]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/iommu/intel-iommu.c
Merge tag 'cris-for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/jesper...
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel-iommu.c
CommitLineData
ba395927 1/*
ea8ea460 2 * Copyright © 2006-2014 Intel Corporation.
ba395927
KA
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
ea8ea460
DW
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
9f10e5bf 18 * Joerg Roedel <jroedel@suse.de>
ba395927
KA
19 */
20
9f10e5bf
JR
21#define pr_fmt(fmt) "DMAR: " fmt
22
ba395927
KA
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
54485c30 26#include <linux/export.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
75f05569 35#include <linux/memory.h>
aa473240 36#include <linux/cpu.h>
5e0d2a6f 37#include <linux/timer.h>
dfddb969 38#include <linux/io.h>
38717946 39#include <linux/iova.h>
5d450806 40#include <linux/iommu.h>
38717946 41#include <linux/intel-iommu.h>
134fac3f 42#include <linux/syscore_ops.h>
69575d38 43#include <linux/tboot.h>
adb2fe02 44#include <linux/dmi.h>
5cdede24 45#include <linux/pci-ats.h>
0ee332c1 46#include <linux/memblock.h>
36746436 47#include <linux/dma-contiguous.h>
091d42e4 48#include <linux/crash_dump.h>
8a8f422d 49#include <asm/irq_remapping.h>
ba395927 50#include <asm/cacheflush.h>
46a7fa27 51#include <asm/iommu.h>
ba395927 52
078e1ee2
JR
53#include "irq_remapping.h"
54
5b6985ce
FY
55#define ROOT_SIZE VTD_PAGE_SIZE
56#define CONTEXT_SIZE VTD_PAGE_SIZE
57
ba395927 58#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
18436afd 59#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
ba395927 60#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
e0fc7e0b 61#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
ba395927
KA
62
63#define IOAPIC_RANGE_START (0xfee00000)
64#define IOAPIC_RANGE_END (0xfeefffff)
65#define IOVA_START_ADDR (0x1000)
66
67#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
4ed0d3e6 69#define MAX_AGAW_WIDTH 64
5c645b35 70#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
4ed0d3e6 71
2ebe3151
DW
72#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
ba395927 80
1b722500
RM
81/* IO virtual address start page frame number */
82#define IOVA_START_PFN (1)
83
f27be03b 84#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 85#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 86#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 87
df08cdc7
AM
88/* page table handling */
89#define LEVEL_STRIDE (9)
90#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
6d1c56a9
OBC
92/*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
df08cdc7
AM
110static inline int agaw_to_level(int agaw)
111{
112 return agaw + 2;
113}
114
115static inline int agaw_to_width(int agaw)
116{
5c645b35 117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
df08cdc7
AM
118}
119
120static inline int width_to_agaw(int width)
121{
5c645b35 122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
df08cdc7
AM
123}
124
125static inline unsigned int level_to_offset_bits(int level)
126{
127 return (level - 1) * LEVEL_STRIDE;
128}
129
130static inline int pfn_level_offset(unsigned long pfn, int level)
131{
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133}
134
135static inline unsigned long level_mask(int level)
136{
137 return -1UL << level_to_offset_bits(level);
138}
139
140static inline unsigned long level_size(int level)
141{
142 return 1UL << level_to_offset_bits(level);
143}
144
145static inline unsigned long align_to_level(unsigned long pfn, int level)
146{
147 return (pfn + level_size(level) - 1) & level_mask(level);
148}
fd18de50 149
6dd9a7c7
YS
150static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151{
5c645b35 152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
6dd9a7c7
YS
153}
154
dd4e8319
DW
155/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158{
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160}
161
162static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163{
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165}
166static inline unsigned long page_to_dma_pfn(struct page *pg)
167{
168 return mm_to_dma_pfn(page_to_pfn(pg));
169}
170static inline unsigned long virt_to_dma_pfn(void *p)
171{
172 return page_to_dma_pfn(virt_to_page(p));
173}
174
d9630fe9
WH
175/* global iommu list, set NULL for ignored DMAR units */
176static struct intel_iommu **g_iommus;
177
e0fc7e0b 178static void __init check_tylersburg_isoch(void);
9af88143
DW
179static int rwbf_quirk;
180
b779260b
JC
181/*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185static int force_on = 0;
186
46b08e1a
MM
187/*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193struct root_entry {
03ecc32c
DW
194 u64 lo;
195 u64 hi;
46b08e1a
MM
196};
197#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
46b08e1a 198
091d42e4
JR
199/*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203static phys_addr_t root_entry_lctp(struct root_entry *re)
204{
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209}
210
211/*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215static phys_addr_t root_entry_uctp(struct root_entry *re)
216{
217 if (!(re->hi & 1))
218 return 0;
46b08e1a 219
091d42e4
JR
220 return re->hi & VTD_PAGE_MASK;
221}
7a8fc25e
MM
222/*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233struct context_entry {
234 u64 lo;
235 u64 hi;
236};
c07e7d21 237
cf484d0e
JR
238static inline void context_clear_pasid_enable(struct context_entry *context)
239{
240 context->lo &= ~(1ULL << 11);
241}
242
243static inline bool context_pasid_enabled(struct context_entry *context)
244{
245 return !!(context->lo & (1ULL << 11));
246}
247
248static inline void context_set_copied(struct context_entry *context)
249{
250 context->hi |= (1ull << 3);
251}
252
253static inline bool context_copied(struct context_entry *context)
254{
255 return !!(context->hi & (1ULL << 3));
256}
257
258static inline bool __context_present(struct context_entry *context)
c07e7d21
MM
259{
260 return (context->lo & 1);
261}
cf484d0e
JR
262
263static inline bool context_present(struct context_entry *context)
264{
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268}
269
c07e7d21
MM
270static inline void context_set_present(struct context_entry *context)
271{
272 context->lo |= 1;
273}
274
275static inline void context_set_fault_enable(struct context_entry *context)
276{
277 context->lo &= (((u64)-1) << 2) | 1;
278}
279
c07e7d21
MM
280static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282{
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285}
286
287static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289{
1a2262f9 290 context->lo &= ~VTD_PAGE_MASK;
c07e7d21
MM
291 context->lo |= value & VTD_PAGE_MASK;
292}
293
294static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296{
297 context->hi |= value & 7;
298}
299
300static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302{
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304}
305
dbcd861f
JR
306static inline int context_domain_id(struct context_entry *c)
307{
308 return((c->hi >> 8) & 0xffff);
309}
310
c07e7d21
MM
311static inline void context_clear_entry(struct context_entry *context)
312{
313 context->lo = 0;
314 context->hi = 0;
315}
7a8fc25e 316
622ba12a
MM
317/*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
9cf06697
SY
322 * 8-10: available
323 * 11: snoop behavior
622ba12a
MM
324 * 12-63: Host physcial address
325 */
326struct dma_pte {
327 u64 val;
328};
622ba12a 329
19c239ce
MM
330static inline void dma_clear_pte(struct dma_pte *pte)
331{
332 pte->val = 0;
333}
334
19c239ce
MM
335static inline u64 dma_pte_addr(struct dma_pte *pte)
336{
c85994e4
DW
337#ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339#else
340 /* Must have a full atomic 64-bit read */
1a8bd481 341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
c85994e4 342#endif
19c239ce
MM
343}
344
19c239ce
MM
345static inline bool dma_pte_present(struct dma_pte *pte)
346{
347 return (pte->val & 3) != 0;
348}
622ba12a 349
4399c8bf
AK
350static inline bool dma_pte_superpage(struct dma_pte *pte)
351{
c3c75eb7 352 return (pte->val & DMA_PTE_LARGE_PAGE);
4399c8bf
AK
353}
354
75e6bf96
DW
355static inline int first_pte_in_page(struct dma_pte *pte)
356{
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358}
359
2c2e2c38
FY
360/*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
19943b0e
DW
366static struct dmar_domain *si_domain;
367static int hw_pass_through = 1;
2c2e2c38 368
28ccce0d
JR
369/*
370 * Domain represents a virtual machine, more than one devices
1ce28feb
WH
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
ab8dfe25 373#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
1ce28feb 374
2c2e2c38 375/* si_domain contains mulitple devices */
ab8dfe25 376#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
2c2e2c38 377
29a27719
JR
378#define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
99126f7c 382struct dmar_domain {
4c923d47 383 int nid; /* node id */
29a27719
JR
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
99126f7c 388
c0e8a6c8
JR
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
99126f7c 393
0824c592 394 bool has_iotlb_device;
00a77deb 395 struct list_head devices; /* all devices' list */
99126f7c
MM
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
3b5410e7 404 int flags; /* flags to find out type of domain */
8e604097
WH
405
406 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 407 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d 408 int iommu_count; /* reference count of iommu */
6dd9a7c7
YS
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
fe40f1e0 412 u64 max_addr; /* maximum mapped address */
00a77deb
JR
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
99126f7c
MM
416};
417
a647dacb
MM
418/* PCI domain-device relationship */
419struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
276dbf99 422 u8 bus; /* PCI bus number */
a647dacb 423 u8 devfn; /* PCI devfn number */
b16d0cb9
DW
424 u8 pasid_supported:3;
425 u8 pasid_enabled:1;
426 u8 pri_supported:1;
427 u8 pri_enabled:1;
428 u8 ats_supported:1;
429 u8 ats_enabled:1;
430 u8 ats_qdep;
0bcb3e28 431 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
93a23a72 432 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
433 struct dmar_domain *domain; /* pointer to domain */
434};
435
b94e4117
JL
436struct dmar_rmrr_unit {
437 struct list_head list; /* list of rmrr units */
438 struct acpi_dmar_header *hdr; /* ACPI header */
439 u64 base_address; /* reserved base address*/
440 u64 end_address; /* reserved end address */
832bd858 441 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
442 int devices_cnt; /* target device count */
443};
444
445struct dmar_atsr_unit {
446 struct list_head list; /* list of ATSR units */
447 struct acpi_dmar_header *hdr; /* ACPI header */
832bd858 448 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
449 int devices_cnt; /* target device count */
450 u8 include_all:1; /* include all ports */
451};
452
453static LIST_HEAD(dmar_atsr_units);
454static LIST_HEAD(dmar_rmrr_units);
455
456#define for_each_rmrr_units(rmrr) \
457 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
5e0d2a6f 459static void flush_unmaps_timeout(unsigned long data);
460
314f1dc1 461struct deferred_flush_entry {
2aac6304 462 unsigned long iova_pfn;
769530e4 463 unsigned long nrpages;
314f1dc1
OP
464 struct dmar_domain *domain;
465 struct page *freelist;
466};
5e0d2a6f 467
80b20dd8 468#define HIGH_WATER_MARK 250
314f1dc1 469struct deferred_flush_table {
80b20dd8 470 int next;
314f1dc1 471 struct deferred_flush_entry entries[HIGH_WATER_MARK];
80b20dd8 472};
473
aa473240
OP
474struct deferred_flush_data {
475 spinlock_t lock;
476 int timer_on;
477 struct timer_list timer;
478 long size;
479 struct deferred_flush_table *tables;
80b20dd8 480};
481
aa473240 482DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
80b20dd8 483
5e0d2a6f 484/* bitmap for indexing intel_iommus */
5e0d2a6f 485static int g_num_of_iommus;
486
92d03cc8 487static void domain_exit(struct dmar_domain *domain);
ba395927 488static void domain_remove_dev_info(struct dmar_domain *domain);
e6de0f8d
JR
489static void dmar_remove_one_dev_info(struct dmar_domain *domain,
490 struct device *dev);
127c7615 491static void __dmar_remove_one_dev_info(struct device_domain_info *info);
2452d9db
JR
492static void domain_context_clear(struct intel_iommu *iommu,
493 struct device *dev);
2a46ddf7
JL
494static int domain_detach_iommu(struct dmar_domain *domain,
495 struct intel_iommu *iommu);
ba395927 496
d3f13810 497#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
0cd5c3c8
KM
498int dmar_disabled = 0;
499#else
500int dmar_disabled = 1;
d3f13810 501#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
0cd5c3c8 502
8bc1f85c
ED
503int intel_iommu_enabled = 0;
504EXPORT_SYMBOL_GPL(intel_iommu_enabled);
505
2d9e667e 506static int dmar_map_gfx = 1;
7d3b03ce 507static int dmar_forcedac;
5e0d2a6f 508static int intel_iommu_strict;
6dd9a7c7 509static int intel_iommu_superpage = 1;
c83b2f20 510static int intel_iommu_ecs = 1;
ae853ddb
DW
511static int intel_iommu_pasid28;
512static int iommu_identity_mapping;
c83b2f20 513
ae853ddb
DW
514#define IDENTMAP_ALL 1
515#define IDENTMAP_GFX 2
516#define IDENTMAP_AZALIA 4
c83b2f20 517
d42fde70
DW
518/* Broadwell and Skylake have broken ECS support — normal so-called "second
519 * level" translation of DMA requests-without-PASID doesn't actually happen
520 * unless you also set the NESTE bit in an extended context-entry. Which of
521 * course means that SVM doesn't work because it's trying to do nested
522 * translation of the physical addresses it finds in the process page tables,
523 * through the IOVA->phys mapping found in the "second level" page tables.
524 *
525 * The VT-d specification was retroactively changed to change the definition
526 * of the capability bits and pretend that Broadwell/Skylake never happened...
527 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
528 * for some reason it was the PASID capability bit which was redefined (from
529 * bit 28 on BDW/SKL to bit 40 in future).
530 *
531 * So our test for ECS needs to eschew those implementations which set the old
532 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
533 * Unless we are working around the 'pasid28' limitations, that is, by putting
534 * the device into passthrough mode for normal DMA and thus masking the bug.
535 */
c83b2f20 536#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
d42fde70
DW
537 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
538/* PASID support is thus enabled if ECS is enabled and *either* of the old
539 * or new capability bits are set. */
540#define pasid_enabled(iommu) (ecs_enabled(iommu) && \
541 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
ba395927 542
c0771df8
DW
543int intel_iommu_gfx_mapped;
544EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
545
ba395927
KA
546#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
547static DEFINE_SPINLOCK(device_domain_lock);
548static LIST_HEAD(device_domain_list);
549
b22f6434 550static const struct iommu_ops intel_iommu_ops;
a8bcbb0d 551
4158c2ec
JR
552static bool translation_pre_enabled(struct intel_iommu *iommu)
553{
554 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
555}
556
091d42e4
JR
557static void clear_translation_pre_enabled(struct intel_iommu *iommu)
558{
559 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
560}
561
4158c2ec
JR
562static void init_translation_status(struct intel_iommu *iommu)
563{
564 u32 gsts;
565
566 gsts = readl(iommu->reg + DMAR_GSTS_REG);
567 if (gsts & DMA_GSTS_TES)
568 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
569}
570
00a77deb
JR
571/* Convert generic 'struct iommu_domain to private struct dmar_domain */
572static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
573{
574 return container_of(dom, struct dmar_domain, domain);
575}
576
ba395927
KA
577static int __init intel_iommu_setup(char *str)
578{
579 if (!str)
580 return -EINVAL;
581 while (*str) {
0cd5c3c8
KM
582 if (!strncmp(str, "on", 2)) {
583 dmar_disabled = 0;
9f10e5bf 584 pr_info("IOMMU enabled\n");
0cd5c3c8 585 } else if (!strncmp(str, "off", 3)) {
ba395927 586 dmar_disabled = 1;
9f10e5bf 587 pr_info("IOMMU disabled\n");
ba395927
KA
588 } else if (!strncmp(str, "igfx_off", 8)) {
589 dmar_map_gfx = 0;
9f10e5bf 590 pr_info("Disable GFX device mapping\n");
7d3b03ce 591 } else if (!strncmp(str, "forcedac", 8)) {
9f10e5bf 592 pr_info("Forcing DAC for PCI devices\n");
7d3b03ce 593 dmar_forcedac = 1;
5e0d2a6f 594 } else if (!strncmp(str, "strict", 6)) {
9f10e5bf 595 pr_info("Disable batched IOTLB flush\n");
5e0d2a6f 596 intel_iommu_strict = 1;
6dd9a7c7 597 } else if (!strncmp(str, "sp_off", 6)) {
9f10e5bf 598 pr_info("Disable supported super page\n");
6dd9a7c7 599 intel_iommu_superpage = 0;
c83b2f20
DW
600 } else if (!strncmp(str, "ecs_off", 7)) {
601 printk(KERN_INFO
602 "Intel-IOMMU: disable extended context table support\n");
603 intel_iommu_ecs = 0;
ae853ddb
DW
604 } else if (!strncmp(str, "pasid28", 7)) {
605 printk(KERN_INFO
606 "Intel-IOMMU: enable pre-production PASID support\n");
607 intel_iommu_pasid28 = 1;
608 iommu_identity_mapping |= IDENTMAP_GFX;
ba395927
KA
609 }
610
611 str += strcspn(str, ",");
612 while (*str == ',')
613 str++;
614 }
615 return 0;
616}
617__setup("intel_iommu=", intel_iommu_setup);
618
619static struct kmem_cache *iommu_domain_cache;
620static struct kmem_cache *iommu_devinfo_cache;
ba395927 621
9452d5bf
JR
622static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
623{
8bf47816
JR
624 struct dmar_domain **domains;
625 int idx = did >> 8;
626
627 domains = iommu->domains[idx];
628 if (!domains)
629 return NULL;
630
631 return domains[did & 0xff];
9452d5bf
JR
632}
633
634static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
635 struct dmar_domain *domain)
636{
8bf47816
JR
637 struct dmar_domain **domains;
638 int idx = did >> 8;
639
640 if (!iommu->domains[idx]) {
641 size_t size = 256 * sizeof(struct dmar_domain *);
642 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
643 }
644
645 domains = iommu->domains[idx];
646 if (WARN_ON(!domains))
647 return;
648 else
649 domains[did & 0xff] = domain;
9452d5bf
JR
650}
651
4c923d47 652static inline void *alloc_pgtable_page(int node)
eb3fa7cb 653{
4c923d47
SS
654 struct page *page;
655 void *vaddr = NULL;
eb3fa7cb 656
4c923d47
SS
657 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
658 if (page)
659 vaddr = page_address(page);
eb3fa7cb 660 return vaddr;
ba395927
KA
661}
662
663static inline void free_pgtable_page(void *vaddr)
664{
665 free_page((unsigned long)vaddr);
666}
667
668static inline void *alloc_domain_mem(void)
669{
354bb65e 670 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
ba395927
KA
671}
672
38717946 673static void free_domain_mem(void *vaddr)
ba395927
KA
674{
675 kmem_cache_free(iommu_domain_cache, vaddr);
676}
677
678static inline void * alloc_devinfo_mem(void)
679{
354bb65e 680 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
ba395927
KA
681}
682
683static inline void free_devinfo_mem(void *vaddr)
684{
685 kmem_cache_free(iommu_devinfo_cache, vaddr);
686}
687
ab8dfe25
JL
688static inline int domain_type_is_vm(struct dmar_domain *domain)
689{
690 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
691}
692
28ccce0d
JR
693static inline int domain_type_is_si(struct dmar_domain *domain)
694{
695 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
696}
697
ab8dfe25
JL
698static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
699{
700 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
701 DOMAIN_FLAG_STATIC_IDENTITY);
702}
1b573683 703
162d1b10
JL
704static inline int domain_pfn_supported(struct dmar_domain *domain,
705 unsigned long pfn)
706{
707 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
708
709 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
710}
711
4ed0d3e6 712static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
713{
714 unsigned long sagaw;
715 int agaw = -1;
716
717 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 718 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
719 agaw >= 0; agaw--) {
720 if (test_bit(agaw, &sagaw))
721 break;
722 }
723
724 return agaw;
725}
726
4ed0d3e6
FY
727/*
728 * Calculate max SAGAW for each iommu.
729 */
730int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
731{
732 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
733}
734
735/*
736 * calculate agaw for each iommu.
737 * "SAGAW" may be different across iommus, use a default agaw, and
738 * get a supported less agaw for iommus that don't support the default agaw.
739 */
740int iommu_calculate_agaw(struct intel_iommu *iommu)
741{
742 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
743}
744
2c2e2c38 745/* This functionin only returns single iommu in a domain */
8c11e798
WH
746static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
747{
748 int iommu_id;
749
2c2e2c38 750 /* si_domain and vm domain should not get here. */
ab8dfe25 751 BUG_ON(domain_type_is_vm_or_si(domain));
29a27719
JR
752 for_each_domain_iommu(iommu_id, domain)
753 break;
754
8c11e798
WH
755 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
756 return NULL;
757
758 return g_iommus[iommu_id];
759}
760
8e604097
WH
761static void domain_update_iommu_coherency(struct dmar_domain *domain)
762{
d0501960
DW
763 struct dmar_drhd_unit *drhd;
764 struct intel_iommu *iommu;
2f119c78
QL
765 bool found = false;
766 int i;
2e12bc29 767
d0501960 768 domain->iommu_coherency = 1;
8e604097 769
29a27719 770 for_each_domain_iommu(i, domain) {
2f119c78 771 found = true;
8e604097
WH
772 if (!ecap_coherent(g_iommus[i]->ecap)) {
773 domain->iommu_coherency = 0;
774 break;
775 }
8e604097 776 }
d0501960
DW
777 if (found)
778 return;
779
780 /* No hardware attached; use lowest common denominator */
781 rcu_read_lock();
782 for_each_active_iommu(iommu, drhd) {
783 if (!ecap_coherent(iommu->ecap)) {
784 domain->iommu_coherency = 0;
785 break;
786 }
787 }
788 rcu_read_unlock();
8e604097
WH
789}
790
161f6934 791static int domain_update_iommu_snooping(struct intel_iommu *skip)
58c610bd 792{
161f6934
JL
793 struct dmar_drhd_unit *drhd;
794 struct intel_iommu *iommu;
795 int ret = 1;
58c610bd 796
161f6934
JL
797 rcu_read_lock();
798 for_each_active_iommu(iommu, drhd) {
799 if (iommu != skip) {
800 if (!ecap_sc_support(iommu->ecap)) {
801 ret = 0;
802 break;
803 }
58c610bd 804 }
58c610bd 805 }
161f6934
JL
806 rcu_read_unlock();
807
808 return ret;
58c610bd
SY
809}
810
161f6934 811static int domain_update_iommu_superpage(struct intel_iommu *skip)
6dd9a7c7 812{
8140a95d 813 struct dmar_drhd_unit *drhd;
161f6934 814 struct intel_iommu *iommu;
8140a95d 815 int mask = 0xf;
6dd9a7c7
YS
816
817 if (!intel_iommu_superpage) {
161f6934 818 return 0;
6dd9a7c7
YS
819 }
820
8140a95d 821 /* set iommu_superpage to the smallest common denominator */
0e242612 822 rcu_read_lock();
8140a95d 823 for_each_active_iommu(iommu, drhd) {
161f6934
JL
824 if (iommu != skip) {
825 mask &= cap_super_page_val(iommu->cap);
826 if (!mask)
827 break;
6dd9a7c7
YS
828 }
829 }
0e242612
JL
830 rcu_read_unlock();
831
161f6934 832 return fls(mask);
6dd9a7c7
YS
833}
834
58c610bd
SY
835/* Some capabilities may be different across iommus */
836static void domain_update_iommu_cap(struct dmar_domain *domain)
837{
838 domain_update_iommu_coherency(domain);
161f6934
JL
839 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
840 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
58c610bd
SY
841}
842
03ecc32c
DW
843static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
844 u8 bus, u8 devfn, int alloc)
845{
846 struct root_entry *root = &iommu->root_entry[bus];
847 struct context_entry *context;
848 u64 *entry;
849
4df4eab1 850 entry = &root->lo;
c83b2f20 851 if (ecs_enabled(iommu)) {
03ecc32c
DW
852 if (devfn >= 0x80) {
853 devfn -= 0x80;
854 entry = &root->hi;
855 }
856 devfn *= 2;
857 }
03ecc32c
DW
858 if (*entry & 1)
859 context = phys_to_virt(*entry & VTD_PAGE_MASK);
860 else {
861 unsigned long phy_addr;
862 if (!alloc)
863 return NULL;
864
865 context = alloc_pgtable_page(iommu->node);
866 if (!context)
867 return NULL;
868
869 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
870 phy_addr = virt_to_phys((void *)context);
871 *entry = phy_addr | 1;
872 __iommu_flush_cache(iommu, entry, sizeof(*entry));
873 }
874 return &context[devfn];
875}
876
4ed6a540
DW
877static int iommu_dummy(struct device *dev)
878{
879 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
880}
881
156baca8 882static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
c7151a8d
WH
883{
884 struct dmar_drhd_unit *drhd = NULL;
b683b230 885 struct intel_iommu *iommu;
156baca8
DW
886 struct device *tmp;
887 struct pci_dev *ptmp, *pdev = NULL;
aa4d066a 888 u16 segment = 0;
c7151a8d
WH
889 int i;
890
4ed6a540
DW
891 if (iommu_dummy(dev))
892 return NULL;
893
156baca8 894 if (dev_is_pci(dev)) {
1c387188
AR
895 struct pci_dev *pf_pdev;
896
156baca8 897 pdev = to_pci_dev(dev);
1c387188
AR
898 /* VFs aren't listed in scope tables; we need to look up
899 * the PF instead to find the IOMMU. */
900 pf_pdev = pci_physfn(pdev);
901 dev = &pf_pdev->dev;
156baca8 902 segment = pci_domain_nr(pdev->bus);
ca5b74d2 903 } else if (has_acpi_companion(dev))
156baca8
DW
904 dev = &ACPI_COMPANION(dev)->dev;
905
0e242612 906 rcu_read_lock();
b683b230 907 for_each_active_iommu(iommu, drhd) {
156baca8 908 if (pdev && segment != drhd->segment)
276dbf99 909 continue;
c7151a8d 910
b683b230 911 for_each_active_dev_scope(drhd->devices,
156baca8
DW
912 drhd->devices_cnt, i, tmp) {
913 if (tmp == dev) {
1c387188
AR
914 /* For a VF use its original BDF# not that of the PF
915 * which we used for the IOMMU lookup. Strictly speaking
916 * we could do this for all PCI devices; we only need to
917 * get the BDF# from the scope table for ACPI matches. */
918 if (pdev->is_virtfn)
919 goto got_pdev;
920
156baca8
DW
921 *bus = drhd->devices[i].bus;
922 *devfn = drhd->devices[i].devfn;
b683b230 923 goto out;
156baca8
DW
924 }
925
926 if (!pdev || !dev_is_pci(tmp))
927 continue;
928
929 ptmp = to_pci_dev(tmp);
930 if (ptmp->subordinate &&
931 ptmp->subordinate->number <= pdev->bus->number &&
932 ptmp->subordinate->busn_res.end >= pdev->bus->number)
933 goto got_pdev;
924b6231 934 }
c7151a8d 935
156baca8
DW
936 if (pdev && drhd->include_all) {
937 got_pdev:
938 *bus = pdev->bus->number;
939 *devfn = pdev->devfn;
b683b230 940 goto out;
156baca8 941 }
c7151a8d 942 }
b683b230 943 iommu = NULL;
156baca8 944 out:
0e242612 945 rcu_read_unlock();
c7151a8d 946
b683b230 947 return iommu;
c7151a8d
WH
948}
949
5331fe6f
WH
950static void domain_flush_cache(struct dmar_domain *domain,
951 void *addr, int size)
952{
953 if (!domain->iommu_coherency)
954 clflush_cache_range(addr, size);
955}
956
ba395927
KA
957static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
958{
ba395927 959 struct context_entry *context;
03ecc32c 960 int ret = 0;
ba395927
KA
961 unsigned long flags;
962
963 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c
DW
964 context = iommu_context_addr(iommu, bus, devfn, 0);
965 if (context)
966 ret = context_present(context);
ba395927
KA
967 spin_unlock_irqrestore(&iommu->lock, flags);
968 return ret;
969}
970
971static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
972{
ba395927
KA
973 struct context_entry *context;
974 unsigned long flags;
975
976 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c 977 context = iommu_context_addr(iommu, bus, devfn, 0);
ba395927 978 if (context) {
03ecc32c
DW
979 context_clear_entry(context);
980 __iommu_flush_cache(iommu, context, sizeof(*context));
ba395927
KA
981 }
982 spin_unlock_irqrestore(&iommu->lock, flags);
983}
984
985static void free_context_table(struct intel_iommu *iommu)
986{
ba395927
KA
987 int i;
988 unsigned long flags;
989 struct context_entry *context;
990
991 spin_lock_irqsave(&iommu->lock, flags);
992 if (!iommu->root_entry) {
993 goto out;
994 }
995 for (i = 0; i < ROOT_ENTRY_NR; i++) {
03ecc32c 996 context = iommu_context_addr(iommu, i, 0, 0);
ba395927
KA
997 if (context)
998 free_pgtable_page(context);
03ecc32c 999
c83b2f20 1000 if (!ecs_enabled(iommu))
03ecc32c
DW
1001 continue;
1002
1003 context = iommu_context_addr(iommu, i, 0x80, 0);
1004 if (context)
1005 free_pgtable_page(context);
1006
ba395927
KA
1007 }
1008 free_pgtable_page(iommu->root_entry);
1009 iommu->root_entry = NULL;
1010out:
1011 spin_unlock_irqrestore(&iommu->lock, flags);
1012}
1013
b026fd28 1014static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
5cf0a76f 1015 unsigned long pfn, int *target_level)
ba395927 1016{
ba395927
KA
1017 struct dma_pte *parent, *pte = NULL;
1018 int level = agaw_to_level(domain->agaw);
4399c8bf 1019 int offset;
ba395927
KA
1020
1021 BUG_ON(!domain->pgd);
f9423606 1022
162d1b10 1023 if (!domain_pfn_supported(domain, pfn))
f9423606
JS
1024 /* Address beyond IOMMU's addressing capabilities. */
1025 return NULL;
1026
ba395927
KA
1027 parent = domain->pgd;
1028
5cf0a76f 1029 while (1) {
ba395927
KA
1030 void *tmp_page;
1031
b026fd28 1032 offset = pfn_level_offset(pfn, level);
ba395927 1033 pte = &parent[offset];
5cf0a76f 1034 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
6dd9a7c7 1035 break;
5cf0a76f 1036 if (level == *target_level)
ba395927
KA
1037 break;
1038
19c239ce 1039 if (!dma_pte_present(pte)) {
c85994e4
DW
1040 uint64_t pteval;
1041
4c923d47 1042 tmp_page = alloc_pgtable_page(domain->nid);
ba395927 1043
206a73c1 1044 if (!tmp_page)
ba395927 1045 return NULL;
206a73c1 1046
c85994e4 1047 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
64de5af0 1048 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
effad4b5 1049 if (cmpxchg64(&pte->val, 0ULL, pteval))
c85994e4
DW
1050 /* Someone else set it while we were thinking; use theirs. */
1051 free_pgtable_page(tmp_page);
effad4b5 1052 else
c85994e4 1053 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 1054 }
5cf0a76f
DW
1055 if (level == 1)
1056 break;
1057
19c239ce 1058 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1059 level--;
1060 }
1061
5cf0a76f
DW
1062 if (!*target_level)
1063 *target_level = level;
1064
ba395927
KA
1065 return pte;
1066}
1067
6dd9a7c7 1068
ba395927 1069/* return address's pte at specific level */
90dcfb5e
DW
1070static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1071 unsigned long pfn,
6dd9a7c7 1072 int level, int *large_page)
ba395927
KA
1073{
1074 struct dma_pte *parent, *pte = NULL;
1075 int total = agaw_to_level(domain->agaw);
1076 int offset;
1077
1078 parent = domain->pgd;
1079 while (level <= total) {
90dcfb5e 1080 offset = pfn_level_offset(pfn, total);
ba395927
KA
1081 pte = &parent[offset];
1082 if (level == total)
1083 return pte;
1084
6dd9a7c7
YS
1085 if (!dma_pte_present(pte)) {
1086 *large_page = total;
ba395927 1087 break;
6dd9a7c7
YS
1088 }
1089
e16922af 1090 if (dma_pte_superpage(pte)) {
6dd9a7c7
YS
1091 *large_page = total;
1092 return pte;
1093 }
1094
19c239ce 1095 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1096 total--;
1097 }
1098 return NULL;
1099}
1100
ba395927 1101/* clear last level pte, a tlb flush should be followed */
5cf0a76f 1102static void dma_pte_clear_range(struct dmar_domain *domain,
595badf5
DW
1103 unsigned long start_pfn,
1104 unsigned long last_pfn)
ba395927 1105{
6dd9a7c7 1106 unsigned int large_page = 1;
310a5ab9 1107 struct dma_pte *first_pte, *pte;
66eae846 1108
162d1b10
JL
1109 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1110 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1111 BUG_ON(start_pfn > last_pfn);
ba395927 1112
04b18e65 1113 /* we don't need lock here; nobody else touches the iova range */
59c36286 1114 do {
6dd9a7c7
YS
1115 large_page = 1;
1116 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
310a5ab9 1117 if (!pte) {
6dd9a7c7 1118 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
310a5ab9
DW
1119 continue;
1120 }
6dd9a7c7 1121 do {
310a5ab9 1122 dma_clear_pte(pte);
6dd9a7c7 1123 start_pfn += lvl_to_nr_pages(large_page);
310a5ab9 1124 pte++;
75e6bf96
DW
1125 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1126
310a5ab9
DW
1127 domain_flush_cache(domain, first_pte,
1128 (void *)pte - (void *)first_pte);
59c36286
DW
1129
1130 } while (start_pfn && start_pfn <= last_pfn);
ba395927
KA
1131}
1132
3269ee0b
AW
1133static void dma_pte_free_level(struct dmar_domain *domain, int level,
1134 struct dma_pte *pte, unsigned long pfn,
1135 unsigned long start_pfn, unsigned long last_pfn)
1136{
1137 pfn = max(start_pfn, pfn);
1138 pte = &pte[pfn_level_offset(pfn, level)];
1139
1140 do {
1141 unsigned long level_pfn;
1142 struct dma_pte *level_pte;
1143
1144 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1145 goto next;
1146
1147 level_pfn = pfn & level_mask(level - 1);
1148 level_pte = phys_to_virt(dma_pte_addr(pte));
1149
1150 if (level > 2)
1151 dma_pte_free_level(domain, level - 1, level_pte,
1152 level_pfn, start_pfn, last_pfn);
1153
1154 /* If range covers entire pagetable, free it */
1155 if (!(start_pfn > level_pfn ||
08336fd2 1156 last_pfn < level_pfn + level_size(level) - 1)) {
3269ee0b
AW
1157 dma_clear_pte(pte);
1158 domain_flush_cache(domain, pte, sizeof(*pte));
1159 free_pgtable_page(level_pte);
1160 }
1161next:
1162 pfn += level_size(level);
1163 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1164}
1165
3d1a2442 1166/* clear last level (leaf) ptes and free page table pages. */
ba395927 1167static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
1168 unsigned long start_pfn,
1169 unsigned long last_pfn)
ba395927 1170{
162d1b10
JL
1171 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1173 BUG_ON(start_pfn > last_pfn);
ba395927 1174
d41a4adb
JL
1175 dma_pte_clear_range(domain, start_pfn, last_pfn);
1176
f3a0a52f 1177 /* We don't need lock here; nobody else touches the iova range */
3269ee0b
AW
1178 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1179 domain->pgd, 0, start_pfn, last_pfn);
6660c63a 1180
ba395927 1181 /* free pgd */
d794dc9b 1182 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
1183 free_pgtable_page(domain->pgd);
1184 domain->pgd = NULL;
1185 }
1186}
1187
ea8ea460
DW
1188/* When a page at a given level is being unlinked from its parent, we don't
1189 need to *modify* it at all. All we need to do is make a list of all the
1190 pages which can be freed just as soon as we've flushed the IOTLB and we
1191 know the hardware page-walk will no longer touch them.
1192 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1193 be freed. */
1194static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1195 int level, struct dma_pte *pte,
1196 struct page *freelist)
1197{
1198 struct page *pg;
1199
1200 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1201 pg->freelist = freelist;
1202 freelist = pg;
1203
1204 if (level == 1)
1205 return freelist;
1206
adeb2590
JL
1207 pte = page_address(pg);
1208 do {
ea8ea460
DW
1209 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1210 freelist = dma_pte_list_pagetables(domain, level - 1,
1211 pte, freelist);
adeb2590
JL
1212 pte++;
1213 } while (!first_pte_in_page(pte));
ea8ea460
DW
1214
1215 return freelist;
1216}
1217
1218static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1219 struct dma_pte *pte, unsigned long pfn,
1220 unsigned long start_pfn,
1221 unsigned long last_pfn,
1222 struct page *freelist)
1223{
1224 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1225
1226 pfn = max(start_pfn, pfn);
1227 pte = &pte[pfn_level_offset(pfn, level)];
1228
1229 do {
1230 unsigned long level_pfn;
1231
1232 if (!dma_pte_present(pte))
1233 goto next;
1234
1235 level_pfn = pfn & level_mask(level);
1236
1237 /* If range covers entire pagetable, free it */
1238 if (start_pfn <= level_pfn &&
1239 last_pfn >= level_pfn + level_size(level) - 1) {
1240 /* These suborbinate page tables are going away entirely. Don't
1241 bother to clear them; we're just going to *free* them. */
1242 if (level > 1 && !dma_pte_superpage(pte))
1243 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1244
1245 dma_clear_pte(pte);
1246 if (!first_pte)
1247 first_pte = pte;
1248 last_pte = pte;
1249 } else if (level > 1) {
1250 /* Recurse down into a level that isn't *entirely* obsolete */
1251 freelist = dma_pte_clear_level(domain, level - 1,
1252 phys_to_virt(dma_pte_addr(pte)),
1253 level_pfn, start_pfn, last_pfn,
1254 freelist);
1255 }
1256next:
1257 pfn += level_size(level);
1258 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1259
1260 if (first_pte)
1261 domain_flush_cache(domain, first_pte,
1262 (void *)++last_pte - (void *)first_pte);
1263
1264 return freelist;
1265}
1266
1267/* We can't just free the pages because the IOMMU may still be walking
1268 the page tables, and may have cached the intermediate levels. The
1269 pages can only be freed after the IOTLB flush has been done. */
b690420a
JR
1270static struct page *domain_unmap(struct dmar_domain *domain,
1271 unsigned long start_pfn,
1272 unsigned long last_pfn)
ea8ea460 1273{
ea8ea460
DW
1274 struct page *freelist = NULL;
1275
162d1b10
JL
1276 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1277 BUG_ON(!domain_pfn_supported(domain, last_pfn));
ea8ea460
DW
1278 BUG_ON(start_pfn > last_pfn);
1279
1280 /* we don't need lock here; nobody else touches the iova range */
1281 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1282 domain->pgd, 0, start_pfn, last_pfn, NULL);
1283
1284 /* free pgd */
1285 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1286 struct page *pgd_page = virt_to_page(domain->pgd);
1287 pgd_page->freelist = freelist;
1288 freelist = pgd_page;
1289
1290 domain->pgd = NULL;
1291 }
1292
1293 return freelist;
1294}
1295
b690420a 1296static void dma_free_pagelist(struct page *freelist)
ea8ea460
DW
1297{
1298 struct page *pg;
1299
1300 while ((pg = freelist)) {
1301 freelist = pg->freelist;
1302 free_pgtable_page(page_address(pg));
1303 }
1304}
1305
ba395927
KA
1306/* iommu handling */
1307static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1308{
1309 struct root_entry *root;
1310 unsigned long flags;
1311
4c923d47 1312 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
ffebeb46 1313 if (!root) {
9f10e5bf 1314 pr_err("Allocating root entry for %s failed\n",
ffebeb46 1315 iommu->name);
ba395927 1316 return -ENOMEM;
ffebeb46 1317 }
ba395927 1318
5b6985ce 1319 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
1320
1321 spin_lock_irqsave(&iommu->lock, flags);
1322 iommu->root_entry = root;
1323 spin_unlock_irqrestore(&iommu->lock, flags);
1324
1325 return 0;
1326}
1327
ba395927
KA
1328static void iommu_set_root_entry(struct intel_iommu *iommu)
1329{
03ecc32c 1330 u64 addr;
c416daa9 1331 u32 sts;
ba395927
KA
1332 unsigned long flag;
1333
03ecc32c 1334 addr = virt_to_phys(iommu->root_entry);
c83b2f20 1335 if (ecs_enabled(iommu))
03ecc32c 1336 addr |= DMA_RTADDR_RTT;
ba395927 1337
1f5b3c3f 1338 raw_spin_lock_irqsave(&iommu->register_lock, flag);
03ecc32c 1339 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
ba395927 1340
c416daa9 1341 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1342
1343 /* Make sure hardware complete it */
1344 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1345 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927 1346
1f5b3c3f 1347 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1348}
1349
1350static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1351{
1352 u32 val;
1353 unsigned long flag;
1354
9af88143 1355 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 1356 return;
ba395927 1357
1f5b3c3f 1358 raw_spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 1359 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1360
1361 /* Make sure hardware complete it */
1362 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1363 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927 1364
1f5b3c3f 1365 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1366}
1367
1368/* return value determine if we need a write buffer flush */
4c25a2c1
DW
1369static void __iommu_flush_context(struct intel_iommu *iommu,
1370 u16 did, u16 source_id, u8 function_mask,
1371 u64 type)
ba395927
KA
1372{
1373 u64 val = 0;
1374 unsigned long flag;
1375
ba395927
KA
1376 switch (type) {
1377 case DMA_CCMD_GLOBAL_INVL:
1378 val = DMA_CCMD_GLOBAL_INVL;
1379 break;
1380 case DMA_CCMD_DOMAIN_INVL:
1381 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1382 break;
1383 case DMA_CCMD_DEVICE_INVL:
1384 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1385 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1386 break;
1387 default:
1388 BUG();
1389 }
1390 val |= DMA_CCMD_ICC;
1391
1f5b3c3f 1392 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1393 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1394
1395 /* Make sure hardware complete it */
1396 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1397 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1398
1f5b3c3f 1399 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1400}
1401
ba395927 1402/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
1403static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1404 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
1405{
1406 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1407 u64 val = 0, val_iva = 0;
1408 unsigned long flag;
1409
ba395927
KA
1410 switch (type) {
1411 case DMA_TLB_GLOBAL_FLUSH:
1412 /* global flush doesn't need set IVA_REG */
1413 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1414 break;
1415 case DMA_TLB_DSI_FLUSH:
1416 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1417 break;
1418 case DMA_TLB_PSI_FLUSH:
1419 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
ea8ea460 1420 /* IH bit is passed in as part of address */
ba395927
KA
1421 val_iva = size_order | addr;
1422 break;
1423 default:
1424 BUG();
1425 }
1426 /* Note: set drain read/write */
1427#if 0
1428 /*
1429 * This is probably to be super secure.. Looks like we can
1430 * ignore it without any impact.
1431 */
1432 if (cap_read_drain(iommu->cap))
1433 val |= DMA_TLB_READ_DRAIN;
1434#endif
1435 if (cap_write_drain(iommu->cap))
1436 val |= DMA_TLB_WRITE_DRAIN;
1437
1f5b3c3f 1438 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1439 /* Note: Only uses first TLB reg currently */
1440 if (val_iva)
1441 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1442 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1443
1444 /* Make sure hardware complete it */
1445 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1446 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1447
1f5b3c3f 1448 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1449
1450 /* check IOTLB invalidation granularity */
1451 if (DMA_TLB_IAIG(val) == 0)
9f10e5bf 1452 pr_err("Flush IOTLB failed\n");
ba395927 1453 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
9f10e5bf 1454 pr_debug("TLB flush request %Lx, actual %Lx\n",
5b6985ce
FY
1455 (unsigned long long)DMA_TLB_IIRG(type),
1456 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
1457}
1458
64ae892b
DW
1459static struct device_domain_info *
1460iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1461 u8 bus, u8 devfn)
93a23a72 1462{
93a23a72 1463 struct device_domain_info *info;
93a23a72 1464
55d94043
JR
1465 assert_spin_locked(&device_domain_lock);
1466
93a23a72
YZ
1467 if (!iommu->qi)
1468 return NULL;
1469
93a23a72 1470 list_for_each_entry(info, &domain->devices, link)
c3b497c6
JL
1471 if (info->iommu == iommu && info->bus == bus &&
1472 info->devfn == devfn) {
b16d0cb9
DW
1473 if (info->ats_supported && info->dev)
1474 return info;
93a23a72
YZ
1475 break;
1476 }
93a23a72 1477
b16d0cb9 1478 return NULL;
93a23a72
YZ
1479}
1480
0824c592
OP
1481static void domain_update_iotlb(struct dmar_domain *domain)
1482{
1483 struct device_domain_info *info;
1484 bool has_iotlb_device = false;
1485
1486 assert_spin_locked(&device_domain_lock);
1487
1488 list_for_each_entry(info, &domain->devices, link) {
1489 struct pci_dev *pdev;
1490
1491 if (!info->dev || !dev_is_pci(info->dev))
1492 continue;
1493
1494 pdev = to_pci_dev(info->dev);
1495 if (pdev->ats_enabled) {
1496 has_iotlb_device = true;
1497 break;
1498 }
1499 }
1500
1501 domain->has_iotlb_device = has_iotlb_device;
1502}
1503
93a23a72 1504static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1505{
fb0cc3aa
BH
1506 struct pci_dev *pdev;
1507
0824c592
OP
1508 assert_spin_locked(&device_domain_lock);
1509
0bcb3e28 1510 if (!info || !dev_is_pci(info->dev))
93a23a72
YZ
1511 return;
1512
fb0cc3aa 1513 pdev = to_pci_dev(info->dev);
fb0cc3aa 1514
b16d0cb9
DW
1515#ifdef CONFIG_INTEL_IOMMU_SVM
1516 /* The PCIe spec, in its wisdom, declares that the behaviour of
1517 the device if you enable PASID support after ATS support is
1518 undefined. So always enable PASID support on devices which
1519 have it, even if we can't yet know if we're ever going to
1520 use it. */
1521 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1522 info->pasid_enabled = 1;
1523
1524 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1525 info->pri_enabled = 1;
1526#endif
1527 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1528 info->ats_enabled = 1;
0824c592 1529 domain_update_iotlb(info->domain);
b16d0cb9
DW
1530 info->ats_qdep = pci_ats_queue_depth(pdev);
1531 }
93a23a72
YZ
1532}
1533
1534static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1535{
b16d0cb9
DW
1536 struct pci_dev *pdev;
1537
0824c592
OP
1538 assert_spin_locked(&device_domain_lock);
1539
da972fb1 1540 if (!dev_is_pci(info->dev))
93a23a72
YZ
1541 return;
1542
b16d0cb9
DW
1543 pdev = to_pci_dev(info->dev);
1544
1545 if (info->ats_enabled) {
1546 pci_disable_ats(pdev);
1547 info->ats_enabled = 0;
0824c592 1548 domain_update_iotlb(info->domain);
b16d0cb9
DW
1549 }
1550#ifdef CONFIG_INTEL_IOMMU_SVM
1551 if (info->pri_enabled) {
1552 pci_disable_pri(pdev);
1553 info->pri_enabled = 0;
1554 }
1555 if (info->pasid_enabled) {
1556 pci_disable_pasid(pdev);
1557 info->pasid_enabled = 0;
1558 }
1559#endif
93a23a72
YZ
1560}
1561
1562static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1563 u64 addr, unsigned mask)
1564{
1565 u16 sid, qdep;
1566 unsigned long flags;
1567 struct device_domain_info *info;
1568
0824c592
OP
1569 if (!domain->has_iotlb_device)
1570 return;
1571
93a23a72
YZ
1572 spin_lock_irqsave(&device_domain_lock, flags);
1573 list_for_each_entry(info, &domain->devices, link) {
b16d0cb9 1574 if (!info->ats_enabled)
93a23a72
YZ
1575 continue;
1576
1577 sid = info->bus << 8 | info->devfn;
b16d0cb9 1578 qdep = info->ats_qdep;
93a23a72
YZ
1579 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1580 }
1581 spin_unlock_irqrestore(&device_domain_lock, flags);
1582}
1583
a1ddcbe9
JR
1584static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1585 struct dmar_domain *domain,
1586 unsigned long pfn, unsigned int pages,
1587 int ih, int map)
ba395927 1588{
9dd2fe89 1589 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1590 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
a1ddcbe9 1591 u16 did = domain->iommu_did[iommu->seq_id];
ba395927 1592
ba395927
KA
1593 BUG_ON(pages == 0);
1594
ea8ea460
DW
1595 if (ih)
1596 ih = 1 << 6;
ba395927 1597 /*
9dd2fe89
YZ
1598 * Fallback to domain selective flush if no PSI support or the size is
1599 * too big.
ba395927
KA
1600 * PSI requires page size to be 2 ^ x, and the base address is naturally
1601 * aligned to the size
1602 */
9dd2fe89
YZ
1603 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1604 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1605 DMA_TLB_DSI_FLUSH);
9dd2fe89 1606 else
ea8ea460 1607 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
9dd2fe89 1608 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1609
1610 /*
82653633
NA
1611 * In caching mode, changes of pages from non-present to present require
1612 * flush. However, device IOTLB doesn't need to be flushed in this case.
bf92df30 1613 */
82653633 1614 if (!cap_caching_mode(iommu->cap) || !map)
9452d5bf
JR
1615 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1616 addr, mask);
ba395927
KA
1617}
1618
f8bab735 1619static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1620{
1621 u32 pmen;
1622 unsigned long flags;
1623
1f5b3c3f 1624 raw_spin_lock_irqsave(&iommu->register_lock, flags);
f8bab735 1625 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1626 pmen &= ~DMA_PMEN_EPM;
1627 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1628
1629 /* wait for the protected region status bit to clear */
1630 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1631 readl, !(pmen & DMA_PMEN_PRS), pmen);
1632
1f5b3c3f 1633 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
f8bab735 1634}
1635
2a41ccee 1636static void iommu_enable_translation(struct intel_iommu *iommu)
ba395927
KA
1637{
1638 u32 sts;
1639 unsigned long flags;
1640
1f5b3c3f 1641 raw_spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1642 iommu->gcmd |= DMA_GCMD_TE;
1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1644
1645 /* Make sure hardware complete it */
1646 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1647 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1648
1f5b3c3f 1649 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
ba395927
KA
1650}
1651
2a41ccee 1652static void iommu_disable_translation(struct intel_iommu *iommu)
ba395927
KA
1653{
1654 u32 sts;
1655 unsigned long flag;
1656
1f5b3c3f 1657 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1658 iommu->gcmd &= ~DMA_GCMD_TE;
1659 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660
1661 /* Make sure hardware complete it */
1662 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1663 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927 1664
1f5b3c3f 1665 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1666}
1667
3460a6d9 1668
ba395927
KA
1669static int iommu_init_domains(struct intel_iommu *iommu)
1670{
8bf47816
JR
1671 u32 ndomains, nlongs;
1672 size_t size;
ba395927
KA
1673
1674 ndomains = cap_ndoms(iommu->cap);
8bf47816 1675 pr_debug("%s: Number of Domains supported <%d>\n",
9f10e5bf 1676 iommu->name, ndomains);
ba395927
KA
1677 nlongs = BITS_TO_LONGS(ndomains);
1678
94a91b50
DD
1679 spin_lock_init(&iommu->lock);
1680
ba395927
KA
1681 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1682 if (!iommu->domain_ids) {
9f10e5bf
JR
1683 pr_err("%s: Allocating domain id array failed\n",
1684 iommu->name);
ba395927
KA
1685 return -ENOMEM;
1686 }
8bf47816 1687
86f004c7 1688 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
8bf47816
JR
1689 iommu->domains = kzalloc(size, GFP_KERNEL);
1690
1691 if (iommu->domains) {
1692 size = 256 * sizeof(struct dmar_domain *);
1693 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1694 }
1695
1696 if (!iommu->domains || !iommu->domains[0]) {
9f10e5bf
JR
1697 pr_err("%s: Allocating domain array failed\n",
1698 iommu->name);
852bdb04 1699 kfree(iommu->domain_ids);
8bf47816 1700 kfree(iommu->domains);
852bdb04 1701 iommu->domain_ids = NULL;
8bf47816 1702 iommu->domains = NULL;
ba395927
KA
1703 return -ENOMEM;
1704 }
1705
8bf47816
JR
1706
1707
ba395927 1708 /*
c0e8a6c8
JR
1709 * If Caching mode is set, then invalid translations are tagged
1710 * with domain-id 0, hence we need to pre-allocate it. We also
1711 * use domain-id 0 as a marker for non-allocated domain-id, so
1712 * make sure it is not used for a real domain.
ba395927 1713 */
c0e8a6c8
JR
1714 set_bit(0, iommu->domain_ids);
1715
ba395927
KA
1716 return 0;
1717}
ba395927 1718
ffebeb46 1719static void disable_dmar_iommu(struct intel_iommu *iommu)
ba395927 1720{
29a27719 1721 struct device_domain_info *info, *tmp;
55d94043 1722 unsigned long flags;
ba395927 1723
29a27719
JR
1724 if (!iommu->domains || !iommu->domain_ids)
1725 return;
a4eaa86c 1726
bea64033 1727again:
55d94043 1728 spin_lock_irqsave(&device_domain_lock, flags);
29a27719
JR
1729 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1730 struct dmar_domain *domain;
1731
1732 if (info->iommu != iommu)
1733 continue;
1734
1735 if (!info->dev || !info->domain)
1736 continue;
1737
1738 domain = info->domain;
1739
bea64033 1740 __dmar_remove_one_dev_info(info);
29a27719 1741
bea64033
JR
1742 if (!domain_type_is_vm_or_si(domain)) {
1743 /*
1744 * The domain_exit() function can't be called under
1745 * device_domain_lock, as it takes this lock itself.
1746 * So release the lock here and re-run the loop
1747 * afterwards.
1748 */
1749 spin_unlock_irqrestore(&device_domain_lock, flags);
29a27719 1750 domain_exit(domain);
bea64033
JR
1751 goto again;
1752 }
ba395927 1753 }
55d94043 1754 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927
KA
1755
1756 if (iommu->gcmd & DMA_GCMD_TE)
1757 iommu_disable_translation(iommu);
ffebeb46 1758}
ba395927 1759
ffebeb46
JL
1760static void free_dmar_iommu(struct intel_iommu *iommu)
1761{
1762 if ((iommu->domains) && (iommu->domain_ids)) {
86f004c7 1763 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
8bf47816
JR
1764 int i;
1765
1766 for (i = 0; i < elems; i++)
1767 kfree(iommu->domains[i]);
ffebeb46
JL
1768 kfree(iommu->domains);
1769 kfree(iommu->domain_ids);
1770 iommu->domains = NULL;
1771 iommu->domain_ids = NULL;
1772 }
ba395927 1773
d9630fe9
WH
1774 g_iommus[iommu->seq_id] = NULL;
1775
ba395927
KA
1776 /* free context mapping */
1777 free_context_table(iommu);
8a94ade4
DW
1778
1779#ifdef CONFIG_INTEL_IOMMU_SVM
a222a7f0
DW
1780 if (pasid_enabled(iommu)) {
1781 if (ecap_prs(iommu->ecap))
1782 intel_svm_finish_prq(iommu);
8a94ade4 1783 intel_svm_free_pasid_tables(iommu);
a222a7f0 1784 }
8a94ade4 1785#endif
ba395927
KA
1786}
1787
ab8dfe25 1788static struct dmar_domain *alloc_domain(int flags)
ba395927 1789{
ba395927 1790 struct dmar_domain *domain;
ba395927
KA
1791
1792 domain = alloc_domain_mem();
1793 if (!domain)
1794 return NULL;
1795
ab8dfe25 1796 memset(domain, 0, sizeof(*domain));
4c923d47 1797 domain->nid = -1;
ab8dfe25 1798 domain->flags = flags;
0824c592 1799 domain->has_iotlb_device = false;
92d03cc8 1800 INIT_LIST_HEAD(&domain->devices);
2c2e2c38
FY
1801
1802 return domain;
1803}
1804
d160aca5
JR
1805/* Must be called with iommu->lock */
1806static int domain_attach_iommu(struct dmar_domain *domain,
fb170fb4
JL
1807 struct intel_iommu *iommu)
1808{
44bde614 1809 unsigned long ndomains;
55d94043 1810 int num;
44bde614 1811
55d94043 1812 assert_spin_locked(&device_domain_lock);
d160aca5 1813 assert_spin_locked(&iommu->lock);
ba395927 1814
29a27719
JR
1815 domain->iommu_refcnt[iommu->seq_id] += 1;
1816 domain->iommu_count += 1;
1817 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
fb170fb4 1818 ndomains = cap_ndoms(iommu->cap);
d160aca5
JR
1819 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1820
1821 if (num >= ndomains) {
1822 pr_err("%s: No free domain ids\n", iommu->name);
1823 domain->iommu_refcnt[iommu->seq_id] -= 1;
1824 domain->iommu_count -= 1;
55d94043 1825 return -ENOSPC;
2c2e2c38 1826 }
ba395927 1827
d160aca5
JR
1828 set_bit(num, iommu->domain_ids);
1829 set_iommu_domain(iommu, num, domain);
1830
1831 domain->iommu_did[iommu->seq_id] = num;
1832 domain->nid = iommu->node;
fb170fb4 1833
fb170fb4
JL
1834 domain_update_iommu_cap(domain);
1835 }
d160aca5 1836
55d94043 1837 return 0;
fb170fb4
JL
1838}
1839
1840static int domain_detach_iommu(struct dmar_domain *domain,
1841 struct intel_iommu *iommu)
1842{
d160aca5 1843 int num, count = INT_MAX;
d160aca5 1844
55d94043 1845 assert_spin_locked(&device_domain_lock);
d160aca5 1846 assert_spin_locked(&iommu->lock);
fb170fb4 1847
29a27719
JR
1848 domain->iommu_refcnt[iommu->seq_id] -= 1;
1849 count = --domain->iommu_count;
1850 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
d160aca5
JR
1851 num = domain->iommu_did[iommu->seq_id];
1852 clear_bit(num, iommu->domain_ids);
1853 set_iommu_domain(iommu, num, NULL);
fb170fb4 1854
fb170fb4 1855 domain_update_iommu_cap(domain);
c0e8a6c8 1856 domain->iommu_did[iommu->seq_id] = 0;
fb170fb4 1857 }
fb170fb4
JL
1858
1859 return count;
1860}
1861
ba395927 1862static struct iova_domain reserved_iova_list;
8a443df4 1863static struct lock_class_key reserved_rbtree_key;
ba395927 1864
51a63e67 1865static int dmar_init_reserved_ranges(void)
ba395927
KA
1866{
1867 struct pci_dev *pdev = NULL;
1868 struct iova *iova;
1869 int i;
ba395927 1870
0fb5fe87
RM
1871 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1872 DMA_32BIT_PFN);
ba395927 1873
8a443df4
MG
1874 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1875 &reserved_rbtree_key);
1876
ba395927
KA
1877 /* IOAPIC ranges shouldn't be accessed by DMA */
1878 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1879 IOVA_PFN(IOAPIC_RANGE_END));
51a63e67 1880 if (!iova) {
9f10e5bf 1881 pr_err("Reserve IOAPIC range failed\n");
51a63e67
JC
1882 return -ENODEV;
1883 }
ba395927
KA
1884
1885 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1886 for_each_pci_dev(pdev) {
1887 struct resource *r;
1888
1889 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1890 r = &pdev->resource[i];
1891 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1892 continue;
1a4a4551
DW
1893 iova = reserve_iova(&reserved_iova_list,
1894 IOVA_PFN(r->start),
1895 IOVA_PFN(r->end));
51a63e67 1896 if (!iova) {
9f10e5bf 1897 pr_err("Reserve iova failed\n");
51a63e67
JC
1898 return -ENODEV;
1899 }
ba395927
KA
1900 }
1901 }
51a63e67 1902 return 0;
ba395927
KA
1903}
1904
1905static void domain_reserve_special_ranges(struct dmar_domain *domain)
1906{
1907 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1908}
1909
1910static inline int guestwidth_to_adjustwidth(int gaw)
1911{
1912 int agaw;
1913 int r = (gaw - 12) % 9;
1914
1915 if (r == 0)
1916 agaw = gaw;
1917 else
1918 agaw = gaw + 9 - r;
1919 if (agaw > 64)
1920 agaw = 64;
1921 return agaw;
1922}
1923
dc534b25
JR
1924static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1925 int guest_width)
ba395927 1926{
ba395927
KA
1927 int adjust_width, agaw;
1928 unsigned long sagaw;
1929
0fb5fe87
RM
1930 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1931 DMA_32BIT_PFN);
ba395927
KA
1932 domain_reserve_special_ranges(domain);
1933
1934 /* calculate AGAW */
ba395927
KA
1935 if (guest_width > cap_mgaw(iommu->cap))
1936 guest_width = cap_mgaw(iommu->cap);
1937 domain->gaw = guest_width;
1938 adjust_width = guestwidth_to_adjustwidth(guest_width);
1939 agaw = width_to_agaw(adjust_width);
1940 sagaw = cap_sagaw(iommu->cap);
1941 if (!test_bit(agaw, &sagaw)) {
1942 /* hardware doesn't support it, choose a bigger one */
9f10e5bf 1943 pr_debug("Hardware doesn't support agaw %d\n", agaw);
ba395927
KA
1944 agaw = find_next_bit(&sagaw, 5, agaw);
1945 if (agaw >= 5)
1946 return -ENODEV;
1947 }
1948 domain->agaw = agaw;
ba395927 1949
8e604097
WH
1950 if (ecap_coherent(iommu->ecap))
1951 domain->iommu_coherency = 1;
1952 else
1953 domain->iommu_coherency = 0;
1954
58c610bd
SY
1955 if (ecap_sc_support(iommu->ecap))
1956 domain->iommu_snooping = 1;
1957 else
1958 domain->iommu_snooping = 0;
1959
214e39aa
DW
1960 if (intel_iommu_superpage)
1961 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1962 else
1963 domain->iommu_superpage = 0;
1964
4c923d47 1965 domain->nid = iommu->node;
c7151a8d 1966
ba395927 1967 /* always allocate the top pgd */
4c923d47 1968 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
ba395927
KA
1969 if (!domain->pgd)
1970 return -ENOMEM;
5b6985ce 1971 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1972 return 0;
1973}
1974
1975static void domain_exit(struct dmar_domain *domain)
1976{
ea8ea460 1977 struct page *freelist = NULL;
ba395927
KA
1978
1979 /* Domain 0 is reserved, so dont process it */
1980 if (!domain)
1981 return;
1982
7b668357 1983 /* Flush any lazy unmaps that may reference this domain */
aa473240
OP
1984 if (!intel_iommu_strict) {
1985 int cpu;
1986
1987 for_each_possible_cpu(cpu)
1988 flush_unmaps_timeout(cpu);
1989 }
7b668357 1990
d160aca5
JR
1991 /* Remove associated devices and clear attached or cached domains */
1992 rcu_read_lock();
ba395927 1993 domain_remove_dev_info(domain);
d160aca5 1994 rcu_read_unlock();
92d03cc8 1995
ba395927
KA
1996 /* destroy iovas */
1997 put_iova_domain(&domain->iovad);
ba395927 1998
ea8ea460 1999 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 2000
ea8ea460
DW
2001 dma_free_pagelist(freelist);
2002
ba395927
KA
2003 free_domain_mem(domain);
2004}
2005
64ae892b
DW
2006static int domain_context_mapping_one(struct dmar_domain *domain,
2007 struct intel_iommu *iommu,
28ccce0d 2008 u8 bus, u8 devfn)
ba395927 2009{
c6c2cebd 2010 u16 did = domain->iommu_did[iommu->seq_id];
28ccce0d
JR
2011 int translation = CONTEXT_TT_MULTI_LEVEL;
2012 struct device_domain_info *info = NULL;
ba395927 2013 struct context_entry *context;
ba395927 2014 unsigned long flags;
ea6606b0 2015 struct dma_pte *pgd;
55d94043 2016 int ret, agaw;
28ccce0d 2017
c6c2cebd
JR
2018 WARN_ON(did == 0);
2019
28ccce0d
JR
2020 if (hw_pass_through && domain_type_is_si(domain))
2021 translation = CONTEXT_TT_PASS_THROUGH;
ba395927
KA
2022
2023 pr_debug("Set context mapping for %02x:%02x.%d\n",
2024 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 2025
ba395927 2026 BUG_ON(!domain->pgd);
5331fe6f 2027
55d94043
JR
2028 spin_lock_irqsave(&device_domain_lock, flags);
2029 spin_lock(&iommu->lock);
2030
2031 ret = -ENOMEM;
03ecc32c 2032 context = iommu_context_addr(iommu, bus, devfn, 1);
ba395927 2033 if (!context)
55d94043 2034 goto out_unlock;
ba395927 2035
55d94043
JR
2036 ret = 0;
2037 if (context_present(context))
2038 goto out_unlock;
cf484d0e 2039
ea6606b0
WH
2040 pgd = domain->pgd;
2041
de24e553 2042 context_clear_entry(context);
c6c2cebd 2043 context_set_domain_id(context, did);
ea6606b0 2044
de24e553
JR
2045 /*
2046 * Skip top levels of page tables for iommu which has less agaw
2047 * than default. Unnecessary for PT mode.
2048 */
93a23a72 2049 if (translation != CONTEXT_TT_PASS_THROUGH) {
de24e553 2050 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
55d94043 2051 ret = -ENOMEM;
de24e553 2052 pgd = phys_to_virt(dma_pte_addr(pgd));
55d94043
JR
2053 if (!dma_pte_present(pgd))
2054 goto out_unlock;
ea6606b0 2055 }
4ed0d3e6 2056
64ae892b 2057 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
b16d0cb9
DW
2058 if (info && info->ats_supported)
2059 translation = CONTEXT_TT_DEV_IOTLB;
2060 else
2061 translation = CONTEXT_TT_MULTI_LEVEL;
de24e553 2062
93a23a72
YZ
2063 context_set_address_root(context, virt_to_phys(pgd));
2064 context_set_address_width(context, iommu->agaw);
de24e553
JR
2065 } else {
2066 /*
2067 * In pass through mode, AW must be programmed to
2068 * indicate the largest AGAW value supported by
2069 * hardware. And ASR is ignored by hardware.
2070 */
2071 context_set_address_width(context, iommu->msagaw);
93a23a72 2072 }
4ed0d3e6
FY
2073
2074 context_set_translation_type(context, translation);
c07e7d21
MM
2075 context_set_fault_enable(context);
2076 context_set_present(context);
5331fe6f 2077 domain_flush_cache(domain, context, sizeof(*context));
ba395927 2078
4c25a2c1
DW
2079 /*
2080 * It's a non-present to present mapping. If hardware doesn't cache
2081 * non-present entry we only need to flush the write-buffer. If the
2082 * _does_ cache non-present entries, then it does so in the special
2083 * domain #0, which we have to flush:
2084 */
2085 if (cap_caching_mode(iommu->cap)) {
2086 iommu->flush.flush_context(iommu, 0,
2087 (((u16)bus) << 8) | devfn,
2088 DMA_CCMD_MASK_NOBIT,
2089 DMA_CCMD_DEVICE_INVL);
c6c2cebd 2090 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 2091 } else {
ba395927 2092 iommu_flush_write_buffer(iommu);
4c25a2c1 2093 }
93a23a72 2094 iommu_enable_dev_iotlb(info);
c7151a8d 2095
55d94043
JR
2096 ret = 0;
2097
2098out_unlock:
2099 spin_unlock(&iommu->lock);
2100 spin_unlock_irqrestore(&device_domain_lock, flags);
fb170fb4 2101
5c365d18 2102 return ret;
ba395927
KA
2103}
2104
579305f7
AW
2105struct domain_context_mapping_data {
2106 struct dmar_domain *domain;
2107 struct intel_iommu *iommu;
579305f7
AW
2108};
2109
2110static int domain_context_mapping_cb(struct pci_dev *pdev,
2111 u16 alias, void *opaque)
2112{
2113 struct domain_context_mapping_data *data = opaque;
2114
2115 return domain_context_mapping_one(data->domain, data->iommu,
28ccce0d 2116 PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
2117}
2118
ba395927 2119static int
28ccce0d 2120domain_context_mapping(struct dmar_domain *domain, struct device *dev)
ba395927 2121{
64ae892b 2122 struct intel_iommu *iommu;
156baca8 2123 u8 bus, devfn;
579305f7 2124 struct domain_context_mapping_data data;
64ae892b 2125
e1f167f3 2126 iommu = device_to_iommu(dev, &bus, &devfn);
64ae892b
DW
2127 if (!iommu)
2128 return -ENODEV;
ba395927 2129
579305f7 2130 if (!dev_is_pci(dev))
28ccce0d 2131 return domain_context_mapping_one(domain, iommu, bus, devfn);
579305f7
AW
2132
2133 data.domain = domain;
2134 data.iommu = iommu;
579305f7
AW
2135
2136 return pci_for_each_dma_alias(to_pci_dev(dev),
2137 &domain_context_mapping_cb, &data);
2138}
2139
2140static int domain_context_mapped_cb(struct pci_dev *pdev,
2141 u16 alias, void *opaque)
2142{
2143 struct intel_iommu *iommu = opaque;
2144
2145 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
ba395927
KA
2146}
2147
e1f167f3 2148static int domain_context_mapped(struct device *dev)
ba395927 2149{
5331fe6f 2150 struct intel_iommu *iommu;
156baca8 2151 u8 bus, devfn;
5331fe6f 2152
e1f167f3 2153 iommu = device_to_iommu(dev, &bus, &devfn);
5331fe6f
WH
2154 if (!iommu)
2155 return -ENODEV;
ba395927 2156
579305f7
AW
2157 if (!dev_is_pci(dev))
2158 return device_context_mapped(iommu, bus, devfn);
e1f167f3 2159
579305f7
AW
2160 return !pci_for_each_dma_alias(to_pci_dev(dev),
2161 domain_context_mapped_cb, iommu);
ba395927
KA
2162}
2163
f532959b
FY
2164/* Returns a number of VTD pages, but aligned to MM page size */
2165static inline unsigned long aligned_nrpages(unsigned long host_addr,
2166 size_t size)
2167{
2168 host_addr &= ~PAGE_MASK;
2169 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2170}
2171
6dd9a7c7
YS
2172/* Return largest possible superpage level for a given mapping */
2173static inline int hardware_largepage_caps(struct dmar_domain *domain,
2174 unsigned long iov_pfn,
2175 unsigned long phy_pfn,
2176 unsigned long pages)
2177{
2178 int support, level = 1;
2179 unsigned long pfnmerge;
2180
2181 support = domain->iommu_superpage;
2182
2183 /* To use a large page, the virtual *and* physical addresses
2184 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2185 of them will mean we have to use smaller pages. So just
2186 merge them and check both at once. */
2187 pfnmerge = iov_pfn | phy_pfn;
2188
2189 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2190 pages >>= VTD_STRIDE_SHIFT;
2191 if (!pages)
2192 break;
2193 pfnmerge >>= VTD_STRIDE_SHIFT;
2194 level++;
2195 support--;
2196 }
2197 return level;
2198}
2199
9051aa02
DW
2200static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2201 struct scatterlist *sg, unsigned long phys_pfn,
2202 unsigned long nr_pages, int prot)
e1605495
DW
2203{
2204 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 2205 phys_addr_t uninitialized_var(pteval);
cc4f14aa 2206 unsigned long sg_res = 0;
6dd9a7c7
YS
2207 unsigned int largepage_lvl = 0;
2208 unsigned long lvl_pages = 0;
e1605495 2209
162d1b10 2210 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
e1605495
DW
2211
2212 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2213 return -EINVAL;
2214
2215 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2216
cc4f14aa
JL
2217 if (!sg) {
2218 sg_res = nr_pages;
9051aa02
DW
2219 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2220 }
2221
6dd9a7c7 2222 while (nr_pages > 0) {
c85994e4
DW
2223 uint64_t tmp;
2224
e1605495 2225 if (!sg_res) {
f532959b 2226 sg_res = aligned_nrpages(sg->offset, sg->length);
e1605495
DW
2227 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2228 sg->dma_length = sg->length;
3e6110fd 2229 pteval = page_to_phys(sg_page(sg)) | prot;
6dd9a7c7 2230 phys_pfn = pteval >> VTD_PAGE_SHIFT;
e1605495 2231 }
6dd9a7c7 2232
e1605495 2233 if (!pte) {
6dd9a7c7
YS
2234 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2235
5cf0a76f 2236 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
e1605495
DW
2237 if (!pte)
2238 return -ENOMEM;
6dd9a7c7 2239 /* It is large page*/
6491d4d0 2240 if (largepage_lvl > 1) {
ba2374fd
CZ
2241 unsigned long nr_superpages, end_pfn;
2242
6dd9a7c7 2243 pteval |= DMA_PTE_LARGE_PAGE;
d41a4adb 2244 lvl_pages = lvl_to_nr_pages(largepage_lvl);
ba2374fd
CZ
2245
2246 nr_superpages = sg_res / lvl_pages;
2247 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2248
d41a4adb
JL
2249 /*
2250 * Ensure that old small page tables are
ba2374fd 2251 * removed to make room for superpage(s).
d41a4adb 2252 */
ba2374fd 2253 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
6491d4d0 2254 } else {
6dd9a7c7 2255 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
6491d4d0 2256 }
6dd9a7c7 2257
e1605495
DW
2258 }
2259 /* We don't need lock here, nobody else
2260 * touches the iova range
2261 */
7766a3fb 2262 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 2263 if (tmp) {
1bf20f0d 2264 static int dumps = 5;
9f10e5bf
JR
2265 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2266 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
2267 if (dumps) {
2268 dumps--;
2269 debug_dma_dump_mappings(NULL);
2270 }
2271 WARN_ON(1);
2272 }
6dd9a7c7
YS
2273
2274 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2275
2276 BUG_ON(nr_pages < lvl_pages);
2277 BUG_ON(sg_res < lvl_pages);
2278
2279 nr_pages -= lvl_pages;
2280 iov_pfn += lvl_pages;
2281 phys_pfn += lvl_pages;
2282 pteval += lvl_pages * VTD_PAGE_SIZE;
2283 sg_res -= lvl_pages;
2284
2285 /* If the next PTE would be the first in a new page, then we
2286 need to flush the cache on the entries we've just written.
2287 And then we'll need to recalculate 'pte', so clear it and
2288 let it get set again in the if (!pte) block above.
2289
2290 If we're done (!nr_pages) we need to flush the cache too.
2291
2292 Also if we've been setting superpages, we may need to
2293 recalculate 'pte' and switch back to smaller pages for the
2294 end of the mapping, if the trailing size is not enough to
2295 use another superpage (i.e. sg_res < lvl_pages). */
e1605495 2296 pte++;
6dd9a7c7
YS
2297 if (!nr_pages || first_pte_in_page(pte) ||
2298 (largepage_lvl > 1 && sg_res < lvl_pages)) {
e1605495
DW
2299 domain_flush_cache(domain, first_pte,
2300 (void *)pte - (void *)first_pte);
2301 pte = NULL;
2302 }
6dd9a7c7
YS
2303
2304 if (!sg_res && nr_pages)
e1605495
DW
2305 sg = sg_next(sg);
2306 }
2307 return 0;
2308}
2309
9051aa02
DW
2310static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2311 struct scatterlist *sg, unsigned long nr_pages,
2312 int prot)
ba395927 2313{
9051aa02
DW
2314 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2315}
6f6a00e4 2316
9051aa02
DW
2317static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2318 unsigned long phys_pfn, unsigned long nr_pages,
2319 int prot)
2320{
2321 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
2322}
2323
2452d9db 2324static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 2325{
c7151a8d
WH
2326 if (!iommu)
2327 return;
8c11e798
WH
2328
2329 clear_context_table(iommu, bus, devfn);
2330 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2331 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2332 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
2333}
2334
109b9b04
DW
2335static inline void unlink_domain_info(struct device_domain_info *info)
2336{
2337 assert_spin_locked(&device_domain_lock);
2338 list_del(&info->link);
2339 list_del(&info->global);
2340 if (info->dev)
0bcb3e28 2341 info->dev->archdata.iommu = NULL;
109b9b04
DW
2342}
2343
ba395927
KA
2344static void domain_remove_dev_info(struct dmar_domain *domain)
2345{
3a74ca01 2346 struct device_domain_info *info, *tmp;
fb170fb4 2347 unsigned long flags;
ba395927
KA
2348
2349 spin_lock_irqsave(&device_domain_lock, flags);
76f45fe3 2350 list_for_each_entry_safe(info, tmp, &domain->devices, link)
127c7615 2351 __dmar_remove_one_dev_info(info);
ba395927
KA
2352 spin_unlock_irqrestore(&device_domain_lock, flags);
2353}
2354
2355/*
2356 * find_domain
1525a29a 2357 * Note: we use struct device->archdata.iommu stores the info
ba395927 2358 */
1525a29a 2359static struct dmar_domain *find_domain(struct device *dev)
ba395927
KA
2360{
2361 struct device_domain_info *info;
2362
2363 /* No lock here, assumes no domain exit in normal case */
1525a29a 2364 info = dev->archdata.iommu;
ba395927
KA
2365 if (info)
2366 return info->domain;
2367 return NULL;
2368}
2369
5a8f40e8 2370static inline struct device_domain_info *
745f2586
JL
2371dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2372{
2373 struct device_domain_info *info;
2374
2375 list_for_each_entry(info, &device_domain_list, global)
41e80dca 2376 if (info->iommu->segment == segment && info->bus == bus &&
745f2586 2377 info->devfn == devfn)
5a8f40e8 2378 return info;
745f2586
JL
2379
2380 return NULL;
2381}
2382
5db31569
JR
2383static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2384 int bus, int devfn,
2385 struct device *dev,
2386 struct dmar_domain *domain)
745f2586 2387{
5a8f40e8 2388 struct dmar_domain *found = NULL;
745f2586
JL
2389 struct device_domain_info *info;
2390 unsigned long flags;
d160aca5 2391 int ret;
745f2586
JL
2392
2393 info = alloc_devinfo_mem();
2394 if (!info)
b718cd3d 2395 return NULL;
745f2586 2396
745f2586
JL
2397 info->bus = bus;
2398 info->devfn = devfn;
b16d0cb9
DW
2399 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2400 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2401 info->ats_qdep = 0;
745f2586
JL
2402 info->dev = dev;
2403 info->domain = domain;
5a8f40e8 2404 info->iommu = iommu;
745f2586 2405
b16d0cb9
DW
2406 if (dev && dev_is_pci(dev)) {
2407 struct pci_dev *pdev = to_pci_dev(info->dev);
2408
2409 if (ecap_dev_iotlb_support(iommu->ecap) &&
2410 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2411 dmar_find_matched_atsr_unit(pdev))
2412 info->ats_supported = 1;
2413
2414 if (ecs_enabled(iommu)) {
2415 if (pasid_enabled(iommu)) {
2416 int features = pci_pasid_features(pdev);
2417 if (features >= 0)
2418 info->pasid_supported = features | 1;
2419 }
2420
2421 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2422 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2423 info->pri_supported = 1;
2424 }
2425 }
2426
745f2586
JL
2427 spin_lock_irqsave(&device_domain_lock, flags);
2428 if (dev)
0bcb3e28 2429 found = find_domain(dev);
f303e507
JR
2430
2431 if (!found) {
5a8f40e8 2432 struct device_domain_info *info2;
41e80dca 2433 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
f303e507
JR
2434 if (info2) {
2435 found = info2->domain;
2436 info2->dev = dev;
2437 }
5a8f40e8 2438 }
f303e507 2439
745f2586
JL
2440 if (found) {
2441 spin_unlock_irqrestore(&device_domain_lock, flags);
2442 free_devinfo_mem(info);
b718cd3d
DW
2443 /* Caller must free the original domain */
2444 return found;
745f2586
JL
2445 }
2446
d160aca5
JR
2447 spin_lock(&iommu->lock);
2448 ret = domain_attach_iommu(domain, iommu);
2449 spin_unlock(&iommu->lock);
2450
2451 if (ret) {
c6c2cebd 2452 spin_unlock_irqrestore(&device_domain_lock, flags);
499f3aa4 2453 free_devinfo_mem(info);
c6c2cebd
JR
2454 return NULL;
2455 }
c6c2cebd 2456
b718cd3d
DW
2457 list_add(&info->link, &domain->devices);
2458 list_add(&info->global, &device_domain_list);
2459 if (dev)
2460 dev->archdata.iommu = info;
2461 spin_unlock_irqrestore(&device_domain_lock, flags);
2462
cc4e2575
JR
2463 if (dev && domain_context_mapping(domain, dev)) {
2464 pr_err("Domain context map for %s failed\n", dev_name(dev));
e6de0f8d 2465 dmar_remove_one_dev_info(domain, dev);
cc4e2575
JR
2466 return NULL;
2467 }
2468
b718cd3d 2469 return domain;
745f2586
JL
2470}
2471
579305f7
AW
2472static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2473{
2474 *(u16 *)opaque = alias;
2475 return 0;
2476}
2477
76208356 2478static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
ba395927 2479{
cc4e2575 2480 struct device_domain_info *info = NULL;
76208356 2481 struct dmar_domain *domain = NULL;
579305f7 2482 struct intel_iommu *iommu;
08a7f456 2483 u16 req_id, dma_alias;
ba395927 2484 unsigned long flags;
aa4d066a 2485 u8 bus, devfn;
ba395927 2486
579305f7
AW
2487 iommu = device_to_iommu(dev, &bus, &devfn);
2488 if (!iommu)
2489 return NULL;
2490
08a7f456
JR
2491 req_id = ((u16)bus << 8) | devfn;
2492
146922ec
DW
2493 if (dev_is_pci(dev)) {
2494 struct pci_dev *pdev = to_pci_dev(dev);
276dbf99 2495
579305f7
AW
2496 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2497
2498 spin_lock_irqsave(&device_domain_lock, flags);
2499 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2500 PCI_BUS_NUM(dma_alias),
2501 dma_alias & 0xff);
2502 if (info) {
2503 iommu = info->iommu;
2504 domain = info->domain;
5a8f40e8 2505 }
579305f7 2506 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927 2507
76208356 2508 /* DMA alias already has a domain, use it */
579305f7 2509 if (info)
76208356 2510 goto out;
579305f7 2511 }
ba395927 2512
146922ec 2513 /* Allocate and initialize new domain for the device */
ab8dfe25 2514 domain = alloc_domain(0);
745f2586 2515 if (!domain)
579305f7 2516 return NULL;
dc534b25 2517 if (domain_init(domain, iommu, gaw)) {
579305f7
AW
2518 domain_exit(domain);
2519 return NULL;
2c2e2c38 2520 }
ba395927 2521
76208356 2522out:
579305f7 2523
76208356
JR
2524 return domain;
2525}
579305f7 2526
76208356
JR
2527static struct dmar_domain *set_domain_for_dev(struct device *dev,
2528 struct dmar_domain *domain)
2529{
2530 struct intel_iommu *iommu;
2531 struct dmar_domain *tmp;
2532 u16 req_id, dma_alias;
2533 u8 bus, devfn;
2534
2535 iommu = device_to_iommu(dev, &bus, &devfn);
2536 if (!iommu)
2537 return NULL;
2538
2539 req_id = ((u16)bus << 8) | devfn;
2540
2541 if (dev_is_pci(dev)) {
2542 struct pci_dev *pdev = to_pci_dev(dev);
2543
2544 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2545
2546 /* register PCI DMA alias device */
2547 if (req_id != dma_alias) {
2548 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2549 dma_alias & 0xff, NULL, domain);
2550
2551 if (!tmp || tmp != domain)
2552 return tmp;
2553 }
ba395927
KA
2554 }
2555
5db31569 2556 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
76208356
JR
2557 if (!tmp || tmp != domain)
2558 return tmp;
2559
2560 return domain;
2561}
579305f7 2562
76208356
JR
2563static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2564{
2565 struct dmar_domain *domain, *tmp;
2566
2567 domain = find_domain(dev);
2568 if (domain)
2569 goto out;
2570
2571 domain = find_or_alloc_domain(dev, gaw);
2572 if (!domain)
2573 goto out;
2574
2575 tmp = set_domain_for_dev(dev, domain);
2576 if (!tmp || domain != tmp) {
579305f7
AW
2577 domain_exit(domain);
2578 domain = tmp;
2579 }
b718cd3d 2580
76208356
JR
2581out:
2582
b718cd3d 2583 return domain;
ba395927
KA
2584}
2585
b213203e
DW
2586static int iommu_domain_identity_map(struct dmar_domain *domain,
2587 unsigned long long start,
2588 unsigned long long end)
ba395927 2589{
c5395d5c
DW
2590 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2591 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2592
2593 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2594 dma_to_mm_pfn(last_vpfn))) {
9f10e5bf 2595 pr_err("Reserving iova failed\n");
b213203e 2596 return -ENOMEM;
ba395927
KA
2597 }
2598
af1089ce 2599 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
ba395927
KA
2600 /*
2601 * RMRR range might have overlap with physical memory range,
2602 * clear it first
2603 */
c5395d5c 2604 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 2605
c5395d5c
DW
2606 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2607 last_vpfn - first_vpfn + 1,
61df7443 2608 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
2609}
2610
d66ce54b
JR
2611static int domain_prepare_identity_map(struct device *dev,
2612 struct dmar_domain *domain,
2613 unsigned long long start,
2614 unsigned long long end)
b213203e 2615{
19943b0e
DW
2616 /* For _hardware_ passthrough, don't bother. But for software
2617 passthrough, we do it anyway -- it may indicate a memory
2618 range which is reserved in E820, so which didn't get set
2619 up to start with in si_domain */
2620 if (domain == si_domain && hw_pass_through) {
9f10e5bf
JR
2621 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2622 dev_name(dev), start, end);
19943b0e
DW
2623 return 0;
2624 }
2625
9f10e5bf
JR
2626 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2627 dev_name(dev), start, end);
2628
5595b528
DW
2629 if (end < start) {
2630 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2631 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2632 dmi_get_system_info(DMI_BIOS_VENDOR),
2633 dmi_get_system_info(DMI_BIOS_VERSION),
2634 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2635 return -EIO;
5595b528
DW
2636 }
2637
2ff729f5
DW
2638 if (end >> agaw_to_width(domain->agaw)) {
2639 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2640 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2641 agaw_to_width(domain->agaw),
2642 dmi_get_system_info(DMI_BIOS_VENDOR),
2643 dmi_get_system_info(DMI_BIOS_VERSION),
2644 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2645 return -EIO;
2ff729f5 2646 }
19943b0e 2647
d66ce54b
JR
2648 return iommu_domain_identity_map(domain, start, end);
2649}
ba395927 2650
d66ce54b
JR
2651static int iommu_prepare_identity_map(struct device *dev,
2652 unsigned long long start,
2653 unsigned long long end)
2654{
2655 struct dmar_domain *domain;
2656 int ret;
2657
2658 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2659 if (!domain)
2660 return -ENOMEM;
2661
2662 ret = domain_prepare_identity_map(dev, domain, start, end);
2663 if (ret)
2664 domain_exit(domain);
b213203e 2665
ba395927 2666 return ret;
ba395927
KA
2667}
2668
2669static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
0b9d9753 2670 struct device *dev)
ba395927 2671{
0b9d9753 2672 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927 2673 return 0;
0b9d9753
DW
2674 return iommu_prepare_identity_map(dev, rmrr->base_address,
2675 rmrr->end_address);
ba395927
KA
2676}
2677
d3f13810 2678#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
49a0429e
KA
2679static inline void iommu_prepare_isa(void)
2680{
2681 struct pci_dev *pdev;
2682 int ret;
2683
2684 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2685 if (!pdev)
2686 return;
2687
9f10e5bf 2688 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
0b9d9753 2689 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
49a0429e
KA
2690
2691 if (ret)
9f10e5bf 2692 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
49a0429e 2693
9b27e82d 2694 pci_dev_put(pdev);
49a0429e
KA
2695}
2696#else
2697static inline void iommu_prepare_isa(void)
2698{
2699 return;
2700}
d3f13810 2701#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
49a0429e 2702
2c2e2c38 2703static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2 2704
071e1374 2705static int __init si_domain_init(int hw)
2c2e2c38 2706{
c7ab48d2 2707 int nid, ret = 0;
2c2e2c38 2708
ab8dfe25 2709 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2c2e2c38
FY
2710 if (!si_domain)
2711 return -EFAULT;
2712
2c2e2c38
FY
2713 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2714 domain_exit(si_domain);
2715 return -EFAULT;
2716 }
2717
0dc79715 2718 pr_debug("Identity mapping domain allocated\n");
2c2e2c38 2719
19943b0e
DW
2720 if (hw)
2721 return 0;
2722
c7ab48d2 2723 for_each_online_node(nid) {
5dfe8660
TH
2724 unsigned long start_pfn, end_pfn;
2725 int i;
2726
2727 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2728 ret = iommu_domain_identity_map(si_domain,
2729 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2730 if (ret)
2731 return ret;
2732 }
c7ab48d2
DW
2733 }
2734
2c2e2c38
FY
2735 return 0;
2736}
2737
9b226624 2738static int identity_mapping(struct device *dev)
2c2e2c38
FY
2739{
2740 struct device_domain_info *info;
2741
2742 if (likely(!iommu_identity_mapping))
2743 return 0;
2744
9b226624 2745 info = dev->archdata.iommu;
cb452a40
MT
2746 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2747 return (info->domain == si_domain);
2c2e2c38 2748
2c2e2c38
FY
2749 return 0;
2750}
2751
28ccce0d 2752static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2c2e2c38 2753{
0ac72664 2754 struct dmar_domain *ndomain;
5a8f40e8 2755 struct intel_iommu *iommu;
156baca8 2756 u8 bus, devfn;
2c2e2c38 2757
5913c9bf 2758 iommu = device_to_iommu(dev, &bus, &devfn);
5a8f40e8
DW
2759 if (!iommu)
2760 return -ENODEV;
2761
5db31569 2762 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
0ac72664
DW
2763 if (ndomain != domain)
2764 return -EBUSY;
2c2e2c38
FY
2765
2766 return 0;
2767}
2768
0b9d9753 2769static bool device_has_rmrr(struct device *dev)
ea2447f7
TM
2770{
2771 struct dmar_rmrr_unit *rmrr;
832bd858 2772 struct device *tmp;
ea2447f7
TM
2773 int i;
2774
0e242612 2775 rcu_read_lock();
ea2447f7 2776 for_each_rmrr_units(rmrr) {
b683b230
JL
2777 /*
2778 * Return TRUE if this RMRR contains the device that
2779 * is passed in.
2780 */
2781 for_each_active_dev_scope(rmrr->devices,
2782 rmrr->devices_cnt, i, tmp)
0b9d9753 2783 if (tmp == dev) {
0e242612 2784 rcu_read_unlock();
ea2447f7 2785 return true;
b683b230 2786 }
ea2447f7 2787 }
0e242612 2788 rcu_read_unlock();
ea2447f7
TM
2789 return false;
2790}
2791
c875d2c1
AW
2792/*
2793 * There are a couple cases where we need to restrict the functionality of
2794 * devices associated with RMRRs. The first is when evaluating a device for
2795 * identity mapping because problems exist when devices are moved in and out
2796 * of domains and their respective RMRR information is lost. This means that
2797 * a device with associated RMRRs will never be in a "passthrough" domain.
2798 * The second is use of the device through the IOMMU API. This interface
2799 * expects to have full control of the IOVA space for the device. We cannot
2800 * satisfy both the requirement that RMRR access is maintained and have an
2801 * unencumbered IOVA space. We also have no ability to quiesce the device's
2802 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2803 * We therefore prevent devices associated with an RMRR from participating in
2804 * the IOMMU API, which eliminates them from device assignment.
2805 *
2806 * In both cases we assume that PCI USB devices with RMRRs have them largely
2807 * for historical reasons and that the RMRR space is not actively used post
2808 * boot. This exclusion may change if vendors begin to abuse it.
18436afd
DW
2809 *
2810 * The same exception is made for graphics devices, with the requirement that
2811 * any use of the RMRR regions will be torn down before assigning the device
2812 * to a guest.
c875d2c1
AW
2813 */
2814static bool device_is_rmrr_locked(struct device *dev)
2815{
2816 if (!device_has_rmrr(dev))
2817 return false;
2818
2819 if (dev_is_pci(dev)) {
2820 struct pci_dev *pdev = to_pci_dev(dev);
2821
18436afd 2822 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
c875d2c1
AW
2823 return false;
2824 }
2825
2826 return true;
2827}
2828
3bdb2591 2829static int iommu_should_identity_map(struct device *dev, int startup)
6941af28 2830{
ea2447f7 2831
3bdb2591
DW
2832 if (dev_is_pci(dev)) {
2833 struct pci_dev *pdev = to_pci_dev(dev);
ea2447f7 2834
c875d2c1 2835 if (device_is_rmrr_locked(dev))
3bdb2591 2836 return 0;
e0fc7e0b 2837
3bdb2591
DW
2838 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2839 return 1;
e0fc7e0b 2840
3bdb2591
DW
2841 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2842 return 1;
6941af28 2843
3bdb2591 2844 if (!(iommu_identity_mapping & IDENTMAP_ALL))
3dfc813d 2845 return 0;
3bdb2591
DW
2846
2847 /*
2848 * We want to start off with all devices in the 1:1 domain, and
2849 * take them out later if we find they can't access all of memory.
2850 *
2851 * However, we can't do this for PCI devices behind bridges,
2852 * because all PCI devices behind the same bridge will end up
2853 * with the same source-id on their transactions.
2854 *
2855 * Practically speaking, we can't change things around for these
2856 * devices at run-time, because we can't be sure there'll be no
2857 * DMA transactions in flight for any of their siblings.
2858 *
2859 * So PCI devices (unless they're on the root bus) as well as
2860 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2861 * the 1:1 domain, just in _case_ one of their siblings turns out
2862 * not to be able to map all of memory.
2863 */
2864 if (!pci_is_pcie(pdev)) {
2865 if (!pci_is_root_bus(pdev->bus))
2866 return 0;
2867 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2868 return 0;
2869 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3dfc813d 2870 return 0;
3bdb2591
DW
2871 } else {
2872 if (device_has_rmrr(dev))
2873 return 0;
2874 }
3dfc813d 2875
3bdb2591 2876 /*
3dfc813d 2877 * At boot time, we don't yet know if devices will be 64-bit capable.
3bdb2591 2878 * Assume that they will — if they turn out not to be, then we can
3dfc813d
DW
2879 * take them out of the 1:1 domain later.
2880 */
8fcc5372
CW
2881 if (!startup) {
2882 /*
2883 * If the device's dma_mask is less than the system's memory
2884 * size then this is not a candidate for identity mapping.
2885 */
3bdb2591 2886 u64 dma_mask = *dev->dma_mask;
8fcc5372 2887
3bdb2591
DW
2888 if (dev->coherent_dma_mask &&
2889 dev->coherent_dma_mask < dma_mask)
2890 dma_mask = dev->coherent_dma_mask;
8fcc5372 2891
3bdb2591 2892 return dma_mask >= dma_get_required_mask(dev);
8fcc5372 2893 }
6941af28
DW
2894
2895 return 1;
2896}
2897
cf04eee8
DW
2898static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2899{
2900 int ret;
2901
2902 if (!iommu_should_identity_map(dev, 1))
2903 return 0;
2904
28ccce0d 2905 ret = domain_add_dev_info(si_domain, dev);
cf04eee8 2906 if (!ret)
9f10e5bf
JR
2907 pr_info("%s identity mapping for device %s\n",
2908 hw ? "Hardware" : "Software", dev_name(dev));
cf04eee8
DW
2909 else if (ret == -ENODEV)
2910 /* device not associated with an iommu */
2911 ret = 0;
2912
2913 return ret;
2914}
2915
2916
071e1374 2917static int __init iommu_prepare_static_identity_mapping(int hw)
2c2e2c38 2918{
2c2e2c38 2919 struct pci_dev *pdev = NULL;
cf04eee8
DW
2920 struct dmar_drhd_unit *drhd;
2921 struct intel_iommu *iommu;
2922 struct device *dev;
2923 int i;
2924 int ret = 0;
2c2e2c38 2925
2c2e2c38 2926 for_each_pci_dev(pdev) {
cf04eee8
DW
2927 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2928 if (ret)
2929 return ret;
2930 }
2931
2932 for_each_active_iommu(iommu, drhd)
2933 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2934 struct acpi_device_physical_node *pn;
2935 struct acpi_device *adev;
2936
2937 if (dev->bus != &acpi_bus_type)
2938 continue;
86080ccc 2939
cf04eee8
DW
2940 adev= to_acpi_device(dev);
2941 mutex_lock(&adev->physical_node_lock);
2942 list_for_each_entry(pn, &adev->physical_node_list, node) {
2943 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2944 if (ret)
2945 break;
eae460b6 2946 }
cf04eee8
DW
2947 mutex_unlock(&adev->physical_node_lock);
2948 if (ret)
2949 return ret;
62edf5dc 2950 }
2c2e2c38
FY
2951
2952 return 0;
2953}
2954
ffebeb46
JL
2955static void intel_iommu_init_qi(struct intel_iommu *iommu)
2956{
2957 /*
2958 * Start from the sane iommu hardware state.
2959 * If the queued invalidation is already initialized by us
2960 * (for example, while enabling interrupt-remapping) then
2961 * we got the things already rolling from a sane state.
2962 */
2963 if (!iommu->qi) {
2964 /*
2965 * Clear any previous faults.
2966 */
2967 dmar_fault(-1, iommu);
2968 /*
2969 * Disable queued invalidation if supported and already enabled
2970 * before OS handover.
2971 */
2972 dmar_disable_qi(iommu);
2973 }
2974
2975 if (dmar_enable_qi(iommu)) {
2976 /*
2977 * Queued Invalidate not enabled, use Register Based Invalidate
2978 */
2979 iommu->flush.flush_context = __iommu_flush_context;
2980 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
9f10e5bf 2981 pr_info("%s: Using Register based invalidation\n",
ffebeb46
JL
2982 iommu->name);
2983 } else {
2984 iommu->flush.flush_context = qi_flush_context;
2985 iommu->flush.flush_iotlb = qi_flush_iotlb;
9f10e5bf 2986 pr_info("%s: Using Queued invalidation\n", iommu->name);
ffebeb46
JL
2987 }
2988}
2989
091d42e4 2990static int copy_context_table(struct intel_iommu *iommu,
dfddb969 2991 struct root_entry *old_re,
091d42e4
JR
2992 struct context_entry **tbl,
2993 int bus, bool ext)
2994{
dbcd861f 2995 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
543c8dcf 2996 struct context_entry *new_ce = NULL, ce;
dfddb969 2997 struct context_entry *old_ce = NULL;
543c8dcf 2998 struct root_entry re;
091d42e4
JR
2999 phys_addr_t old_ce_phys;
3000
3001 tbl_idx = ext ? bus * 2 : bus;
dfddb969 3002 memcpy(&re, old_re, sizeof(re));
091d42e4
JR
3003
3004 for (devfn = 0; devfn < 256; devfn++) {
3005 /* First calculate the correct index */
3006 idx = (ext ? devfn * 2 : devfn) % 256;
3007
3008 if (idx == 0) {
3009 /* First save what we may have and clean up */
3010 if (new_ce) {
3011 tbl[tbl_idx] = new_ce;
3012 __iommu_flush_cache(iommu, new_ce,
3013 VTD_PAGE_SIZE);
3014 pos = 1;
3015 }
3016
3017 if (old_ce)
3018 iounmap(old_ce);
3019
3020 ret = 0;
3021 if (devfn < 0x80)
543c8dcf 3022 old_ce_phys = root_entry_lctp(&re);
091d42e4 3023 else
543c8dcf 3024 old_ce_phys = root_entry_uctp(&re);
091d42e4
JR
3025
3026 if (!old_ce_phys) {
3027 if (ext && devfn == 0) {
3028 /* No LCTP, try UCTP */
3029 devfn = 0x7f;
3030 continue;
3031 } else {
3032 goto out;
3033 }
3034 }
3035
3036 ret = -ENOMEM;
dfddb969
DW
3037 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3038 MEMREMAP_WB);
091d42e4
JR
3039 if (!old_ce)
3040 goto out;
3041
3042 new_ce = alloc_pgtable_page(iommu->node);
3043 if (!new_ce)
3044 goto out_unmap;
3045
3046 ret = 0;
3047 }
3048
3049 /* Now copy the context entry */
dfddb969 3050 memcpy(&ce, old_ce + idx, sizeof(ce));
091d42e4 3051
cf484d0e 3052 if (!__context_present(&ce))
091d42e4
JR
3053 continue;
3054
dbcd861f
JR
3055 did = context_domain_id(&ce);
3056 if (did >= 0 && did < cap_ndoms(iommu->cap))
3057 set_bit(did, iommu->domain_ids);
3058
cf484d0e
JR
3059 /*
3060 * We need a marker for copied context entries. This
3061 * marker needs to work for the old format as well as
3062 * for extended context entries.
3063 *
3064 * Bit 67 of the context entry is used. In the old
3065 * format this bit is available to software, in the
3066 * extended format it is the PGE bit, but PGE is ignored
3067 * by HW if PASIDs are disabled (and thus still
3068 * available).
3069 *
3070 * So disable PASIDs first and then mark the entry
3071 * copied. This means that we don't copy PASID
3072 * translations from the old kernel, but this is fine as
3073 * faults there are not fatal.
3074 */
3075 context_clear_pasid_enable(&ce);
3076 context_set_copied(&ce);
3077
091d42e4
JR
3078 new_ce[idx] = ce;
3079 }
3080
3081 tbl[tbl_idx + pos] = new_ce;
3082
3083 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3084
3085out_unmap:
dfddb969 3086 memunmap(old_ce);
091d42e4
JR
3087
3088out:
3089 return ret;
3090}
3091
3092static int copy_translation_tables(struct intel_iommu *iommu)
3093{
3094 struct context_entry **ctxt_tbls;
dfddb969 3095 struct root_entry *old_rt;
091d42e4
JR
3096 phys_addr_t old_rt_phys;
3097 int ctxt_table_entries;
3098 unsigned long flags;
3099 u64 rtaddr_reg;
3100 int bus, ret;
c3361f2f 3101 bool new_ext, ext;
091d42e4
JR
3102
3103 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3104 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
c3361f2f
JR
3105 new_ext = !!ecap_ecs(iommu->ecap);
3106
3107 /*
3108 * The RTT bit can only be changed when translation is disabled,
3109 * but disabling translation means to open a window for data
3110 * corruption. So bail out and don't copy anything if we would
3111 * have to change the bit.
3112 */
3113 if (new_ext != ext)
3114 return -EINVAL;
091d42e4
JR
3115
3116 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3117 if (!old_rt_phys)
3118 return -EINVAL;
3119
dfddb969 3120 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
091d42e4
JR
3121 if (!old_rt)
3122 return -ENOMEM;
3123
3124 /* This is too big for the stack - allocate it from slab */
3125 ctxt_table_entries = ext ? 512 : 256;
3126 ret = -ENOMEM;
3127 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3128 if (!ctxt_tbls)
3129 goto out_unmap;
3130
3131 for (bus = 0; bus < 256; bus++) {
3132 ret = copy_context_table(iommu, &old_rt[bus],
3133 ctxt_tbls, bus, ext);
3134 if (ret) {
3135 pr_err("%s: Failed to copy context table for bus %d\n",
3136 iommu->name, bus);
3137 continue;
3138 }
3139 }
3140
3141 spin_lock_irqsave(&iommu->lock, flags);
3142
3143 /* Context tables are copied, now write them to the root_entry table */
3144 for (bus = 0; bus < 256; bus++) {
3145 int idx = ext ? bus * 2 : bus;
3146 u64 val;
3147
3148 if (ctxt_tbls[idx]) {
3149 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3150 iommu->root_entry[bus].lo = val;
3151 }
3152
3153 if (!ext || !ctxt_tbls[idx + 1])
3154 continue;
3155
3156 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3157 iommu->root_entry[bus].hi = val;
3158 }
3159
3160 spin_unlock_irqrestore(&iommu->lock, flags);
3161
3162 kfree(ctxt_tbls);
3163
3164 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3165
3166 ret = 0;
3167
3168out_unmap:
dfddb969 3169 memunmap(old_rt);
091d42e4
JR
3170
3171 return ret;
3172}
3173
b779260b 3174static int __init init_dmars(void)
ba395927
KA
3175{
3176 struct dmar_drhd_unit *drhd;
3177 struct dmar_rmrr_unit *rmrr;
a87f4918 3178 bool copied_tables = false;
832bd858 3179 struct device *dev;
ba395927 3180 struct intel_iommu *iommu;
aa473240 3181 int i, ret, cpu;
2c2e2c38 3182
ba395927
KA
3183 /*
3184 * for each drhd
3185 * allocate root
3186 * initialize and program root entry to not present
3187 * endfor
3188 */
3189 for_each_drhd_unit(drhd) {
5e0d2a6f 3190 /*
3191 * lock not needed as this is only incremented in the single
3192 * threaded kernel __init code path all other access are read
3193 * only
3194 */
78d8e704 3195 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
1b198bb0
MT
3196 g_num_of_iommus++;
3197 continue;
3198 }
9f10e5bf 3199 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
5e0d2a6f 3200 }
3201
ffebeb46
JL
3202 /* Preallocate enough resources for IOMMU hot-addition */
3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3204 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3205
d9630fe9
WH
3206 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3207 GFP_KERNEL);
3208 if (!g_iommus) {
9f10e5bf 3209 pr_err("Allocating global iommu array failed\n");
d9630fe9
WH
3210 ret = -ENOMEM;
3211 goto error;
3212 }
3213
aa473240
OP
3214 for_each_possible_cpu(cpu) {
3215 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3216 cpu);
3217
3218 dfd->tables = kzalloc(g_num_of_iommus *
3219 sizeof(struct deferred_flush_table),
3220 GFP_KERNEL);
3221 if (!dfd->tables) {
3222 ret = -ENOMEM;
3223 goto free_g_iommus;
3224 }
3225
3226 spin_lock_init(&dfd->lock);
3227 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
5e0d2a6f 3228 }
3229
7c919779 3230 for_each_active_iommu(iommu, drhd) {
d9630fe9 3231 g_iommus[iommu->seq_id] = iommu;
ba395927 3232
b63d80d1
JR
3233 intel_iommu_init_qi(iommu);
3234
e61d98d8
SS
3235 ret = iommu_init_domains(iommu);
3236 if (ret)
989d51fc 3237 goto free_iommu;
e61d98d8 3238
4158c2ec
JR
3239 init_translation_status(iommu);
3240
091d42e4
JR
3241 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3242 iommu_disable_translation(iommu);
3243 clear_translation_pre_enabled(iommu);
3244 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3245 iommu->name);
3246 }
4158c2ec 3247
ba395927
KA
3248 /*
3249 * TBD:
3250 * we could share the same root & context tables
25985edc 3251 * among all IOMMU's. Need to Split it later.
ba395927
KA
3252 */
3253 ret = iommu_alloc_root_entry(iommu);
ffebeb46 3254 if (ret)
989d51fc 3255 goto free_iommu;
5f0a7f76 3256
091d42e4
JR
3257 if (translation_pre_enabled(iommu)) {
3258 pr_info("Translation already enabled - trying to copy translation structures\n");
3259
3260 ret = copy_translation_tables(iommu);
3261 if (ret) {
3262 /*
3263 * We found the IOMMU with translation
3264 * enabled - but failed to copy over the
3265 * old root-entry table. Try to proceed
3266 * by disabling translation now and
3267 * allocating a clean root-entry table.
3268 * This might cause DMAR faults, but
3269 * probably the dump will still succeed.
3270 */
3271 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3272 iommu->name);
3273 iommu_disable_translation(iommu);
3274 clear_translation_pre_enabled(iommu);
3275 } else {
3276 pr_info("Copied translation tables from previous kernel for %s\n",
3277 iommu->name);
a87f4918 3278 copied_tables = true;
091d42e4
JR
3279 }
3280 }
3281
4ed0d3e6 3282 if (!ecap_pass_through(iommu->ecap))
19943b0e 3283 hw_pass_through = 0;
8a94ade4
DW
3284#ifdef CONFIG_INTEL_IOMMU_SVM
3285 if (pasid_enabled(iommu))
3286 intel_svm_alloc_pasid_tables(iommu);
3287#endif
ba395927
KA
3288 }
3289
a4c34ff1
JR
3290 /*
3291 * Now that qi is enabled on all iommus, set the root entry and flush
3292 * caches. This is required on some Intel X58 chipsets, otherwise the
3293 * flush_context function will loop forever and the boot hangs.
3294 */
3295 for_each_active_iommu(iommu, drhd) {
3296 iommu_flush_write_buffer(iommu);
3297 iommu_set_root_entry(iommu);
3298 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3299 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3300 }
3301
19943b0e 3302 if (iommu_pass_through)
e0fc7e0b
DW
3303 iommu_identity_mapping |= IDENTMAP_ALL;
3304
d3f13810 3305#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
e0fc7e0b 3306 iommu_identity_mapping |= IDENTMAP_GFX;
19943b0e 3307#endif
e0fc7e0b 3308
86080ccc
JR
3309 if (iommu_identity_mapping) {
3310 ret = si_domain_init(hw_pass_through);
3311 if (ret)
3312 goto free_iommu;
3313 }
3314
e0fc7e0b
DW
3315 check_tylersburg_isoch();
3316
a87f4918
JR
3317 /*
3318 * If we copied translations from a previous kernel in the kdump
3319 * case, we can not assign the devices to domains now, as that
3320 * would eliminate the old mappings. So skip this part and defer
3321 * the assignment to device driver initialization time.
3322 */
3323 if (copied_tables)
3324 goto domains_done;
3325
ba395927 3326 /*
19943b0e
DW
3327 * If pass through is not set or not enabled, setup context entries for
3328 * identity mappings for rmrr, gfx, and isa and may fall back to static
3329 * identity mapping if iommu_identity_mapping is set.
ba395927 3330 */
19943b0e
DW
3331 if (iommu_identity_mapping) {
3332 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
4ed0d3e6 3333 if (ret) {
9f10e5bf 3334 pr_crit("Failed to setup IOMMU pass-through\n");
989d51fc 3335 goto free_iommu;
ba395927
KA
3336 }
3337 }
ba395927 3338 /*
19943b0e
DW
3339 * For each rmrr
3340 * for each dev attached to rmrr
3341 * do
3342 * locate drhd for dev, alloc domain for dev
3343 * allocate free domain
3344 * allocate page table entries for rmrr
3345 * if context not allocated for bus
3346 * allocate and init context
3347 * set present in root table for this bus
3348 * init context with domain, translation etc
3349 * endfor
3350 * endfor
ba395927 3351 */
9f10e5bf 3352 pr_info("Setting RMRR:\n");
19943b0e 3353 for_each_rmrr_units(rmrr) {
b683b230
JL
3354 /* some BIOS lists non-exist devices in DMAR table. */
3355 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
832bd858 3356 i, dev) {
0b9d9753 3357 ret = iommu_prepare_rmrr_dev(rmrr, dev);
19943b0e 3358 if (ret)
9f10e5bf 3359 pr_err("Mapping reserved region failed\n");
ba395927 3360 }
4ed0d3e6 3361 }
49a0429e 3362
19943b0e
DW
3363 iommu_prepare_isa();
3364
a87f4918
JR
3365domains_done:
3366
ba395927
KA
3367 /*
3368 * for each drhd
3369 * enable fault log
3370 * global invalidate context cache
3371 * global invalidate iotlb
3372 * enable translation
3373 */
7c919779 3374 for_each_iommu(iommu, drhd) {
51a63e67
JC
3375 if (drhd->ignored) {
3376 /*
3377 * we always have to disable PMRs or DMA may fail on
3378 * this device
3379 */
3380 if (force_on)
7c919779 3381 iommu_disable_protect_mem_regions(iommu);
ba395927 3382 continue;
51a63e67 3383 }
ba395927
KA
3384
3385 iommu_flush_write_buffer(iommu);
3386
a222a7f0
DW
3387#ifdef CONFIG_INTEL_IOMMU_SVM
3388 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3389 ret = intel_svm_enable_prq(iommu);
3390 if (ret)
3391 goto free_iommu;
3392 }
3393#endif
3460a6d9
KA
3394 ret = dmar_set_interrupt(iommu);
3395 if (ret)
989d51fc 3396 goto free_iommu;
3460a6d9 3397
8939ddf6
JR
3398 if (!translation_pre_enabled(iommu))
3399 iommu_enable_translation(iommu);
3400
b94996c9 3401 iommu_disable_protect_mem_regions(iommu);
ba395927
KA
3402 }
3403
3404 return 0;
989d51fc
JL
3405
3406free_iommu:
ffebeb46
JL
3407 for_each_active_iommu(iommu, drhd) {
3408 disable_dmar_iommu(iommu);
a868e6b7 3409 free_dmar_iommu(iommu);
ffebeb46 3410 }
989d51fc 3411free_g_iommus:
aa473240
OP
3412 for_each_possible_cpu(cpu)
3413 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
d9630fe9 3414 kfree(g_iommus);
989d51fc 3415error:
ba395927
KA
3416 return ret;
3417}
3418
5a5e02a6 3419/* This takes a number of _MM_ pages, not VTD pages */
2aac6304 3420static unsigned long intel_alloc_iova(struct device *dev,
875764de
DW
3421 struct dmar_domain *domain,
3422 unsigned long nrpages, uint64_t dma_mask)
ba395927 3423{
22e2f9fa 3424 unsigned long iova_pfn = 0;
ba395927 3425
875764de
DW
3426 /* Restrict dma_mask to the width that the iommu can handle */
3427 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
8f6429c7
RM
3428 /* Ensure we reserve the whole size-aligned region */
3429 nrpages = __roundup_pow_of_two(nrpages);
875764de
DW
3430
3431 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
3432 /*
3433 * First try to allocate an io virtual address in
284901a9 3434 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 3435 * from higher range
ba395927 3436 */
22e2f9fa
OP
3437 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3438 IOVA_PFN(DMA_BIT_MASK(32)));
3439 if (iova_pfn)
3440 return iova_pfn;
875764de 3441 }
22e2f9fa
OP
3442 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3443 if (unlikely(!iova_pfn)) {
9f10e5bf 3444 pr_err("Allocating %ld-page iova for %s failed",
207e3592 3445 nrpages, dev_name(dev));
2aac6304 3446 return 0;
f76aec76
KA
3447 }
3448
22e2f9fa 3449 return iova_pfn;
f76aec76
KA
3450}
3451
d4b709f4 3452static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
f76aec76 3453{
1c5ebba9 3454 struct dmar_domain *domain, *tmp;
b1ce5b79 3455 struct dmar_rmrr_unit *rmrr;
b1ce5b79
JR
3456 struct device *i_dev;
3457 int i, ret;
f76aec76 3458
1c5ebba9
JR
3459 domain = find_domain(dev);
3460 if (domain)
3461 goto out;
3462
3463 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3464 if (!domain)
3465 goto out;
ba395927 3466
b1ce5b79
JR
3467 /* We have a new domain - setup possible RMRRs for the device */
3468 rcu_read_lock();
3469 for_each_rmrr_units(rmrr) {
3470 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3471 i, i_dev) {
3472 if (i_dev != dev)
3473 continue;
3474
3475 ret = domain_prepare_identity_map(dev, domain,
3476 rmrr->base_address,
3477 rmrr->end_address);
3478 if (ret)
3479 dev_err(dev, "Mapping reserved region failed\n");
3480 }
3481 }
3482 rcu_read_unlock();
3483
1c5ebba9
JR
3484 tmp = set_domain_for_dev(dev, domain);
3485 if (!tmp || domain != tmp) {
3486 domain_exit(domain);
3487 domain = tmp;
3488 }
3489
3490out:
3491
3492 if (!domain)
3493 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3494
3495
f76aec76
KA
3496 return domain;
3497}
3498
d4b709f4 3499static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
147202aa
DW
3500{
3501 struct device_domain_info *info;
3502
3503 /* No lock here, assumes no domain exit in normal case */
d4b709f4 3504 info = dev->archdata.iommu;
147202aa
DW
3505 if (likely(info))
3506 return info->domain;
3507
3508 return __get_valid_domain_for_dev(dev);
3509}
3510
ecb509ec 3511/* Check if the dev needs to go through non-identity map and unmap process.*/
73676832 3512static int iommu_no_mapping(struct device *dev)
2c2e2c38
FY
3513{
3514 int found;
3515
3d89194a 3516 if (iommu_dummy(dev))
1e4c64c4
DW
3517 return 1;
3518
2c2e2c38 3519 if (!iommu_identity_mapping)
1e4c64c4 3520 return 0;
2c2e2c38 3521
9b226624 3522 found = identity_mapping(dev);
2c2e2c38 3523 if (found) {
ecb509ec 3524 if (iommu_should_identity_map(dev, 0))
2c2e2c38
FY
3525 return 1;
3526 else {
3527 /*
3528 * 32 bit DMA is removed from si_domain and fall back
3529 * to non-identity mapping.
3530 */
e6de0f8d 3531 dmar_remove_one_dev_info(si_domain, dev);
9f10e5bf
JR
3532 pr_info("32bit %s uses non-identity mapping\n",
3533 dev_name(dev));
2c2e2c38
FY
3534 return 0;
3535 }
3536 } else {
3537 /*
3538 * In case of a detached 64 bit DMA device from vm, the device
3539 * is put into si_domain for identity mapping.
3540 */
ecb509ec 3541 if (iommu_should_identity_map(dev, 0)) {
2c2e2c38 3542 int ret;
28ccce0d 3543 ret = domain_add_dev_info(si_domain, dev);
2c2e2c38 3544 if (!ret) {
9f10e5bf
JR
3545 pr_info("64bit %s uses identity mapping\n",
3546 dev_name(dev));
2c2e2c38
FY
3547 return 1;
3548 }
3549 }
3550 }
3551
1e4c64c4 3552 return 0;
2c2e2c38
FY
3553}
3554
5040a918 3555static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
bb9e6d65 3556 size_t size, int dir, u64 dma_mask)
f76aec76 3557{
f76aec76 3558 struct dmar_domain *domain;
5b6985ce 3559 phys_addr_t start_paddr;
2aac6304 3560 unsigned long iova_pfn;
f76aec76 3561 int prot = 0;
6865f0d1 3562 int ret;
8c11e798 3563 struct intel_iommu *iommu;
33041ec0 3564 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
f76aec76
KA
3565
3566 BUG_ON(dir == DMA_NONE);
2c2e2c38 3567
5040a918 3568 if (iommu_no_mapping(dev))
6865f0d1 3569 return paddr;
f76aec76 3570
5040a918 3571 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3572 if (!domain)
3573 return 0;
3574
8c11e798 3575 iommu = domain_get_iommu(domain);
88cb6a74 3576 size = aligned_nrpages(paddr, size);
f76aec76 3577
2aac6304
OP
3578 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3579 if (!iova_pfn)
f76aec76
KA
3580 goto error;
3581
ba395927
KA
3582 /*
3583 * Check if DMAR supports zero-length reads on write only
3584 * mappings..
3585 */
3586 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3587 !cap_zlr(iommu->cap))
ba395927
KA
3588 prot |= DMA_PTE_READ;
3589 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3590 prot |= DMA_PTE_WRITE;
3591 /*
6865f0d1 3592 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 3593 * page. Note: if two part of one page are separately mapped, we
6865f0d1 3594 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
3595 * is not a big problem
3596 */
2aac6304 3597 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
33041ec0 3598 mm_to_dma_pfn(paddr_pfn), size, prot);
ba395927
KA
3599 if (ret)
3600 goto error;
3601
1f0ef2aa
DW
3602 /* it's a non-present to present mapping. Only flush if caching mode */
3603 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3604 iommu_flush_iotlb_psi(iommu, domain,
2aac6304 3605 mm_to_dma_pfn(iova_pfn),
a1ddcbe9 3606 size, 0, 1);
1f0ef2aa 3607 else
8c11e798 3608 iommu_flush_write_buffer(iommu);
f76aec76 3609
2aac6304 3610 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
03d6a246
DW
3611 start_paddr += paddr & ~PAGE_MASK;
3612 return start_paddr;
ba395927 3613
ba395927 3614error:
2aac6304 3615 if (iova_pfn)
22e2f9fa 3616 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
9f10e5bf 3617 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
5040a918 3618 dev_name(dev), size, (unsigned long long)paddr, dir);
ba395927
KA
3619 return 0;
3620}
3621
ffbbef5c
FT
3622static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3623 unsigned long offset, size_t size,
3624 enum dma_data_direction dir,
00085f1e 3625 unsigned long attrs)
bb9e6d65 3626{
ffbbef5c 3627 return __intel_map_single(dev, page_to_phys(page) + offset, size,
46333e37 3628 dir, *dev->dma_mask);
bb9e6d65
FT
3629}
3630
aa473240 3631static void flush_unmaps(struct deferred_flush_data *flush_data)
5e0d2a6f 3632{
80b20dd8 3633 int i, j;
5e0d2a6f 3634
aa473240 3635 flush_data->timer_on = 0;
5e0d2a6f 3636
3637 /* just flush them all */
3638 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459 3639 struct intel_iommu *iommu = g_iommus[i];
aa473240
OP
3640 struct deferred_flush_table *flush_table =
3641 &flush_data->tables[i];
a2bb8459
WH
3642 if (!iommu)
3643 continue;
c42d9f32 3644
aa473240 3645 if (!flush_table->next)
9dd2fe89
YZ
3646 continue;
3647
78d5f0f5
NA
3648 /* In caching mode, global flushes turn emulation expensive */
3649 if (!cap_caching_mode(iommu->cap))
3650 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 3651 DMA_TLB_GLOBAL_FLUSH);
aa473240 3652 for (j = 0; j < flush_table->next; j++) {
93a23a72 3653 unsigned long mask;
314f1dc1 3654 struct deferred_flush_entry *entry =
aa473240 3655 &flush_table->entries[j];
2aac6304 3656 unsigned long iova_pfn = entry->iova_pfn;
769530e4 3657 unsigned long nrpages = entry->nrpages;
314f1dc1
OP
3658 struct dmar_domain *domain = entry->domain;
3659 struct page *freelist = entry->freelist;
78d5f0f5
NA
3660
3661 /* On real hardware multiple invalidations are expensive */
3662 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3663 iommu_flush_iotlb_psi(iommu, domain,
2aac6304 3664 mm_to_dma_pfn(iova_pfn),
769530e4 3665 nrpages, !freelist, 0);
78d5f0f5 3666 else {
769530e4 3667 mask = ilog2(nrpages);
314f1dc1 3668 iommu_flush_dev_iotlb(domain,
2aac6304 3669 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
78d5f0f5 3670 }
22e2f9fa 3671 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
314f1dc1
OP
3672 if (freelist)
3673 dma_free_pagelist(freelist);
80b20dd8 3674 }
aa473240 3675 flush_table->next = 0;
5e0d2a6f 3676 }
3677
aa473240 3678 flush_data->size = 0;
5e0d2a6f 3679}
3680
aa473240 3681static void flush_unmaps_timeout(unsigned long cpuid)
5e0d2a6f 3682{
aa473240 3683 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
80b20dd8 3684 unsigned long flags;
3685
aa473240
OP
3686 spin_lock_irqsave(&flush_data->lock, flags);
3687 flush_unmaps(flush_data);
3688 spin_unlock_irqrestore(&flush_data->lock, flags);
5e0d2a6f 3689}
3690
2aac6304 3691static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
769530e4 3692 unsigned long nrpages, struct page *freelist)
5e0d2a6f 3693{
3694 unsigned long flags;
314f1dc1 3695 int entry_id, iommu_id;
8c11e798 3696 struct intel_iommu *iommu;
314f1dc1 3697 struct deferred_flush_entry *entry;
aa473240
OP
3698 struct deferred_flush_data *flush_data;
3699 unsigned int cpuid;
5e0d2a6f 3700
aa473240
OP
3701 cpuid = get_cpu();
3702 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3703
3704 /* Flush all CPUs' entries to avoid deferring too much. If
3705 * this becomes a bottleneck, can just flush us, and rely on
3706 * flush timer for the rest.
3707 */
3708 if (flush_data->size == HIGH_WATER_MARK) {
3709 int cpu;
3710
3711 for_each_online_cpu(cpu)
3712 flush_unmaps_timeout(cpu);
3713 }
3714
3715 spin_lock_irqsave(&flush_data->lock, flags);
80b20dd8 3716
8c11e798
WH
3717 iommu = domain_get_iommu(dom);
3718 iommu_id = iommu->seq_id;
c42d9f32 3719
aa473240
OP
3720 entry_id = flush_data->tables[iommu_id].next;
3721 ++(flush_data->tables[iommu_id].next);
5e0d2a6f 3722
aa473240 3723 entry = &flush_data->tables[iommu_id].entries[entry_id];
314f1dc1 3724 entry->domain = dom;
2aac6304 3725 entry->iova_pfn = iova_pfn;
769530e4 3726 entry->nrpages = nrpages;
314f1dc1 3727 entry->freelist = freelist;
5e0d2a6f 3728
aa473240
OP
3729 if (!flush_data->timer_on) {
3730 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3731 flush_data->timer_on = 1;
5e0d2a6f 3732 }
aa473240
OP
3733 flush_data->size++;
3734 spin_unlock_irqrestore(&flush_data->lock, flags);
3735
3736 put_cpu();
5e0d2a6f 3737}
3738
769530e4 3739static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
ba395927 3740{
f76aec76 3741 struct dmar_domain *domain;
d794dc9b 3742 unsigned long start_pfn, last_pfn;
769530e4 3743 unsigned long nrpages;
2aac6304 3744 unsigned long iova_pfn;
8c11e798 3745 struct intel_iommu *iommu;
ea8ea460 3746 struct page *freelist;
ba395927 3747
73676832 3748 if (iommu_no_mapping(dev))
f76aec76 3749 return;
2c2e2c38 3750
1525a29a 3751 domain = find_domain(dev);
ba395927
KA
3752 BUG_ON(!domain);
3753
8c11e798
WH
3754 iommu = domain_get_iommu(domain);
3755
2aac6304 3756 iova_pfn = IOVA_PFN(dev_addr);
ba395927 3757
769530e4 3758 nrpages = aligned_nrpages(dev_addr, size);
2aac6304 3759 start_pfn = mm_to_dma_pfn(iova_pfn);
769530e4 3760 last_pfn = start_pfn + nrpages - 1;
ba395927 3761
d794dc9b 3762 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
207e3592 3763 dev_name(dev), start_pfn, last_pfn);
ba395927 3764
ea8ea460 3765 freelist = domain_unmap(domain, start_pfn, last_pfn);
d794dc9b 3766
5e0d2a6f 3767 if (intel_iommu_strict) {
a1ddcbe9 3768 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
769530e4 3769 nrpages, !freelist, 0);
5e0d2a6f 3770 /* free iova */
22e2f9fa 3771 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
ea8ea460 3772 dma_free_pagelist(freelist);
5e0d2a6f 3773 } else {
2aac6304 3774 add_unmap(domain, iova_pfn, nrpages, freelist);
5e0d2a6f 3775 /*
3776 * queue up the release of the unmap to save the 1/6th of the
3777 * cpu used up by the iotlb flush operation...
3778 */
5e0d2a6f 3779 }
ba395927
KA
3780}
3781
d41a4adb
JL
3782static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3783 size_t size, enum dma_data_direction dir,
00085f1e 3784 unsigned long attrs)
d41a4adb 3785{
769530e4 3786 intel_unmap(dev, dev_addr, size);
d41a4adb
JL
3787}
3788
5040a918 3789static void *intel_alloc_coherent(struct device *dev, size_t size,
baa676fc 3790 dma_addr_t *dma_handle, gfp_t flags,
00085f1e 3791 unsigned long attrs)
ba395927 3792{
36746436 3793 struct page *page = NULL;
ba395927
KA
3794 int order;
3795
5b6985ce 3796 size = PAGE_ALIGN(size);
ba395927 3797 order = get_order(size);
e8bb910d 3798
5040a918 3799 if (!iommu_no_mapping(dev))
e8bb910d 3800 flags &= ~(GFP_DMA | GFP_DMA32);
5040a918
DW
3801 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3802 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
e8bb910d
AW
3803 flags |= GFP_DMA;
3804 else
3805 flags |= GFP_DMA32;
3806 }
ba395927 3807
d0164adc 3808 if (gfpflags_allow_blocking(flags)) {
36746436
AM
3809 unsigned int count = size >> PAGE_SHIFT;
3810
3811 page = dma_alloc_from_contiguous(dev, count, order);
3812 if (page && iommu_no_mapping(dev) &&
3813 page_to_phys(page) + size > dev->coherent_dma_mask) {
3814 dma_release_from_contiguous(dev, page, count);
3815 page = NULL;
3816 }
3817 }
3818
3819 if (!page)
3820 page = alloc_pages(flags, order);
3821 if (!page)
ba395927 3822 return NULL;
36746436 3823 memset(page_address(page), 0, size);
ba395927 3824
36746436 3825 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
bb9e6d65 3826 DMA_BIDIRECTIONAL,
5040a918 3827 dev->coherent_dma_mask);
ba395927 3828 if (*dma_handle)
36746436
AM
3829 return page_address(page);
3830 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3831 __free_pages(page, order);
3832
ba395927
KA
3833 return NULL;
3834}
3835
5040a918 3836static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
00085f1e 3837 dma_addr_t dma_handle, unsigned long attrs)
ba395927
KA
3838{
3839 int order;
36746436 3840 struct page *page = virt_to_page(vaddr);
ba395927 3841
5b6985ce 3842 size = PAGE_ALIGN(size);
ba395927
KA
3843 order = get_order(size);
3844
769530e4 3845 intel_unmap(dev, dma_handle, size);
36746436
AM
3846 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3847 __free_pages(page, order);
ba395927
KA
3848}
3849
5040a918 3850static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
d7ab5c46 3851 int nelems, enum dma_data_direction dir,
00085f1e 3852 unsigned long attrs)
ba395927 3853{
769530e4
OP
3854 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3855 unsigned long nrpages = 0;
3856 struct scatterlist *sg;
3857 int i;
3858
3859 for_each_sg(sglist, sg, nelems, i) {
3860 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3861 }
3862
3863 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
ba395927
KA
3864}
3865
ba395927 3866static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 3867 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
3868{
3869 int i;
c03ab37c 3870 struct scatterlist *sg;
ba395927 3871
c03ab37c 3872 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 3873 BUG_ON(!sg_page(sg));
3e6110fd 3874 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
c03ab37c 3875 sg->dma_length = sg->length;
ba395927
KA
3876 }
3877 return nelems;
3878}
3879
5040a918 3880static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
00085f1e 3881 enum dma_data_direction dir, unsigned long attrs)
ba395927 3882{
ba395927 3883 int i;
ba395927 3884 struct dmar_domain *domain;
f76aec76
KA
3885 size_t size = 0;
3886 int prot = 0;
2aac6304 3887 unsigned long iova_pfn;
f76aec76 3888 int ret;
c03ab37c 3889 struct scatterlist *sg;
b536d24d 3890 unsigned long start_vpfn;
8c11e798 3891 struct intel_iommu *iommu;
ba395927
KA
3892
3893 BUG_ON(dir == DMA_NONE);
5040a918
DW
3894 if (iommu_no_mapping(dev))
3895 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
ba395927 3896
5040a918 3897 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3898 if (!domain)
3899 return 0;
3900
8c11e798
WH
3901 iommu = domain_get_iommu(domain);
3902
b536d24d 3903 for_each_sg(sglist, sg, nelems, i)
88cb6a74 3904 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 3905
2aac6304 3906 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
5040a918 3907 *dev->dma_mask);
2aac6304 3908 if (!iova_pfn) {
c03ab37c 3909 sglist->dma_length = 0;
f76aec76
KA
3910 return 0;
3911 }
3912
3913 /*
3914 * Check if DMAR supports zero-length reads on write only
3915 * mappings..
3916 */
3917 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3918 !cap_zlr(iommu->cap))
f76aec76
KA
3919 prot |= DMA_PTE_READ;
3920 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3921 prot |= DMA_PTE_WRITE;
3922
2aac6304 3923 start_vpfn = mm_to_dma_pfn(iova_pfn);
e1605495 3924
f532959b 3925 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
e1605495 3926 if (unlikely(ret)) {
e1605495
DW
3927 dma_pte_free_pagetable(domain, start_vpfn,
3928 start_vpfn + size - 1);
22e2f9fa 3929 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
e1605495 3930 return 0;
ba395927
KA
3931 }
3932
1f0ef2aa
DW
3933 /* it's a non-present to present mapping. Only flush if caching mode */
3934 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3935 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
1f0ef2aa 3936 else
8c11e798 3937 iommu_flush_write_buffer(iommu);
1f0ef2aa 3938
ba395927
KA
3939 return nelems;
3940}
3941
dfb805e8
FT
3942static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3943{
3944 return !dma_addr;
3945}
3946
160c1d8e 3947struct dma_map_ops intel_dma_ops = {
baa676fc
AP
3948 .alloc = intel_alloc_coherent,
3949 .free = intel_free_coherent,
ba395927
KA
3950 .map_sg = intel_map_sg,
3951 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
3952 .map_page = intel_map_page,
3953 .unmap_page = intel_unmap_page,
dfb805e8 3954 .mapping_error = intel_mapping_error,
ba395927
KA
3955};
3956
3957static inline int iommu_domain_cache_init(void)
3958{
3959 int ret = 0;
3960
3961 iommu_domain_cache = kmem_cache_create("iommu_domain",
3962 sizeof(struct dmar_domain),
3963 0,
3964 SLAB_HWCACHE_ALIGN,
3965
3966 NULL);
3967 if (!iommu_domain_cache) {
9f10e5bf 3968 pr_err("Couldn't create iommu_domain cache\n");
ba395927
KA
3969 ret = -ENOMEM;
3970 }
3971
3972 return ret;
3973}
3974
3975static inline int iommu_devinfo_cache_init(void)
3976{
3977 int ret = 0;
3978
3979 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3980 sizeof(struct device_domain_info),
3981 0,
3982 SLAB_HWCACHE_ALIGN,
ba395927
KA
3983 NULL);
3984 if (!iommu_devinfo_cache) {
9f10e5bf 3985 pr_err("Couldn't create devinfo cache\n");
ba395927
KA
3986 ret = -ENOMEM;
3987 }
3988
3989 return ret;
3990}
3991
ba395927
KA
3992static int __init iommu_init_mempool(void)
3993{
3994 int ret;
ae1ff3d6 3995 ret = iova_cache_get();
ba395927
KA
3996 if (ret)
3997 return ret;
3998
3999 ret = iommu_domain_cache_init();
4000 if (ret)
4001 goto domain_error;
4002
4003 ret = iommu_devinfo_cache_init();
4004 if (!ret)
4005 return ret;
4006
4007 kmem_cache_destroy(iommu_domain_cache);
4008domain_error:
ae1ff3d6 4009 iova_cache_put();
ba395927
KA
4010
4011 return -ENOMEM;
4012}
4013
4014static void __init iommu_exit_mempool(void)
4015{
4016 kmem_cache_destroy(iommu_devinfo_cache);
4017 kmem_cache_destroy(iommu_domain_cache);
ae1ff3d6 4018 iova_cache_put();
ba395927
KA
4019}
4020
556ab45f
DW
4021static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4022{
4023 struct dmar_drhd_unit *drhd;
4024 u32 vtbar;
4025 int rc;
4026
4027 /* We know that this device on this chipset has its own IOMMU.
4028 * If we find it under a different IOMMU, then the BIOS is lying
4029 * to us. Hope that the IOMMU for this device is actually
4030 * disabled, and it needs no translation...
4031 */
4032 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4033 if (rc) {
4034 /* "can't" happen */
4035 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4036 return;
4037 }
4038 vtbar &= 0xffff0000;
4039
4040 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4041 drhd = dmar_find_matched_drhd_unit(pdev);
4042 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4043 TAINT_FIRMWARE_WORKAROUND,
4044 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4045 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4046}
4047DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4048
ba395927
KA
4049static void __init init_no_remapping_devices(void)
4050{
4051 struct dmar_drhd_unit *drhd;
832bd858 4052 struct device *dev;
b683b230 4053 int i;
ba395927
KA
4054
4055 for_each_drhd_unit(drhd) {
4056 if (!drhd->include_all) {
b683b230
JL
4057 for_each_active_dev_scope(drhd->devices,
4058 drhd->devices_cnt, i, dev)
4059 break;
832bd858 4060 /* ignore DMAR unit if no devices exist */
ba395927
KA
4061 if (i == drhd->devices_cnt)
4062 drhd->ignored = 1;
4063 }
4064 }
4065
7c919779 4066 for_each_active_drhd_unit(drhd) {
7c919779 4067 if (drhd->include_all)
ba395927
KA
4068 continue;
4069
b683b230
JL
4070 for_each_active_dev_scope(drhd->devices,
4071 drhd->devices_cnt, i, dev)
832bd858 4072 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
ba395927 4073 break;
ba395927
KA
4074 if (i < drhd->devices_cnt)
4075 continue;
4076
c0771df8
DW
4077 /* This IOMMU has *only* gfx devices. Either bypass it or
4078 set the gfx_mapped flag, as appropriate */
4079 if (dmar_map_gfx) {
4080 intel_iommu_gfx_mapped = 1;
4081 } else {
4082 drhd->ignored = 1;
b683b230
JL
4083 for_each_active_dev_scope(drhd->devices,
4084 drhd->devices_cnt, i, dev)
832bd858 4085 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
4086 }
4087 }
4088}
4089
f59c7b69
FY
4090#ifdef CONFIG_SUSPEND
4091static int init_iommu_hw(void)
4092{
4093 struct dmar_drhd_unit *drhd;
4094 struct intel_iommu *iommu = NULL;
4095
4096 for_each_active_iommu(iommu, drhd)
4097 if (iommu->qi)
4098 dmar_reenable_qi(iommu);
4099
b779260b
JC
4100 for_each_iommu(iommu, drhd) {
4101 if (drhd->ignored) {
4102 /*
4103 * we always have to disable PMRs or DMA may fail on
4104 * this device
4105 */
4106 if (force_on)
4107 iommu_disable_protect_mem_regions(iommu);
4108 continue;
4109 }
4110
f59c7b69
FY
4111 iommu_flush_write_buffer(iommu);
4112
4113 iommu_set_root_entry(iommu);
4114
4115 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4116 DMA_CCMD_GLOBAL_INVL);
2a41ccee
JL
4117 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4118 iommu_enable_translation(iommu);
b94996c9 4119 iommu_disable_protect_mem_regions(iommu);
f59c7b69
FY
4120 }
4121
4122 return 0;
4123}
4124
4125static void iommu_flush_all(void)
4126{
4127 struct dmar_drhd_unit *drhd;
4128 struct intel_iommu *iommu;
4129
4130 for_each_active_iommu(iommu, drhd) {
4131 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4132 DMA_CCMD_GLOBAL_INVL);
f59c7b69 4133 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 4134 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
4135 }
4136}
4137
134fac3f 4138static int iommu_suspend(void)
f59c7b69
FY
4139{
4140 struct dmar_drhd_unit *drhd;
4141 struct intel_iommu *iommu = NULL;
4142 unsigned long flag;
4143
4144 for_each_active_iommu(iommu, drhd) {
4145 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4146 GFP_ATOMIC);
4147 if (!iommu->iommu_state)
4148 goto nomem;
4149 }
4150
4151 iommu_flush_all();
4152
4153 for_each_active_iommu(iommu, drhd) {
4154 iommu_disable_translation(iommu);
4155
1f5b3c3f 4156 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4157
4158 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4159 readl(iommu->reg + DMAR_FECTL_REG);
4160 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4161 readl(iommu->reg + DMAR_FEDATA_REG);
4162 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4163 readl(iommu->reg + DMAR_FEADDR_REG);
4164 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4165 readl(iommu->reg + DMAR_FEUADDR_REG);
4166
1f5b3c3f 4167 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4168 }
4169 return 0;
4170
4171nomem:
4172 for_each_active_iommu(iommu, drhd)
4173 kfree(iommu->iommu_state);
4174
4175 return -ENOMEM;
4176}
4177
134fac3f 4178static void iommu_resume(void)
f59c7b69
FY
4179{
4180 struct dmar_drhd_unit *drhd;
4181 struct intel_iommu *iommu = NULL;
4182 unsigned long flag;
4183
4184 if (init_iommu_hw()) {
b779260b
JC
4185 if (force_on)
4186 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4187 else
4188 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
134fac3f 4189 return;
f59c7b69
FY
4190 }
4191
4192 for_each_active_iommu(iommu, drhd) {
4193
1f5b3c3f 4194 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4195
4196 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4197 iommu->reg + DMAR_FECTL_REG);
4198 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4199 iommu->reg + DMAR_FEDATA_REG);
4200 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4201 iommu->reg + DMAR_FEADDR_REG);
4202 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4203 iommu->reg + DMAR_FEUADDR_REG);
4204
1f5b3c3f 4205 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4206 }
4207
4208 for_each_active_iommu(iommu, drhd)
4209 kfree(iommu->iommu_state);
f59c7b69
FY
4210}
4211
134fac3f 4212static struct syscore_ops iommu_syscore_ops = {
f59c7b69
FY
4213 .resume = iommu_resume,
4214 .suspend = iommu_suspend,
4215};
4216
134fac3f 4217static void __init init_iommu_pm_ops(void)
f59c7b69 4218{
134fac3f 4219 register_syscore_ops(&iommu_syscore_ops);
f59c7b69
FY
4220}
4221
4222#else
99592ba4 4223static inline void init_iommu_pm_ops(void) {}
f59c7b69
FY
4224#endif /* CONFIG_PM */
4225
318fe7df 4226
c2a0b538 4227int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
318fe7df
SS
4228{
4229 struct acpi_dmar_reserved_memory *rmrr;
4230 struct dmar_rmrr_unit *rmrru;
4231
4232 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4233 if (!rmrru)
4234 return -ENOMEM;
4235
4236 rmrru->hdr = header;
4237 rmrr = (struct acpi_dmar_reserved_memory *)header;
4238 rmrru->base_address = rmrr->base_address;
4239 rmrru->end_address = rmrr->end_address;
2e455289
JL
4240 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4241 ((void *)rmrr) + rmrr->header.length,
4242 &rmrru->devices_cnt);
4243 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4244 kfree(rmrru);
4245 return -ENOMEM;
4246 }
318fe7df 4247
2e455289 4248 list_add(&rmrru->list, &dmar_rmrr_units);
318fe7df 4249
2e455289 4250 return 0;
318fe7df
SS
4251}
4252
6b197249
JL
4253static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4254{
4255 struct dmar_atsr_unit *atsru;
4256 struct acpi_dmar_atsr *tmp;
4257
4258 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4259 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4260 if (atsr->segment != tmp->segment)
4261 continue;
4262 if (atsr->header.length != tmp->header.length)
4263 continue;
4264 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4265 return atsru;
4266 }
4267
4268 return NULL;
4269}
4270
4271int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
318fe7df
SS
4272{
4273 struct acpi_dmar_atsr *atsr;
4274 struct dmar_atsr_unit *atsru;
4275
6b197249
JL
4276 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4277 return 0;
4278
318fe7df 4279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
6b197249
JL
4280 atsru = dmar_find_atsr(atsr);
4281 if (atsru)
4282 return 0;
4283
4284 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
318fe7df
SS
4285 if (!atsru)
4286 return -ENOMEM;
4287
6b197249
JL
4288 /*
4289 * If memory is allocated from slab by ACPI _DSM method, we need to
4290 * copy the memory content because the memory buffer will be freed
4291 * on return.
4292 */
4293 atsru->hdr = (void *)(atsru + 1);
4294 memcpy(atsru->hdr, hdr, hdr->length);
318fe7df 4295 atsru->include_all = atsr->flags & 0x1;
2e455289
JL
4296 if (!atsru->include_all) {
4297 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4298 (void *)atsr + atsr->header.length,
4299 &atsru->devices_cnt);
4300 if (atsru->devices_cnt && atsru->devices == NULL) {
4301 kfree(atsru);
4302 return -ENOMEM;
4303 }
4304 }
318fe7df 4305
0e242612 4306 list_add_rcu(&atsru->list, &dmar_atsr_units);
318fe7df
SS
4307
4308 return 0;
4309}
4310
9bdc531e
JL
4311static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4312{
4313 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4314 kfree(atsru);
4315}
4316
6b197249
JL
4317int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4318{
4319 struct acpi_dmar_atsr *atsr;
4320 struct dmar_atsr_unit *atsru;
4321
4322 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4323 atsru = dmar_find_atsr(atsr);
4324 if (atsru) {
4325 list_del_rcu(&atsru->list);
4326 synchronize_rcu();
4327 intel_iommu_free_atsr(atsru);
4328 }
4329
4330 return 0;
4331}
4332
4333int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4334{
4335 int i;
4336 struct device *dev;
4337 struct acpi_dmar_atsr *atsr;
4338 struct dmar_atsr_unit *atsru;
4339
4340 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4341 atsru = dmar_find_atsr(atsr);
4342 if (!atsru)
4343 return 0;
4344
194dc870 4345 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
6b197249
JL
4346 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4347 i, dev)
4348 return -EBUSY;
194dc870 4349 }
6b197249
JL
4350
4351 return 0;
4352}
4353
ffebeb46
JL
4354static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4355{
4356 int sp, ret = 0;
4357 struct intel_iommu *iommu = dmaru->iommu;
4358
4359 if (g_iommus[iommu->seq_id])
4360 return 0;
4361
4362 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
9f10e5bf 4363 pr_warn("%s: Doesn't support hardware pass through.\n",
ffebeb46
JL
4364 iommu->name);
4365 return -ENXIO;
4366 }
4367 if (!ecap_sc_support(iommu->ecap) &&
4368 domain_update_iommu_snooping(iommu)) {
9f10e5bf 4369 pr_warn("%s: Doesn't support snooping.\n",
ffebeb46
JL
4370 iommu->name);
4371 return -ENXIO;
4372 }
4373 sp = domain_update_iommu_superpage(iommu) - 1;
4374 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
9f10e5bf 4375 pr_warn("%s: Doesn't support large page.\n",
ffebeb46
JL
4376 iommu->name);
4377 return -ENXIO;
4378 }
4379
4380 /*
4381 * Disable translation if already enabled prior to OS handover.
4382 */
4383 if (iommu->gcmd & DMA_GCMD_TE)
4384 iommu_disable_translation(iommu);
4385
4386 g_iommus[iommu->seq_id] = iommu;
4387 ret = iommu_init_domains(iommu);
4388 if (ret == 0)
4389 ret = iommu_alloc_root_entry(iommu);
4390 if (ret)
4391 goto out;
4392
8a94ade4
DW
4393#ifdef CONFIG_INTEL_IOMMU_SVM
4394 if (pasid_enabled(iommu))
4395 intel_svm_alloc_pasid_tables(iommu);
4396#endif
4397
ffebeb46
JL
4398 if (dmaru->ignored) {
4399 /*
4400 * we always have to disable PMRs or DMA may fail on this device
4401 */
4402 if (force_on)
4403 iommu_disable_protect_mem_regions(iommu);
4404 return 0;
4405 }
4406
4407 intel_iommu_init_qi(iommu);
4408 iommu_flush_write_buffer(iommu);
a222a7f0
DW
4409
4410#ifdef CONFIG_INTEL_IOMMU_SVM
4411 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4412 ret = intel_svm_enable_prq(iommu);
4413 if (ret)
4414 goto disable_iommu;
4415 }
4416#endif
ffebeb46
JL
4417 ret = dmar_set_interrupt(iommu);
4418 if (ret)
4419 goto disable_iommu;
4420
4421 iommu_set_root_entry(iommu);
4422 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4423 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4424 iommu_enable_translation(iommu);
4425
ffebeb46
JL
4426 iommu_disable_protect_mem_regions(iommu);
4427 return 0;
4428
4429disable_iommu:
4430 disable_dmar_iommu(iommu);
4431out:
4432 free_dmar_iommu(iommu);
4433 return ret;
4434}
4435
6b197249
JL
4436int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4437{
ffebeb46
JL
4438 int ret = 0;
4439 struct intel_iommu *iommu = dmaru->iommu;
4440
4441 if (!intel_iommu_enabled)
4442 return 0;
4443 if (iommu == NULL)
4444 return -EINVAL;
4445
4446 if (insert) {
4447 ret = intel_iommu_add(dmaru);
4448 } else {
4449 disable_dmar_iommu(iommu);
4450 free_dmar_iommu(iommu);
4451 }
4452
4453 return ret;
6b197249
JL
4454}
4455
9bdc531e
JL
4456static void intel_iommu_free_dmars(void)
4457{
4458 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4459 struct dmar_atsr_unit *atsru, *atsr_n;
4460
4461 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4462 list_del(&rmrru->list);
4463 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4464 kfree(rmrru);
318fe7df
SS
4465 }
4466
9bdc531e
JL
4467 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4468 list_del(&atsru->list);
4469 intel_iommu_free_atsr(atsru);
4470 }
318fe7df
SS
4471}
4472
4473int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4474{
b683b230 4475 int i, ret = 1;
318fe7df 4476 struct pci_bus *bus;
832bd858
DW
4477 struct pci_dev *bridge = NULL;
4478 struct device *tmp;
318fe7df
SS
4479 struct acpi_dmar_atsr *atsr;
4480 struct dmar_atsr_unit *atsru;
4481
4482 dev = pci_physfn(dev);
318fe7df 4483 for (bus = dev->bus; bus; bus = bus->parent) {
b5f82ddf 4484 bridge = bus->self;
d14053b3
DW
4485 /* If it's an integrated device, allow ATS */
4486 if (!bridge)
4487 return 1;
4488 /* Connected via non-PCIe: no ATS */
4489 if (!pci_is_pcie(bridge) ||
62f87c0e 4490 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
318fe7df 4491 return 0;
d14053b3 4492 /* If we found the root port, look it up in the ATSR */
b5f82ddf 4493 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
318fe7df 4494 break;
318fe7df
SS
4495 }
4496
0e242612 4497 rcu_read_lock();
b5f82ddf
JL
4498 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4499 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4500 if (atsr->segment != pci_domain_nr(dev->bus))
4501 continue;
4502
b683b230 4503 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
832bd858 4504 if (tmp == &bridge->dev)
b683b230 4505 goto out;
b5f82ddf
JL
4506
4507 if (atsru->include_all)
b683b230 4508 goto out;
b5f82ddf 4509 }
b683b230
JL
4510 ret = 0;
4511out:
0e242612 4512 rcu_read_unlock();
318fe7df 4513
b683b230 4514 return ret;
318fe7df
SS
4515}
4516
59ce0515
JL
4517int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4518{
4519 int ret = 0;
4520 struct dmar_rmrr_unit *rmrru;
4521 struct dmar_atsr_unit *atsru;
4522 struct acpi_dmar_atsr *atsr;
4523 struct acpi_dmar_reserved_memory *rmrr;
4524
4525 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4526 return 0;
4527
4528 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4529 rmrr = container_of(rmrru->hdr,
4530 struct acpi_dmar_reserved_memory, header);
4531 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4532 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4533 ((void *)rmrr) + rmrr->header.length,
4534 rmrr->segment, rmrru->devices,
4535 rmrru->devices_cnt);
27e24950 4536 if(ret < 0)
59ce0515 4537 return ret;
e6a8c9b3 4538 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
27e24950
JL
4539 dmar_remove_dev_scope(info, rmrr->segment,
4540 rmrru->devices, rmrru->devices_cnt);
59ce0515
JL
4541 }
4542 }
4543
4544 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4545 if (atsru->include_all)
4546 continue;
4547
4548 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4549 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4550 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4551 (void *)atsr + atsr->header.length,
4552 atsr->segment, atsru->devices,
4553 atsru->devices_cnt);
4554 if (ret > 0)
4555 break;
4556 else if(ret < 0)
4557 return ret;
e6a8c9b3 4558 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
59ce0515
JL
4559 if (dmar_remove_dev_scope(info, atsr->segment,
4560 atsru->devices, atsru->devices_cnt))
4561 break;
4562 }
4563 }
4564
4565 return 0;
4566}
4567
99dcaded
FY
4568/*
4569 * Here we only respond to action of unbound device from driver.
4570 *
4571 * Added device is not attached to its DMAR domain here yet. That will happen
4572 * when mapping the device to iova.
4573 */
4574static int device_notifier(struct notifier_block *nb,
4575 unsigned long action, void *data)
4576{
4577 struct device *dev = data;
99dcaded
FY
4578 struct dmar_domain *domain;
4579
3d89194a 4580 if (iommu_dummy(dev))
44cd613c
DW
4581 return 0;
4582
1196c2fb 4583 if (action != BUS_NOTIFY_REMOVED_DEVICE)
7e7dfab7
JL
4584 return 0;
4585
1525a29a 4586 domain = find_domain(dev);
99dcaded
FY
4587 if (!domain)
4588 return 0;
4589
e6de0f8d 4590 dmar_remove_one_dev_info(domain, dev);
ab8dfe25 4591 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
7e7dfab7 4592 domain_exit(domain);
a97590e5 4593
99dcaded
FY
4594 return 0;
4595}
4596
4597static struct notifier_block device_nb = {
4598 .notifier_call = device_notifier,
4599};
4600
75f05569
JL
4601static int intel_iommu_memory_notifier(struct notifier_block *nb,
4602 unsigned long val, void *v)
4603{
4604 struct memory_notify *mhp = v;
4605 unsigned long long start, end;
4606 unsigned long start_vpfn, last_vpfn;
4607
4608 switch (val) {
4609 case MEM_GOING_ONLINE:
4610 start = mhp->start_pfn << PAGE_SHIFT;
4611 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4612 if (iommu_domain_identity_map(si_domain, start, end)) {
9f10e5bf 4613 pr_warn("Failed to build identity map for [%llx-%llx]\n",
75f05569
JL
4614 start, end);
4615 return NOTIFY_BAD;
4616 }
4617 break;
4618
4619 case MEM_OFFLINE:
4620 case MEM_CANCEL_ONLINE:
4621 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4622 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4623 while (start_vpfn <= last_vpfn) {
4624 struct iova *iova;
4625 struct dmar_drhd_unit *drhd;
4626 struct intel_iommu *iommu;
ea8ea460 4627 struct page *freelist;
75f05569
JL
4628
4629 iova = find_iova(&si_domain->iovad, start_vpfn);
4630 if (iova == NULL) {
9f10e5bf 4631 pr_debug("Failed get IOVA for PFN %lx\n",
75f05569
JL
4632 start_vpfn);
4633 break;
4634 }
4635
4636 iova = split_and_remove_iova(&si_domain->iovad, iova,
4637 start_vpfn, last_vpfn);
4638 if (iova == NULL) {
9f10e5bf 4639 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
75f05569
JL
4640 start_vpfn, last_vpfn);
4641 return NOTIFY_BAD;
4642 }
4643
ea8ea460
DW
4644 freelist = domain_unmap(si_domain, iova->pfn_lo,
4645 iova->pfn_hi);
4646
75f05569
JL
4647 rcu_read_lock();
4648 for_each_active_iommu(iommu, drhd)
a1ddcbe9 4649 iommu_flush_iotlb_psi(iommu, si_domain,
a156ef99 4650 iova->pfn_lo, iova_size(iova),
ea8ea460 4651 !freelist, 0);
75f05569 4652 rcu_read_unlock();
ea8ea460 4653 dma_free_pagelist(freelist);
75f05569
JL
4654
4655 start_vpfn = iova->pfn_hi + 1;
4656 free_iova_mem(iova);
4657 }
4658 break;
4659 }
4660
4661 return NOTIFY_OK;
4662}
4663
4664static struct notifier_block intel_iommu_memory_nb = {
4665 .notifier_call = intel_iommu_memory_notifier,
4666 .priority = 0
4667};
4668
22e2f9fa
OP
4669static void free_all_cpu_cached_iovas(unsigned int cpu)
4670{
4671 int i;
4672
4673 for (i = 0; i < g_num_of_iommus; i++) {
4674 struct intel_iommu *iommu = g_iommus[i];
4675 struct dmar_domain *domain;
0caa7616 4676 int did;
22e2f9fa
OP
4677
4678 if (!iommu)
4679 continue;
4680
3bd4f911 4681 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
0caa7616 4682 domain = get_iommu_domain(iommu, (u16)did);
22e2f9fa
OP
4683
4684 if (!domain)
4685 continue;
4686 free_cpu_cached_iovas(cpu, &domain->iovad);
4687 }
4688 }
4689}
4690
aa473240
OP
4691static int intel_iommu_cpu_notifier(struct notifier_block *nfb,
4692 unsigned long action, void *v)
4693{
4694 unsigned int cpu = (unsigned long)v;
4695
4696 switch (action) {
4697 case CPU_DEAD:
4698 case CPU_DEAD_FROZEN:
22e2f9fa 4699 free_all_cpu_cached_iovas(cpu);
aa473240
OP
4700 flush_unmaps_timeout(cpu);
4701 break;
4702 }
4703 return NOTIFY_OK;
4704}
4705
4706static struct notifier_block intel_iommu_cpu_nb = {
4707 .notifier_call = intel_iommu_cpu_notifier,
4708};
a5459cfe
AW
4709
4710static ssize_t intel_iommu_show_version(struct device *dev,
4711 struct device_attribute *attr,
4712 char *buf)
4713{
4714 struct intel_iommu *iommu = dev_get_drvdata(dev);
4715 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4716 return sprintf(buf, "%d:%d\n",
4717 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4718}
4719static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4720
4721static ssize_t intel_iommu_show_address(struct device *dev,
4722 struct device_attribute *attr,
4723 char *buf)
4724{
4725 struct intel_iommu *iommu = dev_get_drvdata(dev);
4726 return sprintf(buf, "%llx\n", iommu->reg_phys);
4727}
4728static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4729
4730static ssize_t intel_iommu_show_cap(struct device *dev,
4731 struct device_attribute *attr,
4732 char *buf)
4733{
4734 struct intel_iommu *iommu = dev_get_drvdata(dev);
4735 return sprintf(buf, "%llx\n", iommu->cap);
4736}
4737static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4738
4739static ssize_t intel_iommu_show_ecap(struct device *dev,
4740 struct device_attribute *attr,
4741 char *buf)
4742{
4743 struct intel_iommu *iommu = dev_get_drvdata(dev);
4744 return sprintf(buf, "%llx\n", iommu->ecap);
4745}
4746static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4747
2238c082
AW
4748static ssize_t intel_iommu_show_ndoms(struct device *dev,
4749 struct device_attribute *attr,
4750 char *buf)
4751{
4752 struct intel_iommu *iommu = dev_get_drvdata(dev);
4753 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4754}
4755static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4756
4757static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4758 struct device_attribute *attr,
4759 char *buf)
4760{
4761 struct intel_iommu *iommu = dev_get_drvdata(dev);
4762 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4763 cap_ndoms(iommu->cap)));
4764}
4765static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4766
a5459cfe
AW
4767static struct attribute *intel_iommu_attrs[] = {
4768 &dev_attr_version.attr,
4769 &dev_attr_address.attr,
4770 &dev_attr_cap.attr,
4771 &dev_attr_ecap.attr,
2238c082
AW
4772 &dev_attr_domains_supported.attr,
4773 &dev_attr_domains_used.attr,
a5459cfe
AW
4774 NULL,
4775};
4776
4777static struct attribute_group intel_iommu_group = {
4778 .name = "intel-iommu",
4779 .attrs = intel_iommu_attrs,
4780};
4781
4782const struct attribute_group *intel_iommu_groups[] = {
4783 &intel_iommu_group,
4784 NULL,
4785};
4786
ba395927
KA
4787int __init intel_iommu_init(void)
4788{
9bdc531e 4789 int ret = -ENODEV;
3a93c841 4790 struct dmar_drhd_unit *drhd;
7c919779 4791 struct intel_iommu *iommu;
ba395927 4792
a59b50e9
JC
4793 /* VT-d is required for a TXT/tboot launch, so enforce that */
4794 force_on = tboot_force_iommu();
4795
3a5670e8
JL
4796 if (iommu_init_mempool()) {
4797 if (force_on)
4798 panic("tboot: Failed to initialize iommu memory\n");
4799 return -ENOMEM;
4800 }
4801
4802 down_write(&dmar_global_lock);
a59b50e9
JC
4803 if (dmar_table_init()) {
4804 if (force_on)
4805 panic("tboot: Failed to initialize DMAR table\n");
9bdc531e 4806 goto out_free_dmar;
a59b50e9 4807 }
ba395927 4808
c2c7286a 4809 if (dmar_dev_scope_init() < 0) {
a59b50e9
JC
4810 if (force_on)
4811 panic("tboot: Failed to initialize DMAR device scope\n");
9bdc531e 4812 goto out_free_dmar;
a59b50e9 4813 }
1886e8a9 4814
75f1cdf1 4815 if (no_iommu || dmar_disabled)
9bdc531e 4816 goto out_free_dmar;
2ae21010 4817
318fe7df 4818 if (list_empty(&dmar_rmrr_units))
9f10e5bf 4819 pr_info("No RMRR found\n");
318fe7df
SS
4820
4821 if (list_empty(&dmar_atsr_units))
9f10e5bf 4822 pr_info("No ATSR found\n");
318fe7df 4823
51a63e67
JC
4824 if (dmar_init_reserved_ranges()) {
4825 if (force_on)
4826 panic("tboot: Failed to reserve iommu ranges\n");
3a5670e8 4827 goto out_free_reserved_range;
51a63e67 4828 }
ba395927
KA
4829
4830 init_no_remapping_devices();
4831
b779260b 4832 ret = init_dmars();
ba395927 4833 if (ret) {
a59b50e9
JC
4834 if (force_on)
4835 panic("tboot: Failed to initialize DMARs\n");
9f10e5bf 4836 pr_err("Initialization failed\n");
9bdc531e 4837 goto out_free_reserved_range;
ba395927 4838 }
3a5670e8 4839 up_write(&dmar_global_lock);
9f10e5bf 4840 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
ba395927 4841
75f1cdf1
FT
4842#ifdef CONFIG_SWIOTLB
4843 swiotlb = 0;
4844#endif
19943b0e 4845 dma_ops = &intel_dma_ops;
4ed0d3e6 4846
134fac3f 4847 init_iommu_pm_ops();
a8bcbb0d 4848
a5459cfe
AW
4849 for_each_active_iommu(iommu, drhd)
4850 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4851 intel_iommu_groups,
2439d4aa 4852 "%s", iommu->name);
a5459cfe 4853
4236d97d 4854 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
99dcaded 4855 bus_register_notifier(&pci_bus_type, &device_nb);
75f05569
JL
4856 if (si_domain && !hw_pass_through)
4857 register_memory_notifier(&intel_iommu_memory_nb);
aa473240 4858 register_hotcpu_notifier(&intel_iommu_cpu_nb);
99dcaded 4859
8bc1f85c
ED
4860 intel_iommu_enabled = 1;
4861
ba395927 4862 return 0;
9bdc531e
JL
4863
4864out_free_reserved_range:
4865 put_iova_domain(&reserved_iova_list);
9bdc531e
JL
4866out_free_dmar:
4867 intel_iommu_free_dmars();
3a5670e8
JL
4868 up_write(&dmar_global_lock);
4869 iommu_exit_mempool();
9bdc531e 4870 return ret;
ba395927 4871}
e820482c 4872
2452d9db 4873static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
579305f7
AW
4874{
4875 struct intel_iommu *iommu = opaque;
4876
2452d9db 4877 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
4878 return 0;
4879}
4880
4881/*
4882 * NB - intel-iommu lacks any sort of reference counting for the users of
4883 * dependent devices. If multiple endpoints have intersecting dependent
4884 * devices, unbinding the driver from any one of them will possibly leave
4885 * the others unable to operate.
4886 */
2452d9db 4887static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
3199aa6b 4888{
0bcb3e28 4889 if (!iommu || !dev || !dev_is_pci(dev))
3199aa6b
HW
4890 return;
4891
2452d9db 4892 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
3199aa6b
HW
4893}
4894
127c7615 4895static void __dmar_remove_one_dev_info(struct device_domain_info *info)
c7151a8d 4896{
c7151a8d
WH
4897 struct intel_iommu *iommu;
4898 unsigned long flags;
c7151a8d 4899
55d94043
JR
4900 assert_spin_locked(&device_domain_lock);
4901
127c7615 4902 if (WARN_ON(!info))
c7151a8d
WH
4903 return;
4904
127c7615 4905 iommu = info->iommu;
c7151a8d 4906
127c7615
JR
4907 if (info->dev) {
4908 iommu_disable_dev_iotlb(info);
4909 domain_context_clear(iommu, info->dev);
4910 }
c7151a8d 4911
b608ac3b 4912 unlink_domain_info(info);
c7151a8d 4913
d160aca5 4914 spin_lock_irqsave(&iommu->lock, flags);
127c7615 4915 domain_detach_iommu(info->domain, iommu);
d160aca5 4916 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d 4917
127c7615 4918 free_devinfo_mem(info);
c7151a8d 4919}
c7151a8d 4920
55d94043
JR
4921static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4922 struct device *dev)
4923{
127c7615 4924 struct device_domain_info *info;
55d94043 4925 unsigned long flags;
3e7abe25 4926
55d94043 4927 spin_lock_irqsave(&device_domain_lock, flags);
127c7615
JR
4928 info = dev->archdata.iommu;
4929 __dmar_remove_one_dev_info(info);
55d94043 4930 spin_unlock_irqrestore(&device_domain_lock, flags);
c7151a8d
WH
4931}
4932
2c2e2c38 4933static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
4934{
4935 int adjust_width;
4936
0fb5fe87
RM
4937 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4938 DMA_32BIT_PFN);
5e98c4b1
WH
4939 domain_reserve_special_ranges(domain);
4940
4941 /* calculate AGAW */
4942 domain->gaw = guest_width;
4943 adjust_width = guestwidth_to_adjustwidth(guest_width);
4944 domain->agaw = width_to_agaw(adjust_width);
4945
5e98c4b1 4946 domain->iommu_coherency = 0;
c5b15255 4947 domain->iommu_snooping = 0;
6dd9a7c7 4948 domain->iommu_superpage = 0;
fe40f1e0 4949 domain->max_addr = 0;
5e98c4b1
WH
4950
4951 /* always allocate the top pgd */
4c923d47 4952 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5e98c4b1
WH
4953 if (!domain->pgd)
4954 return -ENOMEM;
4955 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4956 return 0;
4957}
4958
00a77deb 4959static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
38717946 4960{
5d450806 4961 struct dmar_domain *dmar_domain;
00a77deb
JR
4962 struct iommu_domain *domain;
4963
4964 if (type != IOMMU_DOMAIN_UNMANAGED)
4965 return NULL;
38717946 4966
ab8dfe25 4967 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5d450806 4968 if (!dmar_domain) {
9f10e5bf 4969 pr_err("Can't allocate dmar_domain\n");
00a77deb 4970 return NULL;
38717946 4971 }
2c2e2c38 4972 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
9f10e5bf 4973 pr_err("Domain initialization failed\n");
92d03cc8 4974 domain_exit(dmar_domain);
00a77deb 4975 return NULL;
38717946 4976 }
8140a95d 4977 domain_update_iommu_cap(dmar_domain);
faa3d6f5 4978
00a77deb 4979 domain = &dmar_domain->domain;
8a0e715b
JR
4980 domain->geometry.aperture_start = 0;
4981 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4982 domain->geometry.force_aperture = true;
4983
00a77deb 4984 return domain;
38717946 4985}
38717946 4986
00a77deb 4987static void intel_iommu_domain_free(struct iommu_domain *domain)
38717946 4988{
00a77deb 4989 domain_exit(to_dmar_domain(domain));
38717946 4990}
38717946 4991
4c5478c9
JR
4992static int intel_iommu_attach_device(struct iommu_domain *domain,
4993 struct device *dev)
38717946 4994{
00a77deb 4995 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0
WH
4996 struct intel_iommu *iommu;
4997 int addr_width;
156baca8 4998 u8 bus, devfn;
faa3d6f5 4999
c875d2c1
AW
5000 if (device_is_rmrr_locked(dev)) {
5001 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5002 return -EPERM;
5003 }
5004
7207d8f9
DW
5005 /* normally dev is not mapped */
5006 if (unlikely(domain_context_mapped(dev))) {
faa3d6f5
WH
5007 struct dmar_domain *old_domain;
5008
1525a29a 5009 old_domain = find_domain(dev);
faa3d6f5 5010 if (old_domain) {
d160aca5 5011 rcu_read_lock();
de7e8886 5012 dmar_remove_one_dev_info(old_domain, dev);
d160aca5 5013 rcu_read_unlock();
62c22167
JR
5014
5015 if (!domain_type_is_vm_or_si(old_domain) &&
5016 list_empty(&old_domain->devices))
5017 domain_exit(old_domain);
faa3d6f5
WH
5018 }
5019 }
5020
156baca8 5021 iommu = device_to_iommu(dev, &bus, &devfn);
fe40f1e0
WH
5022 if (!iommu)
5023 return -ENODEV;
5024
5025 /* check if this iommu agaw is sufficient for max mapped address */
5026 addr_width = agaw_to_width(iommu->agaw);
a99c47a2
TL
5027 if (addr_width > cap_mgaw(iommu->cap))
5028 addr_width = cap_mgaw(iommu->cap);
5029
5030 if (dmar_domain->max_addr > (1LL << addr_width)) {
9f10e5bf 5031 pr_err("%s: iommu width (%d) is not "
fe40f1e0 5032 "sufficient for the mapped address (%llx)\n",
a99c47a2 5033 __func__, addr_width, dmar_domain->max_addr);
fe40f1e0
WH
5034 return -EFAULT;
5035 }
a99c47a2
TL
5036 dmar_domain->gaw = addr_width;
5037
5038 /*
5039 * Knock out extra levels of page tables if necessary
5040 */
5041 while (iommu->agaw < dmar_domain->agaw) {
5042 struct dma_pte *pte;
5043
5044 pte = dmar_domain->pgd;
5045 if (dma_pte_present(pte)) {
25cbff16
SY
5046 dmar_domain->pgd = (struct dma_pte *)
5047 phys_to_virt(dma_pte_addr(pte));
7a661013 5048 free_pgtable_page(pte);
a99c47a2
TL
5049 }
5050 dmar_domain->agaw--;
5051 }
fe40f1e0 5052
28ccce0d 5053 return domain_add_dev_info(dmar_domain, dev);
38717946 5054}
38717946 5055
4c5478c9
JR
5056static void intel_iommu_detach_device(struct iommu_domain *domain,
5057 struct device *dev)
38717946 5058{
e6de0f8d 5059 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
faa3d6f5 5060}
c7151a8d 5061
b146a1c9
JR
5062static int intel_iommu_map(struct iommu_domain *domain,
5063 unsigned long iova, phys_addr_t hpa,
5009065d 5064 size_t size, int iommu_prot)
faa3d6f5 5065{
00a77deb 5066 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0 5067 u64 max_addr;
dde57a21 5068 int prot = 0;
faa3d6f5 5069 int ret;
fe40f1e0 5070
dde57a21
JR
5071 if (iommu_prot & IOMMU_READ)
5072 prot |= DMA_PTE_READ;
5073 if (iommu_prot & IOMMU_WRITE)
5074 prot |= DMA_PTE_WRITE;
9cf06697
SY
5075 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5076 prot |= DMA_PTE_SNP;
dde57a21 5077
163cc52c 5078 max_addr = iova + size;
dde57a21 5079 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
5080 u64 end;
5081
5082 /* check if minimum agaw is sufficient for mapped address */
8954da1f 5083 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
fe40f1e0 5084 if (end < max_addr) {
9f10e5bf 5085 pr_err("%s: iommu width (%d) is not "
fe40f1e0 5086 "sufficient for the mapped address (%llx)\n",
8954da1f 5087 __func__, dmar_domain->gaw, max_addr);
fe40f1e0
WH
5088 return -EFAULT;
5089 }
dde57a21 5090 dmar_domain->max_addr = max_addr;
fe40f1e0 5091 }
ad051221
DW
5092 /* Round up size to next multiple of PAGE_SIZE, if it and
5093 the low bits of hpa would take us onto the next page */
88cb6a74 5094 size = aligned_nrpages(hpa, size);
ad051221
DW
5095 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5096 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 5097 return ret;
38717946 5098}
38717946 5099
5009065d 5100static size_t intel_iommu_unmap(struct iommu_domain *domain,
ea8ea460 5101 unsigned long iova, size_t size)
38717946 5102{
00a77deb 5103 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
ea8ea460
DW
5104 struct page *freelist = NULL;
5105 struct intel_iommu *iommu;
5106 unsigned long start_pfn, last_pfn;
5107 unsigned int npages;
42e8c186 5108 int iommu_id, level = 0;
5cf0a76f
DW
5109
5110 /* Cope with horrid API which requires us to unmap more than the
5111 size argument if it happens to be a large-page mapping. */
dc02e46e 5112 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5cf0a76f
DW
5113
5114 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5115 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4b99d352 5116
ea8ea460
DW
5117 start_pfn = iova >> VTD_PAGE_SHIFT;
5118 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5119
5120 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5121
5122 npages = last_pfn - start_pfn + 1;
5123
29a27719 5124 for_each_domain_iommu(iommu_id, dmar_domain) {
a1ddcbe9 5125 iommu = g_iommus[iommu_id];
ea8ea460 5126
42e8c186
JR
5127 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5128 start_pfn, npages, !freelist, 0);
ea8ea460
DW
5129 }
5130
5131 dma_free_pagelist(freelist);
fe40f1e0 5132
163cc52c
DW
5133 if (dmar_domain->max_addr == iova + size)
5134 dmar_domain->max_addr = iova;
b146a1c9 5135
5cf0a76f 5136 return size;
38717946 5137}
38717946 5138
d14d6577 5139static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
bb5547ac 5140 dma_addr_t iova)
38717946 5141{
00a77deb 5142 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
38717946 5143 struct dma_pte *pte;
5cf0a76f 5144 int level = 0;
faa3d6f5 5145 u64 phys = 0;
38717946 5146
5cf0a76f 5147 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
38717946 5148 if (pte)
faa3d6f5 5149 phys = dma_pte_addr(pte);
38717946 5150
faa3d6f5 5151 return phys;
38717946 5152}
a8bcbb0d 5153
5d587b8d 5154static bool intel_iommu_capable(enum iommu_cap cap)
dbb9fd86 5155{
dbb9fd86 5156 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5d587b8d 5157 return domain_update_iommu_snooping(NULL) == 1;
323f99cb 5158 if (cap == IOMMU_CAP_INTR_REMAP)
5d587b8d 5159 return irq_remapping_enabled == 1;
dbb9fd86 5160
5d587b8d 5161 return false;
dbb9fd86
SY
5162}
5163
abdfdde2
AW
5164static int intel_iommu_add_device(struct device *dev)
5165{
a5459cfe 5166 struct intel_iommu *iommu;
abdfdde2 5167 struct iommu_group *group;
156baca8 5168 u8 bus, devfn;
70ae6f0d 5169
a5459cfe
AW
5170 iommu = device_to_iommu(dev, &bus, &devfn);
5171 if (!iommu)
70ae6f0d
AW
5172 return -ENODEV;
5173
a5459cfe 5174 iommu_device_link(iommu->iommu_dev, dev);
a4ff1fc2 5175
e17f9ff4 5176 group = iommu_group_get_for_dev(dev);
783f157b 5177
e17f9ff4
AW
5178 if (IS_ERR(group))
5179 return PTR_ERR(group);
bcb71abe 5180
abdfdde2 5181 iommu_group_put(group);
e17f9ff4 5182 return 0;
abdfdde2 5183}
70ae6f0d 5184
abdfdde2
AW
5185static void intel_iommu_remove_device(struct device *dev)
5186{
a5459cfe
AW
5187 struct intel_iommu *iommu;
5188 u8 bus, devfn;
5189
5190 iommu = device_to_iommu(dev, &bus, &devfn);
5191 if (!iommu)
5192 return;
5193
abdfdde2 5194 iommu_group_remove_device(dev);
a5459cfe
AW
5195
5196 iommu_device_unlink(iommu->iommu_dev, dev);
70ae6f0d
AW
5197}
5198
2f26e0a9
DW
5199#ifdef CONFIG_INTEL_IOMMU_SVM
5200int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5201{
5202 struct device_domain_info *info;
5203 struct context_entry *context;
5204 struct dmar_domain *domain;
5205 unsigned long flags;
5206 u64 ctx_lo;
5207 int ret;
5208
5209 domain = get_valid_domain_for_dev(sdev->dev);
5210 if (!domain)
5211 return -EINVAL;
5212
5213 spin_lock_irqsave(&device_domain_lock, flags);
5214 spin_lock(&iommu->lock);
5215
5216 ret = -EINVAL;
5217 info = sdev->dev->archdata.iommu;
5218 if (!info || !info->pasid_supported)
5219 goto out;
5220
5221 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5222 if (WARN_ON(!context))
5223 goto out;
5224
5225 ctx_lo = context[0].lo;
5226
5227 sdev->did = domain->iommu_did[iommu->seq_id];
5228 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5229
5230 if (!(ctx_lo & CONTEXT_PASIDE)) {
5231 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5232 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | ecap_pss(iommu->ecap);
5233 wmb();
5234 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5235 * extended to permit requests-with-PASID if the PASIDE bit
5236 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5237 * however, the PASIDE bit is ignored and requests-with-PASID
5238 * are unconditionally blocked. Which makes less sense.
5239 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5240 * "guest mode" translation types depending on whether ATS
5241 * is available or not. Annoyingly, we can't use the new
5242 * modes *unless* PASIDE is set. */
5243 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5244 ctx_lo &= ~CONTEXT_TT_MASK;
5245 if (info->ats_supported)
5246 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5247 else
5248 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5249 }
5250 ctx_lo |= CONTEXT_PASIDE;
907fea34
DW
5251 if (iommu->pasid_state_table)
5252 ctx_lo |= CONTEXT_DINVE;
a222a7f0
DW
5253 if (info->pri_supported)
5254 ctx_lo |= CONTEXT_PRS;
2f26e0a9
DW
5255 context[0].lo = ctx_lo;
5256 wmb();
5257 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5258 DMA_CCMD_MASK_NOBIT,
5259 DMA_CCMD_DEVICE_INVL);
5260 }
5261
5262 /* Enable PASID support in the device, if it wasn't already */
5263 if (!info->pasid_enabled)
5264 iommu_enable_dev_iotlb(info);
5265
5266 if (info->ats_enabled) {
5267 sdev->dev_iotlb = 1;
5268 sdev->qdep = info->ats_qdep;
5269 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5270 sdev->qdep = 0;
5271 }
5272 ret = 0;
5273
5274 out:
5275 spin_unlock(&iommu->lock);
5276 spin_unlock_irqrestore(&device_domain_lock, flags);
5277
5278 return ret;
5279}
5280
5281struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5282{
5283 struct intel_iommu *iommu;
5284 u8 bus, devfn;
5285
5286 if (iommu_dummy(dev)) {
5287 dev_warn(dev,
5288 "No IOMMU translation for device; cannot enable SVM\n");
5289 return NULL;
5290 }
5291
5292 iommu = device_to_iommu(dev, &bus, &devfn);
5293 if ((!iommu)) {
b9997e38 5294 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
2f26e0a9
DW
5295 return NULL;
5296 }
5297
5298 if (!iommu->pasid_table) {
b9997e38 5299 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
2f26e0a9
DW
5300 return NULL;
5301 }
5302
5303 return iommu;
5304}
5305#endif /* CONFIG_INTEL_IOMMU_SVM */
5306
b22f6434 5307static const struct iommu_ops intel_iommu_ops = {
5d587b8d 5308 .capable = intel_iommu_capable,
00a77deb
JR
5309 .domain_alloc = intel_iommu_domain_alloc,
5310 .domain_free = intel_iommu_domain_free,
a8bcbb0d
JR
5311 .attach_dev = intel_iommu_attach_device,
5312 .detach_dev = intel_iommu_detach_device,
b146a1c9
JR
5313 .map = intel_iommu_map,
5314 .unmap = intel_iommu_unmap,
315786eb 5315 .map_sg = default_iommu_map_sg,
a8bcbb0d 5316 .iova_to_phys = intel_iommu_iova_to_phys,
abdfdde2
AW
5317 .add_device = intel_iommu_add_device,
5318 .remove_device = intel_iommu_remove_device,
a960fadb 5319 .device_group = pci_device_group,
6d1c56a9 5320 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
a8bcbb0d 5321};
9af88143 5322
9452618e
DV
5323static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5324{
5325 /* G4x/GM45 integrated gfx dmar support is totally busted. */
9f10e5bf 5326 pr_info("Disabling IOMMU for graphics on this chipset\n");
9452618e
DV
5327 dmar_map_gfx = 0;
5328}
5329
5330DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5331DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5332DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5333DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5334DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5335DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5336DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5337
d34d6517 5338static void quirk_iommu_rwbf(struct pci_dev *dev)
9af88143
DW
5339{
5340 /*
5341 * Mobile 4 Series Chipset neglects to set RWBF capability,
210561ff 5342 * but needs it. Same seems to hold for the desktop versions.
9af88143 5343 */
9f10e5bf 5344 pr_info("Forcing write-buffer flush capability\n");
9af88143
DW
5345 rwbf_quirk = 1;
5346}
5347
5348DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
210561ff
DV
5349DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5350DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5351DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5352DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5353DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5354DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
e0fc7e0b 5355
eecfd57f
AJ
5356#define GGC 0x52
5357#define GGC_MEMORY_SIZE_MASK (0xf << 8)
5358#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5359#define GGC_MEMORY_SIZE_1M (0x1 << 8)
5360#define GGC_MEMORY_SIZE_2M (0x3 << 8)
5361#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5362#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5363#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5364#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5365
d34d6517 5366static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
9eecabcb
DW
5367{
5368 unsigned short ggc;
5369
eecfd57f 5370 if (pci_read_config_word(dev, GGC, &ggc))
9eecabcb
DW
5371 return;
5372
eecfd57f 5373 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
9f10e5bf 5374 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
9eecabcb 5375 dmar_map_gfx = 0;
6fbcfb3e
DW
5376 } else if (dmar_map_gfx) {
5377 /* we have to ensure the gfx device is idle before we flush */
9f10e5bf 5378 pr_info("Disabling batched IOTLB flush on Ironlake\n");
6fbcfb3e
DW
5379 intel_iommu_strict = 1;
5380 }
9eecabcb
DW
5381}
5382DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5383DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5384DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5385DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5386
e0fc7e0b
DW
5387/* On Tylersburg chipsets, some BIOSes have been known to enable the
5388 ISOCH DMAR unit for the Azalia sound device, but not give it any
5389 TLB entries, which causes it to deadlock. Check for that. We do
5390 this in a function called from init_dmars(), instead of in a PCI
5391 quirk, because we don't want to print the obnoxious "BIOS broken"
5392 message if VT-d is actually disabled.
5393*/
5394static void __init check_tylersburg_isoch(void)
5395{
5396 struct pci_dev *pdev;
5397 uint32_t vtisochctrl;
5398
5399 /* If there's no Azalia in the system anyway, forget it. */
5400 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5401 if (!pdev)
5402 return;
5403 pci_dev_put(pdev);
5404
5405 /* System Management Registers. Might be hidden, in which case
5406 we can't do the sanity check. But that's OK, because the
5407 known-broken BIOSes _don't_ actually hide it, so far. */
5408 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5409 if (!pdev)
5410 return;
5411
5412 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5413 pci_dev_put(pdev);
5414 return;
5415 }
5416
5417 pci_dev_put(pdev);
5418
5419 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5420 if (vtisochctrl & 1)
5421 return;
5422
5423 /* Drop all bits other than the number of TLB entries */
5424 vtisochctrl &= 0x1c;
5425
5426 /* If we have the recommended number of TLB entries (16), fine. */
5427 if (vtisochctrl == 0x10)
5428 return;
5429
5430 /* Zero TLB entries? You get to ride the short bus to school. */
5431 if (!vtisochctrl) {
5432 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5433 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5434 dmi_get_system_info(DMI_BIOS_VENDOR),
5435 dmi_get_system_info(DMI_BIOS_VERSION),
5436 dmi_get_system_info(DMI_PRODUCT_VERSION));
5437 iommu_identity_mapping |= IDENTMAP_AZALIA;
5438 return;
5439 }
9f10e5bf
JR
5440
5441 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
e0fc7e0b
DW
5442 vtisochctrl);
5443}