flags);
602 }
603
604 if (pdev)
605 pci_dev_put(pdev);
606}
607
a345b23b 608static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 609{
3d06fca8
JR
610 int type, devid, domid, flags;
611 volatile u32 *event = __evt;
612 int count = 0;
613 u64 address;
614
615retry:
616 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
617 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
618 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
619 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
620 address = (u64)(((u64)event[3]) << 32) | event[2];
621
622 if (type == 0) {
623 /* Did we hit the erratum? */
624 if (++count == LOOP_TIMEOUT) {
625 pr_err("AMD-Vi: No event written to event log\n");
626 return;
627 }
628 udelay(1);
629 goto retry;
630 }
90008ee4 631
30bf2df6
JR
632 if (type == EVENT_TYPE_IO_FAULT) {
633 amd_iommu_report_page_fault(devid, domid, address, flags);
634 return;
635 } else {
636 printk(KERN_ERR "AMD-Vi: Event logged [");
637 }
90008ee4
JR
638
639 switch (type) {
640 case EVENT_TYPE_ILL_DEV:
641 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
642 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 643 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 644 address, flags);
e3e59876 645 dump_dte_entry(devid);
90008ee4 646 break;
90008ee4
JR
647 case EVENT_TYPE_DEV_TAB_ERR:
648 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
649 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 650 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
651 address, flags);
652 break;
653 case EVENT_TYPE_PAGE_TAB_ERR:
654 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
655 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 656 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
657 domid, address, flags);
658 break;
659 case EVENT_TYPE_ILL_CMD:
660 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 661 dump_command(address);
90008ee4
JR
662 break;
663 case EVENT_TYPE_CMD_HARD_ERR:
664 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
665 "flags=0x%04x]\n", address, flags);
666 break;
667 case EVENT_TYPE_IOTLB_INV_TO:
668 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
669 "address=0x%016llx]\n",
c5081cd7 670 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
671 address);
672 break;
673 case EVENT_TYPE_INV_DEV_REQ:
674 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
675 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 676 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
677 address, flags);
678 break;
679 default:
680 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
681 }
3d06fca8
JR
682
683 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
684}
685
686static void iommu_poll_events(struct amd_iommu *iommu)
687{
688 u32 head, tail;
90008ee4
JR
689
690 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
691 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
692
693 while (head != tail) {
a345b23b 694 iommu_print_event(iommu, iommu->evt_buf + head);
deba4bce 695 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
90008ee4
JR
696 }
697
698 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
699}
700
eee53537 701static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
702{
703 struct amd_iommu_fault fault;
72e1dcc4 704
72e1dcc4
JR
705 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
706 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
707 return;
708 }
709
710 fault.address = raw[1];
711 fault.pasid = PPR_PASID(raw[0]);
712 fault.device_id = PPR_DEVID(raw[0]);
713 fault.tag = PPR_TAG(raw[0]);
714 fault.flags = PPR_FLAGS(raw[0]);
715
72e1dcc4
JR
716 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
717}
718
719static void iommu_poll_ppr_log(struct amd_iommu *iommu)
720{
72e1dcc4
JR
721 u32 head, tail;
722
723 if (iommu->ppr_log == NULL)
724 return;
725
72e1dcc4
JR
726 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
727 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
728
729 while (head != tail) {
eee53537
JR
730 volatile u64 *raw;
731 u64 entry[2];
732 int i;
733
734 raw = (u64 *)(iommu->ppr_log + head);
735
736 /*
737 * Hardware bug: Interrupt may arrive before the entry is
738 * written to memory. If this happens we need to wait for the
739 * entry to arrive.
740 */
741 for (i = 0; i < LOOP_TIMEOUT; ++i) {
742 if (PPR_REQ_TYPE(raw[0]) != 0)
743 break;
744 udelay(1);
745 }
72e1dcc4 746
eee53537
JR
747 /* Avoid memcpy function-call overhead */
748 entry[0] = raw[0];
749 entry[1] = raw[1];
72e1dcc4 750
eee53537
JR
751 /*
752 * To detect the hardware bug we need to clear the entry
753 * back to zero.
754 */
755 raw[0] = raw[1] = 0UL;
756
757 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
758 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
759 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 760
eee53537
JR
761 /* Handle PPR entry */
762 iommu_handle_ppr_entry(iommu, entry);
763
eee53537
JR
764 /* Refresh ring-buffer information */
765 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
766 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
767 }
72e1dcc4
JR
768}
769
bd6fcefc
SS
770#ifdef CONFIG_IRQ_REMAP
771static int (*iommu_ga_log_notifier)(u32);
772
773int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
774{
775 iommu_ga_log_notifier = notifier;
776
777 return 0;
778}
779EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
780
781static void iommu_poll_ga_log(struct amd_iommu *iommu)
782{
783 u32 head, tail, cnt = 0;
784
785 if (iommu->ga_log == NULL)
786 return;
787
788 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
789 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
790
791 while (head != tail) {
792 volatile u64 *raw;
793 u64 log_entry;
794
795 raw = (u64 *)(iommu->ga_log + head);
796 cnt++;
797
798 /* Avoid memcpy function-call overhead */
799 log_entry = *raw;
800
801 /* Update head pointer of hardware ring-buffer */
802 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
803 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
804
805 /* Handle GA entry */
806 switch (GA_REQ_TYPE(log_entry)) {
807 case GA_GUEST_NR:
808 if (!iommu_ga_log_notifier)
809 break;
810
811 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
812 __func__, GA_DEVID(log_entry),
813 GA_TAG(log_entry));
814
815 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
816 pr_err("AMD-Vi: GA log notifier failed.\n");
817 break;
818 default:
819 break;
820 }
821 }
822}
823#endif /* CONFIG_IRQ_REMAP */
824
825#define AMD_IOMMU_INT_MASK \
826 (MMIO_STATUS_EVT_INT_MASK | \
827 MMIO_STATUS_PPR_INT_MASK | \
828 MMIO_STATUS_GALOG_INT_MASK)
829
72fe00f0 830irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 831{
3f398bc7
SS
832 struct amd_iommu *iommu = (struct amd_iommu *) data;
833 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 834
bd6fcefc
SS
835 while (status & AMD_IOMMU_INT_MASK) {
836 /* Enable EVT and PPR and GA interrupts again */
837 writel(AMD_IOMMU_INT_MASK,
3f398bc7 838 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 839
3f398bc7
SS
840 if (status & MMIO_STATUS_EVT_INT_MASK) {
841 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
842 iommu_poll_events(iommu);
843 }
90008ee4 844
3f398bc7
SS
845 if (status & MMIO_STATUS_PPR_INT_MASK) {
846 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
847 iommu_poll_ppr_log(iommu);
848 }
90008ee4 849
bd6fcefc
SS
850#ifdef CONFIG_IRQ_REMAP
851 if (status & MMIO_STATUS_GALOG_INT_MASK) {
852 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
853 iommu_poll_ga_log(iommu);
854 }
855#endif
856
3f398bc7
SS
857 /*
858 * Hardware bug: ERBT1312
859 * When re-enabling interrupt (by writing 1
860 * to clear the bit), the hardware might also try to set
861 * the interrupt bit in the event status register.
862 * In this scenario, the bit will be set, and disable
863 * subsequent interrupts.
864 *
865 * Workaround: The IOMMU driver should read back the
866 * status register and check if the interrupt bits are cleared.
867 * If not, driver will need to go through the interrupt handler
868 * again and re-clear the bits
869 */
870 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
871 }
90008ee4 872 return IRQ_HANDLED;
a80dc3e0
JR
873}
874
72fe00f0
JR
875irqreturn_t amd_iommu_int_handler(int irq, void *data)
876{
877 return IRQ_WAKE_THREAD;
878}
879
431b2a20
JR
880/****************************************************************************
881 *
882 * IOMMU command queuing functions
883 *
884 ****************************************************************************/
885
ac0ea6e9
JR
886static int wait_on_sem(volatile u64 *sem)
887{
888 int i = 0;
889
890 while (*sem == 0 && i < LOOP_TIMEOUT) {
891 udelay(1);
892 i += 1;
893 }
894
895 if (i == LOOP_TIMEOUT) {
896 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
897 return -EIO;
898 }
899
900 return 0;
901}
902
903static void copy_cmd_to_buffer(struct amd_iommu *iommu,
d334a563 904 struct iommu_cmd *cmd)
a19ae1ec 905{
a19ae1ec
JR
906 u8 *target;
907
d334a563
TL
908 target = iommu->cmd_buf + iommu->cmd_buf_tail;
909
910 iommu->cmd_buf_tail += sizeof(*cmd);
911 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
ac0ea6e9
JR
912
913 /* Copy command to buffer */
914 memcpy(target, cmd, sizeof(*cmd));
915
916 /* Tell the IOMMU about it */
d334a563 917 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 918}
a19ae1ec 919
815b33fd 920static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 921{
815b33fd
JR
922 WARN_ON(address & 0x7ULL);
923
ded46737 924 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
925 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
926 cmd->data[1] = upper_32_bits(__pa(address));
927 cmd->data[2] = 1;
ded46737
JR
928 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
929}
930
94fe79e2
JR
931static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
932{
933 memset(cmd, 0, sizeof(*cmd));
934 cmd->data[0] = devid;
935 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
936}
937
11b6402c
JR
938static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
939 size_t size, u16 domid, int pde)
940{
941 u64 pages;
ae0cbbb1 942 bool s;
11b6402c
JR
943
944 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 945 s = false;
11b6402c
JR
946
947 if (pages > 1) {
948 /*
949 * If we have to flush more than one page, flush all
950 * TLB entries for this domain
951 */
952 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 953 s = true;
11b6402c
JR
954 }
955
956 address &= PAGE_MASK;
957
958 memset(cmd, 0, sizeof(*cmd));
959 cmd->data[1] |= domid;
960 cmd->data[2] = lower_32_bits(address);
961 cmd->data[3] = upper_32_bits(address);
962 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
963 if (s) /* size bit - we flush more than one 4kb page */
964 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 965 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
966 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
967}
968
cb41ed85
JR
969static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
970 u64 address, size_t size)
971{
972 u64 pages;
ae0cbbb1 973 bool s;
cb41ed85
JR
974
975 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 976 s = false;
cb41ed85
JR
977
978 if (pages > 1) {
979 /*
980 * If we have to flush more than one page, flush all
981 * TLB entries for this domain
982 */
983 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 984 s = true;
cb41ed85
JR
985 }
986
987 address &= PAGE_MASK;
988
989 memset(cmd, 0, sizeof(*cmd));
990 cmd->data[0] = devid;
991 cmd->data[0] |= (qdep & 0xff) << 24;
992 cmd->data[1] = devid;
993 cmd->data[2] = lower_32_bits(address);
994 cmd->data[3] = upper_32_bits(address);
995 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
996 if (s)
997 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
998}
999
22e266c7
JR
1000static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
1001 u64 address, bool size)
1002{
1003 memset(cmd, 0, sizeof(*cmd));
1004
1005 address &= ~(0xfffULL);
1006
a919a018 1007 cmd->data[0] = pasid;
22e266c7
JR
1008 cmd->data[1] = domid;
1009 cmd->data[2] = lower_32_bits(address);
1010 cmd->data[3] = upper_32_bits(address);
1011 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1012 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1013 if (size)
1014 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1015 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1016}
1017
1018static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
1019 int qdep, u64 address, bool size)
1020{
1021 memset(cmd, 0, sizeof(*cmd));
1022
1023 address &= ~(0xfffULL);
1024
1025 cmd->data[0] = devid;
e8d2d82d 1026 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
1027 cmd->data[0] |= (qdep & 0xff) << 24;
1028 cmd->data[1] = devid;
e8d2d82d 1029 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
1030 cmd->data[2] = lower_32_bits(address);
1031 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1032 cmd->data[3] = upper_32_bits(address);
1033 if (size)
1034 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1035 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1036}
1037
c99afa25
JR
1038static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1039 int status, int tag, bool gn)
1040{
1041 memset(cmd, 0, sizeof(*cmd));
1042
1043 cmd->data[0] = devid;
1044 if (gn) {
a919a018 1045 cmd->data[1] = pasid;
c99afa25
JR
1046 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1047 }
1048 cmd->data[3] = tag & 0x1ff;
1049 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1050
1051 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1052}
1053
58fc7f14
JR
1054static void build_inv_all(struct iommu_cmd *cmd)
1055{
1056 memset(cmd, 0, sizeof(*cmd));
1057 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
1058}
1059
7ef2798d
JR
1060static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1061{
1062 memset(cmd, 0, sizeof(*cmd));
1063 cmd->data[0] = devid;
1064 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1065}
1066
431b2a20 1067/*
431b2a20 1068 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 1069 * hardware about the new command.
431b2a20 1070 */
4bf5beef
JR
1071static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1072 struct iommu_cmd *cmd,
1073 bool sync)
a19ae1ec 1074{
23e967e1 1075 unsigned int count = 0;
d334a563 1076 u32 left, next_tail;
a19ae1ec 1077
d334a563 1078 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
ac0ea6e9 1079again:
d334a563 1080 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
a19ae1ec 1081
432abf68 1082 if (left <= 0x20) {
23e967e1
TL
1083 /* Skip udelay() the first time around */
1084 if (count++) {
1085 if (count == LOOP_TIMEOUT) {
1086 pr_err("AMD-Vi: Command buffer timeout\n");
1087 return -EIO;
1088 }
da49f6df 1089
23e967e1
TL
1090 udelay(1);
1091 }
ac0ea6e9 1092
23e967e1
TL
1093 /* Update head and recheck remaining space */
1094 iommu->cmd_buf_head = readl(iommu->mmio_base +
1095 MMIO_CMD_HEAD_OFFSET);
ac0ea6e9
JR
1096
1097 goto again;
8d201968
JR
1098 }
1099
d334a563 1100 copy_cmd_to_buffer(iommu, cmd);
ac0ea6e9 1101
23e967e1 1102 /* Do we need to make sure all commands are processed? */
f1ca1512 1103 iommu->need_sync = sync;
ac0ea6e9 1104
4bf5beef
JR
1105 return 0;
1106}
1107
1108static int iommu_queue_command_sync(struct amd_iommu *iommu,
1109 struct iommu_cmd *cmd,
1110 bool sync)
1111{
1112 unsigned long flags;
1113 int ret;
1114
1115 spin_lock_irqsave(&iommu->lock, flags);
1116 ret = __iommu_queue_command_sync(iommu, cmd, sync);
a19ae1ec 1117 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1118
4bf5beef 1119 return ret;
8d201968
JR
1120}
1121
f1ca1512
JR
1122static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1123{
1124 return iommu_queue_command_sync(iommu, cmd, true);
1125}
1126
8d201968
JR
1127/*
1128 * This function queues a completion wait command into the command
1129 * buffer of an IOMMU
1130 */
a19ae1ec 1131static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1132{
1133 struct iommu_cmd cmd;
4bf5beef 1134 unsigned long flags;
ac0ea6e9 1135 int ret;
8d201968 1136
09ee17eb 1137 if (!iommu->need_sync)
815b33fd 1138 return 0;
09ee17eb 1139
a19ae1ec 1140
4bf5beef
JR
1141 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1142
1143 spin_lock_irqsave(&iommu->lock, flags);
1144
1145 iommu->cmd_sem = 0;
1146
1147 ret = __iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1148 if (ret)
4bf5beef
JR
1149 goto out_unlock;
1150
1151 ret = wait_on_sem(&iommu->cmd_sem);
1152
1153out_unlock:
1154 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1155
4bf5beef 1156 return ret;
8d201968
JR
1157}
1158
d8c13085 1159static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1160{
d8c13085 1161 struct iommu_cmd cmd;
a19ae1ec 1162
d8c13085 1163 build_inv_dte(&cmd, devid);
7e4f88da 1164
d8c13085
JR
1165 return iommu_queue_command(iommu, &cmd);
1166}
09ee17eb 1167
7d0c5cc5
JR
1168static void iommu_flush_dte_all(struct amd_iommu *iommu)
1169{
1170 u32 devid;
09ee17eb 1171
7d0c5cc5
JR
1172 for (devid = 0; devid <= 0xffff; ++devid)
1173 iommu_flush_dte(iommu, devid);
a19ae1ec 1174
7d0c5cc5
JR
1175 iommu_completion_wait(iommu);
1176}
84df8175 1177
7d0c5cc5
JR
1178/*
1179 * This function uses heavy locking and may disable irqs for some time. But
1180 * this is no issue because it is only called during resume.
1181 */
1182static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1183{
1184 u32 dom_id;
a19ae1ec 1185
7d0c5cc5
JR
1186 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1187 struct iommu_cmd cmd;
1188 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1189 dom_id, 1);
1190 iommu_queue_command(iommu, &cmd);
1191 }
8eed9833 1192
7d0c5cc5 1193 iommu_completion_wait(iommu);
a19ae1ec
JR
1194}
1195
58fc7f14 1196static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1197{
58fc7f14 1198 struct iommu_cmd cmd;
0518a3a4 1199
58fc7f14 1200 build_inv_all(&cmd);
0518a3a4 1201
58fc7f14
JR
1202 iommu_queue_command(iommu, &cmd);
1203 iommu_completion_wait(iommu);
1204}
1205
7ef2798d
JR
1206static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1207{
1208 struct iommu_cmd cmd;
1209
1210 build_inv_irt(&cmd, devid);
1211
1212 iommu_queue_command(iommu, &cmd);
1213}
1214
1215static void iommu_flush_irt_all(struct amd_iommu *iommu)
1216{
1217 u32 devid;
1218
1219 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1220 iommu_flush_irt(iommu, devid);
1221
1222 iommu_completion_wait(iommu);
1223}
1224
7d0c5cc5
JR
1225void iommu_flush_all_caches(struct amd_iommu *iommu)
1226{
58fc7f14
JR
1227 if (iommu_feature(iommu, FEATURE_IA)) {
1228 iommu_flush_all(iommu);
1229 } else {
1230 iommu_flush_dte_all(iommu);
7ef2798d 1231 iommu_flush_irt_all(iommu);
58fc7f14 1232 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1233 }
1234}
1235
431b2a20 1236/*
cb41ed85 1237 * Command send function for flushing on-device TLB
431b2a20 1238 */
6c542047
JR
1239static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1240 u64 address, size_t size)
3fa43655
JR
1241{
1242 struct amd_iommu *iommu;
b00d3bcf 1243 struct iommu_cmd cmd;
cb41ed85 1244 int qdep;
3fa43655 1245
ea61cddb
JR
1246 qdep = dev_data->ats.qdep;
1247 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1248
ea61cddb 1249 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1250
1251 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1252}
1253
431b2a20 1254/*
431b2a20 1255 * Command send function for invalidating a device table entry
431b2a20 1256 */
6c542047 1257static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1258{
3fa43655 1259 struct amd_iommu *iommu;
e25bfb56 1260 u16 alias;
ee2fa743 1261 int ret;
a19ae1ec 1262
6c542047 1263 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 1264 alias = dev_data->alias;
a19ae1ec 1265
f62dda66 1266 ret = iommu_flush_dte(iommu, dev_data->devid);
e25bfb56
JR
1267 if (!ret && alias != dev_data->devid)
1268 ret = iommu_flush_dte(iommu, alias);
cb41ed85
JR
1269 if (ret)
1270 return ret;
1271
ea61cddb 1272 if (dev_data->ats.enabled)
6c542047 1273 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1274
ee2fa743 1275 return ret;
a19ae1ec
JR
1276}
1277
431b2a20
JR
1278/*
1279 * TLB invalidation function which is called from the mapping functions.
1280 * It invalidates a single PTE if the range to flush is within a single
1281 * page. Otherwise it flushes the whole TLB of the IOMMU.
1282 */
17b124bf
JR
1283static void __domain_flush_pages(struct protection_domain *domain,
1284 u64 address, size_t size, int pde)
a19ae1ec 1285{
cb41ed85 1286 struct iommu_dev_data *dev_data;
11b6402c
JR
1287 struct iommu_cmd cmd;
1288 int ret = 0, i;
a19ae1ec 1289
11b6402c 1290 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1291
6b9376e3 1292 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
6de8ad9b
JR
1293 if (!domain->dev_iommu[i])
1294 continue;
1295
1296 /*
1297 * Devices of this domain are behind this IOMMU
1298 * We need a TLB flush
1299 */
11b6402c 1300 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1301 }
1302
cb41ed85 1303 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1304
ea61cddb 1305 if (!dev_data->ats.enabled)
cb41ed85
JR
1306 continue;
1307
6c542047 1308 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1309 }
1310
11b6402c 1311 WARN_ON(ret);
6de8ad9b
JR
1312}
1313
17b124bf
JR
1314static void domain_flush_pages(struct protection_domain *domain,
1315 u64 address, size_t size)
6de8ad9b 1316{
17b124bf 1317 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1318}
b6c02715 1319
1c655773 1320/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1321static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1322{
17b124bf 1323 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1324}
1325
42a49f96 1326/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1327static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1328{
17b124bf 1329 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1330}
1331
17b124bf 1332static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1333{
17b124bf 1334 int i;
18811f55 1335
6b9376e3 1336 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
f1eae7c5 1337 if (domain && !domain->dev_iommu[i])
17b124bf 1338 continue;
bfd1be18 1339
17b124bf
JR
1340 /*
1341 * Devices of this domain are behind this IOMMU
1342 * We need to wait for completion of all commands.
1343 */
1344 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1345 }
e394d72a
JR
1346}
1347
b00d3bcf 1348
09b42804 1349/*
b00d3bcf 1350 * This function flushes the DTEs for all devices in domain
09b42804 1351 */
17b124bf 1352static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1353{
b00d3bcf 1354 struct iommu_dev_data *dev_data;
b26e81b8 1355
b00d3bcf 1356 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1357 device_flush_dte(dev_data);
a345b23b
JR
1358}
1359
431b2a20
JR
1360/****************************************************************************
1361 *
1362 * The functions below are used the create the page table mappings for
1363 * unity mapped regions.
1364 *
1365 ****************************************************************************/
1366
308973d3
JR
1367/*
1368 * This function is used to add another level to an IO page table. Adding
1369 * another level increases the size of the address space by 9 bits to a size up
1370 * to 64 bits.
1371 */
1372static bool increase_address_space(struct protection_domain *domain,
1373 gfp_t gfp)
1374{
1375 u64 *pte;
1376
1377 if (domain->mode == PAGE_MODE_6_LEVEL)
1378 /* address space already 64 bit large */
1379 return false;
1380
1381 pte = (void *)get_zeroed_page(gfp);
1382 if (!pte)
1383 return false;
1384
1385 *pte = PM_LEVEL_PDE(domain->mode,
1386 virt_to_phys(domain->pt_root));
1387 domain->pt_root = pte;
1388 domain->mode += 1;
1389 domain->updated = true;
1390
1391 return true;
1392}
1393
1394static u64 *alloc_pte(struct protection_domain *domain,
1395 unsigned long address,
cbb9d729 1396 unsigned long page_size,
308973d3
JR
1397 u64 **pte_page,
1398 gfp_t gfp)
1399{
cbb9d729 1400 int level, end_lvl;
308973d3 1401 u64 *pte, *page;
cbb9d729
JR
1402
1403 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1404
1405 while (address > PM_LEVEL_SIZE(domain->mode))
1406 increase_address_space(domain, gfp);
1407
cbb9d729
JR
1408 level = domain->mode - 1;
1409 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1410 address = PAGE_SIZE_ALIGN(address, page_size);
1411 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1412
1413 while (level > end_lvl) {
7bfa5bd2
JR
1414 u64 __pte, __npte;
1415
1416 __pte = *pte;
1417
1418 if (!IOMMU_PTE_PRESENT(__pte)) {
308973d3
JR
1419 page = (u64 *)get_zeroed_page(gfp);
1420 if (!page)
1421 return NULL;
7bfa5bd2
JR
1422
1423 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1424
134414ff
BH
1425 /* pte could have been changed somewhere. */
1426 if (cmpxchg64(pte, __pte, __npte) != __pte) {
7bfa5bd2
JR
1427 free_page((unsigned long)page);
1428 continue;
1429 }
308973d3
JR
1430 }
1431
cbb9d729
JR
1432 /* No level skipping support yet */
1433 if (PM_PTE_LEVEL(*pte) != level)
1434 return NULL;
1435
308973d3
JR
1436 level -= 1;
1437
1438 pte = IOMMU_PTE_PAGE(*pte);
1439
1440 if (pte_page && level == end_lvl)
1441 *pte_page = pte;
1442
1443 pte = &pte[PM_LEVEL_INDEX(level, address)];
1444 }
1445
1446 return pte;
1447}
1448
1449/*
1450 * This function checks if there is a PTE for a given dma address. If
1451 * there is one, it returns the pointer to it.
1452 */
3039ca1b
JR
1453static u64 *fetch_pte(struct protection_domain *domain,
1454 unsigned long address,
1455 unsigned long *page_size)
308973d3
JR
1456{
1457 int level;
1458 u64 *pte;
1459
24cd7723
JR
1460 if (address > PM_LEVEL_SIZE(domain->mode))
1461 return NULL;
1462
3039ca1b
JR
1463 level = domain->mode - 1;
1464 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1465 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1466
24cd7723
JR
1467 while (level > 0) {
1468
1469 /* Not Present */
308973d3
JR
1470 if (!IOMMU_PTE_PRESENT(*pte))
1471 return NULL;
1472
24cd7723 1473 /* Large PTE */
3039ca1b
JR
1474 if (PM_PTE_LEVEL(*pte) == 7 ||
1475 PM_PTE_LEVEL(*pte) == 0)
1476 break;
24cd7723
JR
1477
1478 /* No level skipping support yet */
1479 if (PM_PTE_LEVEL(*pte) != level)
1480 return NULL;
1481
308973d3
JR
1482 level -= 1;
1483
24cd7723 1484 /* Walk to the next level */
3039ca1b
JR
1485 pte = IOMMU_PTE_PAGE(*pte);
1486 pte = &pte[PM_LEVEL_INDEX(level, address)];
1487 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1488 }
1489
1490 if (PM_PTE_LEVEL(*pte) == 0x07) {
1491 unsigned long pte_mask;
1492
1493 /*
1494 * If we have a series of large PTEs, make
1495 * sure to return a pointer to the first one.
1496 */
1497 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1498 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1499 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1500 }
1501
1502 return pte;
1503}
1504
431b2a20
JR
1505/*
1506 * Generic mapping functions. It maps a physical address into a DMA
1507 * address space. It allocates the page table pages if necessary.
1508 * In the future it can be extended to a generic mapping function
1509 * supporting all features of AMD IOMMU page tables like level skipping
1510 * and full 64 bit address spaces.
1511 */
38e817fe
JR
1512static int iommu_map_page(struct protection_domain *dom,
1513 unsigned long bus_addr,
1514 unsigned long phys_addr,
b911b89b 1515 unsigned long page_size,
abdc5eb3 1516 int prot,
b911b89b 1517 gfp_t gfp)
bd0e5211 1518{
8bda3092 1519 u64 __pte, *pte;
cbb9d729 1520 int i, count;
abdc5eb3 1521
d4b03664
JR
1522 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1523 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1524
bad1cac2 1525 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1526 return -EINVAL;
1527
d4b03664 1528 count = PAGE_SIZE_PTE_COUNT(page_size);
b911b89b 1529 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
cbb9d729 1530
63eaa75e
ML
1531 if (!pte)
1532 return -ENOMEM;
1533
cbb9d729
JR
1534 for (i = 0; i < count; ++i)
1535 if (IOMMU_PTE_PRESENT(pte[i]))
1536 return -EBUSY;
bd0e5211 1537
d4b03664 1538 if (count > 1) {
cbb9d729
JR
1539 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1540 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1541 } else
1542 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1543
bd0e5211
JR
1544 if (prot & IOMMU_PROT_IR)
1545 __pte |= IOMMU_PTE_IR;
1546 if (prot & IOMMU_PROT_IW)
1547 __pte |= IOMMU_PTE_IW;
1548
cbb9d729
JR
1549 for (i = 0; i < count; ++i)
1550 pte[i] = __pte;
bd0e5211 1551
04bfdd84
JR
1552 update_domain(dom);
1553
bd0e5211
JR
1554 return 0;
1555}
1556
24cd7723
JR
1557static unsigned long iommu_unmap_page(struct protection_domain *dom,
1558 unsigned long bus_addr,
1559 unsigned long page_size)
eb74ff6c 1560{
71b390e9
JR
1561 unsigned long long unmapped;
1562 unsigned long unmap_size;
24cd7723
JR
1563 u64 *pte;
1564
1565 BUG_ON(!is_power_of_2(page_size));
1566
1567 unmapped = 0;
eb74ff6c 1568
24cd7723
JR
1569 while (unmapped < page_size) {
1570
71b390e9
JR
1571 pte = fetch_pte(dom, bus_addr, &unmap_size);
1572
1573 if (pte) {
1574 int i, count;
1575
1576 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1577 for (i = 0; i < count; i++)
1578 pte[i] = 0ULL;
1579 }
1580
1581 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1582 unmapped += unmap_size;
1583 }
1584
60d0ca3c 1585 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1586
24cd7723 1587 return unmapped;
eb74ff6c 1588}
eb74ff6c 1589
431b2a20
JR
1590/****************************************************************************
1591 *
1592 * The next functions belong to the address allocator for the dma_ops
2d4c515b 1593 * interface functions.
431b2a20
JR
1594 *
1595 ****************************************************************************/
d3086444 1596
9cabe89b 1597
256e4621
JR
1598static unsigned long dma_ops_alloc_iova(struct device *dev,
1599 struct dma_ops_domain *dma_dom,
1600 unsigned int pages, u64 dma_mask)
384de729 1601{
256e4621 1602 unsigned long pfn = 0;
384de729 1603
256e4621 1604 pages = __roundup_pow_of_two(pages);
ccb50e03 1605
256e4621
JR
1606 if (dma_mask > DMA_BIT_MASK(32))
1607 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1608 IOVA_PFN(DMA_BIT_MASK(32)));
7b5e25b8 1609
256e4621
JR
1610 if (!pfn)
1611 pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
5f6bed50 1612
256e4621 1613 return (pfn << PAGE_SHIFT);
384de729
JR
1614}
1615
256e4621
JR
1616static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1617 unsigned long address,
1618 unsigned int pages)
d3086444 1619{
256e4621
JR
1620 pages = __roundup_pow_of_two(pages);
1621 address >>= PAGE_SHIFT;
384de729 1622
256e4621 1623 free_iova_fast(&dma_dom->iovad, address, pages);
d3086444
JR
1624}
1625
431b2a20
JR
1626/****************************************************************************
1627 *
1628 * The next functions belong to the domain allocation. A domain is
1629 * allocated for every IOMMU as the default domain. If device isolation
1630 * is enabled, every device get its own domain. The most important thing
1631 * about domains is the page table mapping the DMA address space they
1632 * contain.
1633 *
1634 ****************************************************************************/
1635
aeb26f55
JR
1636/*
1637 * This function adds a protection domain to the global protection domain list
1638 */
1639static void add_domain_to_list(struct protection_domain *domain)
1640{
1641 unsigned long flags;
1642
1643 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1644 list_add(&domain->list, &amd_iommu_pd_list);
1645 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1646}
1647
1648/*
1649 * This function removes a protection domain to the global
1650 * protection domain list
1651 */
1652static void del_domain_from_list(struct protection_domain *domain)
1653{
1654 unsigned long flags;
1655
1656 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1657 list_del(&domain->list);
1658 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1659}
1660
ec487d1a
JR
1661static u16 domain_id_alloc(void)
1662{
1663 unsigned long flags;
1664 int id;
1665
1666 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1667 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1668 BUG_ON(id == 0);
1669 if (id > 0 && id < MAX_DOMAIN_ID)
1670 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1671 else
1672 id = 0;
1673 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1674
1675 return id;
1676}
1677
a2acfb75
JR
1678static void domain_id_free(int id)
1679{
1680 unsigned long flags;
1681
1682 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1683 if (id > 0 && id < MAX_DOMAIN_ID)
1684 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1685 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1686}
a2acfb75 1687
5c34c403
JR
1688#define DEFINE_FREE_PT_FN(LVL, FN) \
1689static void free_pt_##LVL (unsigned long __pt) \
1690{ \
1691 unsigned long p; \
1692 u64 *pt; \
1693 int i; \
1694 \
1695 pt = (u64 *)__pt; \
1696 \
1697 for (i = 0; i < 512; ++i) { \
0b3fff54 1698 /* PTE present? */ \
5c34c403
JR
1699 if (!IOMMU_PTE_PRESENT(pt[i])) \
1700 continue; \
1701 \
0b3fff54
JR
1702 /* Large PTE? */ \
1703 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1704 PM_PTE_LEVEL(pt[i]) == 7) \
1705 continue; \
1706 \
5c34c403
JR
1707 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1708 FN(p); \
1709 } \
1710 free_page((unsigned long)pt); \
1711}
1712
1713DEFINE_FREE_PT_FN(l2, free_page)
1714DEFINE_FREE_PT_FN(l3, free_pt_l2)
1715DEFINE_FREE_PT_FN(l4, free_pt_l3)
1716DEFINE_FREE_PT_FN(l5, free_pt_l4)
1717DEFINE_FREE_PT_FN(l6, free_pt_l5)
1718
86db2e5d 1719static void free_pagetable(struct protection_domain *domain)
ec487d1a 1720{
5c34c403 1721 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1722
5c34c403
JR
1723 switch (domain->mode) {
1724 case PAGE_MODE_NONE:
1725 break;
1726 case PAGE_MODE_1_LEVEL:
1727 free_page(root);
1728 break;
1729 case PAGE_MODE_2_LEVEL:
1730 free_pt_l2(root);
1731 break;
1732 case PAGE_MODE_3_LEVEL:
1733 free_pt_l3(root);
1734 break;
1735 case PAGE_MODE_4_LEVEL:
1736 free_pt_l4(root);
1737 break;
1738 case PAGE_MODE_5_LEVEL:
1739 free_pt_l5(root);
1740 break;
1741 case PAGE_MODE_6_LEVEL:
1742 free_pt_l6(root);
1743 break;
1744 default:
1745 BUG();
ec487d1a 1746 }
ec487d1a
JR
1747}
1748
b16137b1
JR
1749static void free_gcr3_tbl_level1(u64 *tbl)
1750{
1751 u64 *ptr;
1752 int i;
1753
1754 for (i = 0; i < 512; ++i) {
1755 if (!(tbl[i] & GCR3_VALID))
1756 continue;
1757
1758 ptr = __va(tbl[i] & PAGE_MASK);
1759
1760 free_page((unsigned long)ptr);
1761 }
1762}
1763
1764static void free_gcr3_tbl_level2(u64 *tbl)
1765{
1766 u64 *ptr;
1767 int i;
1768
1769 for (i = 0; i < 512; ++i) {
1770 if (!(tbl[i] & GCR3_VALID))
1771 continue;
1772
1773 ptr = __va(tbl[i] & PAGE_MASK);
1774
1775 free_gcr3_tbl_level1(ptr);
1776 }
1777}
1778
52815b75
JR
1779static void free_gcr3_table(struct protection_domain *domain)
1780{
b16137b1
JR
1781 if (domain->glx == 2)
1782 free_gcr3_tbl_level2(domain->gcr3_tbl);
1783 else if (domain->glx == 1)
1784 free_gcr3_tbl_level1(domain->gcr3_tbl);
23d3a98c
JR
1785 else
1786 BUG_ON(domain->glx != 0);
b16137b1 1787
52815b75
JR
1788 free_page((unsigned long)domain->gcr3_tbl);
1789}
1790
d4241a27
JR
1791static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
1792{
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu) {
1796 struct flush_queue *queue;
1797
1798 queue = per_cpu_ptr(dom->flush_queue, cpu);
1799 kfree(queue->entries);
1800 }
1801
1802 free_percpu(dom->flush_queue);
1803
1804 dom->flush_queue = NULL;
1805}
1806
1807static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
1808{
1809 int cpu;
1810
a6e3f6f0
JR
1811 atomic64_set(&dom->flush_start_cnt, 0);
1812 atomic64_set(&dom->flush_finish_cnt, 0);
1813
d4241a27
JR
1814 dom->flush_queue = alloc_percpu(struct flush_queue);
1815 if (!dom->flush_queue)
1816 return -ENOMEM;
1817
1818 /* First make sure everything is cleared */
1819 for_each_possible_cpu(cpu) {
1820 struct flush_queue *queue;
1821
1822 queue = per_cpu_ptr(dom->flush_queue, cpu);
1823 queue->head = 0;
1824 queue->tail = 0;
1825 queue->entries = NULL;
1826 }
1827
1828 /* Now start doing the allocation */
1829 for_each_possible_cpu(cpu) {
1830 struct flush_queue *queue;
1831
1832 queue = per_cpu_ptr(dom->flush_queue, cpu);
1833 queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
1834 GFP_KERNEL);
1835 if (!queue->entries) {
1836 dma_ops_domain_free_flush_queue(dom);
1837 return -ENOMEM;
1838 }
e241f8e7
JR
1839
1840 spin_lock_init(&queue->lock);
d4241a27
JR
1841 }
1842
1843 return 0;
1844}
1845
fca6af6a
JR
1846static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1847{
1848 atomic64_inc(&dom->flush_start_cnt);
1849 domain_flush_tlb(&dom->domain);
1850 domain_flush_complete(&dom->domain);
1851 atomic64_inc(&dom->flush_finish_cnt);
1852}
1853
fd62190a
JR
1854static inline bool queue_ring_full(struct flush_queue *queue)
1855{
e241f8e7
JR
1856 assert_spin_locked(&queue->lock);
1857
fd62190a
JR
1858 return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
1859}
1860
1861#define queue_ring_for_each(i, q) \
1862 for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)
1863
fd62190a
JR
1864static inline unsigned queue_ring_add(struct flush_queue *queue)
1865{
1866 unsigned idx = queue->tail;
1867
e241f8e7 1868 assert_spin_locked(&queue->lock);
fd62190a
JR
1869 queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;
1870
1871 return idx;
1872}
1873
a6e3f6f0
JR
1874static inline void queue_ring_remove_head(struct flush_queue *queue)
1875{
1876 assert_spin_locked(&queue->lock);
1877 queue->head = (queue->head + 1) % FLUSH_QUEUE_SIZE;
1878}
1879
fca6af6a
JR
1880static void queue_ring_free_flushed(struct dma_ops_domain *dom,
1881 struct flush_queue *queue)
fd62190a 1882{
fca6af6a 1883 u64 counter = atomic64_read(&dom->flush_finish_cnt);
fd62190a
JR
1884 int idx;
1885
a6e3f6f0
JR
1886 queue_ring_for_each(idx, queue) {
1887 /*
1888 * This assumes that counter values in the ring-buffer are
1889 * monotonously rising.
1890 */
1891 if (queue->entries[idx].counter >= counter)
1892 break;
1893
1894 free_iova_fast(&dom->iovad,
1895 queue->entries[idx].iova_pfn,
1896 queue->entries[idx].pages);
1897
1898 queue_ring_remove_head(queue);
1899 }
fca6af6a
JR
1900}
1901
1902static void queue_add(struct dma_ops_domain *dom,
1903 unsigned long address, unsigned long pages)
1904{
1905 struct flush_queue *queue;
1906 unsigned long flags;
1907 int idx;
1908
1909 pages = __roundup_pow_of_two(pages);
1910 address >>= PAGE_SHIFT;
1911
1912 queue = get_cpu_ptr(dom->flush_queue);
1913 spin_lock_irqsave(&queue->lock, flags);
1914
9ce3a72c
JR
1915 /*
1916 * First remove the enries from the ring-buffer that are already
1917 * flushed to make the below queue_ring_full() check less likely
1918 */
1919 queue_ring_free_flushed(dom, queue);
1920
ac3b708a
JR
1921 /*
1922 * When ring-queue is full, flush the entries from the IOTLB so
1923 * that we can free all entries with queue_ring_free_flushed()
1924 * below.
1925 */
9ce3a72c 1926 if (queue_ring_full(queue)) {
fca6af6a 1927 dma_ops_domain_flush_tlb(dom);
9ce3a72c
JR
1928 queue_ring_free_flushed(dom, queue);
1929 }
fd62190a
JR
1930
1931 idx = queue_ring_add(queue);
1932
1933 queue->entries[idx].iova_pfn = address;
1934 queue->entries[idx].pages = pages;
a6e3f6f0 1935 queue->entries[idx].counter = atomic64_read(&dom->flush_start_cnt);
fd62190a 1936
e241f8e7 1937 spin_unlock_irqrestore(&queue->lock, flags);
fca6af6a
JR
1938
1939 if (atomic_cmpxchg(&dom->flush_timer_on, 0, 1) == 0)
1940 mod_timer(&dom->flush_timer, jiffies + msecs_to_jiffies(10));
1941
fd62190a
JR
1942 put_cpu_ptr(dom->flush_queue);
1943}
1944
fca6af6a
JR
1945static void queue_flush_timeout(unsigned long data)
1946{
1947 struct dma_ops_domain *dom = (struct dma_ops_domain *)data;
1948 int cpu;
1949
1950 atomic_set(&dom->flush_timer_on, 0);
1951
1952 dma_ops_domain_flush_tlb(dom);
1953
1954 for_each_possible_cpu(cpu) {
1955 struct flush_queue *queue;
1956 unsigned long flags;
1957
1958 queue = per_cpu_ptr(dom->flush_queue, cpu);
1959 spin_lock_irqsave(&queue->lock, flags);
1960 queue_ring_free_flushed(dom, queue);
1961 spin_unlock_irqrestore(&queue->lock, flags);
1962 }
1963}
1964
431b2a20
JR
1965/*
1966 * Free a domain, only used if something went wrong in the
1967 * allocation path and we need to free an already allocated page table
1968 */
ec487d1a
JR
1969static void dma_ops_domain_free(struct dma_ops_domain *dom)
1970{
1971 if (!dom)
1972 return;
1973
aeb26f55
JR
1974 del_domain_from_list(&dom->domain);
1975
fca6af6a
JR
1976 if (timer_pending(&dom->flush_timer))
1977 del_timer(&dom->flush_timer);
1978
d4241a27
JR
1979 dma_ops_domain_free_flush_queue(dom);
1980
2d4c515b 1981 put_iova_domain(&dom->iovad);
ec487d1a 1982
2d4c515b 1983 free_pagetable(&dom->domain);
ec487d1a 1984
c3db901c
BH
1985 if (dom->domain.id)
1986 domain_id_free(dom->domain.id);
1987
ec487d1a
JR
1988 kfree(dom);
1989}
1990
431b2a20
JR
1991/*
1992 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1993 * It also initializes the page table and the address allocator data
431b2a20
JR
1994 * structures required for the dma_ops interface
1995 */
87a64d52 1996static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1997{
1998 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1999
2000 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2001 if (!dma_dom)
2002 return NULL;
2003
7a5a566e 2004 if (protection_domain_init(&dma_dom->domain))
ec487d1a 2005 goto free_dma_dom;
7a5a566e 2006
ffec2197 2007 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
ec487d1a 2008 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2009 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2010 if (!dma_dom->domain.pt_root)
2011 goto free_dma_dom;
ec487d1a 2012
307d5851
JR
2013 init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
2014 IOVA_START_PFN, DMA_32BIT_PFN);
2015
81cd07b9
JR
2016 /* Initialize reserved ranges */
2017 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
2018
d4241a27
JR
2019 if (dma_ops_domain_alloc_flush_queue(dma_dom))
2020 goto free_dma_dom;
2021
fca6af6a
JR
2022 setup_timer(&dma_dom->flush_timer, queue_flush_timeout,
2023 (unsigned long)dma_dom);
2024
2025 atomic_set(&dma_dom->flush_timer_on, 0);
2026
2d4c515b
JR
2027 add_domain_to_list(&dma_dom->domain);
2028
ec487d1a
JR
2029 return dma_dom;
2030
2031free_dma_dom:
2032 dma_ops_domain_free(dma_dom);
2033
2034 return NULL;
2035}
2036
5b28df6f
JR
2037/*
2038 * little helper function to check whether a given protection domain is a
2039 * dma_ops domain
2040 */
2041static bool dma_ops_domain(struct protection_domain *domain)
2042{
2043 return domain->flags & PD_DMA_OPS_MASK;
2044}
2045
fd7b5535 2046static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2047{
132bd68f 2048 u64 pte_root = 0;
ee6c2868 2049 u64 flags = 0;
863c74eb 2050
132bd68f
JR
2051 if (domain->mode != PAGE_MODE_NONE)
2052 pte_root = virt_to_phys(domain->pt_root);
2053
38ddf41b
JR
2054 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2055 << DEV_ENTRY_MODE_SHIFT;
2056 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2057
ee6c2868
JR
2058 flags = amd_iommu_dev_table[devid].data[1];
2059
fd7b5535
JR
2060 if (ats)
2061 flags |= DTE_FLAG_IOTLB;
2062
52815b75
JR
2063 if (domain->flags & PD_IOMMUV2_MASK) {
2064 u64 gcr3 = __pa(domain->gcr3_tbl);
2065 u64 glx = domain->glx;
2066 u64 tmp;
2067
2068 pte_root |= DTE_FLAG_GV;
2069 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2070
2071 /* First mask out possible old values for GCR3 table */
2072 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2073 flags &= ~tmp;
2074
2075 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2076 flags &= ~tmp;
2077
2078 /* Encode GCR3 table into DTE */
2079 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2080 pte_root |= tmp;
2081
2082 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2083 flags |= tmp;
2084
2085 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2086 flags |= tmp;
2087 }
2088
54bd6357
JR
2089
2090 flags &= ~(DTE_FLAG_SA | 0xffffULL);
ee6c2868
JR
2091 flags |= domain->id;
2092
2093 amd_iommu_dev_table[devid].data[1] = flags;
2094 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2095}
2096
2097static void clear_dte_entry(u16 devid)
2098{
15898bbc 2099 /* remove entry from the device table seen by the hardware */
cbf3ccd0
JR
2100 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2101 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
15898bbc
JR
2102
2103 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2104}
2105
ec9e79ef
JR
2106static void do_attach(struct iommu_dev_data *dev_data,
2107 struct protection_domain *domain)
7f760ddd 2108{
7f760ddd 2109 struct amd_iommu *iommu;
e25bfb56 2110 u16 alias;
ec9e79ef 2111 bool ats;
fd7b5535 2112
ec9e79ef 2113 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 2114 alias = dev_data->alias;
ec9e79ef 2115 ats = dev_data->ats.enabled;
7f760ddd
JR
2116
2117 /* Update data structures */
2118 dev_data->domain = domain;
2119 list_add(&dev_data->list, &domain->dev_list);
7f760ddd
JR
2120
2121 /* Do reference counting */
2122 domain->dev_iommu[iommu->index] += 1;
2123 domain->dev_cnt += 1;
2124
e25bfb56
JR
2125 /* Update device table */
2126 set_dte_entry(dev_data->devid, domain, ats);
2127 if (alias != dev_data->devid)
9b1a12d2 2128 set_dte_entry(alias, domain, ats);
e25bfb56 2129
6c542047 2130 device_flush_dte(dev_data);
7f760ddd
JR
2131}
2132
ec9e79ef 2133static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2134{
7f760ddd 2135 struct amd_iommu *iommu;
e25bfb56 2136 u16 alias;
7f760ddd 2137
5adad991
JR
2138 /*
2139 * First check if the device is still attached. It might already
2140 * be detached from its domain because the generic
2141 * iommu_detach_group code detached it and we try again here in
2142 * our alias handling.
2143 */
2144 if (!dev_data->domain)
2145 return;
2146
ec9e79ef 2147 iommu = amd_iommu_rlookup_table[dev_data->devid];
e3156048 2148 alias = dev_data->alias;
15898bbc
JR
2149
2150 /* decrease reference counters */
7f760ddd
JR
2151 dev_data->domain->dev_iommu[iommu->index] -= 1;
2152 dev_data->domain->dev_cnt -= 1;
2153
2154 /* Update data structures */
2155 dev_data->domain = NULL;
2156 list_del(&dev_data->list);
f62dda66 2157 clear_dte_entry(dev_data->devid);
e25bfb56
JR
2158 if (alias != dev_data->devid)
2159 clear_dte_entry(alias);
15898bbc 2160
7f760ddd 2161 /* Flush the DTE entry */
6c542047 2162 device_flush_dte(dev_data);
2b681faf
JR
2163}
2164
2165/*
2166 * If a device is not yet associated with a domain, this function does
2167 * assigns it visible for the hardware
2168 */
ec9e79ef 2169static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2170 struct protection_domain *domain)
2b681faf 2171{
84fe6c19 2172 int ret;
657cbb6b 2173
272e4f99
JR
2174 /*
2175 * Must be called with IRQs disabled. Warn here to detect early
2176 * when its not.
2177 */
2178 WARN_ON(!irqs_disabled());
2179
2b681faf
JR
2180 /* lock domain */
2181 spin_lock(&domain->lock);
2182
397111ab 2183 ret = -EBUSY;
150952f9 2184 if (dev_data->domain != NULL)
397111ab 2185 goto out_unlock;
15898bbc 2186
397111ab 2187 /* Attach alias group root */
150952f9 2188 do_attach(dev_data, domain);
24100055 2189
84fe6c19
JL
2190 ret = 0;
2191
2192out_unlock:
2193
eba6ac60
JR
2194 /* ready */
2195 spin_unlock(&domain->lock);
15898bbc 2196
84fe6c19 2197 return ret;
0feae533 2198}
b20ac0d4 2199
52815b75
JR
2200
2201static void pdev_iommuv2_disable(struct pci_dev *pdev)
2202{
2203 pci_disable_ats(pdev);
2204 pci_disable_pri(pdev);
2205 pci_disable_pasid(pdev);
2206}
2207
6a113ddc
JR
2208/* FIXME: Change generic reset-function to do the same */
2209static int pri_reset_while_enabled(struct pci_dev *pdev)
2210{
2211 u16 control;
2212 int pos;
2213
46277b75 2214 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2215 if (!pos)
2216 return -EINVAL;
2217
46277b75
JR
2218 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2219 control |= PCI_PRI_CTRL_RESET;
2220 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2221
2222 return 0;
2223}
2224
52815b75
JR
2225static int pdev_iommuv2_enable(struct pci_dev *pdev)
2226{
6a113ddc
JR
2227 bool reset_enable;
2228 int reqs, ret;
2229
2230 /* FIXME: Hardcode number of outstanding requests for now */
2231 reqs = 32;
2232 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2233 reqs = 1;
2234 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2235
2236 /* Only allow access to user-accessible pages */
2237 ret = pci_enable_pasid(pdev, 0);
2238 if (ret)
2239 goto out_err;
2240
2241 /* First reset the PRI state of the device */
2242 ret = pci_reset_pri(pdev);
2243 if (ret)
2244 goto out_err;
2245
6a113ddc
JR
2246 /* Enable PRI */
2247 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2248 if (ret)
2249 goto out_err;
2250
6a113ddc
JR
2251 if (reset_enable) {
2252 ret = pri_reset_while_enabled(pdev);
2253 if (ret)
2254 goto out_err;
2255 }
2256
52815b75
JR
2257 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2258 if (ret)
2259 goto out_err;
2260
2261 return 0;
2262
2263out_err:
2264 pci_disable_pri(pdev);
2265 pci_disable_pasid(pdev);
2266
2267 return ret;
2268}
2269
c99afa25 2270/* FIXME: Move this to PCI code */
a3b93121 2271#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2272
98f1ad25 2273static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2274{
a3b93121 2275 u16 status;
c99afa25
JR
2276 int pos;
2277
46277b75 2278 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2279 if (!pos)
2280 return false;
2281
a3b93121 2282 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2283
a3b93121 2284 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2285}
2286
407d733e 2287/*
df805abb 2288 * If a device is not yet associated with a domain, this function
407d733e
JR
2289 * assigns it visible for the hardware
2290 */
15898bbc
JR
2291static int attach_device(struct device *dev,
2292 struct protection_domain *domain)
0feae533 2293{
2bf9a0a1 2294 struct pci_dev *pdev;
ea61cddb 2295 struct iommu_dev_data *dev_data;
eba6ac60 2296 unsigned long flags;
15898bbc 2297 int ret;
eba6ac60 2298
ea61cddb
JR
2299 dev_data = get_dev_data(dev);
2300
2bf9a0a1
WZ
2301 if (!dev_is_pci(dev))
2302 goto skip_ats_check;
2303
2304 pdev = to_pci_dev(dev);
52815b75 2305 if (domain->flags & PD_IOMMUV2_MASK) {
02ca2021 2306 if (!dev_data->passthrough)
52815b75
JR
2307 return -EINVAL;
2308
02ca2021
JR
2309 if (dev_data->iommu_v2) {
2310 if (pdev_iommuv2_enable(pdev) != 0)
2311 return -EINVAL;
52815b75 2312
02ca2021
JR
2313 dev_data->ats.enabled = true;
2314 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2315 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2316 }
52815b75
JR
2317 } else if (amd_iommu_iotlb_sup &&
2318 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2319 dev_data->ats.enabled = true;
2320 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2321 }
fd7b5535 2322
2bf9a0a1 2323skip_ats_check:
eba6ac60 2324 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2325 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2326 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2327
0feae533
JR
2328 /*
2329 * We might boot into a crash-kernel here. The crashed kernel
2330 * left the caches in the IOMMU dirty. So we have to flush
2331 * here to evict all dirty stuff.
2332 */
17b124bf 2333 domain_flush_tlb_pde(domain);
15898bbc
JR
2334
2335 return ret;
b20ac0d4
JR
2336}
2337
355bf553
JR
2338/*
2339 * Removes a device from a protection domain (unlocked)
2340 */
ec9e79ef 2341static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2342{
2ca76279 2343 struct protection_domain *domain;
c4596114 2344
272e4f99
JR
2345 /*
2346 * Must be called with IRQs disabled. Warn here to detect early
2347 * when its not.
2348 */
2349 WARN_ON(!irqs_disabled());
2ca76279 2350
f34c73f5
JR
2351 if (WARN_ON(!dev_data->domain))
2352 return;
24100055 2353
2ca76279 2354 domain = dev_data->domain;
71f77580 2355
f1dd0a8b 2356 spin_lock(&domain->lock);
24100055 2357
150952f9 2358 do_detach(dev_data);
7f760ddd 2359
f1dd0a8b 2360 spin_unlock(&domain->lock);
355bf553
JR
2361}
2362
2363/*
2364 * Removes a device from a protection domain (with devtable_lock held)
2365 */
15898bbc 2366static void detach_device(struct device *dev)
355bf553 2367{
52815b75 2368 struct protection_domain *domain;
ea61cddb 2369 struct iommu_dev_data *dev_data;
355bf553
JR
2370 unsigned long flags;
2371
ec9e79ef 2372 dev_data = get_dev_data(dev);
52815b75 2373 domain = dev_data->domain;
ec9e79ef 2374
355bf553
JR
2375 /* lock device table */
2376 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2377 __detach_device(dev_data);
355bf553 2378 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2379
2bf9a0a1
WZ
2380 if (!dev_is_pci(dev))
2381 return;
2382
02ca2021 2383 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
52815b75
JR
2384 pdev_iommuv2_disable(to_pci_dev(dev));
2385 else if (dev_data->ats.enabled)
ea61cddb 2386 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2387
2388 dev_data->ats.enabled = false;
355bf553 2389}
e275a2a0 2390
aafd8ba0 2391static int amd_iommu_add_device(struct device *dev)
e275a2a0 2392{
5abcdba4 2393 struct iommu_dev_data *dev_data;
07ee8694 2394 struct iommu_domain *domain;
e275a2a0 2395 struct amd_iommu *iommu;
7aba6cb9 2396 int ret, devid;
e275a2a0 2397
aafd8ba0 2398 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2399 return 0;
e275a2a0 2400
aafd8ba0 2401 devid = get_device_id(dev);
9ee35e4c 2402 if (devid < 0)
7aba6cb9
WZ
2403 return devid;
2404
aafd8ba0 2405 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2406
aafd8ba0 2407 ret = iommu_init_device(dev);
4d58b8a6
JR
2408 if (ret) {
2409 if (ret != -ENOTSUPP)
2410 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2411 dev_name(dev));
657cbb6b 2412
aafd8ba0 2413 iommu_ignore_device(dev);
5657933d 2414 dev->dma_ops = &nommu_dma_ops;
aafd8ba0
JR
2415 goto out;
2416 }
2417 init_iommu_group(dev);
2c9195e9 2418
07ee8694 2419 dev_data = get_dev_data(dev);
2c9195e9 2420
4d58b8a6 2421 BUG_ON(!dev_data);
657cbb6b 2422
1e6a7b04 2423 if (iommu_pass_through || dev_data->iommu_v2)
07ee8694 2424 iommu_request_dm_for_dev(dev);
ac1534a5 2425
07ee8694
JR
2426 /* Domains are initialized for this device - have a look what we ended up with */
2427 domain = iommu_get_domain_for_dev(dev);
32302324 2428 if (domain->type == IOMMU_DOMAIN_IDENTITY)
07ee8694 2429 dev_data->passthrough = true;
32302324 2430 else
5657933d 2431 dev->dma_ops = &amd_iommu_dma_ops;
e275a2a0 2432
aafd8ba0 2433out:
e275a2a0
JR
2434 iommu_completion_wait(iommu);
2435
e275a2a0
JR
2436 return 0;
2437}
2438
aafd8ba0 2439static void amd_iommu_remove_device(struct device *dev)
8638c491 2440{
aafd8ba0 2441 struct amd_iommu *iommu;
7aba6cb9 2442 int devid;
aafd8ba0
JR
2443
2444 if (!check_device(dev))
2445 return;
2446
2447 devid = get_device_id(dev);
9ee35e4c 2448 if (devid < 0)
7aba6cb9
WZ
2449 return;
2450
aafd8ba0
JR
2451 iommu = amd_iommu_rlookup_table[devid];
2452
2453 iommu_uninit_device(dev);
2454 iommu_completion_wait(iommu);
8638c491
JR
2455}
2456
b097d11a
WZ
2457static struct iommu_group *amd_iommu_device_group(struct device *dev)
2458{
2459 if (dev_is_pci(dev))
2460 return pci_device_group(dev);
2461
2462 return acpihid_device_group(dev);
2463}
2464
431b2a20
JR
2465/*****************************************************************************
2466 *
2467 * The next functions belong to the dma_ops mapping/unmapping code.
2468 *
2469 *****************************************************************************/
2470
2471/*
2472 * In the dma_ops path we only have the struct device. This function
2473 * finds the corresponding IOMMU, the protection domain and the
2474 * requestor id for a given device.
2475 * If the device is not yet associated with a domain this is also done
2476 * in this function.
2477 */
94f6d190 2478static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2479{
94f6d190 2480 struct protection_domain *domain;
b20ac0d4 2481
f99c0f1c 2482 if (!check_device(dev))
94f6d190 2483 return ERR_PTR(-EINVAL);
b20ac0d4 2484
d26592a9 2485 domain = get_dev_data(dev)->domain;
0bb6e243 2486 if (!dma_ops_domain(domain))
94f6d190 2487 return ERR_PTR(-EBUSY);
f91ba190 2488
0bb6e243 2489 return domain;
b20ac0d4
JR
2490}
2491
04bfdd84
JR
2492static void update_device_table(struct protection_domain *domain)
2493{
492667da 2494 struct iommu_dev_data *dev_data;
04bfdd84 2495
3254de6b 2496 list_for_each_entry(dev_data, &domain->dev_list, list) {
ea61cddb 2497 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
3254de6b
JR
2498
2499 if (dev_data->devid == dev_data->alias)
2500 continue;
2501
2502 /* There is an alias, update device table entry for it */
2503 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
2504 }
04bfdd84
JR
2505}
2506
2507static void update_domain(struct protection_domain *domain)
2508{
2509 if (!domain->updated)
2510 return;
2511
2512 update_device_table(domain);
17b124bf
JR
2513
2514 domain_flush_devices(domain);
2515 domain_flush_tlb_pde(domain);
04bfdd84
JR
2516
2517 domain->updated = false;
2518}
2519
f37f7f33
JR
2520static int dir2prot(enum dma_data_direction direction)
2521{
2522 if (direction == DMA_TO_DEVICE)
2523 return IOMMU_PROT_IR;
2524 else if (direction == DMA_FROM_DEVICE)
2525 return IOMMU_PROT_IW;
2526 else if (direction == DMA_BIDIRECTIONAL)
2527 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2528 else
2529 return 0;
2530}
431b2a20
JR
2531/*
2532 * This function contains common code for mapping of a physically
24f81160
JR
2533 * contiguous memory region into DMA address space. It is used by all
2534 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2535 * Must be called with the domain lock held.
2536 */
cb76c322 2537static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2538 struct dma_ops_domain *dma_dom,
2539 phys_addr_t paddr,
2540 size_t size,
f37f7f33 2541 enum dma_data_direction direction,
832a90c3 2542 u64 dma_mask)
cb76c322
JR
2543{
2544 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2545 dma_addr_t address, start, ret;
cb76c322 2546 unsigned int pages;
518d9b45 2547 int prot = 0;
cb76c322
JR
2548 int i;
2549
e3c449f5 2550 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2551 paddr &= PAGE_MASK;
2552
256e4621 2553 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
a869572c 2554 if (address == AMD_IOMMU_MAPPING_ERROR)
266a3bd2 2555 goto out;
cb76c322 2556
f37f7f33 2557 prot = dir2prot(direction);
518d9b45 2558
cb76c322
JR
2559 start = address;
2560 for (i = 0; i < pages; ++i) {
518d9b45
JR
2561 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2562 PAGE_SIZE, prot, GFP_ATOMIC);
2563 if (ret)
53812c11
JR
2564 goto out_unmap;
2565
cb76c322
JR
2566 paddr += PAGE_SIZE;
2567 start += PAGE_SIZE;
2568 }
2569 address += offset;
2570
ab7032bb 2571 if (unlikely(amd_iommu_np_cache)) {
17b124bf 2572 domain_flush_pages(&dma_dom->domain, address, size);
ab7032bb
JR
2573 domain_flush_complete(&dma_dom->domain);
2574 }
270cab24 2575
cb76c322
JR
2576out:
2577 return address;
53812c11
JR
2578
2579out_unmap:
2580
2581 for (--i; i >= 0; --i) {
2582 start -= PAGE_SIZE;
518d9b45 2583 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
53812c11
JR
2584 }
2585
256e4621
JR
2586 domain_flush_tlb(&dma_dom->domain);
2587 domain_flush_complete(&dma_dom->domain);
2588
2589 dma_ops_free_iova(dma_dom, address, pages);
53812c11 2590
a869572c 2591 return AMD_IOMMU_MAPPING_ERROR;
cb76c322
JR
2592}
2593
431b2a20
JR
2594/*
2595 * Does the reverse of the __map_single function. Must be called with
2596 * the domain lock held too
2597 */
cd8c82e8 2598static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2599 dma_addr_t dma_addr,
2600 size_t size,
2601 int dir)
2602{
04e0463e 2603 dma_addr_t flush_addr;
cb76c322
JR
2604 dma_addr_t i, start;
2605 unsigned int pages;
2606
04e0463e 2607 flush_addr = dma_addr;
e3c449f5 2608 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2609 dma_addr &= PAGE_MASK;
2610 start = dma_addr;
2611
2612 for (i = 0; i < pages; ++i) {
518d9b45 2613 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
cb76c322
JR
2614 start += PAGE_SIZE;
2615 }
2616
b1516a14
JR
2617 if (amd_iommu_unmap_flush) {
2618 dma_ops_free_iova(dma_dom, dma_addr, pages);
2619 domain_flush_tlb(&dma_dom->domain);
2620 domain_flush_complete(&dma_dom->domain);
2621 } else {
2622 queue_add(dma_dom, dma_addr, pages);
2623 }
cb76c322
JR
2624}
2625
431b2a20
JR
2626/*
2627 * The exported map_single function for dma_ops.
2628 */
51491367
FT
2629static dma_addr_t map_page(struct device *dev, struct page *page,
2630 unsigned long offset, size_t size,
2631 enum dma_data_direction dir,
00085f1e 2632 unsigned long attrs)
4da70b9e 2633{
92d420ec 2634 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2635 struct protection_domain *domain;
b3311b06 2636 struct dma_ops_domain *dma_dom;
832a90c3 2637 u64 dma_mask;
4da70b9e 2638
94f6d190
JR
2639 domain = get_domain(dev);
2640 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2641 return (dma_addr_t)paddr;
94f6d190 2642 else if (IS_ERR(domain))
a869572c 2643 return AMD_IOMMU_MAPPING_ERROR;
4da70b9e 2644
f99c0f1c 2645 dma_mask = *dev->dma_mask;
b3311b06 2646 dma_dom = to_dma_ops_domain(domain);
f99c0f1c 2647
b3311b06 2648 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
4da70b9e
JR
2649}
2650
431b2a20
JR
2651/*
2652 * The exported unmap_single function for dma_ops.
2653 */
51491367 2654static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
00085f1e 2655 enum dma_data_direction dir, unsigned long attrs)
4da70b9e 2656{
4da70b9e 2657 struct protection_domain *domain;
b3311b06 2658 struct dma_ops_domain *dma_dom;
4da70b9e 2659
94f6d190
JR
2660 domain = get_domain(dev);
2661 if (IS_ERR(domain))
5b28df6f
JR
2662 return;
2663
b3311b06
JR
2664 dma_dom = to_dma_ops_domain(domain);
2665
2666 __unmap_single(dma_dom, dma_addr, size, dir);
4da70b9e
JR
2667}
2668
80187fd3
JR
2669static int sg_num_pages(struct device *dev,
2670 struct scatterlist *sglist,
2671 int nelems)
2672{
2673 unsigned long mask, boundary_size;
2674 struct scatterlist *s;
2675 int i, npages = 0;
2676
2677 mask = dma_get_seg_boundary(dev);
2678 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2679 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2680
2681 for_each_sg(sglist, s, nelems, i) {
2682 int p, n;
2683
2684 s->dma_address = npages << PAGE_SHIFT;
2685 p = npages % boundary_size;
2686 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2687 if (p + n > boundary_size)
2688 npages += boundary_size - p;
2689 npages += n;
2690 }
2691
2692 return npages;
2693}
2694
431b2a20
JR
2695/*
2696 * The exported map_sg function for dma_ops (handles scatter-gather
2697 * lists).
2698 */
65b050ad 2699static int map_sg(struct device *dev, struct scatterlist *sglist,
80187fd3 2700 int nelems, enum dma_data_direction direction,
00085f1e 2701 unsigned long attrs)
65b050ad 2702{
80187fd3 2703 int mapped_pages = 0, npages = 0, prot = 0, i;
65b050ad 2704 struct protection_domain *domain;
80187fd3 2705 struct dma_ops_domain *dma_dom;
65b050ad 2706 struct scatterlist *s;
80187fd3 2707 unsigned long address;
832a90c3 2708 u64 dma_mask;
65b050ad 2709
94f6d190 2710 domain = get_domain(dev);
a0e191b2 2711 if (IS_ERR(domain))
94f6d190 2712 return 0;
dbcc112e 2713
b3311b06 2714 dma_dom = to_dma_ops_domain(domain);
832a90c3 2715 dma_mask = *dev->dma_mask;
65b050ad 2716
80187fd3
JR
2717 npages = sg_num_pages(dev, sglist, nelems);
2718
2719 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
a869572c 2720 if (address == AMD_IOMMU_MAPPING_ERROR)
80187fd3
JR
2721 goto out_err;
2722
2723 prot = dir2prot(direction);
2724
2725 /* Map all sg entries */
65b050ad 2726 for_each_sg(sglist, s, nelems, i) {
80187fd3
JR
2727 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2728
2729 for (j = 0; j < pages; ++j) {
2730 unsigned long bus_addr, phys_addr;
2731 int ret;
65b050ad 2732
80187fd3
JR
2733 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2734 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2735 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2736 if (ret)
2737 goto out_unmap;
65b050ad 2738
80187fd3
JR
2739 mapped_pages += 1;
2740 }
65b050ad
JR
2741 }
2742
80187fd3
JR
2743 /* Everything is mapped - write the right values into s->dma_address */
2744 for_each_sg(sglist, s, nelems, i) {
2745 s->dma_address += address + s->offset;
2746 s->dma_length = s->length;
2747 }
2748
2749 return nelems;
2750
2751out_unmap:
2752 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2753 dev_name(dev), npages);
2754
2755 for_each_sg(sglist, s, nelems, i) {
2756 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2757
2758 for (j = 0; j < pages; ++j) {
2759 unsigned long bus_addr;
92d420ec 2760
80187fd3
JR
2761 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2762 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2763
2764 if (--mapped_pages)
2765 goto out_free_iova;
2766 }
65b050ad
JR
2767 }
2768
80187fd3
JR
2769out_free_iova:
2770 free_iova_fast(&dma_dom->iovad, address, npages);
2771
2772out_err:
92d420ec 2773 return 0;
65b050ad
JR
2774}
2775
431b2a20
JR
2776/*
2777 * The exported map_sg function for dma_ops (handles scatter-gather
2778 * lists).
2779 */
65b050ad 2780static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e 2781 int nelems, enum dma_data_direction dir,
00085f1e 2782 unsigned long attrs)
65b050ad 2783{
65b050ad 2784 struct protection_domain *domain;
b3311b06 2785 struct dma_ops_domain *dma_dom;
80187fd3
JR
2786 unsigned long startaddr;
2787 int npages = 2;
65b050ad 2788
94f6d190
JR
2789 domain = get_domain(dev);
2790 if (IS_ERR(domain))
5b28df6f
JR
2791 return;
2792
80187fd3 2793 startaddr = sg_dma_address(sglist) & PAGE_MASK;
b3311b06 2794 dma_dom = to_dma_ops_domain(domain);
80187fd3
JR
2795 npages = sg_num_pages(dev, sglist, nelems);
2796
b3311b06 2797 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
65b050ad
JR
2798}
2799
431b2a20
JR
2800/*
2801 * The exported alloc_coherent function for dma_ops.
2802 */
5d8b53cf 2803static void *alloc_coherent(struct device *dev, size_t size,
baa676fc 2804 dma_addr_t *dma_addr, gfp_t flag,
00085f1e 2805 unsigned long attrs)
5d8b53cf 2806{
832a90c3 2807 u64 dma_mask = dev->coherent_dma_mask;
3b839a57 2808 struct protection_domain *domain;
b3311b06 2809 struct dma_ops_domain *dma_dom;
3b839a57 2810 struct page *page;
5d8b53cf 2811
94f6d190
JR
2812 domain = get_domain(dev);
2813 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2814 page = alloc_pages(flag, get_order(size));
2815 *dma_addr = page_to_phys(page);
2816 return page_address(page);
94f6d190
JR
2817 } else if (IS_ERR(domain))
2818 return NULL;
5d8b53cf 2819
b3311b06 2820 dma_dom = to_dma_ops_domain(domain);
3b839a57 2821 size = PAGE_ALIGN(size);
f99c0f1c
JR
2822 dma_mask = dev->coherent_dma_mask;
2823 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2824 flag |= __GFP_ZERO;
5d8b53cf 2825
3b839a57
JR
2826 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2827 if (!page) {
d0164adc 2828 if (!gfpflags_allow_blocking(flag))
3b839a57 2829 return NULL;
5d8b53cf 2830
3b839a57 2831 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
712c604d 2832 get_order(size), flag);
3b839a57
JR
2833 if (!page)
2834 return NULL;
2835 }
5d8b53cf 2836
832a90c3
JR
2837 if (!dma_mask)
2838 dma_mask = *dev->dma_mask;
2839
b3311b06 2840 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
bda350db 2841 size, DMA_BIDIRECTIONAL, dma_mask);
5d8b53cf 2842
a869572c 2843 if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
5b28df6f 2844 goto out_free;
5d8b53cf 2845
3b839a57 2846 return page_address(page);
5b28df6f
JR
2847
2848out_free:
2849
3b839a57
JR
2850 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2851 __free_pages(page, get_order(size));
5b28df6f
JR
2852
2853 return NULL;
5d8b53cf
JR
2854}
2855
431b2a20
JR
2856/*
2857 * The exported free_coherent function for dma_ops.
431b2a20 2858 */
5d8b53cf 2859static void free_coherent(struct device *dev, size_t size,
baa676fc 2860 void *virt_addr, dma_addr_t dma_addr,
00085f1e 2861 unsigned long attrs)
5d8b53cf 2862{
5d8b53cf 2863 struct protection_domain *domain;
b3311b06 2864 struct dma_ops_domain *dma_dom;
3b839a57 2865 struct page *page;
5d8b53cf 2866
3b839a57
JR
2867 page = virt_to_page(virt_addr);
2868 size = PAGE_ALIGN(size);
2869
94f6d190
JR
2870 domain = get_domain(dev);
2871 if (IS_ERR(domain))
5b28df6f
JR
2872 goto free_mem;
2873
b3311b06
JR
2874 dma_dom = to_dma_ops_domain(domain);
2875
2876 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2877
5d8b53cf 2878free_mem:
3b839a57
JR
2879 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2880 __free_pages(page, get_order(size));
5d8b53cf
JR
2881}
2882
b39ba6ad
JR
2883/*
2884 * This function is called by the DMA layer to find out if we can handle a
2885 * particular device. It is part of the dma_ops.
2886 */
2887static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2888{
5860acc1
CH
2889 if (!x86_dma_supported(dev, mask))
2890 return 0;
420aef8a 2891 return check_device(dev);
b39ba6ad
JR
2892}
2893
a869572c
CH
2894static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2895{
2896 return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2897}
2898
5299709d 2899static const struct dma_map_ops amd_iommu_dma_ops = {
a639a8ee
JR
2900 .alloc = alloc_coherent,
2901 .free = free_coherent,
2902 .map_page = map_page,
2903 .unmap_page = unmap_page,
2904 .map_sg = map_sg,
2905 .unmap_sg = unmap_sg,
2906 .dma_supported = amd_iommu_dma_supported,
a869572c 2907 .mapping_error = amd_iommu_mapping_error,
6631ee9d
JR
2908};
2909
81cd07b9
JR
2910static int init_reserved_iova_ranges(void)
2911{
2912 struct pci_dev *pdev = NULL;
2913 struct iova *val;
2914
2915 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
2916 IOVA_START_PFN, DMA_32BIT_PFN);
2917
2918 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2919 &reserved_rbtree_key);
2920
2921 /* MSI memory range */
2922 val = reserve_iova(&reserved_iova_ranges,
2923 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2924 if (!val) {
2925 pr_err("Reserving MSI range failed\n");
2926 return -ENOMEM;
2927 }
2928
2929 /* HT memory range */
2930 val = reserve_iova(&reserved_iova_ranges,
2931 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2932 if (!val) {
2933 pr_err("Reserving HT range failed\n");
2934 return -ENOMEM;
2935 }
2936
2937 /*
2938 * Memory used for PCI resources
2939 * FIXME: Check whether we can reserve the PCI-hole completly
2940 */
2941 for_each_pci_dev(pdev) {
2942 int i;
2943
2944 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2945 struct resource *r = &pdev->resource[i];
2946
2947 if (!(r->flags & IORESOURCE_MEM))
2948 continue;
2949
2950 val = reserve_iova(&reserved_iova_ranges,
2951 IOVA_PFN(r->start),
2952 IOVA_PFN(r->end));
2953 if (!val) {
2954 pr_err("Reserve pci-resource range failed\n");
2955 return -ENOMEM;
2956 }
2957 }
2958 }
2959
2960 return 0;
2961}
2962
3a18404c 2963int __init amd_iommu_init_api(void)
27c2127a 2964{
460c26d0 2965 int ret, err = 0;
307d5851
JR
2966
2967 ret = iova_cache_get();
2968 if (ret)
2969 return ret;
9a4d3bf5 2970
81cd07b9
JR
2971 ret = init_reserved_iova_ranges();
2972 if (ret)
2973 return ret;
2974
9a4d3bf5
WZ
2975 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2976 if (err)
2977 return err;
2978#ifdef CONFIG_ARM_AMBA
2979 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2980 if (err)
2981 return err;
2982#endif
0076cd3d
WZ
2983 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2984 if (err)
2985 return err;
c5b5da9c 2986
460c26d0 2987 return 0;
f5325094
JR
2988}
2989
6631ee9d
JR
2990int __init amd_iommu_init_dma_ops(void)
2991{
32302324 2992 swiotlb = iommu_pass_through ? 1 : 0;
6631ee9d 2993 iommu_detected = 1;
6631ee9d 2994
52717828
JR
2995 /*
2996 * In case we don't initialize SWIOTLB (actually the common case
2997 * when AMD IOMMU is enabled), make sure there are global
2998 * dma_ops set as a fall-back for devices not handled by this
2999 * driver (for example non-PCI devices).
3000 */
3001 if (!swiotlb)
3002 dma_ops = &nommu_dma_ops;
3003
62410eeb
JR
3004 if (amd_iommu_unmap_flush)
3005 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3006 else
3007 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3008
6631ee9d 3009 return 0;
c5b5da9c 3010
6631ee9d 3011}
6d98cd80
JR
3012
3013/*****************************************************************************
3014 *
3015 * The following functions belong to the exported interface of AMD IOMMU
3016 *
3017 * This interface allows access to lower level functions of the IOMMU
3018 * like protection domain handling and assignement of devices to domains
3019 * which is not possible with the dma_ops interface.
3020 *
3021 *****************************************************************************/
3022
6d98cd80
JR
3023static void cleanup_domain(struct protection_domain *domain)
3024{
9b29d3c6 3025 struct iommu_dev_data *entry;
6d98cd80 3026 unsigned long flags;
6d98cd80
JR
3027
3028 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3029
9b29d3c6
JR
3030 while (!list_empty(&domain->dev_list)) {
3031 entry = list_first_entry(&domain->dev_list,
3032 struct iommu_dev_data, list);
3033 __detach_device(entry);
492667da 3034 }
6d98cd80
JR
3035
3036 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3037}
3038
2650815f
JR
3039static void protection_domain_free(struct protection_domain *domain)
3040{
3041 if (!domain)
3042 return;
3043
aeb26f55
JR
3044 del_domain_from_list(domain);
3045
2650815f
JR
3046 if (domain->id)
3047 domain_id_free(domain->id);
3048
3049 kfree(domain);
3050}
3051
7a5a566e
JR
3052static int protection_domain_init(struct protection_domain *domain)
3053{
3054 spin_lock_init(&domain->lock);
3055 mutex_init(&domain->api_lock);
3056 domain->id = domain_id_alloc();
3057 if (!domain->id)
3058 return -ENOMEM;
3059 INIT_LIST_HEAD(&domain->dev_list);
3060
3061 return 0;
3062}
3063
2650815f 3064static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3065{
3066 struct protection_domain *domain;
3067
3068 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3069 if (!domain)
2650815f 3070 return NULL;
c156e347 3071
7a5a566e 3072 if (protection_domain_init(domain))
2650815f
JR
3073 goto out_err;
3074
aeb26f55
JR
3075 add_domain_to_list(domain);
3076
2650815f
JR
3077 return domain;
3078
3079out_err:
3080 kfree(domain);
3081
3082 return NULL;
3083}
3084
3f4b87b9 3085static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 3086{
3f4b87b9 3087 struct protection_domain *pdomain;
0bb6e243 3088 struct dma_ops_domain *dma_domain;
2650815f 3089
0bb6e243
JR
3090 switch (type) {
3091 case IOMMU_DOMAIN_UNMANAGED:
3092 pdomain = protection_domain_alloc();
3093 if (!pdomain)
3094 return NULL;
c156e347 3095
0bb6e243
JR
3096 pdomain->mode = PAGE_MODE_3_LEVEL;
3097 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3098 if (!pdomain->pt_root) {
3099 protection_domain_free(pdomain);
3100 return NULL;
3101 }
c156e347 3102
0bb6e243
JR
3103 pdomain->domain.geometry.aperture_start = 0;
3104 pdomain->domain.geometry.aperture_end = ~0ULL;
3105 pdomain->domain.geometry.force_aperture = true;
0ff64f80 3106
0bb6e243
JR
3107 break;
3108 case IOMMU_DOMAIN_DMA:
3109 dma_domain = dma_ops_domain_alloc();
3110 if (!dma_domain) {
3111 pr_err("AMD-Vi: Failed to allocate\n");
3112 return NULL;
3113 }
3114 pdomain = &dma_domain->domain;
3115 break;
07f643a3
JR
3116 case IOMMU_DOMAIN_IDENTITY:
3117 pdomain = protection_domain_alloc();
3118 if (!pdomain)
3119 return NULL;
c156e347 3120
07f643a3
JR
3121 pdomain->mode = PAGE_MODE_NONE;
3122 break;
0bb6e243
JR
3123 default:
3124 return NULL;
3125 }
c156e347 3126
3f4b87b9 3127 return &pdomain->domain;
c156e347
JR
3128}
3129
3f4b87b9 3130static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3131{
3f4b87b9 3132 struct protection_domain *domain;
cda7005b 3133 struct dma_ops_domain *dma_dom;
98383fc3 3134
3f4b87b9
JR
3135 domain = to_pdomain(dom);
3136
98383fc3
JR
3137 if (domain->dev_cnt > 0)
3138 cleanup_domain(domain);
3139
3140 BUG_ON(domain->dev_cnt != 0);
3141
cda7005b
JR
3142 if (!dom)
3143 return;
98383fc3 3144
cda7005b
JR
3145 switch (dom->type) {
3146 case IOMMU_DOMAIN_DMA:
281e8ccb 3147 /* Now release the domain */
b3311b06 3148 dma_dom = to_dma_ops_domain(domain);
cda7005b
JR
3149 dma_ops_domain_free(dma_dom);
3150 break;
3151 default:
3152 if (domain->mode != PAGE_MODE_NONE)
3153 free_pagetable(domain);
52815b75 3154
cda7005b
JR
3155 if (domain->flags & PD_IOMMUV2_MASK)
3156 free_gcr3_table(domain);
3157
3158 protection_domain_free(domain);
3159 break;
3160 }
98383fc3
JR
3161}
3162
684f2888
JR
3163static void amd_iommu_detach_device(struct iommu_domain *dom,
3164 struct device *dev)
3165{
657cbb6b 3166 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3167 struct amd_iommu *iommu;
7aba6cb9 3168 int devid;
684f2888 3169
98fc5a69 3170 if (!check_device(dev))
684f2888
JR
3171 return;
3172
98fc5a69 3173 devid = get_device_id(dev);
9ee35e4c 3174 if (devid < 0)
7aba6cb9 3175 return;
684f2888 3176
657cbb6b 3177 if (dev_data->domain != NULL)
15898bbc 3178 detach_device(dev);
684f2888
JR
3179
3180 iommu = amd_iommu_rlookup_table[devid];
3181 if (!iommu)
3182 return;
3183
d98de49a
SS
3184#ifdef CONFIG_IRQ_REMAP
3185 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3186 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3187 dev_data->use_vapic = 0;
3188#endif
3189
684f2888
JR
3190 iommu_completion_wait(iommu);
3191}
3192
01106066
JR
3193static int amd_iommu_attach_device(struct iommu_domain *dom,
3194 struct device *dev)
3195{
3f4b87b9 3196 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3197 struct iommu_dev_data *dev_data;
01106066 3198 struct amd_iommu *iommu;
15898bbc 3199 int ret;
01106066 3200
98fc5a69 3201 if (!check_device(dev))
01106066
JR
3202 return -EINVAL;
3203
657cbb6b
JR
3204 dev_data = dev->archdata.iommu;
3205
f62dda66 3206 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3207 if (!iommu)
3208 return -EINVAL;
3209
657cbb6b 3210 if (dev_data->domain)
15898bbc 3211 detach_device(dev);
01106066 3212
15898bbc 3213 ret = attach_device(dev, domain);
01106066 3214
d98de49a
SS
3215#ifdef CONFIG_IRQ_REMAP
3216 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3217 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3218 dev_data->use_vapic = 1;
3219 else
3220 dev_data->use_vapic = 0;
3221 }
3222#endif
3223
01106066
JR
3224 iommu_completion_wait(iommu);
3225
15898bbc 3226 return ret;
01106066
JR
3227}
3228
468e2366 3229static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3230 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3231{
3f4b87b9 3232 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3233 int prot = 0;
3234 int ret;
3235
132bd68f
JR
3236 if (domain->mode == PAGE_MODE_NONE)
3237 return -EINVAL;
3238
c6229ca6
JR
3239 if (iommu_prot & IOMMU_READ)
3240 prot |= IOMMU_PROT_IR;
3241 if (iommu_prot & IOMMU_WRITE)
3242 prot |= IOMMU_PROT_IW;
3243
5d214fe6 3244 mutex_lock(&domain->api_lock);
b911b89b 3245 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
5d214fe6
JR
3246 mutex_unlock(&domain->api_lock);
3247
795e74f7 3248 return ret;
c6229ca6
JR
3249}
3250
5009065d
OBC
3251static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3252 size_t page_size)
eb74ff6c 3253{
3f4b87b9 3254 struct protection_domain *domain = to_pdomain(dom);
5009065d 3255 size_t unmap_size;
eb74ff6c 3256
132bd68f
JR
3257 if (domain->mode == PAGE_MODE_NONE)
3258 return -EINVAL;
3259
5d214fe6 3260 mutex_lock(&domain->api_lock);
468e2366 3261 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3262 mutex_unlock(&domain->api_lock);
eb74ff6c 3263
17b124bf 3264 domain_flush_tlb_pde(domain);
5d214fe6 3265
5009065d 3266 return unmap_size;
eb74ff6c
JR
3267}
3268
645c4c8d 3269static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3270 dma_addr_t iova)
645c4c8d 3271{
3f4b87b9 3272 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3273 unsigned long offset_mask, pte_pgsize;
f03152bb 3274 u64 *pte, __pte;
645c4c8d 3275
132bd68f
JR
3276 if (domain->mode == PAGE_MODE_NONE)
3277 return iova;
3278
3039ca1b 3279 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3280
a6d41a40 3281 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3282 return 0;
3283
b24b1b63
JR
3284 offset_mask = pte_pgsize - 1;
3285 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3286
b24b1b63 3287 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3288}
3289
ab636481 3290static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3291{
80a506b8
JR
3292 switch (cap) {
3293 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3294 return true;
bdddadcb 3295 case IOMMU_CAP_INTR_REMAP:
ab636481 3296 return (irq_remapping_enabled == 1);
cfdeec22
WD
3297 case IOMMU_CAP_NOEXEC:
3298 return false;
80a506b8
JR
3299 }
3300
ab636481 3301 return false;
dbb9fd86
SY
3302}
3303
e5b5234a
EA
3304static void amd_iommu_get_resv_regions(struct device *dev,
3305 struct list_head *head)
35cf248f 3306{
4397f32c 3307 struct iommu_resv_region *region;
35cf248f 3308 struct unity_map_entry *entry;
7aba6cb9 3309 int devid;
35cf248f
JR
3310
3311 devid = get_device_id(dev);
9ee35e4c 3312 if (devid < 0)
7aba6cb9 3313 return;
35cf248f
JR
3314
3315 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
4397f32c
EA
3316 size_t length;
3317 int prot = 0;
35cf248f
JR
3318
3319 if (devid < entry->devid_start || devid > entry->devid_end)
3320 continue;
3321
4397f32c
EA
3322 length = entry->address_end - entry->address_start;
3323 if (entry->prot & IOMMU_PROT_IR)
3324 prot |= IOMMU_READ;
3325 if (entry->prot & IOMMU_PROT_IW)
3326 prot |= IOMMU_WRITE;
3327
3328 region = iommu_alloc_resv_region(entry->address_start,
3329 length, prot,
3330 IOMMU_RESV_DIRECT);
35cf248f
JR
3331 if (!region) {
3332 pr_err("Out of memory allocating dm-regions for %s\n",
3333 dev_name(dev));
3334 return;
3335 }
35cf248f
JR
3336 list_add_tail(&region->list, head);
3337 }
4397f32c
EA
3338
3339 region = iommu_alloc_resv_region(MSI_RANGE_START,
3340 MSI_RANGE_END - MSI_RANGE_START + 1,
9d3a4de4 3341 0, IOMMU_RESV_MSI);
4397f32c
EA
3342 if (!region)
3343 return;
3344 list_add_tail(&region->list, head);
3345
3346 region = iommu_alloc_resv_region(HT_RANGE_START,
3347 HT_RANGE_END - HT_RANGE_START + 1,
3348 0, IOMMU_RESV_RESERVED);
3349 if (!region)
3350 return;
3351 list_add_tail(&region->list, head);
35cf248f
JR
3352}
3353
e5b5234a 3354static void amd_iommu_put_resv_regions(struct device *dev,
35cf248f
JR
3355 struct list_head *head)
3356{
e5b5234a 3357 struct iommu_resv_region *entry, *next;
35cf248f
JR
3358
3359 list_for_each_entry_safe(entry, next, head, list)
3360 kfree(entry);
3361}
3362
e5b5234a 3363static void amd_iommu_apply_resv_region(struct device *dev,
8d54d6c8 3364 struct iommu_domain *domain,
e5b5234a 3365 struct iommu_resv_region *region)
8d54d6c8 3366{
b3311b06 3367 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
8d54d6c8
JR
3368 unsigned long start, end;
3369
3370 start = IOVA_PFN(region->start);
3371 end = IOVA_PFN(region->start + region->length);
3372
3373 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3374}
3375
b0119e87 3376const struct iommu_ops amd_iommu_ops = {
ab636481 3377 .capable = amd_iommu_capable,
3f4b87b9
JR
3378 .domain_alloc = amd_iommu_domain_alloc,
3379 .domain_free = amd_iommu_domain_free,
26961efe
JR
3380 .attach_dev = amd_iommu_attach_device,
3381 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3382 .map = amd_iommu_map,
3383 .unmap = amd_iommu_unmap,
315786eb 3384 .map_sg = default_iommu_map_sg,
26961efe 3385 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3386 .add_device = amd_iommu_add_device,
3387 .remove_device = amd_iommu_remove_device,
b097d11a 3388 .device_group = amd_iommu_device_group,
e5b5234a
EA
3389 .get_resv_regions = amd_iommu_get_resv_regions,
3390 .put_resv_regions = amd_iommu_put_resv_regions,
3391 .apply_resv_region = amd_iommu_apply_resv_region,
aa3de9c0 3392 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3393};
3394
0feae533
JR
3395/*****************************************************************************
3396 *
3397 * The next functions do a basic initialization of IOMMU for pass through
3398 * mode
3399 *
3400 * In passthrough mode the IOMMU is initialized and enabled but not used for
3401 * DMA-API translation.
3402 *
3403 *****************************************************************************/
3404
72e1dcc4
JR
3405/* IOMMUv2 specific functions */
3406int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3407{
3408 return atomic_notifier_chain_register(&ppr_notifier, nb);
3409}
3410EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3411
3412int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3413{
3414 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3415}
3416EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3417
3418void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3419{
3f4b87b9 3420 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3421 unsigned long flags;
3422
3423 spin_lock_irqsave(&domain->lock, flags);
3424
3425 /* Update data structure */
3426 domain->mode = PAGE_MODE_NONE;
3427 domain->updated = true;
3428
3429 /* Make changes visible to IOMMUs */
3430 update_domain(domain);
3431
3432 /* Page-table is not visible to IOMMU anymore, so free it */
3433 free_pagetable(domain);
3434
3435 spin_unlock_irqrestore(&domain->lock, flags);
3436}
3437EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3438
3439int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3440{
3f4b87b9 3441 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3442 unsigned long flags;
3443 int levels, ret;
3444
3445 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3446 return -EINVAL;
3447
3448 /* Number of GCR3 table levels required */
3449 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3450 levels += 1;
3451
3452 if (levels > amd_iommu_max_glx_val)
3453 return -EINVAL;
3454
3455 spin_lock_irqsave(&domain->lock, flags);
3456
3457 /*
3458 * Save us all sanity checks whether devices already in the
3459 * domain support IOMMUv2. Just force that the domain has no
3460 * devices attached when it is switched into IOMMUv2 mode.
3461 */
3462 ret = -EBUSY;
3463 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3464 goto out;
3465
3466 ret = -ENOMEM;
3467 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3468 if (domain->gcr3_tbl == NULL)
3469 goto out;
3470
3471 domain->glx = levels;
3472 domain->flags |= PD_IOMMUV2_MASK;
3473 domain->updated = true;
3474
3475 update_domain(domain);
3476
3477 ret = 0;
3478
3479out:
3480 spin_unlock_irqrestore(&domain->lock, flags);
3481
3482 return ret;
3483}
3484EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3485
3486static int __flush_pasid(struct protection_domain *domain, int pasid,
3487 u64 address, bool size)
3488{
3489 struct iommu_dev_data *dev_data;
3490 struct iommu_cmd cmd;
3491 int i, ret;
3492
3493 if (!(domain->flags & PD_IOMMUV2_MASK))
3494 return -EINVAL;
3495
3496 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3497
3498 /*
3499 * IOMMU TLB needs to be flushed before Device TLB to
3500 * prevent device TLB refill from IOMMU TLB
3501 */
6b9376e3 3502 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
22e266c7
JR
3503 if (domain->dev_iommu[i] == 0)
3504 continue;
3505
3506 ret = iommu_queue_command(amd_iommus[i], &cmd);
3507 if (ret != 0)
3508 goto out;
3509 }
3510
3511 /* Wait until IOMMU TLB flushes are complete */
3512 domain_flush_complete(domain);
3513
3514 /* Now flush device TLBs */
3515 list_for_each_entry(dev_data, &domain->dev_list, list) {
3516 struct amd_iommu *iommu;
3517 int qdep;
3518
1c1cc454
JR
3519 /*
3520 There might be non-IOMMUv2 capable devices in an IOMMUv2
3521 * domain.
3522 */
3523 if (!dev_data->ats.enabled)
3524 continue;
22e266c7
JR
3525
3526 qdep = dev_data->ats.qdep;
3527 iommu = amd_iommu_rlookup_table[dev_data->devid];
3528
3529 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3530 qdep, address, size);
3531
3532 ret = iommu_queue_command(iommu, &cmd);
3533 if (ret != 0)
3534 goto out;
3535 }
3536
3537 /* Wait until all device TLBs are flushed */
3538 domain_flush_complete(domain);
3539
3540 ret = 0;
3541
3542out:
3543
3544 return ret;
3545}
3546
3547static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3548 u64 address)
3549{
3550 return __flush_pasid(domain, pasid, address, false);
3551}
3552
3553int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3554 u64 address)
3555{
3f4b87b9 3556 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3557 unsigned long flags;
3558 int ret;
3559
3560 spin_lock_irqsave(&domain->lock, flags);
3561 ret = __amd_iommu_flush_page(domain, pasid, address);
3562 spin_unlock_irqrestore(&domain->lock, flags);
3563
3564 return ret;
3565}
3566EXPORT_SYMBOL(amd_iommu_flush_page);
3567
3568static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3569{
3570 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3571 true);
3572}
3573
3574int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3575{
3f4b87b9 3576 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3577 unsigned long flags;
3578 int ret;
3579
3580 spin_lock_irqsave(&domain->lock, flags);
3581 ret = __amd_iommu_flush_tlb(domain, pasid);
3582 spin_unlock_irqrestore(&domain->lock, flags);
3583
3584 return ret;
3585}
3586EXPORT_SYMBOL(amd_iommu_flush_tlb);
3587
b16137b1
JR
3588static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3589{
3590 int index;
3591 u64 *pte;
3592
3593 while (true) {
3594
3595 index = (pasid >> (9 * level)) & 0x1ff;
3596 pte = &root[index];
3597
3598 if (level == 0)
3599 break;
3600
3601 if (!(*pte & GCR3_VALID)) {
3602 if (!alloc)
3603 return NULL;
3604
3605 root = (void *)get_zeroed_page(GFP_ATOMIC);
3606 if (root == NULL)
3607 return NULL;
3608
3609 *pte = __pa(root) | GCR3_VALID;
3610 }
3611
3612 root = __va(*pte & PAGE_MASK);
3613
3614 level -= 1;
3615 }
3616
3617 return pte;
3618}
3619
3620static int __set_gcr3(struct protection_domain *domain, int pasid,
3621 unsigned long cr3)
3622{
3623 u64 *pte;
3624
3625 if (domain->mode != PAGE_MODE_NONE)
3626 return -EINVAL;
3627
3628 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3629 if (pte == NULL)
3630 return -ENOMEM;
3631
3632 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3633
3634 return __amd_iommu_flush_tlb(domain, pasid);
3635}
3636
3637static int __clear_gcr3(struct protection_domain *domain, int pasid)
3638{
3639 u64 *pte;
3640
3641 if (domain->mode != PAGE_MODE_NONE)
3642 return -EINVAL;
3643
3644 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3645 if (pte == NULL)
3646 return 0;
3647
3648 *pte = 0;
3649
3650 return __amd_iommu_flush_tlb(domain, pasid);
3651}
3652
3653int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3654 unsigned long cr3)
3655{
3f4b87b9 3656 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3657 unsigned long flags;
3658 int ret;
3659
3660 spin_lock_irqsave(&domain->lock, flags);
3661 ret = __set_gcr3(domain, pasid, cr3);
3662 spin_unlock_irqrestore(&domain->lock, flags);
3663
3664 return ret;
3665}
3666EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3667
3668int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3669{
3f4b87b9 3670 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3671 unsigned long flags;
3672 int ret;
3673
3674 spin_lock_irqsave(&domain->lock, flags);
3675 ret = __clear_gcr3(domain, pasid);
3676 spin_unlock_irqrestore(&domain->lock, flags);
3677
3678 return ret;
3679}
3680EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3681
3682int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3683 int status, int tag)
3684{
3685 struct iommu_dev_data *dev_data;
3686 struct amd_iommu *iommu;
3687 struct iommu_cmd cmd;
3688
3689 dev_data = get_dev_data(&pdev->dev);
3690 iommu = amd_iommu_rlookup_table[dev_data->devid];
3691
3692 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3693 tag, dev_data->pri_tlp);
3694
3695 return iommu_queue_command(iommu, &cmd);
3696}
3697EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3698
3699struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3700{
3f4b87b9 3701 struct protection_domain *pdomain;
f3572db8 3702
3f4b87b9
JR
3703 pdomain = get_domain(&pdev->dev);
3704 if (IS_ERR(pdomain))
f3572db8
JR
3705 return NULL;
3706
3707 /* Only return IOMMUv2 domains */
3f4b87b9 3708 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3709 return NULL;
3710
3f4b87b9 3711 return &pdomain->domain;
f3572db8
JR
3712}
3713EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3714
3715void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3716{
3717 struct iommu_dev_data *dev_data;
3718
3719 if (!amd_iommu_v2_supported())
3720 return;
3721
3722 dev_data = get_dev_data(&pdev->dev);
3723 dev_data->errata |= (1 << erratum);
3724}
3725EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3726
3727int amd_iommu_device_info(struct pci_dev *pdev,
3728 struct amd_iommu_device_info *info)
3729{
3730 int max_pasids;
3731 int pos;
3732
3733 if (pdev == NULL || info == NULL)
3734 return -EINVAL;
3735
3736 if (!amd_iommu_v2_supported())
3737 return -EINVAL;
3738
3739 memset(info, 0, sizeof(*info));
3740
3741 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3742 if (pos)
3743 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3744
3745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3746 if (pos)
3747 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3748
3749 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3750 if (pos) {
3751 int features;
3752
3753 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3754 max_pasids = min(max_pasids, (1 << 20));
3755
3756 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3757 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3758
3759 features = pci_pasid_features(pdev);
3760 if (features & PCI_PASID_CAP_EXEC)
3761 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3762 if (features & PCI_PASID_CAP_PRIV)
3763 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3764 }
3765
3766 return 0;
3767}
3768EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3769
3770#ifdef CONFIG_IRQ_REMAP
3771
3772/*****************************************************************************
3773 *
3774 * Interrupt Remapping Implementation
3775 *
3776 *****************************************************************************/
3777
7c71d306
JL
3778static struct irq_chip amd_ir_chip;
3779
2b324506
JR
3780#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3781#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3782#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3783#define DTE_IRQ_REMAP_ENABLE 1ULL
3784
3785static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3786{
3787 u64 dte;
3788
3789 dte = amd_iommu_dev_table[devid].data[2];
3790 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3791 dte |= virt_to_phys(table->table);
3792 dte |= DTE_IRQ_REMAP_INTCTL;
3793 dte |= DTE_IRQ_TABLE_LEN;
3794 dte |= DTE_IRQ_REMAP_ENABLE;
3795
3796 amd_iommu_dev_table[devid].data[2] = dte;
3797}
3798
2b324506
JR
3799static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3800{
3801 struct irq_remap_table *table = NULL;
3802 struct amd_iommu *iommu;
3803 unsigned long flags;
3804 u16 alias;
3805
3806 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3807
3808 iommu = amd_iommu_rlookup_table[devid];
3809 if (!iommu)
3810 goto out_unlock;
3811
3812 table = irq_lookup_table[devid];
3813 if (table)
09284b9c 3814 goto out_unlock;
2b324506
JR
3815
3816 alias = amd_iommu_alias_table[devid];
3817 table = irq_lookup_table[alias];
3818 if (table) {
3819 irq_lookup_table[devid] = table;
3820 set_dte_irq_entry(devid, table);
3821 iommu_flush_dte(iommu, devid);
3822 goto out;
3823 }
3824
3825 /* Nothing there yet, allocate new irq remapping table */
3826 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3827 if (!table)
09284b9c 3828 goto out_unlock;
2b324506 3829
197887f0
JR
3830 /* Initialize table spin-lock */
3831 spin_lock_init(&table->lock);
3832
2b324506
JR
3833 if (ioapic)
3834 /* Keep the first 32 indexes free for IOAPIC interrupts */
3835 table->min_index = 32;
3836
3837 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3838 if (!table->table) {
3839 kfree(table);
821f0f68 3840 table = NULL;
09284b9c 3841 goto out_unlock;
2b324506
JR
3842 }
3843
77bdab46
SS
3844 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3845 memset(table->table, 0,
3846 MAX_IRQS_PER_TABLE * sizeof(u32));
3847 else
3848 memset(table->table, 0,
3849 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2b324506
JR
3850
3851 if (ioapic) {
3852 int i;
3853
3854 for (i = 0; i < 32; ++i)
77bdab46 3855 iommu->irte_ops->set_allocated(table, i);
2b324506
JR
3856 }
3857
3858 irq_lookup_table[devid] = table;
3859 set_dte_irq_entry(devid, table);
3860 iommu_flush_dte(iommu, devid);
3861 if (devid != alias) {
3862 irq_lookup_table[alias] = table;
e028a9e6 3863 set_dte_irq_entry(alias, table);
2b324506
JR
3864 iommu_flush_dte(iommu, alias);
3865 }
3866
3867out:
3868 iommu_completion_wait(iommu);
3869
3870out_unlock:
3871 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3872
3873 return table;
3874}
3875
3c3d4f90 3876static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3877{
3878 struct irq_remap_table *table;
3879 unsigned long flags;
3880 int index, c;
77bdab46
SS
3881 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3882
3883 if (!iommu)
3884 return -ENODEV;
2b324506
JR
3885
3886 table = get_irq_table(devid, false);
3887 if (!table)
3888 return -ENODEV;
3889
3890 spin_lock_irqsave(&table->lock, flags);
3891
3892 /* Scan table for free entries */
3893 for (c = 0, index = table->min_index;
3894 index < MAX_IRQS_PER_TABLE;
3895 ++index) {
77bdab46 3896 if (!iommu->irte_ops->is_allocated(table, index))
2b324506
JR
3897 c += 1;
3898 else
3899 c = 0;
3900
3901 if (c == count) {
2b324506 3902 for (; c != 0; --c)
77bdab46 3903 iommu->irte_ops->set_allocated(table, index - c + 1);
2b324506
JR
3904
3905 index -= count - 1;
2b324506
JR
3906 goto out;
3907 }
3908 }
3909
3910 index = -ENOSPC;
3911
3912out:
3913 spin_unlock_irqrestore(&table->lock, flags);
3914
3915 return index;
3916}
3917
b9fc6b56
SS
3918static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3919 struct amd_ir_data *data)
2b324506
JR
3920{
3921 struct irq_remap_table *table;
3922 struct amd_iommu *iommu;
3923 unsigned long flags;
880ac60e 3924 struct irte_ga *entry;
2b324506
JR
3925
3926 iommu = amd_iommu_rlookup_table[devid];
3927 if (iommu == NULL)
3928 return -EINVAL;
3929
3930 table = get_irq_table(devid, false);
3931 if (!table)
3932 return -ENOMEM;
3933
3934 spin_lock_irqsave(&table->lock, flags);
880ac60e
SS
3935
3936 entry = (struct irte_ga *)table->table;
3937 entry = &entry[index];
3938 entry->lo.fields_remap.valid = 0;
3939 entry->hi.val = irte->hi.val;
3940 entry->lo.val = irte->lo.val;
3941 entry->lo.fields_remap.valid = 1;
b9fc6b56
SS
3942 if (data)
3943 data->ref = entry;
880ac60e
SS
3944
3945 spin_unlock_irqrestore(&table->lock, flags);
3946
3947 iommu_flush_irt(iommu, devid);
3948 iommu_completion_wait(iommu);
3949
3950 return 0;
3951}
3952
3953static int modify_irte(u16 devid, int index, union irte *irte)
2b324506
JR
3954{
3955 struct irq_remap_table *table;
3956 struct amd_iommu *iommu;
3957 unsigned long flags;
3958
3959 iommu = amd_iommu_rlookup_table[devid];
3960 if (iommu == NULL)
3961 return -EINVAL;
3962
3963 table = get_irq_table(devid, false);
3964 if (!table)
3965 return -ENOMEM;
3966
3967 spin_lock_irqsave(&table->lock, flags);
880ac60e 3968 table->table[index] = irte->val;
2b324506
JR
3969 spin_unlock_irqrestore(&table->lock, flags);
3970
3971 iommu_flush_irt(iommu, devid);
3972 iommu_completion_wait(iommu);
3973
3974 return 0;
3975}
3976
3977static void free_irte(u16 devid, int index)
3978{
3979 struct irq_remap_table *table;
3980 struct amd_iommu *iommu;
3981 unsigned long flags;
3982
3983 iommu = amd_iommu_rlookup_table[devid];
3984 if (iommu == NULL)
3985 return;
3986
3987 table = get_irq_table(devid, false);
3988 if (!table)
3989 return;
3990
3991 spin_lock_irqsave(&table->lock, flags);
77bdab46 3992 iommu->irte_ops->clear_allocated(table, index);
2b324506
JR
3993 spin_unlock_irqrestore(&table->lock, flags);
3994
3995 iommu_flush_irt(iommu, devid);
3996 iommu_completion_wait(iommu);
3997}
3998
880ac60e
SS
3999static void irte_prepare(void *entry,
4000 u32 delivery_mode, u32 dest_mode,
d98de49a 4001 u8 vector, u32 dest_apicid, int devid)
880ac60e
SS
4002{
4003 union irte *irte = (union irte *) entry;
4004
4005 irte->val = 0;
4006 irte->fields.vector = vector;
4007 irte->fields.int_type = delivery_mode;
4008 irte->fields.destination = dest_apicid;
4009 irte->fields.dm = dest_mode;
4010 irte->fields.valid = 1;
4011}
4012
4013static void irte_ga_prepare(void *entry,
4014 u32 delivery_mode, u32 dest_mode,
d98de49a 4015 u8 vector, u32 dest_apicid, int devid)
880ac60e
SS
4016{
4017 struct irte_ga *irte = (struct irte_ga *) entry;
4018
4019 irte->lo.val = 0;
4020 irte->hi.val = 0;
880ac60e
SS
4021 irte->lo.fields_remap.int_type = delivery_mode;
4022 irte->lo.fields_remap.dm = dest_mode;
4023 irte->hi.fields.vector = vector;
4024 irte->lo.fields_remap.destination = dest_apicid;
4025 irte->lo.fields_remap.valid = 1;
4026}
4027
4028static void irte_activate(void *entry, u16 devid, u16 index)
4029{
4030 union irte *irte = (union irte *) entry;
4031
4032 irte->fields.valid = 1;
4033 modify_irte(devid, index, irte);
4034}
4035
4036static void irte_ga_activate(void *entry, u16 devid, u16 index)
4037{
4038 struct irte_ga *irte = (struct irte_ga *) entry;
4039
4040 irte->lo.fields_remap.valid = 1;
b9fc6b56 4041 modify_irte_ga(devid, index, irte, NULL);
880ac60e
SS
4042}
4043
4044static void irte_deactivate(void *entry, u16 devid, u16 index)
4045{
4046 union irte *irte = (union irte *) entry;
4047
4048 irte->fields.valid = 0;
4049 modify_irte(devid, index, irte);
4050}
4051
4052static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4053{
4054 struct irte_ga *irte = (struct irte_ga *) entry;
4055
4056 irte->lo.fields_remap.valid = 0;
b9fc6b56 4057 modify_irte_ga(devid, index, irte, NULL);
880ac60e
SS
4058}
4059
4060static void irte_set_affinity(void *entry, u16 devid, u16 index,
4061 u8 vector, u32 dest_apicid)
4062{
4063 union irte *irte = (union irte *) entry;
4064
4065 irte->fields.vector = vector;
4066 irte->fields.destination = dest_apicid;
4067 modify_irte(devid, index, irte);
4068}
4069
4070static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4071 u8 vector, u32 dest_apicid)
4072{
4073 struct irte_ga *irte = (struct irte_ga *) entry;
d98de49a 4074 struct iommu_dev_data *dev_data = search_dev_data(devid);
880ac60e 4075
84a21dbd
SS
4076 if (!dev_data || !dev_data->use_vapic ||
4077 !irte->lo.fields_remap.guest_mode) {
d98de49a
SS
4078 irte->hi.fields.vector = vector;
4079 irte->lo.fields_remap.destination = dest_apicid;
d98de49a
SS
4080 modify_irte_ga(devid, index, irte, NULL);
4081 }
880ac60e
SS
4082}
4083
77bdab46 4084#define IRTE_ALLOCATED (~1U)
880ac60e
SS
4085static void irte_set_allocated(struct irq_remap_table *table, int index)
4086{
4087 table->table[index] = IRTE_ALLOCATED;
4088}
4089
4090static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4091{
4092 struct irte_ga *ptr = (struct irte_ga *)table->table;
4093 struct irte_ga *irte = &ptr[index];
4094
4095 memset(&irte->lo.val, 0, sizeof(u64));
4096 memset(&irte->hi.val, 0, sizeof(u64));
4097 irte->hi.fields.vector = 0xff;
4098}
4099
4100static bool irte_is_allocated(struct irq_remap_table *table, int index)
4101{
4102 union irte *ptr = (union irte *)table->table;
4103 union irte *irte = &ptr[index];
4104
4105 return irte->val != 0;
4106}
4107
4108static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4109{
4110 struct irte_ga *ptr = (struct irte_ga *)table->table;
4111 struct irte_ga *irte = &ptr[index];
4112
4113 return irte->hi.fields.vector != 0;
4114}
4115
4116static void irte_clear_allocated(struct irq_remap_table *table, int index)
4117{
4118 table->table[index] = 0;
4119}
4120
4121static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4122{
4123 struct irte_ga *ptr = (struct irte_ga *)table->table;
4124 struct irte_ga *irte = &ptr[index];
4125
4126 memset(&irte->lo.val, 0, sizeof(u64));
4127 memset(&irte->hi.val, 0, sizeof(u64));
4128}
4129
7c71d306 4130static int get_devid(struct irq_alloc_info *info)
5527de74 4131{
7c71d306 4132 int devid = -1;
5527de74 4133
7c71d306
JL
4134 switch (info->type) {
4135 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4136 devid = get_ioapic_devid(info->ioapic_id);
4137 break;
4138 case X86_IRQ_ALLOC_TYPE_HPET:
4139 devid = get_hpet_devid(info->hpet_id);
4140 break;
4141 case X86_IRQ_ALLOC_TYPE_MSI:
4142 case X86_IRQ_ALLOC_TYPE_MSIX:
4143 devid = get_device_id(&info->msi_dev->dev);
4144 break;
4145 default:
4146 BUG_ON(1);
4147 break;
4148 }
5527de74 4149
7c71d306
JL
4150 return devid;
4151}
5527de74 4152
7c71d306
JL
4153static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4154{
4155 struct amd_iommu *iommu;
4156 int devid;
5527de74 4157
7c71d306
JL
4158 if (!info)
4159 return NULL;
5527de74 4160
7c71d306
JL
4161 devid = get_devid(info);
4162 if (devid >= 0) {
4163 iommu = amd_iommu_rlookup_table[devid];
4164 if (iommu)
4165 return iommu->ir_domain;
4166 }
5527de74 4167
7c71d306 4168 return NULL;
5527de74
JR
4169}
4170
7c71d306 4171static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 4172{
7c71d306
JL
4173 struct amd_iommu *iommu;
4174 int devid;
5527de74 4175
7c71d306
JL
4176 if (!info)
4177 return NULL;
5527de74 4178
7c71d306
JL
4179 switch (info->type) {
4180 case X86_IRQ_ALLOC_TYPE_MSI:
4181 case X86_IRQ_ALLOC_TYPE_MSIX:
4182 devid = get_device_id(&info->msi_dev->dev);
9ee35e4c 4183 if (devid < 0)
7aba6cb9
WZ
4184 return NULL;
4185
1fb260bc
DC
4186 iommu = amd_iommu_rlookup_table[devid];
4187 if (iommu)
4188 return iommu->msi_domain;
7c71d306
JL
4189 break;
4190 default:
4191 break;
4192 }
5527de74 4193
7c71d306
JL
4194 return NULL;
4195}
5527de74 4196
6b474b82 4197struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4198 .prepare = amd_iommu_prepare,
4199 .enable = amd_iommu_enable,
4200 .disable = amd_iommu_disable,
4201 .reenable = amd_iommu_reenable,
4202 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
4203 .get_ir_irq_domain = get_ir_irq_domain,
4204 .get_irq_domain = get_irq_domain,
4205};
5527de74 4206
7c71d306
JL
4207static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4208 struct irq_cfg *irq_cfg,
4209 struct irq_alloc_info *info,
4210 int devid, int index, int sub_handle)
4211{
4212 struct irq_2_irte *irte_info = &data->irq_2_irte;
4213 struct msi_msg *msg = &data->msi_entry;
7c71d306 4214 struct IO_APIC_route_entry *entry;
77bdab46
SS
4215 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4216
4217 if (!iommu)
4218 return;
5527de74 4219
7c71d306
JL
4220 data->irq_2_irte.devid = devid;
4221 data->irq_2_irte.index = index + sub_handle;
77bdab46
SS
4222 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4223 apic->irq_dest_mode, irq_cfg->vector,
d98de49a 4224 irq_cfg->dest_apicid, devid);
7c71d306
JL
4225
4226 switch (info->type) {
4227 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4228 /* Setup IOAPIC entry */
4229 entry = info->ioapic_entry;
4230 info->ioapic_entry = NULL;
4231 memset(entry, 0, sizeof(*entry));
4232 entry->vector = index;
4233 entry->mask = 0;
4234 entry->trigger = info->ioapic_trigger;
4235 entry->polarity = info->ioapic_polarity;
4236 /* Mask level triggered irqs. */
4237 if (info->ioapic_trigger)
4238 entry->mask = 1;
4239 break;
5527de74 4240
7c71d306
JL
4241 case X86_IRQ_ALLOC_TYPE_HPET:
4242 case X86_IRQ_ALLOC_TYPE_MSI:
4243 case X86_IRQ_ALLOC_TYPE_MSIX:
4244 msg->address_hi = MSI_ADDR_BASE_HI;
4245 msg->address_lo = MSI_ADDR_BASE_LO;
4246 msg->data = irte_info->index;
4247 break;
5527de74 4248
7c71d306
JL
4249 default:
4250 BUG_ON(1);
4251 break;
4252 }
5527de74
JR
4253}
4254
880ac60e
SS
4255struct amd_irte_ops irte_32_ops = {
4256 .prepare = irte_prepare,
4257 .activate = irte_activate,
4258 .deactivate = irte_deactivate,
4259 .set_affinity = irte_set_affinity,
4260 .set_allocated = irte_set_allocated,
4261 .is_allocated = irte_is_allocated,
4262 .clear_allocated = irte_clear_allocated,
4263};
4264
4265struct amd_irte_ops irte_128_ops = {
4266 .prepare = irte_ga_prepare,
4267 .activate = irte_ga_activate,
4268 .deactivate = irte_ga_deactivate,
4269 .set_affinity = irte_ga_set_affinity,
4270 .set_allocated = irte_ga_set_allocated,
4271 .is_allocated = irte_ga_is_allocated,
4272 .clear_allocated = irte_ga_clear_allocated,
4273};
4274
7c71d306
JL
4275static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4276 unsigned int nr_irqs, void *arg)
5527de74 4277{
7c71d306
JL
4278 struct irq_alloc_info *info = arg;
4279 struct irq_data *irq_data;
77bdab46 4280 struct amd_ir_data *data = NULL;
5527de74 4281 struct irq_cfg *cfg;
7c71d306
JL
4282 int i, ret, devid;
4283 int index = -1;
5527de74 4284
7c71d306
JL
4285 if (!info)
4286 return -EINVAL;
4287 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4288 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
4289 return -EINVAL;
4290
7c71d306
JL
4291 /*
4292 * With IRQ remapping enabled, don't need contiguous CPU vectors
4293 * to support multiple MSI interrupts.
4294 */
4295 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4296 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 4297
7c71d306
JL
4298 devid = get_devid(info);
4299 if (devid < 0)
4300 return -EINVAL;
5527de74 4301
7c71d306
JL
4302 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4303 if (ret < 0)
4304 return ret;
0b4d48cb 4305
7c71d306
JL
4306 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4307 if (get_irq_table(devid, true))
4308 index = info->ioapic_pin;
4309 else
4310 ret = -ENOMEM;
4311 } else {
3c3d4f90 4312 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
4313 }
4314 if (index < 0) {
4315 pr_warn("Failed to allocate IRTE\n");
517abe49 4316 ret = index;
7c71d306
JL
4317 goto out_free_parent;
4318 }
0b4d48cb 4319
7c71d306
JL
4320 for (i = 0; i < nr_irqs; i++) {
4321 irq_data = irq_domain_get_irq_data(domain, virq + i);
4322 cfg = irqd_cfg(irq_data);
4323 if (!irq_data || !cfg) {
4324 ret = -EINVAL;
4325 goto out_free_data;
4326 }
0b4d48cb 4327
a130e69f
JR
4328 ret = -ENOMEM;
4329 data = kzalloc(sizeof(*data), GFP_KERNEL);
4330 if (!data)
4331 goto out_free_data;
4332
77bdab46
SS
4333 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4334 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4335 else
4336 data->entry = kzalloc(sizeof(struct irte_ga),
4337 GFP_KERNEL);
4338 if (!data->entry) {
4339 kfree(data);
4340 goto out_free_data;
4341 }
4342
7c71d306
JL
4343 irq_data->hwirq = (devid << 16) + i;
4344 irq_data->chip_data = data;
4345 irq_data->chip = &amd_ir_chip;
4346 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4347 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4348 }
a130e69f 4349
7c71d306 4350 return 0;
0b4d48cb 4351
7c71d306
JL
4352out_free_data:
4353 for (i--; i >= 0; i--) {
4354 irq_data = irq_domain_get_irq_data(domain, virq + i);
4355 if (irq_data)
4356 kfree(irq_data->chip_data);
4357 }
4358 for (i = 0; i < nr_irqs; i++)
4359 free_irte(devid, index + i);
4360out_free_parent:
4361 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4362 return ret;
0b4d48cb
JR
4363}
4364
7c71d306
JL
4365static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4366 unsigned int nr_irqs)
0b4d48cb 4367{
7c71d306
JL
4368 struct irq_2_irte *irte_info;
4369 struct irq_data *irq_data;
4370 struct amd_ir_data *data;
4371 int i;
0b4d48cb 4372
7c71d306
JL
4373 for (i = 0; i < nr_irqs; i++) {
4374 irq_data = irq_domain_get_irq_data(domain, virq + i);
4375 if (irq_data && irq_data->chip_data) {
4376 data = irq_data->chip_data;
4377 irte_info = &data->irq_2_irte;
4378 free_irte(irte_info->devid, irte_info->index);
77bdab46 4379 kfree(data->entry);
7c71d306
JL
4380 kfree(data);
4381 }
4382 }
4383 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4384}
0b4d48cb 4385
7c71d306
JL
4386static void irq_remapping_activate(struct irq_domain *domain,
4387 struct irq_data *irq_data)
4388{
4389 struct amd_ir_data *data = irq_data->chip_data;
4390 struct irq_2_irte *irte_info = &data->irq_2_irte;
77bdab46 4391 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
0b4d48cb 4392
77bdab46
SS
4393 if (iommu)
4394 iommu->irte_ops->activate(data->entry, irte_info->devid,
4395 irte_info->index);
0b4d48cb
JR
4396}
4397
7c71d306
JL
4398static void irq_remapping_deactivate(struct irq_domain *domain,
4399 struct irq_data *irq_data)
0b4d48cb 4400{
7c71d306
JL
4401 struct amd_ir_data *data = irq_data->chip_data;
4402 struct irq_2_irte *irte_info = &data->irq_2_irte;
77bdab46 4403 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
0b4d48cb 4404
77bdab46
SS
4405 if (iommu)
4406 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4407 irte_info->index);
7c71d306 4408}
0b4d48cb 4409
e2f9d45f 4410static const struct irq_domain_ops amd_ir_domain_ops = {
7c71d306
JL
4411 .alloc = irq_remapping_alloc,
4412 .free = irq_remapping_free,
4413 .activate = irq_remapping_activate,
4414 .deactivate = irq_remapping_deactivate,
6b474b82 4415};
0b4d48cb 4416
b9fc6b56
SS
4417static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4418{
4419 struct amd_iommu *iommu;
4420 struct amd_iommu_pi_data *pi_data = vcpu_info;
4421 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4422 struct amd_ir_data *ir_data = data->chip_data;
4423 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4424 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
d98de49a
SS
4425 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4426
4427 /* Note:
4428 * This device has never been set up for guest mode.
4429 * we should not modify the IRTE
4430 */
4431 if (!dev_data || !dev_data->use_vapic)
4432 return 0;
b9fc6b56
SS
4433
4434 pi_data->ir_data = ir_data;
4435
4436 /* Note:
4437 * SVM tries to set up for VAPIC mode, but we are in
4438 * legacy mode. So, we force legacy mode instead.
4439 */
4440 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4441 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4442 __func__);
4443 pi_data->is_guest_mode = false;
4444 }
4445
4446 iommu = amd_iommu_rlookup_table[irte_info->devid];
4447 if (iommu == NULL)
4448 return -EINVAL;
4449
4450 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4451 if (pi_data->is_guest_mode) {
4452 /* Setting */
4453 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4454 irte->hi.fields.vector = vcpu_pi_info->vector;
efe6f241 4455 irte->lo.fields_vapic.ga_log_intr = 1;
b9fc6b56
SS
4456 irte->lo.fields_vapic.guest_mode = 1;
4457 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4458
4459 ir_data->cached_ga_tag = pi_data->ga_tag;
4460 } else {
4461 /* Un-Setting */
4462 struct irq_cfg *cfg = irqd_cfg(data);
4463
4464 irte->hi.val = 0;
4465 irte->lo.val = 0;
4466 irte->hi.fields.vector = cfg->vector;
4467 irte->lo.fields_remap.guest_mode = 0;
4468 irte->lo.fields_remap.destination = cfg->dest_apicid;
4469 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4470 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4471
4472 /*
4473 * This communicates the ga_tag back to the caller
4474 * so that it can do all the necessary clean up.
4475 */
4476 ir_data->cached_ga_tag = 0;
4477 }
4478
4479 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4480}
4481
7c71d306
JL
4482static int amd_ir_set_affinity(struct irq_data *data,
4483 const struct cpumask *mask, bool force)
4484{
4485 struct amd_ir_data *ir_data = data->chip_data;
4486 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4487 struct irq_cfg *cfg = irqd_cfg(data);
4488 struct irq_data *parent = data->parent_data;
77bdab46 4489 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
7c71d306 4490 int ret;
0b4d48cb 4491
77bdab46
SS
4492 if (!iommu)
4493 return -ENODEV;
4494
7c71d306
JL
4495 ret = parent->chip->irq_set_affinity(parent, mask, force);
4496 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4497 return ret;
0b4d48cb 4498
7c71d306
JL
4499 /*
4500 * Atomically updates the IRTE with the new destination, vector
4501 * and flushes the interrupt entry cache.
4502 */
77bdab46
SS
4503 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4504 irte_info->index, cfg->vector, cfg->dest_apicid);
0b4d48cb 4505
7c71d306
JL
4506 /*
4507 * After this point, all the interrupts will start arriving
4508 * at the new destination. So, time to cleanup the previous
4509 * vector allocation.
4510 */
c6c2002b 4511 send_cleanup_vector(cfg);
7c71d306
JL
4512
4513 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
4514}
4515
7c71d306 4516static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 4517{
7c71d306 4518 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 4519
7c71d306
JL
4520 *msg = ir_data->msi_entry;
4521}
d976195c 4522
7c71d306 4523static struct irq_chip amd_ir_chip = {
290be194
TG
4524 .name = "AMD-IR",
4525 .irq_ack = ir_ack_apic_edge,
4526 .irq_set_affinity = amd_ir_set_affinity,
4527 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4528 .irq_compose_msi_msg = ir_compose_msi_msg,
7c71d306 4529};
d976195c 4530
7c71d306
JL
4531int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4532{
3e49a818
TG
4533 struct fwnode_handle *fn;
4534
4535 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4536 if (!fn)
4537 return -ENOMEM;
4538 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4539 irq_domain_free_fwnode(fn);
7c71d306
JL
4540 if (!iommu->ir_domain)
4541 return -ENOMEM;
d976195c 4542
7c71d306 4543 iommu->ir_domain->parent = arch_get_ir_parent_domain();
3e49a818
TG
4544 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4545 "AMD-IR-MSI",
4546 iommu->index);
d976195c
JR
4547 return 0;
4548}
8dbea3fd
SS
4549
4550int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4551{
4552 unsigned long flags;
4553 struct amd_iommu *iommu;
4554 struct irq_remap_table *irt;
4555 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4556 int devid = ir_data->irq_2_irte.devid;
4557 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4558 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4559
4560 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4561 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4562 return 0;
4563
4564 iommu = amd_iommu_rlookup_table[devid];
4565 if (!iommu)
4566 return -ENODEV;
4567
4568 irt = get_irq_table(devid, false);
4569 if (!irt)
4570 return -ENODEV;
4571
4572 spin_lock_irqsave(&irt->lock, flags);
4573
4574 if (ref->lo.fields_vapic.guest_mode) {
4575 if (cpu >= 0)
4576 ref->lo.fields_vapic.destination = cpu;
4577 ref->lo.fields_vapic.is_run = is_run;
4578 barrier();
4579 }
4580
4581 spin_unlock_irqrestore(&irt->lock, flags);
4582
4583 iommu_flush_irt(iommu, devid);
4584 iommu_completion_wait(iommu);
4585 return 0;
4586}
4587EXPORT_SYMBOL(amd_iommu_update_ga);
2b324506 4588#endif