]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/iommu/dma-iommu.c
iommu/arm-smmu: Ensure that page-table updates are visible before TLBI
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
f51dc892 22#include <linux/acpi_iort.h>
0db2e5d1
RM
23#include <linux/device.h>
24#include <linux/dma-iommu.h>
5b11e9cd 25#include <linux/gfp.h>
0db2e5d1
RM
26#include <linux/huge_mm.h>
27#include <linux/iommu.h>
28#include <linux/iova.h>
44bb7e24 29#include <linux/irq.h>
0db2e5d1 30#include <linux/mm.h>
fade1ec0 31#include <linux/pci.h>
5b11e9cd
RM
32#include <linux/scatterlist.h>
33#include <linux/vmalloc.h>
0db2e5d1 34
81a5a316
CH
35#define IOMMU_MAPPING_ERROR 0
36
44bb7e24
RM
37struct iommu_dma_msi_page {
38 struct list_head list;
39 dma_addr_t iova;
40 phys_addr_t phys;
41};
42
fdbe574e
RM
43enum iommu_dma_cookie_type {
44 IOMMU_DMA_IOVA_COOKIE,
45 IOMMU_DMA_MSI_COOKIE,
46};
47
44bb7e24 48struct iommu_dma_cookie {
fdbe574e
RM
49 enum iommu_dma_cookie_type type;
50 union {
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct iova_domain iovad;
53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 dma_addr_t msi_iova;
55 };
56 struct list_head msi_page_list;
57 spinlock_t msi_lock;
44bb7e24
RM
58};
59
fdbe574e
RM
60static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
61{
62 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
63 return cookie->iovad.granule;
64 return PAGE_SIZE;
65}
66
fdbe574e
RM
67static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
68{
69 struct iommu_dma_cookie *cookie;
70
71 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
72 if (cookie) {
73 spin_lock_init(&cookie->msi_lock);
74 INIT_LIST_HEAD(&cookie->msi_page_list);
75 cookie->type = type;
76 }
77 return cookie;
44bb7e24
RM
78}
79
0db2e5d1
RM
80int iommu_dma_init(void)
81{
82 return iova_cache_get();
83}
84
85/**
86 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
87 * @domain: IOMMU domain to prepare for DMA-API usage
88 *
89 * IOMMU drivers should normally call this from their domain_alloc
90 * callback when domain->type == IOMMU_DOMAIN_DMA.
91 */
92int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
93{
94 if (domain->iova_cookie)
95 return -EEXIST;
96
97 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
98 if (!domain->iova_cookie)
99 return -ENOMEM;
100
101 return 0;
102}
103EXPORT_SYMBOL(iommu_get_dma_cookie);
104
105/**
106 * iommu_get_msi_cookie - Acquire just MSI remapping resources
107 * @domain: IOMMU domain to prepare
108 * @base: Start address of IOVA region for MSI mappings
109 *
110 * Users who manage their own IOVA allocation and do not want DMA API support,
111 * but would still like to take advantage of automatic MSI remapping, can use
112 * this to initialise their own domain appropriately. Users should reserve a
113 * contiguous IOVA region, starting at @base, large enough to accommodate the
114 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
115 * used by the devices attached to @domain.
116 */
117int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 118{
44bb7e24 119 struct iommu_dma_cookie *cookie;
0db2e5d1 120
fdbe574e
RM
121 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
122 return -EINVAL;
123
0db2e5d1
RM
124 if (domain->iova_cookie)
125 return -EEXIST;
126
fdbe574e 127 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
128 if (!cookie)
129 return -ENOMEM;
0db2e5d1 130
fdbe574e 131 cookie->msi_iova = base;
44bb7e24
RM
132 domain->iova_cookie = cookie;
133 return 0;
0db2e5d1 134}
fdbe574e 135EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
136
137/**
138 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
139 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
140 * iommu_get_msi_cookie()
0db2e5d1
RM
141 *
142 * IOMMU drivers should normally call this from their domain_free callback.
143 */
144void iommu_put_dma_cookie(struct iommu_domain *domain)
145{
44bb7e24
RM
146 struct iommu_dma_cookie *cookie = domain->iova_cookie;
147 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 148
44bb7e24 149 if (!cookie)
0db2e5d1
RM
150 return;
151
fdbe574e 152 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
153 put_iova_domain(&cookie->iovad);
154
155 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
156 list_del(&msi->list);
157 kfree(msi);
158 }
159 kfree(cookie);
0db2e5d1
RM
160 domain->iova_cookie = NULL;
161}
162EXPORT_SYMBOL(iommu_put_dma_cookie);
163
273df963
RM
164/**
165 * iommu_dma_get_resv_regions - Reserved region driver helper
166 * @dev: Device from iommu_get_resv_regions()
167 * @list: Reserved region list from iommu_get_resv_regions()
168 *
169 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
170 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
171 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
172 * reservation.
273df963
RM
173 */
174void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 175{
fade1ec0 176
cd2c9fcf
SK
177 if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
178 iort_iommu_msi_get_resv_regions(dev, list);
273df963 179
fade1ec0 180}
273df963 181EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 182
7c1b058c
RM
183static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
184 phys_addr_t start, phys_addr_t end)
185{
186 struct iova_domain *iovad = &cookie->iovad;
187 struct iommu_dma_msi_page *msi_page;
188 int i, num_pages;
189
190 start -= iova_offset(iovad, start);
191 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
192
193 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
194 if (!msi_page)
195 return -ENOMEM;
196
197 for (i = 0; i < num_pages; i++) {
198 msi_page[i].phys = start;
199 msi_page[i].iova = start;
200 INIT_LIST_HEAD(&msi_page[i].list);
201 list_add(&msi_page[i].list, &cookie->msi_page_list);
202 start += iovad->granule;
203 }
204
205 return 0;
206}
207
cd2c9fcf
SK
208static void iova_reserve_pci_windows(struct pci_dev *dev,
209 struct iova_domain *iovad)
210{
211 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
212 struct resource_entry *window;
213 unsigned long lo, hi;
214
215 resource_list_for_each_entry(window, &bridge->windows) {
216 if (resource_type(window->res) != IORESOURCE_MEM)
217 continue;
218
219 lo = iova_pfn(iovad, window->res->start - window->offset);
220 hi = iova_pfn(iovad, window->res->end - window->offset);
221 reserve_iova(iovad, lo, hi);
222 }
223}
224
7c1b058c
RM
225static int iova_reserve_iommu_regions(struct device *dev,
226 struct iommu_domain *domain)
227{
228 struct iommu_dma_cookie *cookie = domain->iova_cookie;
229 struct iova_domain *iovad = &cookie->iovad;
230 struct iommu_resv_region *region;
231 LIST_HEAD(resv_regions);
232 int ret = 0;
233
cd2c9fcf
SK
234 if (dev_is_pci(dev))
235 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
236
7c1b058c
RM
237 iommu_get_resv_regions(dev, &resv_regions);
238 list_for_each_entry(region, &resv_regions, list) {
239 unsigned long lo, hi;
240
241 /* We ARE the software that manages these! */
242 if (region->type == IOMMU_RESV_SW_MSI)
243 continue;
244
245 lo = iova_pfn(iovad, region->start);
246 hi = iova_pfn(iovad, region->start + region->length - 1);
247 reserve_iova(iovad, lo, hi);
248
249 if (region->type == IOMMU_RESV_MSI)
250 ret = cookie_init_hw_msi_region(cookie, region->start,
251 region->start + region->length);
252 if (ret)
253 break;
254 }
255 iommu_put_resv_regions(dev, &resv_regions);
256
257 return ret;
258}
259
0db2e5d1
RM
260/**
261 * iommu_dma_init_domain - Initialise a DMA mapping domain
262 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
263 * @base: IOVA at which the mappable address space starts
264 * @size: Size of IOVA space
fade1ec0 265 * @dev: Device the domain is being initialised for
0db2e5d1
RM
266 *
267 * @base and @size should be exact multiples of IOMMU page granularity to
268 * avoid rounding surprises. If necessary, we reserve the page at address 0
269 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
270 * any change which could make prior IOVAs invalid will fail.
271 */
fade1ec0
RM
272int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
273 u64 size, struct device *dev)
0db2e5d1 274{
fdbe574e
RM
275 struct iommu_dma_cookie *cookie = domain->iova_cookie;
276 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1
RM
277 unsigned long order, base_pfn, end_pfn;
278
fdbe574e
RM
279 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
280 return -EINVAL;
0db2e5d1
RM
281
282 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 283 order = __ffs(domain->pgsize_bitmap);
0db2e5d1
RM
284 base_pfn = max_t(unsigned long, 1, base >> order);
285 end_pfn = (base + size - 1) >> order;
286
287 /* Check the domain allows at least some access to the device... */
288 if (domain->geometry.force_aperture) {
289 if (base > domain->geometry.aperture_end ||
290 base + size <= domain->geometry.aperture_start) {
291 pr_warn("specified DMA range outside IOMMU capability\n");
292 return -EFAULT;
293 }
294 /* ...then finally give it a kicking to make sure it fits */
295 base_pfn = max_t(unsigned long, base_pfn,
296 domain->geometry.aperture_start >> order);
0db2e5d1
RM
297 }
298
f51d7bb7 299 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
300 if (iovad->start_pfn) {
301 if (1UL << order != iovad->granule ||
f51d7bb7 302 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
303 pr_warn("Incompatible range for DMA domain\n");
304 return -EFAULT;
305 }
7c1b058c
RM
306
307 return 0;
0db2e5d1 308 }
7c1b058c 309
aa3ac946 310 init_iova_domain(iovad, 1UL << order, base_pfn);
7c1b058c
RM
311 if (!dev)
312 return 0;
313
314 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1
RM
315}
316EXPORT_SYMBOL(iommu_dma_init_domain);
317
318/**
737c85ca
MH
319 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
320 * page flags.
0db2e5d1
RM
321 * @dir: Direction of DMA transfer
322 * @coherent: Is the DMA master cache-coherent?
737c85ca 323 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
324 *
325 * Return: corresponding IOMMU API page protection flags
326 */
737c85ca
MH
327int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
328 unsigned long attrs)
0db2e5d1
RM
329{
330 int prot = coherent ? IOMMU_CACHE : 0;
331
737c85ca
MH
332 if (attrs & DMA_ATTR_PRIVILEGED)
333 prot |= IOMMU_PRIV;
334
0db2e5d1
RM
335 switch (dir) {
336 case DMA_BIDIRECTIONAL:
337 return prot | IOMMU_READ | IOMMU_WRITE;
338 case DMA_TO_DEVICE:
339 return prot | IOMMU_READ;
340 case DMA_FROM_DEVICE:
341 return prot | IOMMU_WRITE;
342 default:
343 return 0;
344 }
345}
346
842fe519
RM
347static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
348 size_t size, dma_addr_t dma_limit, struct device *dev)
0db2e5d1 349{
a44e6657
RM
350 struct iommu_dma_cookie *cookie = domain->iova_cookie;
351 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 352 unsigned long shift, iova_len, iova = 0;
0db2e5d1 353
a44e6657
RM
354 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
355 cookie->msi_iova += size;
356 return cookie->msi_iova - size;
357 }
358
359 shift = iova_shift(iovad);
360 iova_len = size >> shift;
bb65a64c
RM
361 /*
362 * Freeing non-power-of-two-sized allocations back into the IOVA caches
363 * will come back to bite us badly, so we have to waste a bit of space
364 * rounding up anything cacheable to make sure that can't happen. The
365 * order of the unadjusted size will still match upon freeing.
366 */
367 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
368 iova_len = roundup_pow_of_two(iova_len);
a44e6657 369
03bfdc31
RM
370 if (dev->bus_dma_mask)
371 dma_limit &= dev->bus_dma_mask;
372
c987ff0d
RM
373 if (domain->geometry.force_aperture)
374 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
375
376 /* Try to get PCI devices a SAC address */
377 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
538d5b33
TN
378 iova = alloc_iova_fast(iovad, iova_len,
379 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 380
122fac03 381 if (!iova)
538d5b33
TN
382 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
383 true);
122fac03 384
bb65a64c 385 return (dma_addr_t)iova << shift;
0db2e5d1
RM
386}
387
842fe519
RM
388static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
389 dma_addr_t iova, size_t size)
0db2e5d1 390{
842fe519 391 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 392
a44e6657 393 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 394 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 395 cookie->msi_iova -= size;
bb65a64c 396 else
1cc896ed
RM
397 free_iova_fast(iovad, iova_pfn(iovad, iova),
398 size >> iova_shift(iovad));
842fe519
RM
399}
400
401static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
402 size_t size)
403{
a44e6657
RM
404 struct iommu_dma_cookie *cookie = domain->iova_cookie;
405 struct iova_domain *iovad = &cookie->iovad;
842fe519
RM
406 size_t iova_off = iova_offset(iovad, dma_addr);
407
408 dma_addr -= iova_off;
409 size = iova_align(iovad, size + iova_off);
410
411 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
a44e6657 412 iommu_dma_free_iova(cookie, dma_addr, size);
0db2e5d1
RM
413}
414
415static void __iommu_dma_free_pages(struct page **pages, int count)
416{
417 while (count--)
418 __free_page(pages[count]);
419 kvfree(pages);
420}
421
3b6b7e19
RM
422static struct page **__iommu_dma_alloc_pages(unsigned int count,
423 unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
424{
425 struct page **pages;
426 unsigned int i = 0, array_size = count * sizeof(*pages);
3b6b7e19
RM
427
428 order_mask &= (2U << MAX_ORDER) - 1;
429 if (!order_mask)
430 return NULL;
0db2e5d1
RM
431
432 if (array_size <= PAGE_SIZE)
433 pages = kzalloc(array_size, GFP_KERNEL);
434 else
435 pages = vzalloc(array_size);
436 if (!pages)
437 return NULL;
438
439 /* IOMMU can map any pages, so himem can also be used here */
440 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
441
442 while (count) {
443 struct page *page = NULL;
3b6b7e19 444 unsigned int order_size;
0db2e5d1
RM
445
446 /*
447 * Higher-order allocations are a convenience rather
448 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 449 * falling back to minimum-order allocations.
0db2e5d1 450 */
3b6b7e19
RM
451 for (order_mask &= (2U << __fls(count)) - 1;
452 order_mask; order_mask &= ~order_size) {
453 unsigned int order = __fls(order_mask);
454
455 order_size = 1U << order;
456 page = alloc_pages((order_mask - order_size) ?
457 gfp | __GFP_NORETRY : gfp, order);
0db2e5d1
RM
458 if (!page)
459 continue;
3b6b7e19
RM
460 if (!order)
461 break;
462 if (!PageCompound(page)) {
0db2e5d1
RM
463 split_page(page, order);
464 break;
3b6b7e19
RM
465 } else if (!split_huge_page(page)) {
466 break;
0db2e5d1 467 }
3b6b7e19 468 __free_pages(page, order);
0db2e5d1 469 }
0db2e5d1
RM
470 if (!page) {
471 __iommu_dma_free_pages(pages, i);
472 return NULL;
473 }
3b6b7e19
RM
474 count -= order_size;
475 while (order_size--)
0db2e5d1
RM
476 pages[i++] = page++;
477 }
478 return pages;
479}
480
481/**
482 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
483 * @dev: Device which owns this buffer
484 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
485 * @size: Size of buffer in bytes
486 * @handle: DMA address of buffer
487 *
488 * Frees both the pages associated with the buffer, and the array
489 * describing them
490 */
491void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
492 dma_addr_t *handle)
493{
842fe519 494 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
0db2e5d1 495 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
81a5a316 496 *handle = IOMMU_MAPPING_ERROR;
0db2e5d1
RM
497}
498
499/**
500 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
501 * @dev: Device to allocate memory for. Must be a real device
502 * attached to an iommu_dma_domain
503 * @size: Size of buffer in bytes
504 * @gfp: Allocation flags
3b6b7e19 505 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
506 * @prot: IOMMU mapping flags
507 * @handle: Out argument for allocated DMA handle
508 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
509 * given VA/PA are visible to the given non-coherent device.
510 *
511 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
512 * but an IOMMU which supports smaller pages might not map the whole thing.
513 *
514 * Return: Array of struct page pointers describing the buffer,
515 * or NULL on failure.
516 */
3b6b7e19 517struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
00085f1e 518 unsigned long attrs, int prot, dma_addr_t *handle,
0db2e5d1
RM
519 void (*flush_page)(struct device *, const void *, phys_addr_t))
520{
521 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
842fe519
RM
522 struct iommu_dma_cookie *cookie = domain->iova_cookie;
523 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1
RM
524 struct page **pages;
525 struct sg_table sgt;
842fe519 526 dma_addr_t iova;
3b6b7e19 527 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1 528
81a5a316 529 *handle = IOMMU_MAPPING_ERROR;
0db2e5d1 530
3b6b7e19
RM
531 min_size = alloc_sizes & -alloc_sizes;
532 if (min_size < PAGE_SIZE) {
533 min_size = PAGE_SIZE;
534 alloc_sizes |= PAGE_SIZE;
535 } else {
536 size = ALIGN(size, min_size);
537 }
00085f1e 538 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
539 alloc_sizes = min_size;
540
541 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
542 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
0db2e5d1
RM
543 if (!pages)
544 return NULL;
545
842fe519
RM
546 size = iova_align(iovad, size);
547 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
548 if (!iova)
549 goto out_free_pages;
550
0db2e5d1
RM
551 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
552 goto out_free_iova;
553
554 if (!(prot & IOMMU_CACHE)) {
555 struct sg_mapping_iter miter;
556 /*
557 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
558 * sufficient here, so skip it by using the "wrong" direction.
559 */
560 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
561 while (sg_miter_next(&miter))
562 flush_page(dev, miter.addr, page_to_phys(miter.page));
563 sg_miter_stop(&miter);
564 }
565
842fe519 566 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
0db2e5d1
RM
567 < size)
568 goto out_free_sg;
569
842fe519 570 *handle = iova;
0db2e5d1
RM
571 sg_free_table(&sgt);
572 return pages;
573
574out_free_sg:
575 sg_free_table(&sgt);
576out_free_iova:
842fe519 577 iommu_dma_free_iova(cookie, iova, size);
0db2e5d1
RM
578out_free_pages:
579 __iommu_dma_free_pages(pages, count);
580 return NULL;
581}
582
583/**
584 * iommu_dma_mmap - Map a buffer into provided user VMA
585 * @pages: Array representing buffer from iommu_dma_alloc()
586 * @size: Size of buffer in bytes
587 * @vma: VMA describing requested userspace mapping
588 *
589 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
590 * for verifying the correct size and protection of @vma beforehand.
591 */
592
593int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
594{
595 unsigned long uaddr = vma->vm_start;
596 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 int ret = -ENXIO;
598
599 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
600 ret = vm_insert_page(vma, uaddr, pages[i]);
601 if (ret)
602 break;
603 uaddr += PAGE_SIZE;
604 }
605 return ret;
606}
607
51f8cc9e
RM
608static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
609 size_t size, int prot)
0db2e5d1 610{
0db2e5d1 611 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
842fe519 612 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1cc896ed 613 size_t iova_off = 0;
842fe519 614 dma_addr_t iova;
0db2e5d1 615
1cc896ed
RM
616 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
617 iova_off = iova_offset(&cookie->iovad, phys);
618 size = iova_align(&cookie->iovad, size + iova_off);
619 }
620
842fe519 621 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
0db2e5d1 622 if (!iova)
81a5a316 623 return IOMMU_MAPPING_ERROR;
0db2e5d1 624
842fe519
RM
625 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
626 iommu_dma_free_iova(cookie, iova, size);
81a5a316 627 return IOMMU_MAPPING_ERROR;
0db2e5d1 628 }
842fe519 629 return iova + iova_off;
0db2e5d1
RM
630}
631
51f8cc9e
RM
632dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
633 unsigned long offset, size_t size, int prot)
634{
635 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
636}
637
0db2e5d1 638void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
00085f1e 639 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 640{
842fe519 641 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
0db2e5d1
RM
642}
643
644/*
645 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
646 *
647 * At this point the segments are already laid out by iommu_dma_map_sg() to
648 * avoid individually crossing any boundaries, so we merely need to check a
649 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
650 */
651static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
652 dma_addr_t dma_addr)
653{
809eac54
RM
654 struct scatterlist *s, *cur = sg;
655 unsigned long seg_mask = dma_get_seg_boundary(dev);
656 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
657 int i, count = 0;
0db2e5d1
RM
658
659 for_each_sg(sg, s, nents, i) {
809eac54
RM
660 /* Restore this segment's original unaligned fields first */
661 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 662 unsigned int s_length = sg_dma_len(s);
809eac54 663 unsigned int s_iova_len = s->length;
0db2e5d1 664
809eac54 665 s->offset += s_iova_off;
0db2e5d1 666 s->length = s_length;
81a5a316 667 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
809eac54
RM
668 sg_dma_len(s) = 0;
669
670 /*
671 * Now fill in the real DMA data. If...
672 * - there is a valid output segment to append to
673 * - and this segment starts on an IOVA page boundary
674 * - but doesn't fall at a segment boundary
675 * - and wouldn't make the resulting output segment too long
676 */
677 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
678 (cur_len + s_length <= max_len)) {
679 /* ...then concatenate it with the previous one */
680 cur_len += s_length;
681 } else {
682 /* Otherwise start the next output segment */
683 if (i > 0)
684 cur = sg_next(cur);
685 cur_len = s_length;
686 count++;
687
688 sg_dma_address(cur) = dma_addr + s_iova_off;
689 }
690
691 sg_dma_len(cur) = cur_len;
692 dma_addr += s_iova_len;
693
694 if (s_length + s_iova_off < s_iova_len)
695 cur_len = 0;
0db2e5d1 696 }
809eac54 697 return count;
0db2e5d1
RM
698}
699
700/*
701 * If mapping failed, then just restore the original list,
702 * but making sure the DMA fields are invalidated.
703 */
704static void __invalidate_sg(struct scatterlist *sg, int nents)
705{
706 struct scatterlist *s;
707 int i;
708
709 for_each_sg(sg, s, nents, i) {
81a5a316 710 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
07b48ac4 711 s->offset += sg_dma_address(s);
0db2e5d1
RM
712 if (sg_dma_len(s))
713 s->length = sg_dma_len(s);
81a5a316 714 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
0db2e5d1
RM
715 sg_dma_len(s) = 0;
716 }
717}
718
719/*
720 * The DMA API client is passing in a scatterlist which could describe
721 * any old buffer layout, but the IOMMU API requires everything to be
722 * aligned to IOMMU pages. Hence the need for this complicated bit of
723 * impedance-matching, to be able to hand off a suitably-aligned list,
724 * but still preserve the original offsets and sizes for the caller.
725 */
726int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
727 int nents, int prot)
728{
729 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
842fe519
RM
730 struct iommu_dma_cookie *cookie = domain->iova_cookie;
731 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 732 struct scatterlist *s, *prev = NULL;
842fe519 733 dma_addr_t iova;
0db2e5d1 734 size_t iova_len = 0;
809eac54 735 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
736 int i;
737
738 /*
739 * Work out how much IOVA space we need, and align the segments to
740 * IOVA granules for the IOMMU driver to handle. With some clever
741 * trickery we can modify the list in-place, but reversibly, by
809eac54 742 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
743 */
744 for_each_sg(sg, s, nents, i) {
809eac54 745 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 746 size_t s_length = s->length;
809eac54 747 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 748
809eac54 749 sg_dma_address(s) = s_iova_off;
0db2e5d1 750 sg_dma_len(s) = s_length;
809eac54
RM
751 s->offset -= s_iova_off;
752 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
753 s->length = s_length;
754
755 /*
809eac54
RM
756 * Due to the alignment of our single IOVA allocation, we can
757 * depend on these assumptions about the segment boundary mask:
758 * - If mask size >= IOVA size, then the IOVA range cannot
759 * possibly fall across a boundary, so we don't care.
760 * - If mask size < IOVA size, then the IOVA range must start
761 * exactly on a boundary, therefore we can lay things out
762 * based purely on segment lengths without needing to know
763 * the actual addresses beforehand.
764 * - The mask must be a power of 2, so pad_len == 0 if
765 * iova_len == 0, thus we cannot dereference prev the first
766 * time through here (i.e. before it has a meaningful value).
0db2e5d1 767 */
809eac54 768 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
769 prev->length += pad_len;
770 iova_len += pad_len;
771 }
772
773 iova_len += s_length;
774 prev = s;
775 }
776
842fe519 777 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
778 if (!iova)
779 goto out_restore_sg;
780
781 /*
782 * We'll leave any physical concatenation to the IOMMU driver's
783 * implementation - it knows better than we do.
784 */
842fe519 785 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
786 goto out_free_iova;
787
842fe519 788 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
789
790out_free_iova:
842fe519 791 iommu_dma_free_iova(cookie, iova, iova_len);
0db2e5d1
RM
792out_restore_sg:
793 __invalidate_sg(sg, nents);
794 return 0;
795}
796
797void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 798 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 799{
842fe519
RM
800 dma_addr_t start, end;
801 struct scatterlist *tmp;
802 int i;
0db2e5d1
RM
803 /*
804 * The scatterlist segments are mapped into a single
805 * contiguous IOVA allocation, so this is incredibly easy.
806 */
842fe519
RM
807 start = sg_dma_address(sg);
808 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
809 if (sg_dma_len(tmp) == 0)
810 break;
811 sg = tmp;
812 }
813 end = sg_dma_address(sg) + sg_dma_len(sg);
814 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
0db2e5d1
RM
815}
816
51f8cc9e
RM
817dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
818 size_t size, enum dma_data_direction dir, unsigned long attrs)
819{
820 return __iommu_dma_map(dev, phys, size,
737c85ca 821 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
51f8cc9e
RM
822}
823
824void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
825 size_t size, enum dma_data_direction dir, unsigned long attrs)
826{
842fe519 827 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
51f8cc9e
RM
828}
829
0db2e5d1
RM
830int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
831{
81a5a316 832 return dma_addr == IOMMU_MAPPING_ERROR;
0db2e5d1 833}
44bb7e24
RM
834
835static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
836 phys_addr_t msi_addr, struct iommu_domain *domain)
837{
838 struct iommu_dma_cookie *cookie = domain->iova_cookie;
839 struct iommu_dma_msi_page *msi_page;
842fe519 840 dma_addr_t iova;
44bb7e24 841 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 842 size_t size = cookie_msi_granule(cookie);
44bb7e24 843
fdbe574e 844 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
845 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
846 if (msi_page->phys == msi_addr)
847 return msi_page;
848
849 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
850 if (!msi_page)
851 return NULL;
852
a44e6657
RM
853 iova = __iommu_dma_map(dev, msi_addr, size, prot);
854 if (iommu_dma_mapping_error(dev, iova))
855 goto out_free_page;
44bb7e24
RM
856
857 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
858 msi_page->phys = msi_addr;
859 msi_page->iova = iova;
44bb7e24
RM
860 list_add(&msi_page->list, &cookie->msi_page_list);
861 return msi_page;
862
44bb7e24
RM
863out_free_page:
864 kfree(msi_page);
865 return NULL;
866}
867
868void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
869{
870 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
871 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
872 struct iommu_dma_cookie *cookie;
873 struct iommu_dma_msi_page *msi_page;
874 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
875 unsigned long flags;
876
877 if (!domain || !domain->iova_cookie)
878 return;
879
880 cookie = domain->iova_cookie;
881
882 /*
883 * We disable IRQs to rule out a possible inversion against
884 * irq_desc_lock if, say, someone tries to retarget the affinity
885 * of an MSI from within an IPI handler.
886 */
887 spin_lock_irqsave(&cookie->msi_lock, flags);
888 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
889 spin_unlock_irqrestore(&cookie->msi_lock, flags);
890
891 if (WARN_ON(!msi_page)) {
892 /*
893 * We're called from a void callback, so the best we can do is
894 * 'fail' by filling the message with obviously bogus values.
895 * Since we got this far due to an IOMMU being present, it's
896 * not like the existing address would have worked anyway...
897 */
898 msg->address_hi = ~0U;
899 msg->address_lo = ~0U;
900 msg->data = ~0U;
901 } else {
902 msg->address_hi = upper_32_bits(msi_page->iova);
fdbe574e 903 msg->address_lo &= cookie_msi_granule(cookie) - 1;
44bb7e24
RM
904 msg->address_lo += lower_32_bits(msi_page->iova);
905 }
906}