]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/iommu/dma-iommu.c
iommu/dma: Make PCI window reservation generic
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include <linux/device.h>
23#include <linux/dma-iommu.h>
5b11e9cd 24#include <linux/gfp.h>
0db2e5d1
RM
25#include <linux/huge_mm.h>
26#include <linux/iommu.h>
27#include <linux/iova.h>
44bb7e24 28#include <linux/irq.h>
0db2e5d1 29#include <linux/mm.h>
fade1ec0 30#include <linux/pci.h>
5b11e9cd
RM
31#include <linux/scatterlist.h>
32#include <linux/vmalloc.h>
0db2e5d1 33
44bb7e24
RM
34struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38};
39
fdbe574e
RM
40enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
42 IOMMU_DMA_MSI_COOKIE,
43};
44
44bb7e24 45struct iommu_dma_cookie {
fdbe574e
RM
46 enum iommu_dma_cookie_type type;
47 union {
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 struct iova_domain iovad;
50 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
51 dma_addr_t msi_iova;
52 };
53 struct list_head msi_page_list;
54 spinlock_t msi_lock;
44bb7e24
RM
55};
56
fdbe574e
RM
57static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
58{
59 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
60 return cookie->iovad.granule;
61 return PAGE_SIZE;
62}
63
44bb7e24
RM
64static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
65{
fdbe574e
RM
66 struct iommu_dma_cookie *cookie = domain->iova_cookie;
67
68 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
69 return &cookie->iovad;
70 return NULL;
71}
72
73static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
74{
75 struct iommu_dma_cookie *cookie;
76
77 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
78 if (cookie) {
79 spin_lock_init(&cookie->msi_lock);
80 INIT_LIST_HEAD(&cookie->msi_page_list);
81 cookie->type = type;
82 }
83 return cookie;
44bb7e24
RM
84}
85
0db2e5d1
RM
86int iommu_dma_init(void)
87{
88 return iova_cache_get();
89}
90
91/**
92 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
93 * @domain: IOMMU domain to prepare for DMA-API usage
94 *
95 * IOMMU drivers should normally call this from their domain_alloc
96 * callback when domain->type == IOMMU_DOMAIN_DMA.
97 */
98int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
99{
100 if (domain->iova_cookie)
101 return -EEXIST;
102
103 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
104 if (!domain->iova_cookie)
105 return -ENOMEM;
106
107 return 0;
108}
109EXPORT_SYMBOL(iommu_get_dma_cookie);
110
111/**
112 * iommu_get_msi_cookie - Acquire just MSI remapping resources
113 * @domain: IOMMU domain to prepare
114 * @base: Start address of IOVA region for MSI mappings
115 *
116 * Users who manage their own IOVA allocation and do not want DMA API support,
117 * but would still like to take advantage of automatic MSI remapping, can use
118 * this to initialise their own domain appropriately. Users should reserve a
119 * contiguous IOVA region, starting at @base, large enough to accommodate the
120 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
121 * used by the devices attached to @domain.
122 */
123int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 124{
44bb7e24 125 struct iommu_dma_cookie *cookie;
0db2e5d1 126
fdbe574e
RM
127 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
128 return -EINVAL;
129
0db2e5d1
RM
130 if (domain->iova_cookie)
131 return -EEXIST;
132
fdbe574e 133 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
134 if (!cookie)
135 return -ENOMEM;
0db2e5d1 136
fdbe574e 137 cookie->msi_iova = base;
44bb7e24
RM
138 domain->iova_cookie = cookie;
139 return 0;
0db2e5d1 140}
fdbe574e 141EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
142
143/**
144 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
145 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
146 * iommu_get_msi_cookie()
0db2e5d1
RM
147 *
148 * IOMMU drivers should normally call this from their domain_free callback.
149 */
150void iommu_put_dma_cookie(struct iommu_domain *domain)
151{
44bb7e24
RM
152 struct iommu_dma_cookie *cookie = domain->iova_cookie;
153 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 154
44bb7e24 155 if (!cookie)
0db2e5d1
RM
156 return;
157
fdbe574e 158 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
159 put_iova_domain(&cookie->iovad);
160
161 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
162 list_del(&msi->list);
163 kfree(msi);
164 }
165 kfree(cookie);
0db2e5d1
RM
166 domain->iova_cookie = NULL;
167}
168EXPORT_SYMBOL(iommu_put_dma_cookie);
169
273df963
RM
170/**
171 * iommu_dma_get_resv_regions - Reserved region driver helper
172 * @dev: Device from iommu_get_resv_regions()
173 * @list: Reserved region list from iommu_get_resv_regions()
174 *
175 * IOMMU drivers can use this to implement their .get_resv_regions callback
176 * for general non-IOMMU-specific reservations. Currently, this covers host
177 * bridge windows for PCI devices.
178 */
179void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 180{
273df963 181 struct pci_host_bridge *bridge;
fade1ec0 182 struct resource_entry *window;
fade1ec0 183
273df963
RM
184 if (!dev_is_pci(dev))
185 return;
186
187 bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
fade1ec0 188 resource_list_for_each_entry(window, &bridge->windows) {
273df963
RM
189 struct iommu_resv_region *region;
190 phys_addr_t start;
191 size_t length;
192
938f1bbe 193 if (resource_type(window->res) != IORESOURCE_MEM)
fade1ec0
RM
194 continue;
195
273df963
RM
196 start = window->res->start - window->offset;
197 length = window->res->end - window->res->start + 1;
198 region = iommu_alloc_resv_region(start, length, 0,
199 IOMMU_RESV_RESERVED);
200 if (!region)
201 return;
202
203 list_add_tail(&region->list, list);
fade1ec0
RM
204 }
205}
273df963 206EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 207
7c1b058c
RM
208static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
209 phys_addr_t start, phys_addr_t end)
210{
211 struct iova_domain *iovad = &cookie->iovad;
212 struct iommu_dma_msi_page *msi_page;
213 int i, num_pages;
214
215 start -= iova_offset(iovad, start);
216 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
217
218 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
219 if (!msi_page)
220 return -ENOMEM;
221
222 for (i = 0; i < num_pages; i++) {
223 msi_page[i].phys = start;
224 msi_page[i].iova = start;
225 INIT_LIST_HEAD(&msi_page[i].list);
226 list_add(&msi_page[i].list, &cookie->msi_page_list);
227 start += iovad->granule;
228 }
229
230 return 0;
231}
232
233static int iova_reserve_iommu_regions(struct device *dev,
234 struct iommu_domain *domain)
235{
236 struct iommu_dma_cookie *cookie = domain->iova_cookie;
237 struct iova_domain *iovad = &cookie->iovad;
238 struct iommu_resv_region *region;
239 LIST_HEAD(resv_regions);
240 int ret = 0;
241
7c1b058c
RM
242 iommu_get_resv_regions(dev, &resv_regions);
243 list_for_each_entry(region, &resv_regions, list) {
244 unsigned long lo, hi;
245
246 /* We ARE the software that manages these! */
247 if (region->type == IOMMU_RESV_SW_MSI)
248 continue;
249
250 lo = iova_pfn(iovad, region->start);
251 hi = iova_pfn(iovad, region->start + region->length - 1);
252 reserve_iova(iovad, lo, hi);
253
254 if (region->type == IOMMU_RESV_MSI)
255 ret = cookie_init_hw_msi_region(cookie, region->start,
256 region->start + region->length);
257 if (ret)
258 break;
259 }
260 iommu_put_resv_regions(dev, &resv_regions);
261
262 return ret;
263}
264
0db2e5d1
RM
265/**
266 * iommu_dma_init_domain - Initialise a DMA mapping domain
267 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
268 * @base: IOVA at which the mappable address space starts
269 * @size: Size of IOVA space
fade1ec0 270 * @dev: Device the domain is being initialised for
0db2e5d1
RM
271 *
272 * @base and @size should be exact multiples of IOMMU page granularity to
273 * avoid rounding surprises. If necessary, we reserve the page at address 0
274 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
275 * any change which could make prior IOVAs invalid will fail.
276 */
fade1ec0
RM
277int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
278 u64 size, struct device *dev)
0db2e5d1 279{
fdbe574e
RM
280 struct iommu_dma_cookie *cookie = domain->iova_cookie;
281 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1
RM
282 unsigned long order, base_pfn, end_pfn;
283
fdbe574e
RM
284 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
285 return -EINVAL;
0db2e5d1
RM
286
287 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 288 order = __ffs(domain->pgsize_bitmap);
0db2e5d1
RM
289 base_pfn = max_t(unsigned long, 1, base >> order);
290 end_pfn = (base + size - 1) >> order;
291
292 /* Check the domain allows at least some access to the device... */
293 if (domain->geometry.force_aperture) {
294 if (base > domain->geometry.aperture_end ||
295 base + size <= domain->geometry.aperture_start) {
296 pr_warn("specified DMA range outside IOMMU capability\n");
297 return -EFAULT;
298 }
299 /* ...then finally give it a kicking to make sure it fits */
300 base_pfn = max_t(unsigned long, base_pfn,
301 domain->geometry.aperture_start >> order);
302 end_pfn = min_t(unsigned long, end_pfn,
303 domain->geometry.aperture_end >> order);
304 }
f51d7bb7
RM
305 /*
306 * PCI devices may have larger DMA masks, but still prefer allocating
307 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
308 * apply to the typical platform device, so for those we may as well
309 * leave the cache limit at the top of their range to save an rb_last()
310 * traversal on every allocation.
311 */
7c1b058c 312 if (dev && dev_is_pci(dev))
f51d7bb7 313 end_pfn &= DMA_BIT_MASK(32) >> order;
0db2e5d1 314
f51d7bb7 315 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
316 if (iovad->start_pfn) {
317 if (1UL << order != iovad->granule ||
f51d7bb7 318 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
319 pr_warn("Incompatible range for DMA domain\n");
320 return -EFAULT;
321 }
f51d7bb7
RM
322 /*
323 * If we have devices with different DMA masks, move the free
324 * area cache limit down for the benefit of the smaller one.
325 */
326 iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
7c1b058c
RM
327
328 return 0;
0db2e5d1 329 }
7c1b058c
RM
330
331 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
332 if (!dev)
333 return 0;
334
335 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1
RM
336}
337EXPORT_SYMBOL(iommu_dma_init_domain);
338
339/**
737c85ca
MH
340 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
341 * page flags.
0db2e5d1
RM
342 * @dir: Direction of DMA transfer
343 * @coherent: Is the DMA master cache-coherent?
737c85ca 344 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
345 *
346 * Return: corresponding IOMMU API page protection flags
347 */
737c85ca
MH
348int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
349 unsigned long attrs)
0db2e5d1
RM
350{
351 int prot = coherent ? IOMMU_CACHE : 0;
352
737c85ca
MH
353 if (attrs & DMA_ATTR_PRIVILEGED)
354 prot |= IOMMU_PRIV;
355
0db2e5d1
RM
356 switch (dir) {
357 case DMA_BIDIRECTIONAL:
358 return prot | IOMMU_READ | IOMMU_WRITE;
359 case DMA_TO_DEVICE:
360 return prot | IOMMU_READ;
361 case DMA_FROM_DEVICE:
362 return prot | IOMMU_WRITE;
363 default:
364 return 0;
365 }
366}
367
c987ff0d 368static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
122fac03 369 dma_addr_t dma_limit, struct device *dev)
0db2e5d1 370{
44bb7e24 371 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
372 unsigned long shift = iova_shift(iovad);
373 unsigned long length = iova_align(iovad, size) >> shift;
122fac03 374 struct iova *iova = NULL;
0db2e5d1 375
c987ff0d
RM
376 if (domain->geometry.force_aperture)
377 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
378
379 /* Try to get PCI devices a SAC address */
380 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
381 iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift,
382 true);
0db2e5d1
RM
383 /*
384 * Enforce size-alignment to be safe - there could perhaps be an
385 * attribute to control this per-device, or at least per-domain...
386 */
122fac03
RM
387 if (!iova)
388 iova = alloc_iova(iovad, length, dma_limit >> shift, true);
389
390 return iova;
0db2e5d1
RM
391}
392
393/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
394static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
395{
44bb7e24 396 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
397 unsigned long shift = iova_shift(iovad);
398 unsigned long pfn = dma_addr >> shift;
399 struct iova *iova = find_iova(iovad, pfn);
400 size_t size;
401
402 if (WARN_ON(!iova))
403 return;
404
405 size = iova_size(iova) << shift;
406 size -= iommu_unmap(domain, pfn << shift, size);
407 /* ...and if we can't, then something is horribly, horribly wrong */
408 WARN_ON(size > 0);
409 __free_iova(iovad, iova);
410}
411
412static void __iommu_dma_free_pages(struct page **pages, int count)
413{
414 while (count--)
415 __free_page(pages[count]);
416 kvfree(pages);
417}
418
3b6b7e19
RM
419static struct page **__iommu_dma_alloc_pages(unsigned int count,
420 unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
421{
422 struct page **pages;
423 unsigned int i = 0, array_size = count * sizeof(*pages);
3b6b7e19
RM
424
425 order_mask &= (2U << MAX_ORDER) - 1;
426 if (!order_mask)
427 return NULL;
0db2e5d1
RM
428
429 if (array_size <= PAGE_SIZE)
430 pages = kzalloc(array_size, GFP_KERNEL);
431 else
432 pages = vzalloc(array_size);
433 if (!pages)
434 return NULL;
435
436 /* IOMMU can map any pages, so himem can also be used here */
437 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
438
439 while (count) {
440 struct page *page = NULL;
3b6b7e19 441 unsigned int order_size;
0db2e5d1
RM
442
443 /*
444 * Higher-order allocations are a convenience rather
445 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 446 * falling back to minimum-order allocations.
0db2e5d1 447 */
3b6b7e19
RM
448 for (order_mask &= (2U << __fls(count)) - 1;
449 order_mask; order_mask &= ~order_size) {
450 unsigned int order = __fls(order_mask);
451
452 order_size = 1U << order;
453 page = alloc_pages((order_mask - order_size) ?
454 gfp | __GFP_NORETRY : gfp, order);
0db2e5d1
RM
455 if (!page)
456 continue;
3b6b7e19
RM
457 if (!order)
458 break;
459 if (!PageCompound(page)) {
0db2e5d1
RM
460 split_page(page, order);
461 break;
3b6b7e19
RM
462 } else if (!split_huge_page(page)) {
463 break;
0db2e5d1 464 }
3b6b7e19 465 __free_pages(page, order);
0db2e5d1 466 }
0db2e5d1
RM
467 if (!page) {
468 __iommu_dma_free_pages(pages, i);
469 return NULL;
470 }
3b6b7e19
RM
471 count -= order_size;
472 while (order_size--)
0db2e5d1
RM
473 pages[i++] = page++;
474 }
475 return pages;
476}
477
478/**
479 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
480 * @dev: Device which owns this buffer
481 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
482 * @size: Size of buffer in bytes
483 * @handle: DMA address of buffer
484 *
485 * Frees both the pages associated with the buffer, and the array
486 * describing them
487 */
488void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
489 dma_addr_t *handle)
490{
491 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
492 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
493 *handle = DMA_ERROR_CODE;
494}
495
496/**
497 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
498 * @dev: Device to allocate memory for. Must be a real device
499 * attached to an iommu_dma_domain
500 * @size: Size of buffer in bytes
501 * @gfp: Allocation flags
3b6b7e19 502 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
503 * @prot: IOMMU mapping flags
504 * @handle: Out argument for allocated DMA handle
505 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
506 * given VA/PA are visible to the given non-coherent device.
507 *
508 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
509 * but an IOMMU which supports smaller pages might not map the whole thing.
510 *
511 * Return: Array of struct page pointers describing the buffer,
512 * or NULL on failure.
513 */
3b6b7e19 514struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
00085f1e 515 unsigned long attrs, int prot, dma_addr_t *handle,
0db2e5d1
RM
516 void (*flush_page)(struct device *, const void *, phys_addr_t))
517{
518 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 519 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
520 struct iova *iova;
521 struct page **pages;
522 struct sg_table sgt;
523 dma_addr_t dma_addr;
3b6b7e19 524 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
525
526 *handle = DMA_ERROR_CODE;
527
3b6b7e19
RM
528 min_size = alloc_sizes & -alloc_sizes;
529 if (min_size < PAGE_SIZE) {
530 min_size = PAGE_SIZE;
531 alloc_sizes |= PAGE_SIZE;
532 } else {
533 size = ALIGN(size, min_size);
534 }
00085f1e 535 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
536 alloc_sizes = min_size;
537
538 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
539 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
0db2e5d1
RM
540 if (!pages)
541 return NULL;
542
122fac03 543 iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
544 if (!iova)
545 goto out_free_pages;
546
547 size = iova_align(iovad, size);
548 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
549 goto out_free_iova;
550
551 if (!(prot & IOMMU_CACHE)) {
552 struct sg_mapping_iter miter;
553 /*
554 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
555 * sufficient here, so skip it by using the "wrong" direction.
556 */
557 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
558 while (sg_miter_next(&miter))
559 flush_page(dev, miter.addr, page_to_phys(miter.page));
560 sg_miter_stop(&miter);
561 }
562
563 dma_addr = iova_dma_addr(iovad, iova);
564 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
565 < size)
566 goto out_free_sg;
567
568 *handle = dma_addr;
569 sg_free_table(&sgt);
570 return pages;
571
572out_free_sg:
573 sg_free_table(&sgt);
574out_free_iova:
575 __free_iova(iovad, iova);
576out_free_pages:
577 __iommu_dma_free_pages(pages, count);
578 return NULL;
579}
580
581/**
582 * iommu_dma_mmap - Map a buffer into provided user VMA
583 * @pages: Array representing buffer from iommu_dma_alloc()
584 * @size: Size of buffer in bytes
585 * @vma: VMA describing requested userspace mapping
586 *
587 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
588 * for verifying the correct size and protection of @vma beforehand.
589 */
590
591int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
592{
593 unsigned long uaddr = vma->vm_start;
594 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
595 int ret = -ENXIO;
596
597 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
598 ret = vm_insert_page(vma, uaddr, pages[i]);
599 if (ret)
600 break;
601 uaddr += PAGE_SIZE;
602 }
603 return ret;
604}
605
51f8cc9e
RM
606static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
607 size_t size, int prot)
0db2e5d1
RM
608{
609 dma_addr_t dma_addr;
610 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 611 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
612 size_t iova_off = iova_offset(iovad, phys);
613 size_t len = iova_align(iovad, size + iova_off);
122fac03 614 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev);
0db2e5d1
RM
615
616 if (!iova)
617 return DMA_ERROR_CODE;
618
619 dma_addr = iova_dma_addr(iovad, iova);
620 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
621 __free_iova(iovad, iova);
622 return DMA_ERROR_CODE;
623 }
624 return dma_addr + iova_off;
625}
626
51f8cc9e
RM
627dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
628 unsigned long offset, size_t size, int prot)
629{
630 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
631}
632
0db2e5d1 633void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
00085f1e 634 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
635{
636 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
637}
638
639/*
640 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
641 *
642 * At this point the segments are already laid out by iommu_dma_map_sg() to
643 * avoid individually crossing any boundaries, so we merely need to check a
644 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
645 */
646static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
647 dma_addr_t dma_addr)
648{
809eac54
RM
649 struct scatterlist *s, *cur = sg;
650 unsigned long seg_mask = dma_get_seg_boundary(dev);
651 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
652 int i, count = 0;
0db2e5d1
RM
653
654 for_each_sg(sg, s, nents, i) {
809eac54
RM
655 /* Restore this segment's original unaligned fields first */
656 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 657 unsigned int s_length = sg_dma_len(s);
809eac54 658 unsigned int s_iova_len = s->length;
0db2e5d1 659
809eac54 660 s->offset += s_iova_off;
0db2e5d1 661 s->length = s_length;
809eac54
RM
662 sg_dma_address(s) = DMA_ERROR_CODE;
663 sg_dma_len(s) = 0;
664
665 /*
666 * Now fill in the real DMA data. If...
667 * - there is a valid output segment to append to
668 * - and this segment starts on an IOVA page boundary
669 * - but doesn't fall at a segment boundary
670 * - and wouldn't make the resulting output segment too long
671 */
672 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
673 (cur_len + s_length <= max_len)) {
674 /* ...then concatenate it with the previous one */
675 cur_len += s_length;
676 } else {
677 /* Otherwise start the next output segment */
678 if (i > 0)
679 cur = sg_next(cur);
680 cur_len = s_length;
681 count++;
682
683 sg_dma_address(cur) = dma_addr + s_iova_off;
684 }
685
686 sg_dma_len(cur) = cur_len;
687 dma_addr += s_iova_len;
688
689 if (s_length + s_iova_off < s_iova_len)
690 cur_len = 0;
0db2e5d1 691 }
809eac54 692 return count;
0db2e5d1
RM
693}
694
695/*
696 * If mapping failed, then just restore the original list,
697 * but making sure the DMA fields are invalidated.
698 */
699static void __invalidate_sg(struct scatterlist *sg, int nents)
700{
701 struct scatterlist *s;
702 int i;
703
704 for_each_sg(sg, s, nents, i) {
705 if (sg_dma_address(s) != DMA_ERROR_CODE)
07b48ac4 706 s->offset += sg_dma_address(s);
0db2e5d1
RM
707 if (sg_dma_len(s))
708 s->length = sg_dma_len(s);
709 sg_dma_address(s) = DMA_ERROR_CODE;
710 sg_dma_len(s) = 0;
711 }
712}
713
714/*
715 * The DMA API client is passing in a scatterlist which could describe
716 * any old buffer layout, but the IOMMU API requires everything to be
717 * aligned to IOMMU pages. Hence the need for this complicated bit of
718 * impedance-matching, to be able to hand off a suitably-aligned list,
719 * but still preserve the original offsets and sizes for the caller.
720 */
721int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
722 int nents, int prot)
723{
724 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 725 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
726 struct iova *iova;
727 struct scatterlist *s, *prev = NULL;
728 dma_addr_t dma_addr;
729 size_t iova_len = 0;
809eac54 730 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
731 int i;
732
733 /*
734 * Work out how much IOVA space we need, and align the segments to
735 * IOVA granules for the IOMMU driver to handle. With some clever
736 * trickery we can modify the list in-place, but reversibly, by
809eac54 737 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
738 */
739 for_each_sg(sg, s, nents, i) {
809eac54 740 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 741 size_t s_length = s->length;
809eac54 742 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 743
809eac54 744 sg_dma_address(s) = s_iova_off;
0db2e5d1 745 sg_dma_len(s) = s_length;
809eac54
RM
746 s->offset -= s_iova_off;
747 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
748 s->length = s_length;
749
750 /*
809eac54
RM
751 * Due to the alignment of our single IOVA allocation, we can
752 * depend on these assumptions about the segment boundary mask:
753 * - If mask size >= IOVA size, then the IOVA range cannot
754 * possibly fall across a boundary, so we don't care.
755 * - If mask size < IOVA size, then the IOVA range must start
756 * exactly on a boundary, therefore we can lay things out
757 * based purely on segment lengths without needing to know
758 * the actual addresses beforehand.
759 * - The mask must be a power of 2, so pad_len == 0 if
760 * iova_len == 0, thus we cannot dereference prev the first
761 * time through here (i.e. before it has a meaningful value).
0db2e5d1 762 */
809eac54 763 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
764 prev->length += pad_len;
765 iova_len += pad_len;
766 }
767
768 iova_len += s_length;
769 prev = s;
770 }
771
122fac03 772 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
773 if (!iova)
774 goto out_restore_sg;
775
776 /*
777 * We'll leave any physical concatenation to the IOMMU driver's
778 * implementation - it knows better than we do.
779 */
780 dma_addr = iova_dma_addr(iovad, iova);
781 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
782 goto out_free_iova;
783
784 return __finalise_sg(dev, sg, nents, dma_addr);
785
786out_free_iova:
787 __free_iova(iovad, iova);
788out_restore_sg:
789 __invalidate_sg(sg, nents);
790 return 0;
791}
792
793void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 794 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
795{
796 /*
797 * The scatterlist segments are mapped into a single
798 * contiguous IOVA allocation, so this is incredibly easy.
799 */
800 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
801}
802
51f8cc9e
RM
803dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
804 size_t size, enum dma_data_direction dir, unsigned long attrs)
805{
806 return __iommu_dma_map(dev, phys, size,
737c85ca 807 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
51f8cc9e
RM
808}
809
810void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
811 size_t size, enum dma_data_direction dir, unsigned long attrs)
812{
813 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
814}
815
0db2e5d1
RM
816int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
817{
818 return dma_addr == DMA_ERROR_CODE;
819}
44bb7e24
RM
820
821static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
822 phys_addr_t msi_addr, struct iommu_domain *domain)
823{
824 struct iommu_dma_cookie *cookie = domain->iova_cookie;
825 struct iommu_dma_msi_page *msi_page;
fdbe574e 826 struct iova_domain *iovad = cookie_iovad(domain);
44bb7e24
RM
827 struct iova *iova;
828 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 829 size_t size = cookie_msi_granule(cookie);
44bb7e24 830
fdbe574e 831 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
832 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
833 if (msi_page->phys == msi_addr)
834 return msi_page;
835
836 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
837 if (!msi_page)
838 return NULL;
839
44bb7e24 840 msi_page->phys = msi_addr;
fdbe574e 841 if (iovad) {
122fac03 842 iova = __alloc_iova(domain, size, dma_get_mask(dev), dev);
fdbe574e
RM
843 if (!iova)
844 goto out_free_page;
845 msi_page->iova = iova_dma_addr(iovad, iova);
846 } else {
847 msi_page->iova = cookie->msi_iova;
848 cookie->msi_iova += size;
849 }
850
851 if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
44bb7e24
RM
852 goto out_free_iova;
853
854 INIT_LIST_HEAD(&msi_page->list);
855 list_add(&msi_page->list, &cookie->msi_page_list);
856 return msi_page;
857
858out_free_iova:
fdbe574e
RM
859 if (iovad)
860 __free_iova(iovad, iova);
861 else
862 cookie->msi_iova -= size;
44bb7e24
RM
863out_free_page:
864 kfree(msi_page);
865 return NULL;
866}
867
868void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
869{
870 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
871 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
872 struct iommu_dma_cookie *cookie;
873 struct iommu_dma_msi_page *msi_page;
874 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
875 unsigned long flags;
876
877 if (!domain || !domain->iova_cookie)
878 return;
879
880 cookie = domain->iova_cookie;
881
882 /*
883 * We disable IRQs to rule out a possible inversion against
884 * irq_desc_lock if, say, someone tries to retarget the affinity
885 * of an MSI from within an IPI handler.
886 */
887 spin_lock_irqsave(&cookie->msi_lock, flags);
888 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
889 spin_unlock_irqrestore(&cookie->msi_lock, flags);
890
891 if (WARN_ON(!msi_page)) {
892 /*
893 * We're called from a void callback, so the best we can do is
894 * 'fail' by filling the message with obviously bogus values.
895 * Since we got this far due to an IOMMU being present, it's
896 * not like the existing address would have worked anyway...
897 */
898 msg->address_hi = ~0U;
899 msg->address_lo = ~0U;
900 msg->data = ~0U;
901 } else {
902 msg->address_hi = upper_32_bits(msi_page->iova);
fdbe574e 903 msg->address_lo &= cookie_msi_granule(cookie) - 1;
44bb7e24
RM
904 msg->address_lo += lower_32_bits(msi_page->iova);
905 }
906}