]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/iommu/intel-iommu.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / intel-iommu.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
ba395927 2/*
ea8ea460 3 * Copyright © 2006-2014 Intel Corporation.
ba395927 4 *
ea8ea460
DW
5 * Authors: David Woodhouse <dwmw2@infradead.org>,
6 * Ashok Raj <ashok.raj@intel.com>,
7 * Shaohua Li <shaohua.li@intel.com>,
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
9f10e5bf 10 * Joerg Roedel <jroedel@suse.de>
ba395927
KA
11 */
12
9f10e5bf 13#define pr_fmt(fmt) "DMAR: " fmt
932a6523 14#define dev_fmt(fmt) pr_fmt(fmt)
9f10e5bf 15
ba395927
KA
16#include <linux/init.h>
17#include <linux/bitmap.h>
5e0d2a6f 18#include <linux/debugfs.h>
54485c30 19#include <linux/export.h>
ba395927
KA
20#include <linux/slab.h>
21#include <linux/irq.h>
22#include <linux/interrupt.h>
ba395927
KA
23#include <linux/spinlock.h>
24#include <linux/pci.h>
25#include <linux/dmar.h>
26#include <linux/dma-mapping.h>
27#include <linux/mempool.h>
75f05569 28#include <linux/memory.h>
aa473240 29#include <linux/cpu.h>
5e0d2a6f 30#include <linux/timer.h>
dfddb969 31#include <linux/io.h>
38717946 32#include <linux/iova.h>
5d450806 33#include <linux/iommu.h>
38717946 34#include <linux/intel-iommu.h>
134fac3f 35#include <linux/syscore_ops.h>
69575d38 36#include <linux/tboot.h>
adb2fe02 37#include <linux/dmi.h>
5cdede24 38#include <linux/pci-ats.h>
0ee332c1 39#include <linux/memblock.h>
36746436 40#include <linux/dma-contiguous.h>
fec777c3 41#include <linux/dma-direct.h>
091d42e4 42#include <linux/crash_dump.h>
98fa15f3 43#include <linux/numa.h>
cfb94a37 44#include <linux/swiotlb.h>
8a8f422d 45#include <asm/irq_remapping.h>
ba395927 46#include <asm/cacheflush.h>
46a7fa27 47#include <asm/iommu.h>
cfb94a37 48#include <trace/events/intel_iommu.h>
ba395927 49
078e1ee2 50#include "irq_remapping.h"
56283174 51#include "intel-pasid.h"
078e1ee2 52
5b6985ce
FY
53#define ROOT_SIZE VTD_PAGE_SIZE
54#define CONTEXT_SIZE VTD_PAGE_SIZE
55
ba395927 56#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
18436afd 57#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
ba395927 58#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
e0fc7e0b 59#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
ba395927
KA
60
61#define IOAPIC_RANGE_START (0xfee00000)
62#define IOAPIC_RANGE_END (0xfeefffff)
63#define IOVA_START_ADDR (0x1000)
64
5e3b4a15 65#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
ba395927 66
4ed0d3e6 67#define MAX_AGAW_WIDTH 64
5c645b35 68#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
4ed0d3e6 69
2ebe3151
DW
70#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
ba395927 78
1b722500
RM
79/* IO virtual address start page frame number */
80#define IOVA_START_PFN (1)
81
f27be03b 82#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
5e0d2a6f 83
df08cdc7
AM
84/* page table handling */
85#define LEVEL_STRIDE (9)
86#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
87
6d1c56a9
OBC
88/*
89 * This bitmap is used to advertise the page sizes our hardware support
90 * to the IOMMU core, which will then use this information to split
91 * physically contiguous memory regions it is mapping into page sizes
92 * that we support.
93 *
94 * Traditionally the IOMMU core just handed us the mappings directly,
95 * after making sure the size is an order of a 4KiB page and that the
96 * mapping has natural alignment.
97 *
98 * To retain this behavior, we currently advertise that we support
99 * all page sizes that are an order of 4KiB.
100 *
101 * If at some point we'd like to utilize the IOMMU core's new behavior,
102 * we could change this to advertise the real page sizes we support.
103 */
104#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
105
df08cdc7
AM
106static inline int agaw_to_level(int agaw)
107{
108 return agaw + 2;
109}
110
111static inline int agaw_to_width(int agaw)
112{
5c645b35 113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
df08cdc7
AM
114}
115
116static inline int width_to_agaw(int width)
117{
5c645b35 118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
df08cdc7
AM
119}
120
121static inline unsigned int level_to_offset_bits(int level)
122{
123 return (level - 1) * LEVEL_STRIDE;
124}
125
126static inline int pfn_level_offset(unsigned long pfn, int level)
127{
128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
129}
130
131static inline unsigned long level_mask(int level)
132{
133 return -1UL << level_to_offset_bits(level);
134}
135
136static inline unsigned long level_size(int level)
137{
138 return 1UL << level_to_offset_bits(level);
139}
140
141static inline unsigned long align_to_level(unsigned long pfn, int level)
142{
143 return (pfn + level_size(level) - 1) & level_mask(level);
144}
fd18de50 145
6dd9a7c7
YS
146static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
147{
5c645b35 148 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
6dd9a7c7
YS
149}
150
dd4e8319
DW
151/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
152 are never going to work. */
153static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
154{
155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
156}
157
158static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
159{
160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
161}
162static inline unsigned long page_to_dma_pfn(struct page *pg)
163{
164 return mm_to_dma_pfn(page_to_pfn(pg));
165}
166static inline unsigned long virt_to_dma_pfn(void *p)
167{
168 return page_to_dma_pfn(virt_to_page(p));
169}
170
d9630fe9
WH
171/* global iommu list, set NULL for ignored DMAR units */
172static struct intel_iommu **g_iommus;
173
e0fc7e0b 174static void __init check_tylersburg_isoch(void);
9af88143
DW
175static int rwbf_quirk;
176
b779260b
JC
177/*
178 * set to 1 to panic kernel if can't successfully enable VT-d
179 * (used when kernel is launched w/ TXT)
180 */
181static int force_on = 0;
bfd20f1c 182int intel_iommu_tboot_noforce;
89a6079d 183static int no_platform_optin;
b779260b 184
46b08e1a 185#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
46b08e1a 186
091d42e4
JR
187/*
188 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
189 * if marked present.
190 */
191static phys_addr_t root_entry_lctp(struct root_entry *re)
192{
193 if (!(re->lo & 1))
194 return 0;
195
196 return re->lo & VTD_PAGE_MASK;
197}
198
199/*
200 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
201 * if marked present.
202 */
203static phys_addr_t root_entry_uctp(struct root_entry *re)
204{
205 if (!(re->hi & 1))
206 return 0;
46b08e1a 207
091d42e4
JR
208 return re->hi & VTD_PAGE_MASK;
209}
c07e7d21 210
cf484d0e
JR
211static inline void context_clear_pasid_enable(struct context_entry *context)
212{
213 context->lo &= ~(1ULL << 11);
214}
215
216static inline bool context_pasid_enabled(struct context_entry *context)
217{
218 return !!(context->lo & (1ULL << 11));
219}
220
221static inline void context_set_copied(struct context_entry *context)
222{
223 context->hi |= (1ull << 3);
224}
225
226static inline bool context_copied(struct context_entry *context)
227{
228 return !!(context->hi & (1ULL << 3));
229}
230
231static inline bool __context_present(struct context_entry *context)
c07e7d21
MM
232{
233 return (context->lo & 1);
234}
cf484d0e 235
26b86092 236bool context_present(struct context_entry *context)
cf484d0e
JR
237{
238 return context_pasid_enabled(context) ?
239 __context_present(context) :
240 __context_present(context) && !context_copied(context);
241}
242
c07e7d21
MM
243static inline void context_set_present(struct context_entry *context)
244{
245 context->lo |= 1;
246}
247
248static inline void context_set_fault_enable(struct context_entry *context)
249{
250 context->lo &= (((u64)-1) << 2) | 1;
251}
252
c07e7d21
MM
253static inline void context_set_translation_type(struct context_entry *context,
254 unsigned long value)
255{
256 context->lo &= (((u64)-1) << 4) | 3;
257 context->lo |= (value & 3) << 2;
258}
259
260static inline void context_set_address_root(struct context_entry *context,
261 unsigned long value)
262{
1a2262f9 263 context->lo &= ~VTD_PAGE_MASK;
c07e7d21
MM
264 context->lo |= value & VTD_PAGE_MASK;
265}
266
267static inline void context_set_address_width(struct context_entry *context,
268 unsigned long value)
269{
270 context->hi |= value & 7;
271}
272
273static inline void context_set_domain_id(struct context_entry *context,
274 unsigned long value)
275{
276 context->hi |= (value & ((1 << 16) - 1)) << 8;
277}
278
dbcd861f
JR
279static inline int context_domain_id(struct context_entry *c)
280{
281 return((c->hi >> 8) & 0xffff);
282}
283
c07e7d21
MM
284static inline void context_clear_entry(struct context_entry *context)
285{
286 context->lo = 0;
287 context->hi = 0;
288}
7a8fc25e 289
2c2e2c38
FY
290/*
291 * This domain is a statically identity mapping domain.
292 * 1. This domain creats a static 1:1 mapping to all usable memory.
293 * 2. It maps to each iommu if successful.
294 * 3. Each iommu mapps to this domain if successful.
295 */
19943b0e
DW
296static struct dmar_domain *si_domain;
297static int hw_pass_through = 1;
2c2e2c38 298
2c2e2c38 299/* si_domain contains mulitple devices */
fa954e68 300#define DOMAIN_FLAG_STATIC_IDENTITY BIT(0)
2c2e2c38 301
942067f1
LB
302/*
303 * This is a DMA domain allocated through the iommu domain allocation
304 * interface. But one or more devices belonging to this domain have
305 * been chosen to use a private domain. We should avoid to use the
306 * map/unmap/iova_to_phys APIs on it.
307 */
308#define DOMAIN_FLAG_LOSE_CHILDREN BIT(1)
309
29a27719
JR
310#define for_each_domain_iommu(idx, domain) \
311 for (idx = 0; idx < g_num_of_iommus; idx++) \
312 if (domain->iommu_refcnt[idx])
313
b94e4117
JL
314struct dmar_rmrr_unit {
315 struct list_head list; /* list of rmrr units */
316 struct acpi_dmar_header *hdr; /* ACPI header */
317 u64 base_address; /* reserved base address*/
318 u64 end_address; /* reserved end address */
832bd858 319 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
320 int devices_cnt; /* target device count */
321};
322
323struct dmar_atsr_unit {
324 struct list_head list; /* list of ATSR units */
325 struct acpi_dmar_header *hdr; /* ACPI header */
832bd858 326 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
327 int devices_cnt; /* target device count */
328 u8 include_all:1; /* include all ports */
329};
330
331static LIST_HEAD(dmar_atsr_units);
332static LIST_HEAD(dmar_rmrr_units);
333
334#define for_each_rmrr_units(rmrr) \
335 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
336
5e0d2a6f 337/* bitmap for indexing intel_iommus */
5e0d2a6f 338static int g_num_of_iommus;
339
92d03cc8 340static void domain_exit(struct dmar_domain *domain);
ba395927 341static void domain_remove_dev_info(struct dmar_domain *domain);
71753239 342static void dmar_remove_one_dev_info(struct device *dev);
127c7615 343static void __dmar_remove_one_dev_info(struct device_domain_info *info);
0ce4a85f
LB
344static void domain_context_clear(struct intel_iommu *iommu,
345 struct device *dev);
2a46ddf7
JL
346static int domain_detach_iommu(struct dmar_domain *domain,
347 struct intel_iommu *iommu);
4de354ec 348static bool device_is_rmrr_locked(struct device *dev);
8af46c78
LB
349static int intel_iommu_attach_device(struct iommu_domain *domain,
350 struct device *dev);
cfb94a37
LB
351static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
352 dma_addr_t iova);
ba395927 353
d3f13810 354#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
0cd5c3c8
KM
355int dmar_disabled = 0;
356#else
357int dmar_disabled = 1;
d3f13810 358#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
0cd5c3c8 359
cdd3a249 360int intel_iommu_sm;
8bc1f85c
ED
361int intel_iommu_enabled = 0;
362EXPORT_SYMBOL_GPL(intel_iommu_enabled);
363
2d9e667e 364static int dmar_map_gfx = 1;
7d3b03ce 365static int dmar_forcedac;
5e0d2a6f 366static int intel_iommu_strict;
6dd9a7c7 367static int intel_iommu_superpage = 1;
ae853ddb 368static int iommu_identity_mapping;
e5e04d05 369static int intel_no_bounce;
c83b2f20 370
ae853ddb
DW
371#define IDENTMAP_ALL 1
372#define IDENTMAP_GFX 2
373#define IDENTMAP_AZALIA 4
c83b2f20 374
c0771df8
DW
375int intel_iommu_gfx_mapped;
376EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
377
ba395927 378#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
8af46c78 379#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
ba395927
KA
380static DEFINE_SPINLOCK(device_domain_lock);
381static LIST_HEAD(device_domain_list);
382
e5e04d05
LB
383#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \
384 to_pci_dev(d)->untrusted)
385
85319dcc
LB
386/*
387 * Iterate over elements in device_domain_list and call the specified
0bbeb01a 388 * callback @fn against each element.
85319dcc
LB
389 */
390int for_each_device_domain(int (*fn)(struct device_domain_info *info,
391 void *data), void *data)
392{
393 int ret = 0;
0bbeb01a 394 unsigned long flags;
85319dcc
LB
395 struct device_domain_info *info;
396
0bbeb01a 397 spin_lock_irqsave(&device_domain_lock, flags);
85319dcc
LB
398 list_for_each_entry(info, &device_domain_list, global) {
399 ret = fn(info, data);
0bbeb01a
LB
400 if (ret) {
401 spin_unlock_irqrestore(&device_domain_lock, flags);
85319dcc 402 return ret;
0bbeb01a 403 }
85319dcc 404 }
0bbeb01a 405 spin_unlock_irqrestore(&device_domain_lock, flags);
85319dcc
LB
406
407 return 0;
408}
409
b0119e87 410const struct iommu_ops intel_iommu_ops;
a8bcbb0d 411
4158c2ec
JR
412static bool translation_pre_enabled(struct intel_iommu *iommu)
413{
414 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
415}
416
091d42e4
JR
417static void clear_translation_pre_enabled(struct intel_iommu *iommu)
418{
419 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
420}
421
4158c2ec
JR
422static void init_translation_status(struct intel_iommu *iommu)
423{
424 u32 gsts;
425
426 gsts = readl(iommu->reg + DMAR_GSTS_REG);
427 if (gsts & DMA_GSTS_TES)
428 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
429}
430
00a77deb
JR
431/* Convert generic 'struct iommu_domain to private struct dmar_domain */
432static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
433{
434 return container_of(dom, struct dmar_domain, domain);
435}
436
ba395927
KA
437static int __init intel_iommu_setup(char *str)
438{
439 if (!str)
440 return -EINVAL;
441 while (*str) {
0cd5c3c8
KM
442 if (!strncmp(str, "on", 2)) {
443 dmar_disabled = 0;
9f10e5bf 444 pr_info("IOMMU enabled\n");
0cd5c3c8 445 } else if (!strncmp(str, "off", 3)) {
ba395927 446 dmar_disabled = 1;
89a6079d 447 no_platform_optin = 1;
9f10e5bf 448 pr_info("IOMMU disabled\n");
ba395927
KA
449 } else if (!strncmp(str, "igfx_off", 8)) {
450 dmar_map_gfx = 0;
9f10e5bf 451 pr_info("Disable GFX device mapping\n");
7d3b03ce 452 } else if (!strncmp(str, "forcedac", 8)) {
9f10e5bf 453 pr_info("Forcing DAC for PCI devices\n");
7d3b03ce 454 dmar_forcedac = 1;
5e0d2a6f 455 } else if (!strncmp(str, "strict", 6)) {
9f10e5bf 456 pr_info("Disable batched IOTLB flush\n");
5e0d2a6f 457 intel_iommu_strict = 1;
6dd9a7c7 458 } else if (!strncmp(str, "sp_off", 6)) {
9f10e5bf 459 pr_info("Disable supported super page\n");
6dd9a7c7 460 intel_iommu_superpage = 0;
8950dcd8
LB
461 } else if (!strncmp(str, "sm_on", 5)) {
462 pr_info("Intel-IOMMU: scalable mode supported\n");
463 intel_iommu_sm = 1;
bfd20f1c
SL
464 } else if (!strncmp(str, "tboot_noforce", 13)) {
465 printk(KERN_INFO
466 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
467 intel_iommu_tboot_noforce = 1;
e5e04d05
LB
468 } else if (!strncmp(str, "nobounce", 8)) {
469 pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
470 intel_no_bounce = 1;
ba395927
KA
471 }
472
473 str += strcspn(str, ",");
474 while (*str == ',')
475 str++;
476 }
477 return 0;
478}
479__setup("intel_iommu=", intel_iommu_setup);
480
481static struct kmem_cache *iommu_domain_cache;
482static struct kmem_cache *iommu_devinfo_cache;
ba395927 483
9452d5bf
JR
484static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
485{
8bf47816
JR
486 struct dmar_domain **domains;
487 int idx = did >> 8;
488
489 domains = iommu->domains[idx];
490 if (!domains)
491 return NULL;
492
493 return domains[did & 0xff];
9452d5bf
JR
494}
495
496static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
497 struct dmar_domain *domain)
498{
8bf47816
JR
499 struct dmar_domain **domains;
500 int idx = did >> 8;
501
502 if (!iommu->domains[idx]) {
503 size_t size = 256 * sizeof(struct dmar_domain *);
504 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
505 }
506
507 domains = iommu->domains[idx];
508 if (WARN_ON(!domains))
509 return;
510 else
511 domains[did & 0xff] = domain;
9452d5bf
JR
512}
513
9ddbfb42 514void *alloc_pgtable_page(int node)
eb3fa7cb 515{
4c923d47
SS
516 struct page *page;
517 void *vaddr = NULL;
eb3fa7cb 518
4c923d47
SS
519 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
520 if (page)
521 vaddr = page_address(page);
eb3fa7cb 522 return vaddr;
ba395927
KA
523}
524
9ddbfb42 525void free_pgtable_page(void *vaddr)
ba395927
KA
526{
527 free_page((unsigned long)vaddr);
528}
529
530static inline void *alloc_domain_mem(void)
531{
354bb65e 532 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
ba395927
KA
533}
534
38717946 535static void free_domain_mem(void *vaddr)
ba395927
KA
536{
537 kmem_cache_free(iommu_domain_cache, vaddr);
538}
539
540static inline void * alloc_devinfo_mem(void)
541{
354bb65e 542 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
ba395927
KA
543}
544
545static inline void free_devinfo_mem(void *vaddr)
546{
547 kmem_cache_free(iommu_devinfo_cache, vaddr);
548}
549
28ccce0d
JR
550static inline int domain_type_is_si(struct dmar_domain *domain)
551{
552 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
553}
554
162d1b10
JL
555static inline int domain_pfn_supported(struct dmar_domain *domain,
556 unsigned long pfn)
557{
558 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
559
560 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
561}
562
4ed0d3e6 563static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
564{
565 unsigned long sagaw;
566 int agaw = -1;
567
568 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 569 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
570 agaw >= 0; agaw--) {
571 if (test_bit(agaw, &sagaw))
572 break;
573 }
574
575 return agaw;
576}
577
4ed0d3e6
FY
578/*
579 * Calculate max SAGAW for each iommu.
580 */
581int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
582{
583 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
584}
585
586/*
587 * calculate agaw for each iommu.
588 * "SAGAW" may be different across iommus, use a default agaw, and
589 * get a supported less agaw for iommus that don't support the default agaw.
590 */
591int iommu_calculate_agaw(struct intel_iommu *iommu)
592{
593 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
594}
595
2c2e2c38 596/* This functionin only returns single iommu in a domain */
9ddbfb42 597struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
8c11e798
WH
598{
599 int iommu_id;
600
2c2e2c38 601 /* si_domain and vm domain should not get here. */
fa954e68
LB
602 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
603 return NULL;
604
29a27719
JR
605 for_each_domain_iommu(iommu_id, domain)
606 break;
607
8c11e798
WH
608 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
609 return NULL;
610
611 return g_iommus[iommu_id];
612}
613
8e604097
WH
614static void domain_update_iommu_coherency(struct dmar_domain *domain)
615{
d0501960
DW
616 struct dmar_drhd_unit *drhd;
617 struct intel_iommu *iommu;
2f119c78
QL
618 bool found = false;
619 int i;
2e12bc29 620
d0501960 621 domain->iommu_coherency = 1;
8e604097 622
29a27719 623 for_each_domain_iommu(i, domain) {
2f119c78 624 found = true;
8e604097
WH
625 if (!ecap_coherent(g_iommus[i]->ecap)) {
626 domain->iommu_coherency = 0;
627 break;
628 }
8e604097 629 }
d0501960
DW
630 if (found)
631 return;
632
633 /* No hardware attached; use lowest common denominator */
634 rcu_read_lock();
635 for_each_active_iommu(iommu, drhd) {
636 if (!ecap_coherent(iommu->ecap)) {
637 domain->iommu_coherency = 0;
638 break;
639 }
640 }
641 rcu_read_unlock();
8e604097
WH
642}
643
161f6934 644static int domain_update_iommu_snooping(struct intel_iommu *skip)
58c610bd 645{
161f6934
JL
646 struct dmar_drhd_unit *drhd;
647 struct intel_iommu *iommu;
648 int ret = 1;
58c610bd 649
161f6934
JL
650 rcu_read_lock();
651 for_each_active_iommu(iommu, drhd) {
652 if (iommu != skip) {
653 if (!ecap_sc_support(iommu->ecap)) {
654 ret = 0;
655 break;
656 }
58c610bd 657 }
58c610bd 658 }
161f6934
JL
659 rcu_read_unlock();
660
661 return ret;
58c610bd
SY
662}
663
161f6934 664static int domain_update_iommu_superpage(struct intel_iommu *skip)
6dd9a7c7 665{
8140a95d 666 struct dmar_drhd_unit *drhd;
161f6934 667 struct intel_iommu *iommu;
8140a95d 668 int mask = 0xf;
6dd9a7c7
YS
669
670 if (!intel_iommu_superpage) {
161f6934 671 return 0;
6dd9a7c7
YS
672 }
673
8140a95d 674 /* set iommu_superpage to the smallest common denominator */
0e242612 675 rcu_read_lock();
8140a95d 676 for_each_active_iommu(iommu, drhd) {
161f6934
JL
677 if (iommu != skip) {
678 mask &= cap_super_page_val(iommu->cap);
679 if (!mask)
680 break;
6dd9a7c7
YS
681 }
682 }
0e242612
JL
683 rcu_read_unlock();
684
161f6934 685 return fls(mask);
6dd9a7c7
YS
686}
687
58c610bd
SY
688/* Some capabilities may be different across iommus */
689static void domain_update_iommu_cap(struct dmar_domain *domain)
690{
691 domain_update_iommu_coherency(domain);
161f6934
JL
692 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
693 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
58c610bd
SY
694}
695
26b86092
SM
696struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
697 u8 devfn, int alloc)
03ecc32c
DW
698{
699 struct root_entry *root = &iommu->root_entry[bus];
700 struct context_entry *context;
701 u64 *entry;
702
4df4eab1 703 entry = &root->lo;
765b6a98 704 if (sm_supported(iommu)) {
03ecc32c
DW
705 if (devfn >= 0x80) {
706 devfn -= 0x80;
707 entry = &root->hi;
708 }
709 devfn *= 2;
710 }
03ecc32c
DW
711 if (*entry & 1)
712 context = phys_to_virt(*entry & VTD_PAGE_MASK);
713 else {
714 unsigned long phy_addr;
715 if (!alloc)
716 return NULL;
717
718 context = alloc_pgtable_page(iommu->node);
719 if (!context)
720 return NULL;
721
722 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
723 phy_addr = virt_to_phys((void *)context);
724 *entry = phy_addr | 1;
725 __iommu_flush_cache(iommu, entry, sizeof(*entry));
726 }
727 return &context[devfn];
728}
729
4ed6a540
DW
730static int iommu_dummy(struct device *dev)
731{
732 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
733}
734
b9a7f981
EA
735/**
736 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
737 * sub-hierarchy of a candidate PCI-PCI bridge
738 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
739 * @bridge: the candidate PCI-PCI bridge
740 *
741 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
742 */
743static bool
744is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
745{
746 struct pci_dev *pdev, *pbridge;
747
748 if (!dev_is_pci(dev) || !dev_is_pci(bridge))
749 return false;
750
751 pdev = to_pci_dev(dev);
752 pbridge = to_pci_dev(bridge);
753
754 if (pbridge->subordinate &&
755 pbridge->subordinate->number <= pdev->bus->number &&
756 pbridge->subordinate->busn_res.end >= pdev->bus->number)
757 return true;
758
759 return false;
760}
761
156baca8 762static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
c7151a8d
WH
763{
764 struct dmar_drhd_unit *drhd = NULL;
b683b230 765 struct intel_iommu *iommu;
156baca8 766 struct device *tmp;
b9a7f981 767 struct pci_dev *pdev = NULL;
aa4d066a 768 u16 segment = 0;
c7151a8d
WH
769 int i;
770
4ed6a540
DW
771 if (iommu_dummy(dev))
772 return NULL;
773
156baca8 774 if (dev_is_pci(dev)) {
1c387188
AR
775 struct pci_dev *pf_pdev;
776
156baca8 777 pdev = to_pci_dev(dev);
5823e330
JD
778
779#ifdef CONFIG_X86
780 /* VMD child devices currently cannot be handled individually */
781 if (is_vmd(pdev->bus))
782 return NULL;
783#endif
784
1c387188
AR
785 /* VFs aren't listed in scope tables; we need to look up
786 * the PF instead to find the IOMMU. */
787 pf_pdev = pci_physfn(pdev);
788 dev = &pf_pdev->dev;
156baca8 789 segment = pci_domain_nr(pdev->bus);
ca5b74d2 790 } else if (has_acpi_companion(dev))
156baca8
DW
791 dev = &ACPI_COMPANION(dev)->dev;
792
0e242612 793 rcu_read_lock();
b683b230 794 for_each_active_iommu(iommu, drhd) {
156baca8 795 if (pdev && segment != drhd->segment)
276dbf99 796 continue;
c7151a8d 797
b683b230 798 for_each_active_dev_scope(drhd->devices,
156baca8
DW
799 drhd->devices_cnt, i, tmp) {
800 if (tmp == dev) {
1c387188
AR
801 /* For a VF use its original BDF# not that of the PF
802 * which we used for the IOMMU lookup. Strictly speaking
803 * we could do this for all PCI devices; we only need to
804 * get the BDF# from the scope table for ACPI matches. */
5003ae1e 805 if (pdev && pdev->is_virtfn)
1c387188
AR
806 goto got_pdev;
807
156baca8
DW
808 *bus = drhd->devices[i].bus;
809 *devfn = drhd->devices[i].devfn;
b683b230 810 goto out;
156baca8
DW
811 }
812
b9a7f981 813 if (is_downstream_to_pci_bridge(dev, tmp))
156baca8 814 goto got_pdev;
924b6231 815 }
c7151a8d 816
156baca8
DW
817 if (pdev && drhd->include_all) {
818 got_pdev:
819 *bus = pdev->bus->number;
820 *devfn = pdev->devfn;
b683b230 821 goto out;
156baca8 822 }
c7151a8d 823 }
b683b230 824 iommu = NULL;
156baca8 825 out:
0e242612 826 rcu_read_unlock();
c7151a8d 827
b683b230 828 return iommu;
c7151a8d
WH
829}
830
5331fe6f
WH
831static void domain_flush_cache(struct dmar_domain *domain,
832 void *addr, int size)
833{
834 if (!domain->iommu_coherency)
835 clflush_cache_range(addr, size);
836}
837
ba395927
KA
838static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
839{
ba395927 840 struct context_entry *context;
03ecc32c 841 int ret = 0;
ba395927
KA
842 unsigned long flags;
843
844 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c
DW
845 context = iommu_context_addr(iommu, bus, devfn, 0);
846 if (context)
847 ret = context_present(context);
ba395927
KA
848 spin_unlock_irqrestore(&iommu->lock, flags);
849 return ret;
850}
851
ba395927
KA
852static void free_context_table(struct intel_iommu *iommu)
853{
ba395927
KA
854 int i;
855 unsigned long flags;
856 struct context_entry *context;
857
858 spin_lock_irqsave(&iommu->lock, flags);
859 if (!iommu->root_entry) {
860 goto out;
861 }
862 for (i = 0; i < ROOT_ENTRY_NR; i++) {
03ecc32c 863 context = iommu_context_addr(iommu, i, 0, 0);
ba395927
KA
864 if (context)
865 free_pgtable_page(context);
03ecc32c 866
765b6a98 867 if (!sm_supported(iommu))
03ecc32c
DW
868 continue;
869
870 context = iommu_context_addr(iommu, i, 0x80, 0);
871 if (context)
872 free_pgtable_page(context);
873
ba395927
KA
874 }
875 free_pgtable_page(iommu->root_entry);
876 iommu->root_entry = NULL;
877out:
878 spin_unlock_irqrestore(&iommu->lock, flags);
879}
880
b026fd28 881static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
5cf0a76f 882 unsigned long pfn, int *target_level)
ba395927 883{
e083ea5b 884 struct dma_pte *parent, *pte;
ba395927 885 int level = agaw_to_level(domain->agaw);
4399c8bf 886 int offset;
ba395927
KA
887
888 BUG_ON(!domain->pgd);
f9423606 889
162d1b10 890 if (!domain_pfn_supported(domain, pfn))
f9423606
JS
891 /* Address beyond IOMMU's addressing capabilities. */
892 return NULL;
893
ba395927
KA
894 parent = domain->pgd;
895
5cf0a76f 896 while (1) {
ba395927
KA
897 void *tmp_page;
898
b026fd28 899 offset = pfn_level_offset(pfn, level);
ba395927 900 pte = &parent[offset];
5cf0a76f 901 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
6dd9a7c7 902 break;
5cf0a76f 903 if (level == *target_level)
ba395927
KA
904 break;
905
19c239ce 906 if (!dma_pte_present(pte)) {
c85994e4
DW
907 uint64_t pteval;
908
4c923d47 909 tmp_page = alloc_pgtable_page(domain->nid);
ba395927 910
206a73c1 911 if (!tmp_page)
ba395927 912 return NULL;
206a73c1 913
c85994e4 914 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
64de5af0 915 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
effad4b5 916 if (cmpxchg64(&pte->val, 0ULL, pteval))
c85994e4
DW
917 /* Someone else set it while we were thinking; use theirs. */
918 free_pgtable_page(tmp_page);
effad4b5 919 else
c85994e4 920 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 921 }
5cf0a76f
DW
922 if (level == 1)
923 break;
924
19c239ce 925 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
926 level--;
927 }
928
5cf0a76f
DW
929 if (!*target_level)
930 *target_level = level;
931
ba395927
KA
932 return pte;
933}
934
935/* return address's pte at specific level */
90dcfb5e
DW
936static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
937 unsigned long pfn,
6dd9a7c7 938 int level, int *large_page)
ba395927 939{
e083ea5b 940 struct dma_pte *parent, *pte;
ba395927
KA
941 int total = agaw_to_level(domain->agaw);
942 int offset;
943
944 parent = domain->pgd;
945 while (level <= total) {
90dcfb5e 946 offset = pfn_level_offset(pfn, total);
ba395927
KA
947 pte = &parent[offset];
948 if (level == total)
949 return pte;
950
6dd9a7c7
YS
951 if (!dma_pte_present(pte)) {
952 *large_page = total;
ba395927 953 break;
6dd9a7c7
YS
954 }
955
e16922af 956 if (dma_pte_superpage(pte)) {
6dd9a7c7
YS
957 *large_page = total;
958 return pte;
959 }
960
19c239ce 961 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
962 total--;
963 }
964 return NULL;
965}
966
ba395927 967/* clear last level pte, a tlb flush should be followed */
5cf0a76f 968static void dma_pte_clear_range(struct dmar_domain *domain,
595badf5
DW
969 unsigned long start_pfn,
970 unsigned long last_pfn)
ba395927 971{
e083ea5b 972 unsigned int large_page;
310a5ab9 973 struct dma_pte *first_pte, *pte;
66eae846 974
162d1b10
JL
975 BUG_ON(!domain_pfn_supported(domain, start_pfn));
976 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 977 BUG_ON(start_pfn > last_pfn);
ba395927 978
04b18e65 979 /* we don't need lock here; nobody else touches the iova range */
59c36286 980 do {
6dd9a7c7
YS
981 large_page = 1;
982 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
310a5ab9 983 if (!pte) {
6dd9a7c7 984 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
310a5ab9
DW
985 continue;
986 }
6dd9a7c7 987 do {
310a5ab9 988 dma_clear_pte(pte);
6dd9a7c7 989 start_pfn += lvl_to_nr_pages(large_page);
310a5ab9 990 pte++;
75e6bf96
DW
991 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
992
310a5ab9
DW
993 domain_flush_cache(domain, first_pte,
994 (void *)pte - (void *)first_pte);
59c36286
DW
995
996 } while (start_pfn && start_pfn <= last_pfn);
ba395927
KA
997}
998
3269ee0b 999static void dma_pte_free_level(struct dmar_domain *domain, int level,
bc24c571
DD
1000 int retain_level, struct dma_pte *pte,
1001 unsigned long pfn, unsigned long start_pfn,
1002 unsigned long last_pfn)
3269ee0b
AW
1003{
1004 pfn = max(start_pfn, pfn);
1005 pte = &pte[pfn_level_offset(pfn, level)];
1006
1007 do {
1008 unsigned long level_pfn;
1009 struct dma_pte *level_pte;
1010
1011 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1012 goto next;
1013
f7116e11 1014 level_pfn = pfn & level_mask(level);
3269ee0b
AW
1015 level_pte = phys_to_virt(dma_pte_addr(pte));
1016
bc24c571
DD
1017 if (level > 2) {
1018 dma_pte_free_level(domain, level - 1, retain_level,
1019 level_pte, level_pfn, start_pfn,
1020 last_pfn);
1021 }
3269ee0b 1022
bc24c571
DD
1023 /*
1024 * Free the page table if we're below the level we want to
1025 * retain and the range covers the entire table.
1026 */
1027 if (level < retain_level && !(start_pfn > level_pfn ||
08336fd2 1028 last_pfn < level_pfn + level_size(level) - 1)) {
3269ee0b
AW
1029 dma_clear_pte(pte);
1030 domain_flush_cache(domain, pte, sizeof(*pte));
1031 free_pgtable_page(level_pte);
1032 }
1033next:
1034 pfn += level_size(level);
1035 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1036}
1037
bc24c571
DD
1038/*
1039 * clear last level (leaf) ptes and free page table pages below the
1040 * level we wish to keep intact.
1041 */
ba395927 1042static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b 1043 unsigned long start_pfn,
bc24c571
DD
1044 unsigned long last_pfn,
1045 int retain_level)
ba395927 1046{
162d1b10
JL
1047 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1048 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1049 BUG_ON(start_pfn > last_pfn);
ba395927 1050
d41a4adb
JL
1051 dma_pte_clear_range(domain, start_pfn, last_pfn);
1052
f3a0a52f 1053 /* We don't need lock here; nobody else touches the iova range */
bc24c571 1054 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
3269ee0b 1055 domain->pgd, 0, start_pfn, last_pfn);
6660c63a 1056
ba395927 1057 /* free pgd */
d794dc9b 1058 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
1059 free_pgtable_page(domain->pgd);
1060 domain->pgd = NULL;
1061 }
1062}
1063
ea8ea460
DW
1064/* When a page at a given level is being unlinked from its parent, we don't
1065 need to *modify* it at all. All we need to do is make a list of all the
1066 pages which can be freed just as soon as we've flushed the IOTLB and we
1067 know the hardware page-walk will no longer touch them.
1068 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1069 be freed. */
1070static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1071 int level, struct dma_pte *pte,
1072 struct page *freelist)
1073{
1074 struct page *pg;
1075
1076 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1077 pg->freelist = freelist;
1078 freelist = pg;
1079
1080 if (level == 1)
1081 return freelist;
1082
adeb2590
JL
1083 pte = page_address(pg);
1084 do {
ea8ea460
DW
1085 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1086 freelist = dma_pte_list_pagetables(domain, level - 1,
1087 pte, freelist);
adeb2590
JL
1088 pte++;
1089 } while (!first_pte_in_page(pte));
ea8ea460
DW
1090
1091 return freelist;
1092}
1093
1094static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1095 struct dma_pte *pte, unsigned long pfn,
1096 unsigned long start_pfn,
1097 unsigned long last_pfn,
1098 struct page *freelist)
1099{
1100 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1101
1102 pfn = max(start_pfn, pfn);
1103 pte = &pte[pfn_level_offset(pfn, level)];
1104
1105 do {
1106 unsigned long level_pfn;
1107
1108 if (!dma_pte_present(pte))
1109 goto next;
1110
1111 level_pfn = pfn & level_mask(level);
1112
1113 /* If range covers entire pagetable, free it */
1114 if (start_pfn <= level_pfn &&
1115 last_pfn >= level_pfn + level_size(level) - 1) {
1116 /* These suborbinate page tables are going away entirely. Don't
1117 bother to clear them; we're just going to *free* them. */
1118 if (level > 1 && !dma_pte_superpage(pte))
1119 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1120
1121 dma_clear_pte(pte);
1122 if (!first_pte)
1123 first_pte = pte;
1124 last_pte = pte;
1125 } else if (level > 1) {
1126 /* Recurse down into a level that isn't *entirely* obsolete */
1127 freelist = dma_pte_clear_level(domain, level - 1,
1128 phys_to_virt(dma_pte_addr(pte)),
1129 level_pfn, start_pfn, last_pfn,
1130 freelist);
1131 }
1132next:
1133 pfn += level_size(level);
1134 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1135
1136 if (first_pte)
1137 domain_flush_cache(domain, first_pte,
1138 (void *)++last_pte - (void *)first_pte);
1139
1140 return freelist;
1141}
1142
1143/* We can't just free the pages because the IOMMU may still be walking
1144 the page tables, and may have cached the intermediate levels. The
1145 pages can only be freed after the IOTLB flush has been done. */
b690420a
JR
1146static struct page *domain_unmap(struct dmar_domain *domain,
1147 unsigned long start_pfn,
1148 unsigned long last_pfn)
ea8ea460 1149{
e083ea5b 1150 struct page *freelist;
ea8ea460 1151
162d1b10
JL
1152 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1153 BUG_ON(!domain_pfn_supported(domain, last_pfn));
ea8ea460
DW
1154 BUG_ON(start_pfn > last_pfn);
1155
1156 /* we don't need lock here; nobody else touches the iova range */
1157 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1158 domain->pgd, 0, start_pfn, last_pfn, NULL);
1159
1160 /* free pgd */
1161 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1162 struct page *pgd_page = virt_to_page(domain->pgd);
1163 pgd_page->freelist = freelist;
1164 freelist = pgd_page;
1165
1166 domain->pgd = NULL;
1167 }
1168
1169 return freelist;
1170}
1171
b690420a 1172static void dma_free_pagelist(struct page *freelist)
ea8ea460
DW
1173{
1174 struct page *pg;
1175
1176 while ((pg = freelist)) {
1177 freelist = pg->freelist;
1178 free_pgtable_page(page_address(pg));
1179 }
1180}
1181
13cf0174
JR
1182static void iova_entry_free(unsigned long data)
1183{
1184 struct page *freelist = (struct page *)data;
1185
1186 dma_free_pagelist(freelist);
1187}
1188
ba395927
KA
1189/* iommu handling */
1190static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1191{
1192 struct root_entry *root;
1193 unsigned long flags;
1194
4c923d47 1195 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
ffebeb46 1196 if (!root) {
9f10e5bf 1197 pr_err("Allocating root entry for %s failed\n",
ffebeb46 1198 iommu->name);
ba395927 1199 return -ENOMEM;
ffebeb46 1200 }
ba395927 1201
5b6985ce 1202 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
1203
1204 spin_lock_irqsave(&iommu->lock, flags);
1205 iommu->root_entry = root;
1206 spin_unlock_irqrestore(&iommu->lock, flags);
1207
1208 return 0;
1209}
1210
ba395927
KA
1211static void iommu_set_root_entry(struct intel_iommu *iommu)
1212{
03ecc32c 1213 u64 addr;
c416daa9 1214 u32 sts;
ba395927
KA
1215 unsigned long flag;
1216
03ecc32c 1217 addr = virt_to_phys(iommu->root_entry);
7373a8cc
LB
1218 if (sm_supported(iommu))
1219 addr |= DMA_RTADDR_SMT;
ba395927 1220
1f5b3c3f 1221 raw_spin_lock_irqsave(&iommu->register_lock, flag);
03ecc32c 1222 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
ba395927 1223
c416daa9 1224 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1225
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1228 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927 1229
1f5b3c3f 1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1231}
1232
6f7db75e 1233void iommu_flush_write_buffer(struct intel_iommu *iommu)
ba395927
KA
1234{
1235 u32 val;
1236 unsigned long flag;
1237
9af88143 1238 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 1239 return;
ba395927 1240
1f5b3c3f 1241 raw_spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 1242 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1243
1244 /* Make sure hardware complete it */
1245 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1246 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927 1247
1f5b3c3f 1248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1249}
1250
1251/* return value determine if we need a write buffer flush */
4c25a2c1
DW
1252static void __iommu_flush_context(struct intel_iommu *iommu,
1253 u16 did, u16 source_id, u8 function_mask,
1254 u64 type)
ba395927
KA
1255{
1256 u64 val = 0;
1257 unsigned long flag;
1258
ba395927
KA
1259 switch (type) {
1260 case DMA_CCMD_GLOBAL_INVL:
1261 val = DMA_CCMD_GLOBAL_INVL;
1262 break;
1263 case DMA_CCMD_DOMAIN_INVL:
1264 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1265 break;
1266 case DMA_CCMD_DEVICE_INVL:
1267 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1268 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1269 break;
1270 default:
1271 BUG();
1272 }
1273 val |= DMA_CCMD_ICC;
1274
1f5b3c3f 1275 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1276 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1277
1278 /* Make sure hardware complete it */
1279 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1280 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1281
1f5b3c3f 1282 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1283}
1284
ba395927 1285/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
1286static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1287 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
1288{
1289 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1290 u64 val = 0, val_iva = 0;
1291 unsigned long flag;
1292
ba395927
KA
1293 switch (type) {
1294 case DMA_TLB_GLOBAL_FLUSH:
1295 /* global flush doesn't need set IVA_REG */
1296 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1297 break;
1298 case DMA_TLB_DSI_FLUSH:
1299 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1300 break;
1301 case DMA_TLB_PSI_FLUSH:
1302 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
ea8ea460 1303 /* IH bit is passed in as part of address */
ba395927
KA
1304 val_iva = size_order | addr;
1305 break;
1306 default:
1307 BUG();
1308 }
1309 /* Note: set drain read/write */
1310#if 0
1311 /*
1312 * This is probably to be super secure.. Looks like we can
1313 * ignore it without any impact.
1314 */
1315 if (cap_read_drain(iommu->cap))
1316 val |= DMA_TLB_READ_DRAIN;
1317#endif
1318 if (cap_write_drain(iommu->cap))
1319 val |= DMA_TLB_WRITE_DRAIN;
1320
1f5b3c3f 1321 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1322 /* Note: Only uses first TLB reg currently */
1323 if (val_iva)
1324 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1325 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1326
1327 /* Make sure hardware complete it */
1328 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1329 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1330
1f5b3c3f 1331 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1332
1333 /* check IOTLB invalidation granularity */
1334 if (DMA_TLB_IAIG(val) == 0)
9f10e5bf 1335 pr_err("Flush IOTLB failed\n");
ba395927 1336 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
9f10e5bf 1337 pr_debug("TLB flush request %Lx, actual %Lx\n",
5b6985ce
FY
1338 (unsigned long long)DMA_TLB_IIRG(type),
1339 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
1340}
1341
64ae892b
DW
1342static struct device_domain_info *
1343iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1344 u8 bus, u8 devfn)
93a23a72 1345{
93a23a72 1346 struct device_domain_info *info;
93a23a72 1347
55d94043
JR
1348 assert_spin_locked(&device_domain_lock);
1349
93a23a72
YZ
1350 if (!iommu->qi)
1351 return NULL;
1352
93a23a72 1353 list_for_each_entry(info, &domain->devices, link)
c3b497c6
JL
1354 if (info->iommu == iommu && info->bus == bus &&
1355 info->devfn == devfn) {
b16d0cb9
DW
1356 if (info->ats_supported && info->dev)
1357 return info;
93a23a72
YZ
1358 break;
1359 }
93a23a72 1360
b16d0cb9 1361 return NULL;
93a23a72
YZ
1362}
1363
0824c592
OP
1364static void domain_update_iotlb(struct dmar_domain *domain)
1365{
1366 struct device_domain_info *info;
1367 bool has_iotlb_device = false;
1368
1369 assert_spin_locked(&device_domain_lock);
1370
1371 list_for_each_entry(info, &domain->devices, link) {
1372 struct pci_dev *pdev;
1373
1374 if (!info->dev || !dev_is_pci(info->dev))
1375 continue;
1376
1377 pdev = to_pci_dev(info->dev);
1378 if (pdev->ats_enabled) {
1379 has_iotlb_device = true;
1380 break;
1381 }
1382 }
1383
1384 domain->has_iotlb_device = has_iotlb_device;
1385}
1386
93a23a72 1387static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1388{
fb0cc3aa
BH
1389 struct pci_dev *pdev;
1390
0824c592
OP
1391 assert_spin_locked(&device_domain_lock);
1392
0bcb3e28 1393 if (!info || !dev_is_pci(info->dev))
93a23a72
YZ
1394 return;
1395
fb0cc3aa 1396 pdev = to_pci_dev(info->dev);
1c48db44
JP
1397 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1398 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1399 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1400 * reserved, which should be set to 0.
1401 */
1402 if (!ecap_dit(info->iommu->ecap))
1403 info->pfsid = 0;
1404 else {
1405 struct pci_dev *pf_pdev;
1406
1407 /* pdev will be returned if device is not a vf */
1408 pf_pdev = pci_physfn(pdev);
cc49baa9 1409 info->pfsid = pci_dev_id(pf_pdev);
1c48db44 1410 }
fb0cc3aa 1411
b16d0cb9
DW
1412#ifdef CONFIG_INTEL_IOMMU_SVM
1413 /* The PCIe spec, in its wisdom, declares that the behaviour of
1414 the device if you enable PASID support after ATS support is
1415 undefined. So always enable PASID support on devices which
1416 have it, even if we can't yet know if we're ever going to
1417 use it. */
1418 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1419 info->pasid_enabled = 1;
1420
1b84778a
KS
1421 if (info->pri_supported &&
1422 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) &&
1423 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
b16d0cb9
DW
1424 info->pri_enabled = 1;
1425#endif
fb58fdcd 1426 if (!pdev->untrusted && info->ats_supported &&
61363c14 1427 pci_ats_page_aligned(pdev) &&
fb58fdcd 1428 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
b16d0cb9 1429 info->ats_enabled = 1;
0824c592 1430 domain_update_iotlb(info->domain);
b16d0cb9
DW
1431 info->ats_qdep = pci_ats_queue_depth(pdev);
1432 }
93a23a72
YZ
1433}
1434
1435static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1436{
b16d0cb9
DW
1437 struct pci_dev *pdev;
1438
0824c592
OP
1439 assert_spin_locked(&device_domain_lock);
1440
da972fb1 1441 if (!dev_is_pci(info->dev))
93a23a72
YZ
1442 return;
1443
b16d0cb9
DW
1444 pdev = to_pci_dev(info->dev);
1445
1446 if (info->ats_enabled) {
1447 pci_disable_ats(pdev);
1448 info->ats_enabled = 0;
0824c592 1449 domain_update_iotlb(info->domain);
b16d0cb9
DW
1450 }
1451#ifdef CONFIG_INTEL_IOMMU_SVM
1452 if (info->pri_enabled) {
1453 pci_disable_pri(pdev);
1454 info->pri_enabled = 0;
1455 }
1456 if (info->pasid_enabled) {
1457 pci_disable_pasid(pdev);
1458 info->pasid_enabled = 0;
1459 }
1460#endif
93a23a72
YZ
1461}
1462
1463static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1464 u64 addr, unsigned mask)
1465{
1466 u16 sid, qdep;
1467 unsigned long flags;
1468 struct device_domain_info *info;
1469
0824c592
OP
1470 if (!domain->has_iotlb_device)
1471 return;
1472
93a23a72
YZ
1473 spin_lock_irqsave(&device_domain_lock, flags);
1474 list_for_each_entry(info, &domain->devices, link) {
b16d0cb9 1475 if (!info->ats_enabled)
93a23a72
YZ
1476 continue;
1477
1478 sid = info->bus << 8 | info->devfn;
b16d0cb9 1479 qdep = info->ats_qdep;
1c48db44
JP
1480 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1481 qdep, addr, mask);
93a23a72
YZ
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484}
1485
a1ddcbe9
JR
1486static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
ba395927 1490{
9dd2fe89 1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
a1ddcbe9 1493 u16 did = domain->iommu_did[iommu->seq_id];
ba395927 1494
ba395927
KA
1495 BUG_ON(pages == 0);
1496
ea8ea460
DW
1497 if (ih)
1498 ih = 1 << 6;
ba395927 1499 /*
9dd2fe89
YZ
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
ba395927
KA
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
9dd2fe89
YZ
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1507 DMA_TLB_DSI_FLUSH);
9dd2fe89 1508 else
ea8ea460 1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
9dd2fe89 1510 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1511
1512 /*
82653633
NA
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
bf92df30 1515 */
82653633 1516 if (!cap_caching_mode(iommu->cap) || !map)
9d2e6505 1517 iommu_flush_dev_iotlb(domain, addr, mask);
ba395927
KA
1518}
1519
eed91a0b
PX
1520/* Notification for newly created mappings */
1521static inline void __mapping_notify_one(struct intel_iommu *iommu,
1522 struct dmar_domain *domain,
1523 unsigned long pfn, unsigned int pages)
1524{
1525 /* It's a non-present to present mapping. Only flush if caching mode */
1526 if (cap_caching_mode(iommu->cap))
1527 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1528 else
1529 iommu_flush_write_buffer(iommu);
1530}
1531
13cf0174
JR
1532static void iommu_flush_iova(struct iova_domain *iovad)
1533{
1534 struct dmar_domain *domain;
1535 int idx;
1536
1537 domain = container_of(iovad, struct dmar_domain, iovad);
1538
1539 for_each_domain_iommu(idx, domain) {
1540 struct intel_iommu *iommu = g_iommus[idx];
1541 u16 did = domain->iommu_did[iommu->seq_id];
1542
1543 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1544
1545 if (!cap_caching_mode(iommu->cap))
1546 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1547 0, MAX_AGAW_PFN_WIDTH);
1548 }
1549}
1550
f8bab735 1551static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1552{
1553 u32 pmen;
1554 unsigned long flags;
1555
5bb71fc7
LB
1556 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1557 return;
1558
1f5b3c3f 1559 raw_spin_lock_irqsave(&iommu->register_lock, flags);
f8bab735 1560 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1561 pmen &= ~DMA_PMEN_EPM;
1562 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1563
1564 /* wait for the protected region status bit to clear */
1565 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1566 readl, !(pmen & DMA_PMEN_PRS), pmen);
1567
1f5b3c3f 1568 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
f8bab735 1569}
1570
2a41ccee 1571static void iommu_enable_translation(struct intel_iommu *iommu)
ba395927
KA
1572{
1573 u32 sts;
1574 unsigned long flags;
1575
1f5b3c3f 1576 raw_spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1577 iommu->gcmd |= DMA_GCMD_TE;
1578 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1579
1580 /* Make sure hardware complete it */
1581 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1582 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1583
1f5b3c3f 1584 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
ba395927
KA
1585}
1586
2a41ccee 1587static void iommu_disable_translation(struct intel_iommu *iommu)
ba395927
KA
1588{
1589 u32 sts;
1590 unsigned long flag;
1591
1f5b3c3f 1592 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1593 iommu->gcmd &= ~DMA_GCMD_TE;
1594 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1595
1596 /* Make sure hardware complete it */
1597 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1598 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927 1599
1f5b3c3f 1600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1601}
1602
1603static int iommu_init_domains(struct intel_iommu *iommu)
1604{
8bf47816
JR
1605 u32 ndomains, nlongs;
1606 size_t size;
ba395927
KA
1607
1608 ndomains = cap_ndoms(iommu->cap);
8bf47816 1609 pr_debug("%s: Number of Domains supported <%d>\n",
9f10e5bf 1610 iommu->name, ndomains);
ba395927
KA
1611 nlongs = BITS_TO_LONGS(ndomains);
1612
94a91b50
DD
1613 spin_lock_init(&iommu->lock);
1614
ba395927
KA
1615 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1616 if (!iommu->domain_ids) {
9f10e5bf
JR
1617 pr_err("%s: Allocating domain id array failed\n",
1618 iommu->name);
ba395927
KA
1619 return -ENOMEM;
1620 }
8bf47816 1621
86f004c7 1622 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
8bf47816
JR
1623 iommu->domains = kzalloc(size, GFP_KERNEL);
1624
1625 if (iommu->domains) {
1626 size = 256 * sizeof(struct dmar_domain *);
1627 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1628 }
1629
1630 if (!iommu->domains || !iommu->domains[0]) {
9f10e5bf
JR
1631 pr_err("%s: Allocating domain array failed\n",
1632 iommu->name);
852bdb04 1633 kfree(iommu->domain_ids);
8bf47816 1634 kfree(iommu->domains);
852bdb04 1635 iommu->domain_ids = NULL;
8bf47816 1636 iommu->domains = NULL;
ba395927
KA
1637 return -ENOMEM;
1638 }
1639
1640 /*
c0e8a6c8
JR
1641 * If Caching mode is set, then invalid translations are tagged
1642 * with domain-id 0, hence we need to pre-allocate it. We also
1643 * use domain-id 0 as a marker for non-allocated domain-id, so
1644 * make sure it is not used for a real domain.
ba395927 1645 */
c0e8a6c8
JR
1646 set_bit(0, iommu->domain_ids);
1647
3b33d4ab
LB
1648 /*
1649 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1650 * entry for first-level or pass-through translation modes should
1651 * be programmed with a domain id different from those used for
1652 * second-level or nested translation. We reserve a domain id for
1653 * this purpose.
1654 */
1655 if (sm_supported(iommu))
1656 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1657
ba395927
KA
1658 return 0;
1659}
ba395927 1660
ffebeb46 1661static void disable_dmar_iommu(struct intel_iommu *iommu)
ba395927 1662{
29a27719 1663 struct device_domain_info *info, *tmp;
55d94043 1664 unsigned long flags;
ba395927 1665
29a27719
JR
1666 if (!iommu->domains || !iommu->domain_ids)
1667 return;
a4eaa86c 1668
55d94043 1669 spin_lock_irqsave(&device_domain_lock, flags);
29a27719 1670 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
29a27719
JR
1671 if (info->iommu != iommu)
1672 continue;
1673
1674 if (!info->dev || !info->domain)
1675 continue;
1676
bea64033 1677 __dmar_remove_one_dev_info(info);
ba395927 1678 }
55d94043 1679 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927
KA
1680
1681 if (iommu->gcmd & DMA_GCMD_TE)
1682 iommu_disable_translation(iommu);
ffebeb46 1683}
ba395927 1684
ffebeb46
JL
1685static void free_dmar_iommu(struct intel_iommu *iommu)
1686{
1687 if ((iommu->domains) && (iommu->domain_ids)) {
86f004c7 1688 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
8bf47816
JR
1689 int i;
1690
1691 for (i = 0; i < elems; i++)
1692 kfree(iommu->domains[i]);
ffebeb46
JL
1693 kfree(iommu->domains);
1694 kfree(iommu->domain_ids);
1695 iommu->domains = NULL;
1696 iommu->domain_ids = NULL;
1697 }
ba395927 1698
d9630fe9
WH
1699 g_iommus[iommu->seq_id] = NULL;
1700
ba395927
KA
1701 /* free context mapping */
1702 free_context_table(iommu);
8a94ade4
DW
1703
1704#ifdef CONFIG_INTEL_IOMMU_SVM
765b6a98 1705 if (pasid_supported(iommu)) {
a222a7f0
DW
1706 if (ecap_prs(iommu->ecap))
1707 intel_svm_finish_prq(iommu);
a222a7f0 1708 }
8a94ade4 1709#endif
ba395927
KA
1710}
1711
ab8dfe25 1712static struct dmar_domain *alloc_domain(int flags)
ba395927 1713{
ba395927 1714 struct dmar_domain *domain;
ba395927
KA
1715
1716 domain = alloc_domain_mem();
1717 if (!domain)
1718 return NULL;
1719
ab8dfe25 1720 memset(domain, 0, sizeof(*domain));
98fa15f3 1721 domain->nid = NUMA_NO_NODE;
ab8dfe25 1722 domain->flags = flags;
0824c592 1723 domain->has_iotlb_device = false;
92d03cc8 1724 INIT_LIST_HEAD(&domain->devices);
2c2e2c38
FY
1725
1726 return domain;
1727}
1728
d160aca5
JR
1729/* Must be called with iommu->lock */
1730static int domain_attach_iommu(struct dmar_domain *domain,
fb170fb4
JL
1731 struct intel_iommu *iommu)
1732{
44bde614 1733 unsigned long ndomains;
55d94043 1734 int num;
44bde614 1735
55d94043 1736 assert_spin_locked(&device_domain_lock);
d160aca5 1737 assert_spin_locked(&iommu->lock);
ba395927 1738
29a27719
JR
1739 domain->iommu_refcnt[iommu->seq_id] += 1;
1740 domain->iommu_count += 1;
1741 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
fb170fb4 1742 ndomains = cap_ndoms(iommu->cap);
d160aca5
JR
1743 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1744
1745 if (num >= ndomains) {
1746 pr_err("%s: No free domain ids\n", iommu->name);
1747 domain->iommu_refcnt[iommu->seq_id] -= 1;
1748 domain->iommu_count -= 1;
55d94043 1749 return -ENOSPC;
2c2e2c38 1750 }
ba395927 1751
d160aca5
JR
1752 set_bit(num, iommu->domain_ids);
1753 set_iommu_domain(iommu, num, domain);
1754
1755 domain->iommu_did[iommu->seq_id] = num;
1756 domain->nid = iommu->node;
fb170fb4 1757
fb170fb4
JL
1758 domain_update_iommu_cap(domain);
1759 }
d160aca5 1760
55d94043 1761 return 0;
fb170fb4
JL
1762}
1763
1764static int domain_detach_iommu(struct dmar_domain *domain,
1765 struct intel_iommu *iommu)
1766{
e083ea5b 1767 int num, count;
d160aca5 1768
55d94043 1769 assert_spin_locked(&device_domain_lock);
d160aca5 1770 assert_spin_locked(&iommu->lock);
fb170fb4 1771
29a27719
JR
1772 domain->iommu_refcnt[iommu->seq_id] -= 1;
1773 count = --domain->iommu_count;
1774 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
d160aca5
JR
1775 num = domain->iommu_did[iommu->seq_id];
1776 clear_bit(num, iommu->domain_ids);
1777 set_iommu_domain(iommu, num, NULL);
fb170fb4 1778
fb170fb4 1779 domain_update_iommu_cap(domain);
c0e8a6c8 1780 domain->iommu_did[iommu->seq_id] = 0;
fb170fb4 1781 }
fb170fb4
JL
1782
1783 return count;
1784}
1785
ba395927 1786static struct iova_domain reserved_iova_list;
8a443df4 1787static struct lock_class_key reserved_rbtree_key;
ba395927 1788
51a63e67 1789static int dmar_init_reserved_ranges(void)
ba395927
KA
1790{
1791 struct pci_dev *pdev = NULL;
1792 struct iova *iova;
1793 int i;
ba395927 1794
aa3ac946 1795 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
ba395927 1796
8a443df4
MG
1797 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1798 &reserved_rbtree_key);
1799
ba395927
KA
1800 /* IOAPIC ranges shouldn't be accessed by DMA */
1801 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1802 IOVA_PFN(IOAPIC_RANGE_END));
51a63e67 1803 if (!iova) {
9f10e5bf 1804 pr_err("Reserve IOAPIC range failed\n");
51a63e67
JC
1805 return -ENODEV;
1806 }
ba395927
KA
1807
1808 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1809 for_each_pci_dev(pdev) {
1810 struct resource *r;
1811
1812 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1813 r = &pdev->resource[i];
1814 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1815 continue;
1a4a4551
DW
1816 iova = reserve_iova(&reserved_iova_list,
1817 IOVA_PFN(r->start),
1818 IOVA_PFN(r->end));
51a63e67 1819 if (!iova) {
932a6523 1820 pci_err(pdev, "Reserve iova for %pR failed\n", r);
51a63e67
JC
1821 return -ENODEV;
1822 }
ba395927
KA
1823 }
1824 }
51a63e67 1825 return 0;
ba395927
KA
1826}
1827
1828static void domain_reserve_special_ranges(struct dmar_domain *domain)
1829{
1830 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1831}
1832
1833static inline int guestwidth_to_adjustwidth(int gaw)
1834{
1835 int agaw;
1836 int r = (gaw - 12) % 9;
1837
1838 if (r == 0)
1839 agaw = gaw;
1840 else
1841 agaw = gaw + 9 - r;
1842 if (agaw > 64)
1843 agaw = 64;
1844 return agaw;
1845}
1846
301e7ee1
JR
1847static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1848 int guest_width)
1849{
1850 int adjust_width, agaw;
1851 unsigned long sagaw;
1852 int err;
1853
1854 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1855
1856 err = init_iova_flush_queue(&domain->iovad,
1857 iommu_flush_iova, iova_entry_free);
1858 if (err)
1859 return err;
1860
1861 domain_reserve_special_ranges(domain);
1862
1863 /* calculate AGAW */
1864 if (guest_width > cap_mgaw(iommu->cap))
1865 guest_width = cap_mgaw(iommu->cap);
1866 domain->gaw = guest_width;
1867 adjust_width = guestwidth_to_adjustwidth(guest_width);
1868 agaw = width_to_agaw(adjust_width);
1869 sagaw = cap_sagaw(iommu->cap);
1870 if (!test_bit(agaw, &sagaw)) {
1871 /* hardware doesn't support it, choose a bigger one */
1872 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1873 agaw = find_next_bit(&sagaw, 5, agaw);
1874 if (agaw >= 5)
1875 return -ENODEV;
1876 }
1877 domain->agaw = agaw;
1878
1879 if (ecap_coherent(iommu->ecap))
1880 domain->iommu_coherency = 1;
1881 else
1882 domain->iommu_coherency = 0;
1883
1884 if (ecap_sc_support(iommu->ecap))
1885 domain->iommu_snooping = 1;
1886 else
1887 domain->iommu_snooping = 0;
1888
1889 if (intel_iommu_superpage)
1890 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1891 else
1892 domain->iommu_superpage = 0;
1893
1894 domain->nid = iommu->node;
1895
1896 /* always allocate the top pgd */
1897 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1898 if (!domain->pgd)
1899 return -ENOMEM;
1900 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1901 return 0;
1902}
1903
ba395927
KA
1904static void domain_exit(struct dmar_domain *domain)
1905{
ba395927 1906
d160aca5 1907 /* Remove associated devices and clear attached or cached domains */
ba395927 1908 domain_remove_dev_info(domain);
92d03cc8 1909
ba395927
KA
1910 /* destroy iovas */
1911 put_iova_domain(&domain->iovad);
ba395927 1912
3ee9eca7
DS
1913 if (domain->pgd) {
1914 struct page *freelist;
ba395927 1915
3ee9eca7
DS
1916 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1917 dma_free_pagelist(freelist);
1918 }
ea8ea460 1919
ba395927
KA
1920 free_domain_mem(domain);
1921}
1922
7373a8cc
LB
1923/*
1924 * Get the PASID directory size for scalable mode context entry.
1925 * Value of X in the PDTS field of a scalable mode context entry
1926 * indicates PASID directory with 2^(X + 7) entries.
1927 */
1928static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1929{
1930 int pds, max_pde;
1931
1932 max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1933 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1934 if (pds < 7)
1935 return 0;
1936
1937 return pds - 7;
1938}
1939
1940/*
1941 * Set the RID_PASID field of a scalable mode context entry. The
1942 * IOMMU hardware will use the PASID value set in this field for
1943 * DMA translations of DMA requests without PASID.
1944 */
1945static inline void
1946context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1947{
1948 context->hi |= pasid & ((1 << 20) - 1);
1949 context->hi |= (1 << 20);
1950}
1951
1952/*
1953 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1954 * entry.
1955 */
1956static inline void context_set_sm_dte(struct context_entry *context)
1957{
1958 context->lo |= (1 << 2);
1959}
1960
1961/*
1962 * Set the PRE(Page Request Enable) field of a scalable mode context
1963 * entry.
1964 */
1965static inline void context_set_sm_pre(struct context_entry *context)
1966{
1967 context->lo |= (1 << 4);
1968}
1969
1970/* Convert value to context PASID directory size field coding. */
1971#define context_pdts(pds) (((pds) & 0x7) << 9)
1972
64ae892b
DW
1973static int domain_context_mapping_one(struct dmar_domain *domain,
1974 struct intel_iommu *iommu,
ca6e322d 1975 struct pasid_table *table,
28ccce0d 1976 u8 bus, u8 devfn)
ba395927 1977{
c6c2cebd 1978 u16 did = domain->iommu_did[iommu->seq_id];
28ccce0d
JR
1979 int translation = CONTEXT_TT_MULTI_LEVEL;
1980 struct device_domain_info *info = NULL;
ba395927 1981 struct context_entry *context;
ba395927 1982 unsigned long flags;
7373a8cc 1983 int ret;
28ccce0d 1984
c6c2cebd
JR
1985 WARN_ON(did == 0);
1986
28ccce0d
JR
1987 if (hw_pass_through && domain_type_is_si(domain))
1988 translation = CONTEXT_TT_PASS_THROUGH;
ba395927
KA
1989
1990 pr_debug("Set context mapping for %02x:%02x.%d\n",
1991 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1992
ba395927 1993 BUG_ON(!domain->pgd);
5331fe6f 1994
55d94043
JR
1995 spin_lock_irqsave(&device_domain_lock, flags);
1996 spin_lock(&iommu->lock);
1997
1998 ret = -ENOMEM;
03ecc32c 1999 context = iommu_context_addr(iommu, bus, devfn, 1);
ba395927 2000 if (!context)
55d94043 2001 goto out_unlock;
ba395927 2002
55d94043
JR
2003 ret = 0;
2004 if (context_present(context))
2005 goto out_unlock;
cf484d0e 2006
aec0e861
XP
2007 /*
2008 * For kdump cases, old valid entries may be cached due to the
2009 * in-flight DMA and copied pgtable, but there is no unmapping
2010 * behaviour for them, thus we need an explicit cache flush for
2011 * the newly-mapped device. For kdump, at this point, the device
2012 * is supposed to finish reset at its driver probe stage, so no
2013 * in-flight DMA will exist, and we don't need to worry anymore
2014 * hereafter.
2015 */
2016 if (context_copied(context)) {
2017 u16 did_old = context_domain_id(context);
2018
b117e038 2019 if (did_old < cap_ndoms(iommu->cap)) {
aec0e861
XP
2020 iommu->flush.flush_context(iommu, did_old,
2021 (((u16)bus) << 8) | devfn,
2022 DMA_CCMD_MASK_NOBIT,
2023 DMA_CCMD_DEVICE_INVL);
f73a7eee
KA
2024 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2025 DMA_TLB_DSI_FLUSH);
2026 }
aec0e861
XP
2027 }
2028
de24e553 2029 context_clear_entry(context);
ea6606b0 2030
7373a8cc
LB
2031 if (sm_supported(iommu)) {
2032 unsigned long pds;
4ed0d3e6 2033
7373a8cc
LB
2034 WARN_ON(!table);
2035
2036 /* Setup the PASID DIR pointer: */
2037 pds = context_get_sm_pds(table);
2038 context->lo = (u64)virt_to_phys(table->table) |
2039 context_pdts(pds);
2040
2041 /* Setup the RID_PASID field: */
2042 context_set_sm_rid2pasid(context, PASID_RID2PASID);
de24e553 2043
de24e553 2044 /*
7373a8cc
LB
2045 * Setup the Device-TLB enable bit and Page request
2046 * Enable bit:
de24e553 2047 */
7373a8cc
LB
2048 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2049 if (info && info->ats_supported)
2050 context_set_sm_dte(context);
2051 if (info && info->pri_supported)
2052 context_set_sm_pre(context);
2053 } else {
2054 struct dma_pte *pgd = domain->pgd;
2055 int agaw;
2056
2057 context_set_domain_id(context, did);
7373a8cc
LB
2058
2059 if (translation != CONTEXT_TT_PASS_THROUGH) {
2060 /*
2061 * Skip top levels of page tables for iommu which has
2062 * less agaw than default. Unnecessary for PT mode.
2063 */
2064 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2065 ret = -ENOMEM;
2066 pgd = phys_to_virt(dma_pte_addr(pgd));
2067 if (!dma_pte_present(pgd))
2068 goto out_unlock;
2069 }
2070
2071 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2072 if (info && info->ats_supported)
2073 translation = CONTEXT_TT_DEV_IOTLB;
2074 else
2075 translation = CONTEXT_TT_MULTI_LEVEL;
2076
2077 context_set_address_root(context, virt_to_phys(pgd));
2078 context_set_address_width(context, agaw);
2079 } else {
2080 /*
2081 * In pass through mode, AW must be programmed to
2082 * indicate the largest AGAW value supported by
2083 * hardware. And ASR is ignored by hardware.
2084 */
2085 context_set_address_width(context, iommu->msagaw);
2086 }
41b80db2
LB
2087
2088 context_set_translation_type(context, translation);
93a23a72 2089 }
4ed0d3e6 2090
c07e7d21
MM
2091 context_set_fault_enable(context);
2092 context_set_present(context);
5331fe6f 2093 domain_flush_cache(domain, context, sizeof(*context));
ba395927 2094
4c25a2c1
DW
2095 /*
2096 * It's a non-present to present mapping. If hardware doesn't cache
2097 * non-present entry we only need to flush the write-buffer. If the
2098 * _does_ cache non-present entries, then it does so in the special
2099 * domain #0, which we have to flush:
2100 */
2101 if (cap_caching_mode(iommu->cap)) {
2102 iommu->flush.flush_context(iommu, 0,
2103 (((u16)bus) << 8) | devfn,
2104 DMA_CCMD_MASK_NOBIT,
2105 DMA_CCMD_DEVICE_INVL);
c6c2cebd 2106 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 2107 } else {
ba395927 2108 iommu_flush_write_buffer(iommu);
4c25a2c1 2109 }
93a23a72 2110 iommu_enable_dev_iotlb(info);
c7151a8d 2111
55d94043
JR
2112 ret = 0;
2113
2114out_unlock:
2115 spin_unlock(&iommu->lock);
2116 spin_unlock_irqrestore(&device_domain_lock, flags);
fb170fb4 2117
5c365d18 2118 return ret;
ba395927
KA
2119}
2120
0ce4a85f
LB
2121struct domain_context_mapping_data {
2122 struct dmar_domain *domain;
2123 struct intel_iommu *iommu;
2124 struct pasid_table *table;
2125};
2126
2127static int domain_context_mapping_cb(struct pci_dev *pdev,
2128 u16 alias, void *opaque)
2129{
2130 struct domain_context_mapping_data *data = opaque;
2131
2132 return domain_context_mapping_one(data->domain, data->iommu,
2133 data->table, PCI_BUS_NUM(alias),
2134 alias & 0xff);
2135}
2136
ba395927 2137static int
28ccce0d 2138domain_context_mapping(struct dmar_domain *domain, struct device *dev)
ba395927 2139{
0ce4a85f 2140 struct domain_context_mapping_data data;
ca6e322d 2141 struct pasid_table *table;
64ae892b 2142 struct intel_iommu *iommu;
156baca8 2143 u8 bus, devfn;
64ae892b 2144
e1f167f3 2145 iommu = device_to_iommu(dev, &bus, &devfn);
64ae892b
DW
2146 if (!iommu)
2147 return -ENODEV;
ba395927 2148
ca6e322d 2149 table = intel_pasid_get_table(dev);
0ce4a85f
LB
2150
2151 if (!dev_is_pci(dev))
2152 return domain_context_mapping_one(domain, iommu, table,
2153 bus, devfn);
2154
2155 data.domain = domain;
2156 data.iommu = iommu;
2157 data.table = table;
2158
2159 return pci_for_each_dma_alias(to_pci_dev(dev),
2160 &domain_context_mapping_cb, &data);
579305f7
AW
2161}
2162
2163static int domain_context_mapped_cb(struct pci_dev *pdev,
2164 u16 alias, void *opaque)
2165{
2166 struct intel_iommu *iommu = opaque;
2167
2168 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
ba395927
KA
2169}
2170
e1f167f3 2171static int domain_context_mapped(struct device *dev)
ba395927 2172{
5331fe6f 2173 struct intel_iommu *iommu;
156baca8 2174 u8 bus, devfn;
5331fe6f 2175
e1f167f3 2176 iommu = device_to_iommu(dev, &bus, &devfn);
5331fe6f
WH
2177 if (!iommu)
2178 return -ENODEV;
ba395927 2179
579305f7
AW
2180 if (!dev_is_pci(dev))
2181 return device_context_mapped(iommu, bus, devfn);
e1f167f3 2182
579305f7
AW
2183 return !pci_for_each_dma_alias(to_pci_dev(dev),
2184 domain_context_mapped_cb, iommu);
ba395927
KA
2185}
2186
f532959b
FY
2187/* Returns a number of VTD pages, but aligned to MM page size */
2188static inline unsigned long aligned_nrpages(unsigned long host_addr,
2189 size_t size)
2190{
2191 host_addr &= ~PAGE_MASK;
2192 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2193}
2194
6dd9a7c7
YS
2195/* Return largest possible superpage level for a given mapping */
2196static inline int hardware_largepage_caps(struct dmar_domain *domain,
2197 unsigned long iov_pfn,
2198 unsigned long phy_pfn,
2199 unsigned long pages)
2200{
2201 int support, level = 1;
2202 unsigned long pfnmerge;
2203
2204 support = domain->iommu_superpage;
2205
2206 /* To use a large page, the virtual *and* physical addresses
2207 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2208 of them will mean we have to use smaller pages. So just
2209 merge them and check both at once. */
2210 pfnmerge = iov_pfn | phy_pfn;
2211
2212 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2213 pages >>= VTD_STRIDE_SHIFT;
2214 if (!pages)
2215 break;
2216 pfnmerge >>= VTD_STRIDE_SHIFT;
2217 level++;
2218 support--;
2219 }
2220 return level;
2221}
2222
9051aa02
DW
2223static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2224 struct scatterlist *sg, unsigned long phys_pfn,
2225 unsigned long nr_pages, int prot)
e1605495
DW
2226{
2227 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 2228 phys_addr_t uninitialized_var(pteval);
cc4f14aa 2229 unsigned long sg_res = 0;
6dd9a7c7
YS
2230 unsigned int largepage_lvl = 0;
2231 unsigned long lvl_pages = 0;
e1605495 2232
162d1b10 2233 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
e1605495
DW
2234
2235 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2236 return -EINVAL;
2237
2238 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2239
cc4f14aa
JL
2240 if (!sg) {
2241 sg_res = nr_pages;
9051aa02
DW
2242 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2243 }
2244
6dd9a7c7 2245 while (nr_pages > 0) {
c85994e4
DW
2246 uint64_t tmp;
2247
e1605495 2248 if (!sg_res) {
29a90b70
RM
2249 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2250
f532959b 2251 sg_res = aligned_nrpages(sg->offset, sg->length);
29a90b70 2252 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
e1605495 2253 sg->dma_length = sg->length;
29a90b70 2254 pteval = (sg_phys(sg) - pgoff) | prot;
6dd9a7c7 2255 phys_pfn = pteval >> VTD_PAGE_SHIFT;
e1605495 2256 }
6dd9a7c7 2257
e1605495 2258 if (!pte) {
6dd9a7c7
YS
2259 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2260
5cf0a76f 2261 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
e1605495
DW
2262 if (!pte)
2263 return -ENOMEM;
6dd9a7c7 2264 /* It is large page*/
6491d4d0 2265 if (largepage_lvl > 1) {
ba2374fd
CZ
2266 unsigned long nr_superpages, end_pfn;
2267
6dd9a7c7 2268 pteval |= DMA_PTE_LARGE_PAGE;
d41a4adb 2269 lvl_pages = lvl_to_nr_pages(largepage_lvl);
ba2374fd
CZ
2270
2271 nr_superpages = sg_res / lvl_pages;
2272 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2273
d41a4adb
JL
2274 /*
2275 * Ensure that old small page tables are
ba2374fd 2276 * removed to make room for superpage(s).
bc24c571
DD
2277 * We're adding new large pages, so make sure
2278 * we don't remove their parent tables.
d41a4adb 2279 */
bc24c571
DD
2280 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2281 largepage_lvl + 1);
6491d4d0 2282 } else {
6dd9a7c7 2283 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
6491d4d0 2284 }
6dd9a7c7 2285
e1605495
DW
2286 }
2287 /* We don't need lock here, nobody else
2288 * touches the iova range
2289 */
7766a3fb 2290 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 2291 if (tmp) {
1bf20f0d 2292 static int dumps = 5;
9f10e5bf
JR
2293 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
2295 if (dumps) {
2296 dumps--;
2297 debug_dma_dump_mappings(NULL);
2298 }
2299 WARN_ON(1);
2300 }
6dd9a7c7
YS
2301
2302 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2303
2304 BUG_ON(nr_pages < lvl_pages);
2305 BUG_ON(sg_res < lvl_pages);
2306
2307 nr_pages -= lvl_pages;
2308 iov_pfn += lvl_pages;
2309 phys_pfn += lvl_pages;
2310 pteval += lvl_pages * VTD_PAGE_SIZE;
2311 sg_res -= lvl_pages;
2312
2313 /* If the next PTE would be the first in a new page, then we
2314 need to flush the cache on the entries we've just written.
2315 And then we'll need to recalculate 'pte', so clear it and
2316 let it get set again in the if (!pte) block above.
2317
2318 If we're done (!nr_pages) we need to flush the cache too.
2319
2320 Also if we've been setting superpages, we may need to
2321 recalculate 'pte' and switch back to smaller pages for the
2322 end of the mapping, if the trailing size is not enough to
2323 use another superpage (i.e. sg_res < lvl_pages). */
e1605495 2324 pte++;
6dd9a7c7
YS
2325 if (!nr_pages || first_pte_in_page(pte) ||
2326 (largepage_lvl > 1 && sg_res < lvl_pages)) {
e1605495
DW
2327 domain_flush_cache(domain, first_pte,
2328 (void *)pte - (void *)first_pte);
2329 pte = NULL;
2330 }
6dd9a7c7
YS
2331
2332 if (!sg_res && nr_pages)
e1605495
DW
2333 sg = sg_next(sg);
2334 }
2335 return 0;
2336}
2337
87684fd9 2338static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
095303e0
LB
2339 struct scatterlist *sg, unsigned long phys_pfn,
2340 unsigned long nr_pages, int prot)
2341{
fa954e68 2342 int iommu_id, ret;
095303e0
LB
2343 struct intel_iommu *iommu;
2344
2345 /* Do the real mapping first */
2346 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2347 if (ret)
2348 return ret;
2349
fa954e68
LB
2350 for_each_domain_iommu(iommu_id, domain) {
2351 iommu = g_iommus[iommu_id];
095303e0
LB
2352 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2353 }
2354
2355 return 0;
87684fd9
PX
2356}
2357
9051aa02
DW
2358static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2359 struct scatterlist *sg, unsigned long nr_pages,
2360 int prot)
ba395927 2361{
87684fd9 2362 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
9051aa02 2363}
6f6a00e4 2364
9051aa02
DW
2365static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2366 unsigned long phys_pfn, unsigned long nr_pages,
2367 int prot)
2368{
87684fd9 2369 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
2370}
2371
2452d9db 2372static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 2373{
5082219b
FS
2374 unsigned long flags;
2375 struct context_entry *context;
2376 u16 did_old;
2377
c7151a8d
WH
2378 if (!iommu)
2379 return;
8c11e798 2380
5082219b
FS
2381 spin_lock_irqsave(&iommu->lock, flags);
2382 context = iommu_context_addr(iommu, bus, devfn, 0);
2383 if (!context) {
2384 spin_unlock_irqrestore(&iommu->lock, flags);
2385 return;
2386 }
2387 did_old = context_domain_id(context);
2388 context_clear_entry(context);
2389 __iommu_flush_cache(iommu, context, sizeof(*context));
2390 spin_unlock_irqrestore(&iommu->lock, flags);
2391 iommu->flush.flush_context(iommu,
2392 did_old,
2393 (((u16)bus) << 8) | devfn,
2394 DMA_CCMD_MASK_NOBIT,
2395 DMA_CCMD_DEVICE_INVL);
2396 iommu->flush.flush_iotlb(iommu,
2397 did_old,
2398 0,
2399 0,
2400 DMA_TLB_DSI_FLUSH);
ba395927
KA
2401}
2402
109b9b04
DW
2403static inline void unlink_domain_info(struct device_domain_info *info)
2404{
2405 assert_spin_locked(&device_domain_lock);
2406 list_del(&info->link);
2407 list_del(&info->global);
2408 if (info->dev)
0bcb3e28 2409 info->dev->archdata.iommu = NULL;
109b9b04
DW
2410}
2411
ba395927
KA
2412static void domain_remove_dev_info(struct dmar_domain *domain)
2413{
3a74ca01 2414 struct device_domain_info *info, *tmp;
fb170fb4 2415 unsigned long flags;
ba395927
KA
2416
2417 spin_lock_irqsave(&device_domain_lock, flags);
76f45fe3 2418 list_for_each_entry_safe(info, tmp, &domain->devices, link)
127c7615 2419 __dmar_remove_one_dev_info(info);
ba395927
KA
2420 spin_unlock_irqrestore(&device_domain_lock, flags);
2421}
2422
2423/*
2424 * find_domain
1525a29a 2425 * Note: we use struct device->archdata.iommu stores the info
ba395927 2426 */
1525a29a 2427static struct dmar_domain *find_domain(struct device *dev)
ba395927
KA
2428{
2429 struct device_domain_info *info;
2430
8af46c78
LB
2431 if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2432 struct iommu_domain *domain;
2433
2434 dev->archdata.iommu = NULL;
2435 domain = iommu_get_domain_for_dev(dev);
2436 if (domain)
2437 intel_iommu_attach_device(domain, dev);
2438 }
2439
ba395927 2440 /* No lock here, assumes no domain exit in normal case */
1525a29a 2441 info = dev->archdata.iommu;
8af46c78 2442
b316d02a 2443 if (likely(info))
ba395927
KA
2444 return info->domain;
2445 return NULL;
2446}
2447
5a8f40e8 2448static inline struct device_domain_info *
745f2586
JL
2449dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2450{
2451 struct device_domain_info *info;
2452
2453 list_for_each_entry(info, &device_domain_list, global)
41e80dca 2454 if (info->iommu->segment == segment && info->bus == bus &&
745f2586 2455 info->devfn == devfn)
5a8f40e8 2456 return info;
745f2586
JL
2457
2458 return NULL;
2459}
2460
5db31569
JR
2461static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2462 int bus, int devfn,
2463 struct device *dev,
2464 struct dmar_domain *domain)
745f2586 2465{
5a8f40e8 2466 struct dmar_domain *found = NULL;
745f2586
JL
2467 struct device_domain_info *info;
2468 unsigned long flags;
d160aca5 2469 int ret;
745f2586
JL
2470
2471 info = alloc_devinfo_mem();
2472 if (!info)
b718cd3d 2473 return NULL;
745f2586 2474
745f2586
JL
2475 info->bus = bus;
2476 info->devfn = devfn;
b16d0cb9
DW
2477 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2478 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2479 info->ats_qdep = 0;
745f2586
JL
2480 info->dev = dev;
2481 info->domain = domain;
5a8f40e8 2482 info->iommu = iommu;
cc580e41 2483 info->pasid_table = NULL;
95587a75 2484 info->auxd_enabled = 0;
67b8e02b 2485 INIT_LIST_HEAD(&info->auxiliary_domains);
745f2586 2486
b16d0cb9
DW
2487 if (dev && dev_is_pci(dev)) {
2488 struct pci_dev *pdev = to_pci_dev(info->dev);
2489
d8b85910
LB
2490 if (!pdev->untrusted &&
2491 !pci_ats_disabled() &&
cef74409 2492 ecap_dev_iotlb_support(iommu->ecap) &&
b16d0cb9
DW
2493 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2494 dmar_find_matched_atsr_unit(pdev))
2495 info->ats_supported = 1;
2496
765b6a98
LB
2497 if (sm_supported(iommu)) {
2498 if (pasid_supported(iommu)) {
b16d0cb9
DW
2499 int features = pci_pasid_features(pdev);
2500 if (features >= 0)
2501 info->pasid_supported = features | 1;
2502 }
2503
2504 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2505 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2506 info->pri_supported = 1;
2507 }
2508 }
2509
745f2586
JL
2510 spin_lock_irqsave(&device_domain_lock, flags);
2511 if (dev)
0bcb3e28 2512 found = find_domain(dev);
f303e507
JR
2513
2514 if (!found) {
5a8f40e8 2515 struct device_domain_info *info2;
41e80dca 2516 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
f303e507
JR
2517 if (info2) {
2518 found = info2->domain;
2519 info2->dev = dev;
2520 }
5a8f40e8 2521 }
f303e507 2522
745f2586
JL
2523 if (found) {
2524 spin_unlock_irqrestore(&device_domain_lock, flags);
2525 free_devinfo_mem(info);
b718cd3d
DW
2526 /* Caller must free the original domain */
2527 return found;
745f2586
JL
2528 }
2529
d160aca5
JR
2530 spin_lock(&iommu->lock);
2531 ret = domain_attach_iommu(domain, iommu);
2532 spin_unlock(&iommu->lock);
2533
2534 if (ret) {
c6c2cebd 2535 spin_unlock_irqrestore(&device_domain_lock, flags);
499f3aa4 2536 free_devinfo_mem(info);
c6c2cebd
JR
2537 return NULL;
2538 }
c6c2cebd 2539
b718cd3d
DW
2540 list_add(&info->link, &domain->devices);
2541 list_add(&info->global, &device_domain_list);
2542 if (dev)
2543 dev->archdata.iommu = info;
0bbeb01a 2544 spin_unlock_irqrestore(&device_domain_lock, flags);
a7fc93fe 2545
0bbeb01a
LB
2546 /* PASID table is mandatory for a PCI device in scalable mode. */
2547 if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
a7fc93fe
LB
2548 ret = intel_pasid_alloc_table(dev);
2549 if (ret) {
932a6523 2550 dev_err(dev, "PASID table allocation failed\n");
71753239 2551 dmar_remove_one_dev_info(dev);
0bbeb01a 2552 return NULL;
a7fc93fe 2553 }
ef848b7e
LB
2554
2555 /* Setup the PASID entry for requests without PASID: */
2556 spin_lock(&iommu->lock);
2557 if (hw_pass_through && domain_type_is_si(domain))
2558 ret = intel_pasid_setup_pass_through(iommu, domain,
2559 dev, PASID_RID2PASID);
2560 else
2561 ret = intel_pasid_setup_second_level(iommu, domain,
2562 dev, PASID_RID2PASID);
2563 spin_unlock(&iommu->lock);
2564 if (ret) {
932a6523 2565 dev_err(dev, "Setup RID2PASID failed\n");
71753239 2566 dmar_remove_one_dev_info(dev);
ef848b7e 2567 return NULL;
a7fc93fe
LB
2568 }
2569 }
b718cd3d 2570
cc4e2575 2571 if (dev && domain_context_mapping(domain, dev)) {
932a6523 2572 dev_err(dev, "Domain context map failed\n");
71753239 2573 dmar_remove_one_dev_info(dev);
cc4e2575
JR
2574 return NULL;
2575 }
2576
b718cd3d 2577 return domain;
745f2586
JL
2578}
2579
579305f7
AW
2580static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2581{
2582 *(u16 *)opaque = alias;
2583 return 0;
2584}
2585
76208356 2586static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
ba395927 2587{
e083ea5b 2588 struct device_domain_info *info;
76208356 2589 struct dmar_domain *domain = NULL;
579305f7 2590 struct intel_iommu *iommu;
fcc35c63 2591 u16 dma_alias;
ba395927 2592 unsigned long flags;
aa4d066a 2593 u8 bus, devfn;
ba395927 2594
579305f7
AW
2595 iommu = device_to_iommu(dev, &bus, &devfn);
2596 if (!iommu)
2597 return NULL;
2598
146922ec
DW
2599 if (dev_is_pci(dev)) {
2600 struct pci_dev *pdev = to_pci_dev(dev);
276dbf99 2601
579305f7
AW
2602 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2603
2604 spin_lock_irqsave(&device_domain_lock, flags);
2605 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2606 PCI_BUS_NUM(dma_alias),
2607 dma_alias & 0xff);
2608 if (info) {
2609 iommu = info->iommu;
2610 domain = info->domain;
5a8f40e8 2611 }
579305f7 2612 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927 2613
76208356 2614 /* DMA alias already has a domain, use it */
579305f7 2615 if (info)
76208356 2616 goto out;
579305f7 2617 }
ba395927 2618
146922ec 2619 /* Allocate and initialize new domain for the device */
ab8dfe25 2620 domain = alloc_domain(0);
745f2586 2621 if (!domain)
579305f7 2622 return NULL;
301e7ee1 2623 if (domain_init(domain, iommu, gaw)) {
579305f7
AW
2624 domain_exit(domain);
2625 return NULL;
2c2e2c38 2626 }
ba395927 2627
76208356 2628out:
76208356
JR
2629 return domain;
2630}
579305f7 2631
76208356
JR
2632static struct dmar_domain *set_domain_for_dev(struct device *dev,
2633 struct dmar_domain *domain)
2634{
2635 struct intel_iommu *iommu;
2636 struct dmar_domain *tmp;
2637 u16 req_id, dma_alias;
2638 u8 bus, devfn;
2639
2640 iommu = device_to_iommu(dev, &bus, &devfn);
2641 if (!iommu)
2642 return NULL;
2643
2644 req_id = ((u16)bus << 8) | devfn;
2645
2646 if (dev_is_pci(dev)) {
2647 struct pci_dev *pdev = to_pci_dev(dev);
2648
2649 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2650
2651 /* register PCI DMA alias device */
2652 if (req_id != dma_alias) {
2653 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2654 dma_alias & 0xff, NULL, domain);
2655
2656 if (!tmp || tmp != domain)
2657 return tmp;
2658 }
ba395927
KA
2659 }
2660
5db31569 2661 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
76208356
JR
2662 if (!tmp || tmp != domain)
2663 return tmp;
2664
2665 return domain;
2666}
579305f7 2667
b213203e
DW
2668static int iommu_domain_identity_map(struct dmar_domain *domain,
2669 unsigned long long start,
2670 unsigned long long end)
ba395927 2671{
c5395d5c
DW
2672 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2673 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2674
2675 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2676 dma_to_mm_pfn(last_vpfn))) {
9f10e5bf 2677 pr_err("Reserving iova failed\n");
b213203e 2678 return -ENOMEM;
ba395927
KA
2679 }
2680
af1089ce 2681 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
ba395927
KA
2682 /*
2683 * RMRR range might have overlap with physical memory range,
2684 * clear it first
2685 */
c5395d5c 2686 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 2687
87684fd9
PX
2688 return __domain_mapping(domain, first_vpfn, NULL,
2689 first_vpfn, last_vpfn - first_vpfn + 1,
2690 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
2691}
2692
d66ce54b
JR
2693static int domain_prepare_identity_map(struct device *dev,
2694 struct dmar_domain *domain,
2695 unsigned long long start,
2696 unsigned long long end)
b213203e 2697{
19943b0e
DW
2698 /* For _hardware_ passthrough, don't bother. But for software
2699 passthrough, we do it anyway -- it may indicate a memory
2700 range which is reserved in E820, so which didn't get set
2701 up to start with in si_domain */
2702 if (domain == si_domain && hw_pass_through) {
932a6523
BH
2703 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2704 start, end);
19943b0e
DW
2705 return 0;
2706 }
2707
932a6523 2708 dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
9f10e5bf 2709
5595b528
DW
2710 if (end < start) {
2711 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2712 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2713 dmi_get_system_info(DMI_BIOS_VENDOR),
2714 dmi_get_system_info(DMI_BIOS_VERSION),
2715 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2716 return -EIO;
5595b528
DW
2717 }
2718
2ff729f5
DW
2719 if (end >> agaw_to_width(domain->agaw)) {
2720 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2722 agaw_to_width(domain->agaw),
2723 dmi_get_system_info(DMI_BIOS_VENDOR),
2724 dmi_get_system_info(DMI_BIOS_VERSION),
2725 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2726 return -EIO;
2ff729f5 2727 }
19943b0e 2728
d66ce54b
JR
2729 return iommu_domain_identity_map(domain, start, end);
2730}
ba395927 2731
301e7ee1
JR
2732static int md_domain_init(struct dmar_domain *domain, int guest_width);
2733
071e1374 2734static int __init si_domain_init(int hw)
2c2e2c38 2735{
4de354ec
LB
2736 struct dmar_rmrr_unit *rmrr;
2737 struct device *dev;
2738 int i, nid, ret;
2c2e2c38 2739
ab8dfe25 2740 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2c2e2c38
FY
2741 if (!si_domain)
2742 return -EFAULT;
2743
301e7ee1 2744 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2c2e2c38
FY
2745 domain_exit(si_domain);
2746 return -EFAULT;
2747 }
2748
19943b0e
DW
2749 if (hw)
2750 return 0;
2751
c7ab48d2 2752 for_each_online_node(nid) {
5dfe8660
TH
2753 unsigned long start_pfn, end_pfn;
2754 int i;
2755
2756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2757 ret = iommu_domain_identity_map(si_domain,
2758 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2759 if (ret)
2760 return ret;
2761 }
c7ab48d2
DW
2762 }
2763
4de354ec
LB
2764 /*
2765 * Normally we use DMA domains for devices which have RMRRs. But we
2766 * loose this requirement for graphic and usb devices. Identity map
2767 * the RMRRs for graphic and USB devices so that they could use the
2768 * si_domain.
2769 */
2770 for_each_rmrr_units(rmrr) {
2771 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2772 i, dev) {
2773 unsigned long long start = rmrr->base_address;
2774 unsigned long long end = rmrr->end_address;
2775
2776 if (device_is_rmrr_locked(dev))
2777 continue;
2778
2779 if (WARN_ON(end < start ||
2780 end >> agaw_to_width(si_domain->agaw)))
2781 continue;
2782
2783 ret = iommu_domain_identity_map(si_domain, start, end);
2784 if (ret)
2785 return ret;
2786 }
2787 }
2788
2c2e2c38
FY
2789 return 0;
2790}
2791
9b226624 2792static int identity_mapping(struct device *dev)
2c2e2c38
FY
2793{
2794 struct device_domain_info *info;
2795
9b226624 2796 info = dev->archdata.iommu;
cb452a40
MT
2797 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2798 return (info->domain == si_domain);
2c2e2c38 2799
2c2e2c38
FY
2800 return 0;
2801}
2802
28ccce0d 2803static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2c2e2c38 2804{
0ac72664 2805 struct dmar_domain *ndomain;
5a8f40e8 2806 struct intel_iommu *iommu;
156baca8 2807 u8 bus, devfn;
2c2e2c38 2808
5913c9bf 2809 iommu = device_to_iommu(dev, &bus, &devfn);
5a8f40e8
DW
2810 if (!iommu)
2811 return -ENODEV;
2812
5db31569 2813 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
0ac72664
DW
2814 if (ndomain != domain)
2815 return -EBUSY;
2c2e2c38
FY
2816
2817 return 0;
2818}
2819
0b9d9753 2820static bool device_has_rmrr(struct device *dev)
ea2447f7
TM
2821{
2822 struct dmar_rmrr_unit *rmrr;
832bd858 2823 struct device *tmp;
ea2447f7
TM
2824 int i;
2825
0e242612 2826 rcu_read_lock();
ea2447f7 2827 for_each_rmrr_units(rmrr) {
b683b230
JL
2828 /*
2829 * Return TRUE if this RMRR contains the device that
2830 * is passed in.
2831 */
2832 for_each_active_dev_scope(rmrr->devices,
2833 rmrr->devices_cnt, i, tmp)
e143fd45
EA
2834 if (tmp == dev ||
2835 is_downstream_to_pci_bridge(dev, tmp)) {
0e242612 2836 rcu_read_unlock();
ea2447f7 2837 return true;
b683b230 2838 }
ea2447f7 2839 }
0e242612 2840 rcu_read_unlock();
ea2447f7
TM
2841 return false;
2842}
2843
1c5c59fb
EA
2844/**
2845 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2846 * is relaxable (ie. is allowed to be not enforced under some conditions)
2847 * @dev: device handle
2848 *
2849 * We assume that PCI USB devices with RMRRs have them largely
2850 * for historical reasons and that the RMRR space is not actively used post
2851 * boot. This exclusion may change if vendors begin to abuse it.
2852 *
2853 * The same exception is made for graphics devices, with the requirement that
2854 * any use of the RMRR regions will be torn down before assigning the device
2855 * to a guest.
2856 *
2857 * Return: true if the RMRR is relaxable, false otherwise
2858 */
2859static bool device_rmrr_is_relaxable(struct device *dev)
2860{
2861 struct pci_dev *pdev;
2862
2863 if (!dev_is_pci(dev))
2864 return false;
2865
2866 pdev = to_pci_dev(dev);
2867 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2868 return true;
2869 else
2870 return false;
2871}
2872
c875d2c1
AW
2873/*
2874 * There are a couple cases where we need to restrict the functionality of
2875 * devices associated with RMRRs. The first is when evaluating a device for
2876 * identity mapping because problems exist when devices are moved in and out
2877 * of domains and their respective RMRR information is lost. This means that
2878 * a device with associated RMRRs will never be in a "passthrough" domain.
2879 * The second is use of the device through the IOMMU API. This interface
2880 * expects to have full control of the IOVA space for the device. We cannot
2881 * satisfy both the requirement that RMRR access is maintained and have an
2882 * unencumbered IOVA space. We also have no ability to quiesce the device's
2883 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2884 * We therefore prevent devices associated with an RMRR from participating in
2885 * the IOMMU API, which eliminates them from device assignment.
2886 *
1c5c59fb
EA
2887 * In both cases, devices which have relaxable RMRRs are not concerned by this
2888 * restriction. See device_rmrr_is_relaxable comment.
c875d2c1
AW
2889 */
2890static bool device_is_rmrr_locked(struct device *dev)
2891{
2892 if (!device_has_rmrr(dev))
2893 return false;
2894
1c5c59fb
EA
2895 if (device_rmrr_is_relaxable(dev))
2896 return false;
c875d2c1
AW
2897
2898 return true;
2899}
2900
f273a453
LB
2901/*
2902 * Return the required default domain type for a specific device.
2903 *
2904 * @dev: the device in query
2905 * @startup: true if this is during early boot
2906 *
2907 * Returns:
2908 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2909 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2910 * - 0: both identity and dynamic domains work for this device
2911 */
0e31a726 2912static int device_def_domain_type(struct device *dev)
6941af28 2913{
3bdb2591
DW
2914 if (dev_is_pci(dev)) {
2915 struct pci_dev *pdev = to_pci_dev(dev);
ea2447f7 2916
c875d2c1 2917 if (device_is_rmrr_locked(dev))
f273a453 2918 return IOMMU_DOMAIN_DMA;
e0fc7e0b 2919
89a6079d
LB
2920 /*
2921 * Prevent any device marked as untrusted from getting
2922 * placed into the statically identity mapping domain.
2923 */
2924 if (pdev->untrusted)
f273a453 2925 return IOMMU_DOMAIN_DMA;
89a6079d 2926
3bdb2591 2927 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
f273a453 2928 return IOMMU_DOMAIN_IDENTITY;
e0fc7e0b 2929
3bdb2591 2930 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
f273a453 2931 return IOMMU_DOMAIN_IDENTITY;
3bdb2591
DW
2932
2933 /*
2934 * We want to start off with all devices in the 1:1 domain, and
2935 * take them out later if we find they can't access all of memory.
2936 *
2937 * However, we can't do this for PCI devices behind bridges,
2938 * because all PCI devices behind the same bridge will end up
2939 * with the same source-id on their transactions.
2940 *
2941 * Practically speaking, we can't change things around for these
2942 * devices at run-time, because we can't be sure there'll be no
2943 * DMA transactions in flight for any of their siblings.
2944 *
2945 * So PCI devices (unless they're on the root bus) as well as
2946 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2947 * the 1:1 domain, just in _case_ one of their siblings turns out
2948 * not to be able to map all of memory.
2949 */
2950 if (!pci_is_pcie(pdev)) {
2951 if (!pci_is_root_bus(pdev->bus))
f273a453 2952 return IOMMU_DOMAIN_DMA;
3bdb2591 2953 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
f273a453 2954 return IOMMU_DOMAIN_DMA;
3bdb2591 2955 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
f273a453 2956 return IOMMU_DOMAIN_DMA;
3bdb2591
DW
2957 } else {
2958 if (device_has_rmrr(dev))
f273a453 2959 return IOMMU_DOMAIN_DMA;
3bdb2591 2960 }
3dfc813d 2961
f273a453
LB
2962 return (iommu_identity_mapping & IDENTMAP_ALL) ?
2963 IOMMU_DOMAIN_IDENTITY : 0;
2964}
2965
ffebeb46
JL
2966static void intel_iommu_init_qi(struct intel_iommu *iommu)
2967{
2968 /*
2969 * Start from the sane iommu hardware state.
2970 * If the queued invalidation is already initialized by us
2971 * (for example, while enabling interrupt-remapping) then
2972 * we got the things already rolling from a sane state.
2973 */
2974 if (!iommu->qi) {
2975 /*
2976 * Clear any previous faults.
2977 */
2978 dmar_fault(-1, iommu);
2979 /*
2980 * Disable queued invalidation if supported and already enabled
2981 * before OS handover.
2982 */
2983 dmar_disable_qi(iommu);
2984 }
2985
2986 if (dmar_enable_qi(iommu)) {
2987 /*
2988 * Queued Invalidate not enabled, use Register Based Invalidate
2989 */
2990 iommu->flush.flush_context = __iommu_flush_context;
2991 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
9f10e5bf 2992 pr_info("%s: Using Register based invalidation\n",
ffebeb46
JL
2993 iommu->name);
2994 } else {
2995 iommu->flush.flush_context = qi_flush_context;
2996 iommu->flush.flush_iotlb = qi_flush_iotlb;
9f10e5bf 2997 pr_info("%s: Using Queued invalidation\n", iommu->name);
ffebeb46
JL
2998 }
2999}
3000
091d42e4 3001static int copy_context_table(struct intel_iommu *iommu,
dfddb969 3002 struct root_entry *old_re,
091d42e4
JR
3003 struct context_entry **tbl,
3004 int bus, bool ext)
3005{
dbcd861f 3006 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
543c8dcf 3007 struct context_entry *new_ce = NULL, ce;
dfddb969 3008 struct context_entry *old_ce = NULL;
543c8dcf 3009 struct root_entry re;
091d42e4
JR
3010 phys_addr_t old_ce_phys;
3011
3012 tbl_idx = ext ? bus * 2 : bus;
dfddb969 3013 memcpy(&re, old_re, sizeof(re));
091d42e4
JR
3014
3015 for (devfn = 0; devfn < 256; devfn++) {
3016 /* First calculate the correct index */
3017 idx = (ext ? devfn * 2 : devfn) % 256;
3018
3019 if (idx == 0) {
3020 /* First save what we may have and clean up */
3021 if (new_ce) {
3022 tbl[tbl_idx] = new_ce;
3023 __iommu_flush_cache(iommu, new_ce,
3024 VTD_PAGE_SIZE);
3025 pos = 1;
3026 }
3027
3028 if (old_ce)
829383e1 3029 memunmap(old_ce);
091d42e4
JR
3030
3031 ret = 0;
3032 if (devfn < 0x80)
543c8dcf 3033 old_ce_phys = root_entry_lctp(&re);
091d42e4 3034 else
543c8dcf 3035 old_ce_phys = root_entry_uctp(&re);
091d42e4
JR
3036
3037 if (!old_ce_phys) {
3038 if (ext && devfn == 0) {
3039 /* No LCTP, try UCTP */
3040 devfn = 0x7f;
3041 continue;
3042 } else {
3043 goto out;
3044 }
3045 }
3046
3047 ret = -ENOMEM;
dfddb969
DW
3048 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3049 MEMREMAP_WB);
091d42e4
JR
3050 if (!old_ce)
3051 goto out;
3052
3053 new_ce = alloc_pgtable_page(iommu->node);
3054 if (!new_ce)
3055 goto out_unmap;
3056
3057 ret = 0;
3058 }
3059
3060 /* Now copy the context entry */
dfddb969 3061 memcpy(&ce, old_ce + idx, sizeof(ce));
091d42e4 3062
cf484d0e 3063 if (!__context_present(&ce))
091d42e4
JR
3064 continue;
3065
dbcd861f
JR
3066 did = context_domain_id(&ce);
3067 if (did >= 0 && did < cap_ndoms(iommu->cap))
3068 set_bit(did, iommu->domain_ids);
3069
cf484d0e
JR
3070 /*
3071 * We need a marker for copied context entries. This
3072 * marker needs to work for the old format as well as
3073 * for extended context entries.
3074 *
3075 * Bit 67 of the context entry is used. In the old
3076 * format this bit is available to software, in the
3077 * extended format it is the PGE bit, but PGE is ignored
3078 * by HW if PASIDs are disabled (and thus still
3079 * available).
3080 *
3081 * So disable PASIDs first and then mark the entry
3082 * copied. This means that we don't copy PASID
3083 * translations from the old kernel, but this is fine as
3084 * faults there are not fatal.
3085 */
3086 context_clear_pasid_enable(&ce);
3087 context_set_copied(&ce);
3088
091d42e4
JR
3089 new_ce[idx] = ce;
3090 }
3091
3092 tbl[tbl_idx + pos] = new_ce;
3093
3094 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3095
3096out_unmap:
dfddb969 3097 memunmap(old_ce);
091d42e4
JR
3098
3099out:
3100 return ret;
3101}
3102
3103static int copy_translation_tables(struct intel_iommu *iommu)
3104{
3105 struct context_entry **ctxt_tbls;
dfddb969 3106 struct root_entry *old_rt;
091d42e4
JR
3107 phys_addr_t old_rt_phys;
3108 int ctxt_table_entries;
3109 unsigned long flags;
3110 u64 rtaddr_reg;
3111 int bus, ret;
c3361f2f 3112 bool new_ext, ext;
091d42e4
JR
3113
3114 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3115 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
c3361f2f
JR
3116 new_ext = !!ecap_ecs(iommu->ecap);
3117
3118 /*
3119 * The RTT bit can only be changed when translation is disabled,
3120 * but disabling translation means to open a window for data
3121 * corruption. So bail out and don't copy anything if we would
3122 * have to change the bit.
3123 */
3124 if (new_ext != ext)
3125 return -EINVAL;
091d42e4
JR
3126
3127 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3128 if (!old_rt_phys)
3129 return -EINVAL;
3130
dfddb969 3131 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
091d42e4
JR
3132 if (!old_rt)
3133 return -ENOMEM;
3134
3135 /* This is too big for the stack - allocate it from slab */
3136 ctxt_table_entries = ext ? 512 : 256;
3137 ret = -ENOMEM;
6396bb22 3138 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
091d42e4
JR
3139 if (!ctxt_tbls)
3140 goto out_unmap;
3141
3142 for (bus = 0; bus < 256; bus++) {
3143 ret = copy_context_table(iommu, &old_rt[bus],
3144 ctxt_tbls, bus, ext);
3145 if (ret) {
3146 pr_err("%s: Failed to copy context table for bus %d\n",
3147 iommu->name, bus);
3148 continue;
3149 }
3150 }
3151
3152 spin_lock_irqsave(&iommu->lock, flags);
3153
3154 /* Context tables are copied, now write them to the root_entry table */
3155 for (bus = 0; bus < 256; bus++) {
3156 int idx = ext ? bus * 2 : bus;
3157 u64 val;
3158
3159 if (ctxt_tbls[idx]) {
3160 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3161 iommu->root_entry[bus].lo = val;
3162 }
3163
3164 if (!ext || !ctxt_tbls[idx + 1])
3165 continue;
3166
3167 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3168 iommu->root_entry[bus].hi = val;
3169 }
3170
3171 spin_unlock_irqrestore(&iommu->lock, flags);
3172
3173 kfree(ctxt_tbls);
3174
3175 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3176
3177 ret = 0;
3178
3179out_unmap:
dfddb969 3180 memunmap(old_rt);
091d42e4
JR
3181
3182 return ret;
3183}
3184
b779260b 3185static int __init init_dmars(void)
ba395927
KA
3186{
3187 struct dmar_drhd_unit *drhd;
ba395927 3188 struct intel_iommu *iommu;
df4f3c60 3189 int ret;
2c2e2c38 3190
ba395927
KA
3191 /*
3192 * for each drhd
3193 * allocate root
3194 * initialize and program root entry to not present
3195 * endfor
3196 */
3197 for_each_drhd_unit(drhd) {
5e0d2a6f 3198 /*
3199 * lock not needed as this is only incremented in the single
3200 * threaded kernel __init code path all other access are read
3201 * only
3202 */
78d8e704 3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
1b198bb0
MT
3204 g_num_of_iommus++;
3205 continue;
3206 }
9f10e5bf 3207 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
5e0d2a6f 3208 }
3209
ffebeb46
JL
3210 /* Preallocate enough resources for IOMMU hot-addition */
3211 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3212 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3213
d9630fe9
WH
3214 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3215 GFP_KERNEL);
3216 if (!g_iommus) {
9f10e5bf 3217 pr_err("Allocating global iommu array failed\n");
d9630fe9
WH
3218 ret = -ENOMEM;
3219 goto error;
3220 }
3221
6a8c6748
LB
3222 for_each_iommu(iommu, drhd) {
3223 if (drhd->ignored) {
3224 iommu_disable_translation(iommu);
3225 continue;
3226 }
3227
56283174
LB
3228 /*
3229 * Find the max pasid size of all IOMMU's in the system.
3230 * We need to ensure the system pasid table is no bigger
3231 * than the smallest supported.
3232 */
765b6a98 3233 if (pasid_supported(iommu)) {
56283174
LB
3234 u32 temp = 2 << ecap_pss(iommu->ecap);
3235
3236 intel_pasid_max_id = min_t(u32, temp,
3237 intel_pasid_max_id);
3238 }
3239
d9630fe9 3240 g_iommus[iommu->seq_id] = iommu;
ba395927 3241
b63d80d1
JR
3242 intel_iommu_init_qi(iommu);
3243
e61d98d8
SS
3244 ret = iommu_init_domains(iommu);
3245 if (ret)
989d51fc 3246 goto free_iommu;
e61d98d8 3247
4158c2ec
JR
3248 init_translation_status(iommu);
3249
091d42e4
JR
3250 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3251 iommu_disable_translation(iommu);
3252 clear_translation_pre_enabled(iommu);
3253 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3254 iommu->name);
3255 }
4158c2ec 3256
ba395927
KA
3257 /*
3258 * TBD:
3259 * we could share the same root & context tables
25985edc 3260 * among all IOMMU's. Need to Split it later.
ba395927
KA
3261 */
3262 ret = iommu_alloc_root_entry(iommu);
ffebeb46 3263 if (ret)
989d51fc 3264 goto free_iommu;
5f0a7f76 3265
091d42e4
JR
3266 if (translation_pre_enabled(iommu)) {
3267 pr_info("Translation already enabled - trying to copy translation structures\n");
3268
3269 ret = copy_translation_tables(iommu);
3270 if (ret) {
3271 /*
3272 * We found the IOMMU with translation
3273 * enabled - but failed to copy over the
3274 * old root-entry table. Try to proceed
3275 * by disabling translation now and
3276 * allocating a clean root-entry table.
3277 * This might cause DMAR faults, but
3278 * probably the dump will still succeed.
3279 */
3280 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3281 iommu->name);
3282 iommu_disable_translation(iommu);
3283 clear_translation_pre_enabled(iommu);
3284 } else {
3285 pr_info("Copied translation tables from previous kernel for %s\n",
3286 iommu->name);
3287 }
3288 }
3289
4ed0d3e6 3290 if (!ecap_pass_through(iommu->ecap))
19943b0e 3291 hw_pass_through = 0;
8a94ade4 3292#ifdef CONFIG_INTEL_IOMMU_SVM
765b6a98 3293 if (pasid_supported(iommu))
d9737953 3294 intel_svm_init(iommu);
8a94ade4 3295#endif
ba395927
KA
3296 }
3297
a4c34ff1
JR
3298 /*
3299 * Now that qi is enabled on all iommus, set the root entry and flush
3300 * caches. This is required on some Intel X58 chipsets, otherwise the
3301 * flush_context function will loop forever and the boot hangs.
3302 */
3303 for_each_active_iommu(iommu, drhd) {
3304 iommu_flush_write_buffer(iommu);
3305 iommu_set_root_entry(iommu);
3306 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3307 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3308 }
3309
6b9a7d3a 3310 if (iommu_default_passthrough())
e0fc7e0b
DW
3311 iommu_identity_mapping |= IDENTMAP_ALL;
3312
d3f13810 3313#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
5daab580 3314 dmar_map_gfx = 0;
19943b0e 3315#endif
e0fc7e0b 3316
5daab580
LB
3317 if (!dmar_map_gfx)
3318 iommu_identity_mapping |= IDENTMAP_GFX;
3319
21e722c4
AR
3320 check_tylersburg_isoch();
3321
4de354ec
LB
3322 ret = si_domain_init(hw_pass_through);
3323 if (ret)
3324 goto free_iommu;
86080ccc 3325
ba395927
KA
3326 /*
3327 * for each drhd
3328 * enable fault log
3329 * global invalidate context cache
3330 * global invalidate iotlb
3331 * enable translation
3332 */
7c919779 3333 for_each_iommu(iommu, drhd) {
51a63e67
JC
3334 if (drhd->ignored) {
3335 /*
3336 * we always have to disable PMRs or DMA may fail on
3337 * this device
3338 */
3339 if (force_on)
7c919779 3340 iommu_disable_protect_mem_regions(iommu);
ba395927 3341 continue;
51a63e67 3342 }
ba395927
KA
3343
3344 iommu_flush_write_buffer(iommu);
3345
a222a7f0 3346#ifdef CONFIG_INTEL_IOMMU_SVM
765b6a98 3347 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
a7755c3c
LB
3348 /*
3349 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3350 * could cause possible lock race condition.
3351 */
3352 up_write(&dmar_global_lock);
a222a7f0 3353 ret = intel_svm_enable_prq(iommu);
a7755c3c 3354 down_write(&dmar_global_lock);
a222a7f0
DW
3355 if (ret)
3356 goto free_iommu;
3357 }
3358#endif
3460a6d9
KA
3359 ret = dmar_set_interrupt(iommu);
3360 if (ret)
989d51fc 3361 goto free_iommu;
ba395927
KA
3362 }
3363
3364 return 0;
989d51fc
JL
3365
3366free_iommu:
ffebeb46
JL
3367 for_each_active_iommu(iommu, drhd) {
3368 disable_dmar_iommu(iommu);
a868e6b7 3369 free_dmar_iommu(iommu);
ffebeb46 3370 }
13cf0174 3371
d9630fe9 3372 kfree(g_iommus);
13cf0174 3373
989d51fc 3374error:
ba395927
KA
3375 return ret;
3376}
3377
5a5e02a6 3378/* This takes a number of _MM_ pages, not VTD pages */
2aac6304 3379static unsigned long intel_alloc_iova(struct device *dev,
875764de
DW
3380 struct dmar_domain *domain,
3381 unsigned long nrpages, uint64_t dma_mask)
ba395927 3382{
e083ea5b 3383 unsigned long iova_pfn;
ba395927 3384
875764de
DW
3385 /* Restrict dma_mask to the width that the iommu can handle */
3386 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
8f6429c7
RM
3387 /* Ensure we reserve the whole size-aligned region */
3388 nrpages = __roundup_pow_of_two(nrpages);
875764de
DW
3389
3390 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
3391 /*
3392 * First try to allocate an io virtual address in
284901a9 3393 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 3394 * from higher range
ba395927 3395 */
22e2f9fa 3396 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
538d5b33 3397 IOVA_PFN(DMA_BIT_MASK(32)), false);
22e2f9fa
OP
3398 if (iova_pfn)
3399 return iova_pfn;
875764de 3400 }
538d5b33
TN
3401 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3402 IOVA_PFN(dma_mask), true);
22e2f9fa 3403 if (unlikely(!iova_pfn)) {
932a6523 3404 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
2aac6304 3405 return 0;
f76aec76
KA
3406 }
3407
22e2f9fa 3408 return iova_pfn;
f76aec76
KA
3409}
3410
4ec066c7 3411static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
f76aec76 3412{
1c5ebba9 3413 struct dmar_domain *domain, *tmp;
b1ce5b79 3414 struct dmar_rmrr_unit *rmrr;
b1ce5b79
JR
3415 struct device *i_dev;
3416 int i, ret;
f76aec76 3417
4ec066c7 3418 /* Device shouldn't be attached by any domains. */
1c5ebba9
JR
3419 domain = find_domain(dev);
3420 if (domain)
4ec066c7 3421 return NULL;
1c5ebba9
JR
3422
3423 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3424 if (!domain)
3425 goto out;
ba395927 3426
b1ce5b79
JR
3427 /* We have a new domain - setup possible RMRRs for the device */
3428 rcu_read_lock();
3429 for_each_rmrr_units(rmrr) {
3430 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3431 i, i_dev) {
3432 if (i_dev != dev)
3433 continue;
3434
3435 ret = domain_prepare_identity_map(dev, domain,
3436 rmrr->base_address,
3437 rmrr->end_address);
3438 if (ret)
3439 dev_err(dev, "Mapping reserved region failed\n");
3440 }
3441 }
3442 rcu_read_unlock();
3443
1c5ebba9
JR
3444 tmp = set_domain_for_dev(dev, domain);
3445 if (!tmp || domain != tmp) {
3446 domain_exit(domain);
3447 domain = tmp;
3448 }
3449
3450out:
1c5ebba9 3451 if (!domain)
932a6523 3452 dev_err(dev, "Allocating domain failed\n");
c57b260a
LB
3453 else
3454 domain->domain.type = IOMMU_DOMAIN_DMA;
1c5ebba9 3455
f76aec76
KA
3456 return domain;
3457}
3458
ecb509ec 3459/* Check if the dev needs to go through non-identity map and unmap process.*/
48b2c937 3460static bool iommu_need_mapping(struct device *dev)
2c2e2c38 3461{
98b2fffb 3462 int ret;
2c2e2c38 3463
3d89194a 3464 if (iommu_dummy(dev))
48b2c937 3465 return false;
1e4c64c4 3466
98b2fffb
LB
3467 ret = identity_mapping(dev);
3468 if (ret) {
3469 u64 dma_mask = *dev->dma_mask;
3470
3471 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3472 dma_mask = dev->coherent_dma_mask;
3473
3474 if (dma_mask >= dma_get_required_mask(dev))
48b2c937
CH
3475 return false;
3476
3477 /*
3478 * 32 bit DMA is removed from si_domain and fall back to
3479 * non-identity mapping.
3480 */
3481 dmar_remove_one_dev_info(dev);
98b2fffb
LB
3482 ret = iommu_request_dma_domain_for_dev(dev);
3483 if (ret) {
3484 struct iommu_domain *domain;
3485 struct dmar_domain *dmar_domain;
3486
3487 domain = iommu_get_domain_for_dev(dev);
3488 if (domain) {
3489 dmar_domain = to_dmar_domain(domain);
3490 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3491 }
ae23bfb6 3492 dmar_remove_one_dev_info(dev);
4ec066c7 3493 get_private_domain_for_dev(dev);
2c2e2c38 3494 }
98b2fffb
LB
3495
3496 dev_info(dev, "32bit DMA uses non-identity mapping\n");
2c2e2c38
FY
3497 }
3498
48b2c937 3499 return true;
2c2e2c38
FY
3500}
3501
21d5d27c
LG
3502static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3503 size_t size, int dir, u64 dma_mask)
f76aec76 3504{
f76aec76 3505 struct dmar_domain *domain;
5b6985ce 3506 phys_addr_t start_paddr;
2aac6304 3507 unsigned long iova_pfn;
f76aec76 3508 int prot = 0;
6865f0d1 3509 int ret;
8c11e798 3510 struct intel_iommu *iommu;
33041ec0 3511 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
f76aec76
KA
3512
3513 BUG_ON(dir == DMA_NONE);
2c2e2c38 3514
4ec066c7 3515 domain = find_domain(dev);
f76aec76 3516 if (!domain)
524a669b 3517 return DMA_MAPPING_ERROR;
f76aec76 3518
8c11e798 3519 iommu = domain_get_iommu(domain);
88cb6a74 3520 size = aligned_nrpages(paddr, size);
f76aec76 3521
2aac6304
OP
3522 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3523 if (!iova_pfn)
f76aec76
KA
3524 goto error;
3525
ba395927
KA
3526 /*
3527 * Check if DMAR supports zero-length reads on write only
3528 * mappings..
3529 */
3530 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3531 !cap_zlr(iommu->cap))
ba395927
KA
3532 prot |= DMA_PTE_READ;
3533 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3534 prot |= DMA_PTE_WRITE;
3535 /*
6865f0d1 3536 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 3537 * page. Note: if two part of one page are separately mapped, we
6865f0d1 3538 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
3539 * is not a big problem
3540 */
2aac6304 3541 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
33041ec0 3542 mm_to_dma_pfn(paddr_pfn), size, prot);
ba395927
KA
3543 if (ret)
3544 goto error;
3545
2aac6304 3546 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
03d6a246 3547 start_paddr += paddr & ~PAGE_MASK;
3b53034c
LB
3548
3549 trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
3550
03d6a246 3551 return start_paddr;
ba395927 3552
ba395927 3553error:
2aac6304 3554 if (iova_pfn)
22e2f9fa 3555 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
932a6523
BH
3556 dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3557 size, (unsigned long long)paddr, dir);
524a669b 3558 return DMA_MAPPING_ERROR;
ba395927
KA
3559}
3560
ffbbef5c
FT
3561static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3562 unsigned long offset, size_t size,
3563 enum dma_data_direction dir,
00085f1e 3564 unsigned long attrs)
bb9e6d65 3565{
9cc0c2af
CH
3566 if (iommu_need_mapping(dev))
3567 return __intel_map_single(dev, page_to_phys(page) + offset,
3568 size, dir, *dev->dma_mask);
3569 return dma_direct_map_page(dev, page, offset, size, dir, attrs);
21d5d27c
LG
3570}
3571
3572static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3573 size_t size, enum dma_data_direction dir,
3574 unsigned long attrs)
3575{
9cc0c2af
CH
3576 if (iommu_need_mapping(dev))
3577 return __intel_map_single(dev, phys_addr, size, dir,
3578 *dev->dma_mask);
3579 return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
bb9e6d65
FT
3580}
3581
769530e4 3582static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
ba395927 3583{
f76aec76 3584 struct dmar_domain *domain;
d794dc9b 3585 unsigned long start_pfn, last_pfn;
769530e4 3586 unsigned long nrpages;
2aac6304 3587 unsigned long iova_pfn;
8c11e798 3588 struct intel_iommu *iommu;
ea8ea460 3589 struct page *freelist;
f7b0c4ce 3590 struct pci_dev *pdev = NULL;
ba395927 3591
1525a29a 3592 domain = find_domain(dev);
ba395927
KA
3593 BUG_ON(!domain);
3594
8c11e798
WH
3595 iommu = domain_get_iommu(domain);
3596
2aac6304 3597 iova_pfn = IOVA_PFN(dev_addr);
ba395927 3598
769530e4 3599 nrpages = aligned_nrpages(dev_addr, size);
2aac6304 3600 start_pfn = mm_to_dma_pfn(iova_pfn);
769530e4 3601 last_pfn = start_pfn + nrpages - 1;
ba395927 3602
f7b0c4ce
LB
3603 if (dev_is_pci(dev))
3604 pdev = to_pci_dev(dev);
3605
ea8ea460 3606 freelist = domain_unmap(domain, start_pfn, last_pfn);
effa4678
DS
3607 if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3608 !has_iova_flush_queue(&domain->iovad)) {
a1ddcbe9 3609 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
769530e4 3610 nrpages, !freelist, 0);
5e0d2a6f 3611 /* free iova */
22e2f9fa 3612 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
ea8ea460 3613 dma_free_pagelist(freelist);
5e0d2a6f 3614 } else {
13cf0174
JR
3615 queue_iova(&domain->iovad, iova_pfn, nrpages,
3616 (unsigned long)freelist);
5e0d2a6f 3617 /*
3618 * queue up the release of the unmap to save the 1/6th of the
3619 * cpu used up by the iotlb flush operation...
3620 */
5e0d2a6f 3621 }
3b53034c
LB
3622
3623 trace_unmap_single(dev, dev_addr, size);
ba395927
KA
3624}
3625
d41a4adb
JL
3626static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3627 size_t size, enum dma_data_direction dir,
00085f1e 3628 unsigned long attrs)
d41a4adb 3629{
9cc0c2af
CH
3630 if (iommu_need_mapping(dev))
3631 intel_unmap(dev, dev_addr, size);
3632 else
3633 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3634}
3635
3636static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3637 size_t size, enum dma_data_direction dir, unsigned long attrs)
3638{
3639 if (iommu_need_mapping(dev))
3640 intel_unmap(dev, dev_addr, size);
d41a4adb
JL
3641}
3642
5040a918 3643static void *intel_alloc_coherent(struct device *dev, size_t size,
baa676fc 3644 dma_addr_t *dma_handle, gfp_t flags,
00085f1e 3645 unsigned long attrs)
ba395927 3646{
7ec916f8
CH
3647 struct page *page = NULL;
3648 int order;
ba395927 3649
9cc0c2af
CH
3650 if (!iommu_need_mapping(dev))
3651 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3652
7ec916f8
CH
3653 size = PAGE_ALIGN(size);
3654 order = get_order(size);
7ec916f8
CH
3655
3656 if (gfpflags_allow_blocking(flags)) {
3657 unsigned int count = size >> PAGE_SHIFT;
3658
d834c5ab
MS
3659 page = dma_alloc_from_contiguous(dev, count, order,
3660 flags & __GFP_NOWARN);
7ec916f8
CH
3661 }
3662
3663 if (!page)
3664 page = alloc_pages(flags, order);
3665 if (!page)
3666 return NULL;
3667 memset(page_address(page), 0, size);
3668
21d5d27c
LG
3669 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3670 DMA_BIDIRECTIONAL,
3671 dev->coherent_dma_mask);
524a669b 3672 if (*dma_handle != DMA_MAPPING_ERROR)
7ec916f8
CH
3673 return page_address(page);
3674 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3675 __free_pages(page, order);
36746436 3676
ba395927
KA
3677 return NULL;
3678}
3679
5040a918 3680static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
00085f1e 3681 dma_addr_t dma_handle, unsigned long attrs)
ba395927 3682{
7ec916f8
CH
3683 int order;
3684 struct page *page = virt_to_page(vaddr);
3685
9cc0c2af
CH
3686 if (!iommu_need_mapping(dev))
3687 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3688
7ec916f8
CH
3689 size = PAGE_ALIGN(size);
3690 order = get_order(size);
3691
3692 intel_unmap(dev, dma_handle, size);
3693 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3694 __free_pages(page, order);
ba395927
KA
3695}
3696
5040a918 3697static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
d7ab5c46 3698 int nelems, enum dma_data_direction dir,
00085f1e 3699 unsigned long attrs)
ba395927 3700{
769530e4
OP
3701 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3702 unsigned long nrpages = 0;
3703 struct scatterlist *sg;
3704 int i;
3705
9cc0c2af
CH
3706 if (!iommu_need_mapping(dev))
3707 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3708
769530e4
OP
3709 for_each_sg(sglist, sg, nelems, i) {
3710 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3711 }
3712
3713 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3b53034c
LB
3714
3715 trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
ba395927
KA
3716}
3717
5040a918 3718static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
00085f1e 3719 enum dma_data_direction dir, unsigned long attrs)
ba395927 3720{
ba395927 3721 int i;
ba395927 3722 struct dmar_domain *domain;
f76aec76
KA
3723 size_t size = 0;
3724 int prot = 0;
2aac6304 3725 unsigned long iova_pfn;
f76aec76 3726 int ret;
c03ab37c 3727 struct scatterlist *sg;
b536d24d 3728 unsigned long start_vpfn;
8c11e798 3729 struct intel_iommu *iommu;
ba395927
KA
3730
3731 BUG_ON(dir == DMA_NONE);
48b2c937 3732 if (!iommu_need_mapping(dev))
9cc0c2af 3733 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
ba395927 3734
4ec066c7 3735 domain = find_domain(dev);
f76aec76
KA
3736 if (!domain)
3737 return 0;
3738
8c11e798
WH
3739 iommu = domain_get_iommu(domain);
3740
b536d24d 3741 for_each_sg(sglist, sg, nelems, i)
88cb6a74 3742 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 3743
2aac6304 3744 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
5040a918 3745 *dev->dma_mask);
2aac6304 3746 if (!iova_pfn) {
c03ab37c 3747 sglist->dma_length = 0;
f76aec76
KA
3748 return 0;
3749 }
3750
3751 /*
3752 * Check if DMAR supports zero-length reads on write only
3753 * mappings..
3754 */
3755 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3756 !cap_zlr(iommu->cap))
f76aec76
KA
3757 prot |= DMA_PTE_READ;
3758 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3759 prot |= DMA_PTE_WRITE;
3760
2aac6304 3761 start_vpfn = mm_to_dma_pfn(iova_pfn);
e1605495 3762
f532959b 3763 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
e1605495 3764 if (unlikely(ret)) {
e1605495 3765 dma_pte_free_pagetable(domain, start_vpfn,
bc24c571
DD
3766 start_vpfn + size - 1,
3767 agaw_to_level(domain->agaw) + 1);
22e2f9fa 3768 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
e1605495 3769 return 0;
ba395927
KA
3770 }
3771
3b53034c
LB
3772 trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
3773 sg_phys(sglist), size << VTD_PAGE_SHIFT);
3774
ba395927
KA
3775 return nelems;
3776}
3777
02b4da5f 3778static const struct dma_map_ops intel_dma_ops = {
baa676fc
AP
3779 .alloc = intel_alloc_coherent,
3780 .free = intel_free_coherent,
ba395927
KA
3781 .map_sg = intel_map_sg,
3782 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
3783 .map_page = intel_map_page,
3784 .unmap_page = intel_unmap_page,
21d5d27c 3785 .map_resource = intel_map_resource,
9cc0c2af 3786 .unmap_resource = intel_unmap_resource,
fec777c3 3787 .dma_supported = dma_direct_supported,
f9f3232a
CH
3788 .mmap = dma_common_mmap,
3789 .get_sgtable = dma_common_get_sgtable,
ba395927
KA
3790};
3791
cfb94a37
LB
3792static void
3793bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
3794 enum dma_data_direction dir, enum dma_sync_target target)
3795{
3796 struct dmar_domain *domain;
3797 phys_addr_t tlb_addr;
3798
3799 domain = find_domain(dev);
3800 if (WARN_ON(!domain))
3801 return;
3802
3803 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
3804 if (is_swiotlb_buffer(tlb_addr))
3805 swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
3806}
3807
3808static dma_addr_t
3809bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
3810 enum dma_data_direction dir, unsigned long attrs,
3811 u64 dma_mask)
3812{
3813 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3814 struct dmar_domain *domain;
3815 struct intel_iommu *iommu;
3816 unsigned long iova_pfn;
3817 unsigned long nrpages;
3818 phys_addr_t tlb_addr;
3819 int prot = 0;
3820 int ret;
3821
3822 domain = find_domain(dev);
3823 if (WARN_ON(dir == DMA_NONE || !domain))
3824 return DMA_MAPPING_ERROR;
3825
3826 iommu = domain_get_iommu(domain);
3827 if (WARN_ON(!iommu))
3828 return DMA_MAPPING_ERROR;
3829
3830 nrpages = aligned_nrpages(0, size);
3831 iova_pfn = intel_alloc_iova(dev, domain,
3832 dma_to_mm_pfn(nrpages), dma_mask);
3833 if (!iova_pfn)
3834 return DMA_MAPPING_ERROR;
3835
3836 /*
3837 * Check if DMAR supports zero-length reads on write only
3838 * mappings..
3839 */
3840 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
3841 !cap_zlr(iommu->cap))
3842 prot |= DMA_PTE_READ;
3843 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3844 prot |= DMA_PTE_WRITE;
3845
3846 /*
3847 * If both the physical buffer start address and size are
3848 * page aligned, we don't need to use a bounce page.
3849 */
3850 if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3851 tlb_addr = swiotlb_tbl_map_single(dev,
3852 __phys_to_dma(dev, io_tlb_start),
3853 paddr, size, aligned_size, dir, attrs);
3854 if (tlb_addr == DMA_MAPPING_ERROR) {
3855 goto swiotlb_error;
3856 } else {
3857 /* Cleanup the padding area. */
3858 void *padding_start = phys_to_virt(tlb_addr);
3859 size_t padding_size = aligned_size;
3860
3861 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
3862 (dir == DMA_TO_DEVICE ||
3863 dir == DMA_BIDIRECTIONAL)) {
3864 padding_start += size;
3865 padding_size -= size;
3866 }
3867
3868 memset(padding_start, 0, padding_size);
3869 }
3870 } else {
3871 tlb_addr = paddr;
3872 }
3873
3874 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3875 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
3876 if (ret)
3877 goto mapping_error;
3878
3879 trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
3880
3881 return (phys_addr_t)iova_pfn << PAGE_SHIFT;
3882
3883mapping_error:
3884 if (is_swiotlb_buffer(tlb_addr))
3885 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3886 aligned_size, dir, attrs);
3887swiotlb_error:
3888 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3889 dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
3890 size, (unsigned long long)paddr, dir);
3891
3892 return DMA_MAPPING_ERROR;
3893}
3894
3895static void
3896bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
3897 enum dma_data_direction dir, unsigned long attrs)
3898{
3899 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3900 struct dmar_domain *domain;
3901 phys_addr_t tlb_addr;
3902
3903 domain = find_domain(dev);
3904 if (WARN_ON(!domain))
3905 return;
3906
3907 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
3908 if (WARN_ON(!tlb_addr))
3909 return;
3910
3911 intel_unmap(dev, dev_addr, size);
3912 if (is_swiotlb_buffer(tlb_addr))
3913 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3914 aligned_size, dir, attrs);
3915
3916 trace_bounce_unmap_single(dev, dev_addr, size);
3917}
3918
3919static dma_addr_t
3920bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
3921 size_t size, enum dma_data_direction dir, unsigned long attrs)
3922{
3923 return bounce_map_single(dev, page_to_phys(page) + offset,
3924 size, dir, attrs, *dev->dma_mask);
3925}
3926
3927static dma_addr_t
3928bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
3929 enum dma_data_direction dir, unsigned long attrs)
3930{
3931 return bounce_map_single(dev, phys_addr, size,
3932 dir, attrs, *dev->dma_mask);
3933}
3934
3935static void
3936bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
3937 enum dma_data_direction dir, unsigned long attrs)
3938{
3939 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3940}
3941
3942static void
3943bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
3944 enum dma_data_direction dir, unsigned long attrs)
3945{
3946 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3947}
3948
3949static void
3950bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3951 enum dma_data_direction dir, unsigned long attrs)
3952{
3953 struct scatterlist *sg;
3954 int i;
3955
3956 for_each_sg(sglist, sg, nelems, i)
3957 bounce_unmap_page(dev, sg->dma_address,
3958 sg_dma_len(sg), dir, attrs);
3959}
3960
3961static int
3962bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3963 enum dma_data_direction dir, unsigned long attrs)
3964{
3965 int i;
3966 struct scatterlist *sg;
3967
3968 for_each_sg(sglist, sg, nelems, i) {
3969 sg->dma_address = bounce_map_page(dev, sg_page(sg),
3970 sg->offset, sg->length,
3971 dir, attrs);
3972 if (sg->dma_address == DMA_MAPPING_ERROR)
3973 goto out_unmap;
3974 sg_dma_len(sg) = sg->length;
3975 }
3976
3977 return nelems;
3978
3979out_unmap:
3980 bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
3981 return 0;
3982}
3983
3984static void
3985bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
3986 size_t size, enum dma_data_direction dir)
3987{
3988 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
3989}
3990
3991static void
3992bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
3993 size_t size, enum dma_data_direction dir)
3994{
3995 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
3996}
3997
3998static void
3999bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
4000 int nelems, enum dma_data_direction dir)
4001{
4002 struct scatterlist *sg;
4003 int i;
4004
4005 for_each_sg(sglist, sg, nelems, i)
4006 bounce_sync_single(dev, sg_dma_address(sg),
4007 sg_dma_len(sg), dir, SYNC_FOR_CPU);
4008}
4009
4010static void
4011bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
4012 int nelems, enum dma_data_direction dir)
4013{
4014 struct scatterlist *sg;
4015 int i;
4016
4017 for_each_sg(sglist, sg, nelems, i)
4018 bounce_sync_single(dev, sg_dma_address(sg),
4019 sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
4020}
4021
4022static const struct dma_map_ops bounce_dma_ops = {
4023 .alloc = intel_alloc_coherent,
4024 .free = intel_free_coherent,
4025 .map_sg = bounce_map_sg,
4026 .unmap_sg = bounce_unmap_sg,
4027 .map_page = bounce_map_page,
4028 .unmap_page = bounce_unmap_page,
4029 .sync_single_for_cpu = bounce_sync_single_for_cpu,
4030 .sync_single_for_device = bounce_sync_single_for_device,
4031 .sync_sg_for_cpu = bounce_sync_sg_for_cpu,
4032 .sync_sg_for_device = bounce_sync_sg_for_device,
4033 .map_resource = bounce_map_resource,
4034 .unmap_resource = bounce_unmap_resource,
4035 .dma_supported = dma_direct_supported,
4036};
4037
ba395927
KA
4038static inline int iommu_domain_cache_init(void)
4039{
4040 int ret = 0;
4041
4042 iommu_domain_cache = kmem_cache_create("iommu_domain",
4043 sizeof(struct dmar_domain),
4044 0,
4045 SLAB_HWCACHE_ALIGN,
4046
4047 NULL);
4048 if (!iommu_domain_cache) {
9f10e5bf 4049 pr_err("Couldn't create iommu_domain cache\n");
ba395927
KA
4050 ret = -ENOMEM;
4051 }
4052
4053 return ret;
4054}
4055
4056static inline int iommu_devinfo_cache_init(void)
4057{
4058 int ret = 0;
4059
4060 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4061 sizeof(struct device_domain_info),
4062 0,
4063 SLAB_HWCACHE_ALIGN,
ba395927
KA
4064 NULL);
4065 if (!iommu_devinfo_cache) {
9f10e5bf 4066 pr_err("Couldn't create devinfo cache\n");
ba395927
KA
4067 ret = -ENOMEM;
4068 }
4069
4070 return ret;
4071}
4072
ba395927
KA
4073static int __init iommu_init_mempool(void)
4074{
4075 int ret;
ae1ff3d6 4076 ret = iova_cache_get();
ba395927
KA
4077 if (ret)
4078 return ret;
4079
4080 ret = iommu_domain_cache_init();
4081 if (ret)
4082 goto domain_error;
4083
4084 ret = iommu_devinfo_cache_init();
4085 if (!ret)
4086 return ret;
4087
4088 kmem_cache_destroy(iommu_domain_cache);
4089domain_error:
ae1ff3d6 4090 iova_cache_put();
ba395927
KA
4091
4092 return -ENOMEM;
4093}
4094
4095static void __init iommu_exit_mempool(void)
4096{
4097 kmem_cache_destroy(iommu_devinfo_cache);
4098 kmem_cache_destroy(iommu_domain_cache);
ae1ff3d6 4099 iova_cache_put();
ba395927
KA
4100}
4101
556ab45f
DW
4102static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4103{
4104 struct dmar_drhd_unit *drhd;
4105 u32 vtbar;
4106 int rc;
4107
4108 /* We know that this device on this chipset has its own IOMMU.
4109 * If we find it under a different IOMMU, then the BIOS is lying
4110 * to us. Hope that the IOMMU for this device is actually
4111 * disabled, and it needs no translation...
4112 */
4113 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4114 if (rc) {
4115 /* "can't" happen */
4116 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4117 return;
4118 }
4119 vtbar &= 0xffff0000;
4120
4121 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4122 drhd = dmar_find_matched_drhd_unit(pdev);
4123 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4124 TAINT_FIRMWARE_WORKAROUND,
4125 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4126 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4127}
4128DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4129
ba395927
KA
4130static void __init init_no_remapping_devices(void)
4131{
4132 struct dmar_drhd_unit *drhd;
832bd858 4133 struct device *dev;
b683b230 4134 int i;
ba395927
KA
4135
4136 for_each_drhd_unit(drhd) {
4137 if (!drhd->include_all) {
b683b230
JL
4138 for_each_active_dev_scope(drhd->devices,
4139 drhd->devices_cnt, i, dev)
4140 break;
832bd858 4141 /* ignore DMAR unit if no devices exist */
ba395927
KA
4142 if (i == drhd->devices_cnt)
4143 drhd->ignored = 1;
4144 }
4145 }
4146
7c919779 4147 for_each_active_drhd_unit(drhd) {
7c919779 4148 if (drhd->include_all)
ba395927
KA
4149 continue;
4150
b683b230
JL
4151 for_each_active_dev_scope(drhd->devices,
4152 drhd->devices_cnt, i, dev)
832bd858 4153 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
ba395927 4154 break;
ba395927
KA
4155 if (i < drhd->devices_cnt)
4156 continue;
4157
c0771df8
DW
4158 /* This IOMMU has *only* gfx devices. Either bypass it or
4159 set the gfx_mapped flag, as appropriate */
cf1ec453 4160 if (!dmar_map_gfx) {
c0771df8 4161 drhd->ignored = 1;
b683b230
JL
4162 for_each_active_dev_scope(drhd->devices,
4163 drhd->devices_cnt, i, dev)
832bd858 4164 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
4165 }
4166 }
4167}
4168
f59c7b69
FY
4169#ifdef CONFIG_SUSPEND
4170static int init_iommu_hw(void)
4171{
4172 struct dmar_drhd_unit *drhd;
4173 struct intel_iommu *iommu = NULL;
4174
4175 for_each_active_iommu(iommu, drhd)
4176 if (iommu->qi)
4177 dmar_reenable_qi(iommu);
4178
b779260b
JC
4179 for_each_iommu(iommu, drhd) {
4180 if (drhd->ignored) {
4181 /*
4182 * we always have to disable PMRs or DMA may fail on
4183 * this device
4184 */
4185 if (force_on)
4186 iommu_disable_protect_mem_regions(iommu);
4187 continue;
4188 }
095303e0 4189
f59c7b69
FY
4190 iommu_flush_write_buffer(iommu);
4191
4192 iommu_set_root_entry(iommu);
4193
4194 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4195 DMA_CCMD_GLOBAL_INVL);
2a41ccee
JL
4196 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4197 iommu_enable_translation(iommu);
b94996c9 4198 iommu_disable_protect_mem_regions(iommu);
f59c7b69
FY
4199 }
4200
4201 return 0;
4202}
4203
4204static void iommu_flush_all(void)
4205{
4206 struct dmar_drhd_unit *drhd;
4207 struct intel_iommu *iommu;
4208
4209 for_each_active_iommu(iommu, drhd) {
4210 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4211 DMA_CCMD_GLOBAL_INVL);
f59c7b69 4212 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 4213 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
4214 }
4215}
4216
134fac3f 4217static int iommu_suspend(void)
f59c7b69
FY
4218{
4219 struct dmar_drhd_unit *drhd;
4220 struct intel_iommu *iommu = NULL;
4221 unsigned long flag;
4222
4223 for_each_active_iommu(iommu, drhd) {
6396bb22 4224 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
f59c7b69
FY
4225 GFP_ATOMIC);
4226 if (!iommu->iommu_state)
4227 goto nomem;
4228 }
4229
4230 iommu_flush_all();
4231
4232 for_each_active_iommu(iommu, drhd) {
4233 iommu_disable_translation(iommu);
4234
1f5b3c3f 4235 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4236
4237 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4238 readl(iommu->reg + DMAR_FECTL_REG);
4239 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4240 readl(iommu->reg + DMAR_FEDATA_REG);
4241 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4242 readl(iommu->reg + DMAR_FEADDR_REG);
4243 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4244 readl(iommu->reg + DMAR_FEUADDR_REG);
4245
1f5b3c3f 4246 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4247 }
4248 return 0;
4249
4250nomem:
4251 for_each_active_iommu(iommu, drhd)
4252 kfree(iommu->iommu_state);
4253
4254 return -ENOMEM;
4255}
4256
134fac3f 4257static void iommu_resume(void)
f59c7b69
FY
4258{
4259 struct dmar_drhd_unit *drhd;
4260 struct intel_iommu *iommu = NULL;
4261 unsigned long flag;
4262
4263 if (init_iommu_hw()) {
b779260b
JC
4264 if (force_on)
4265 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4266 else
4267 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
134fac3f 4268 return;
f59c7b69
FY
4269 }
4270
4271 for_each_active_iommu(iommu, drhd) {
4272
1f5b3c3f 4273 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4274
4275 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4276 iommu->reg + DMAR_FECTL_REG);
4277 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4278 iommu->reg + DMAR_FEDATA_REG);
4279 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4280 iommu->reg + DMAR_FEADDR_REG);
4281 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4282 iommu->reg + DMAR_FEUADDR_REG);
4283
1f5b3c3f 4284 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4285 }
4286
4287 for_each_active_iommu(iommu, drhd)
4288 kfree(iommu->iommu_state);
f59c7b69
FY
4289}
4290
134fac3f 4291static struct syscore_ops iommu_syscore_ops = {
f59c7b69
FY
4292 .resume = iommu_resume,
4293 .suspend = iommu_suspend,
4294};
4295
134fac3f 4296static void __init init_iommu_pm_ops(void)
f59c7b69 4297{
134fac3f 4298 register_syscore_ops(&iommu_syscore_ops);
f59c7b69
FY
4299}
4300
4301#else
99592ba4 4302static inline void init_iommu_pm_ops(void) {}
f59c7b69
FY
4303#endif /* CONFIG_PM */
4304
c2a0b538 4305int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
318fe7df
SS
4306{
4307 struct acpi_dmar_reserved_memory *rmrr;
4308 struct dmar_rmrr_unit *rmrru;
4309
4310 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4311 if (!rmrru)
0659b8dc 4312 goto out;
318fe7df
SS
4313
4314 rmrru->hdr = header;
4315 rmrr = (struct acpi_dmar_reserved_memory *)header;
4316 rmrru->base_address = rmrr->base_address;
4317 rmrru->end_address = rmrr->end_address;
0659b8dc 4318
2e455289
JL
4319 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4320 ((void *)rmrr) + rmrr->header.length,
4321 &rmrru->devices_cnt);
0659b8dc 4322 if (rmrru->devices_cnt && rmrru->devices == NULL)
5f64ce54 4323 goto free_rmrru;
318fe7df 4324
2e455289 4325 list_add(&rmrru->list, &dmar_rmrr_units);
318fe7df 4326
2e455289 4327 return 0;
0659b8dc
EA
4328free_rmrru:
4329 kfree(rmrru);
4330out:
4331 return -ENOMEM;
318fe7df
SS
4332}
4333
6b197249
JL
4334static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4335{
4336 struct dmar_atsr_unit *atsru;
4337 struct acpi_dmar_atsr *tmp;
4338
4339 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4340 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4341 if (atsr->segment != tmp->segment)
4342 continue;
4343 if (atsr->header.length != tmp->header.length)
4344 continue;
4345 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4346 return atsru;
4347 }
4348
4349 return NULL;
4350}
4351
4352int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
318fe7df
SS
4353{
4354 struct acpi_dmar_atsr *atsr;
4355 struct dmar_atsr_unit *atsru;
4356
b608fe35 4357 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
6b197249
JL
4358 return 0;
4359
318fe7df 4360 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
6b197249
JL
4361 atsru = dmar_find_atsr(atsr);
4362 if (atsru)
4363 return 0;
4364
4365 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
318fe7df
SS
4366 if (!atsru)
4367 return -ENOMEM;
4368
6b197249
JL
4369 /*
4370 * If memory is allocated from slab by ACPI _DSM method, we need to
4371 * copy the memory content because the memory buffer will be freed
4372 * on return.
4373 */
4374 atsru->hdr = (void *)(atsru + 1);
4375 memcpy(atsru->hdr, hdr, hdr->length);
318fe7df 4376 atsru->include_all = atsr->flags & 0x1;
2e455289
JL
4377 if (!atsru->include_all) {
4378 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4379 (void *)atsr + atsr->header.length,
4380 &atsru->devices_cnt);
4381 if (atsru->devices_cnt && atsru->devices == NULL) {
4382 kfree(atsru);
4383 return -ENOMEM;
4384 }
4385 }
318fe7df 4386
0e242612 4387 list_add_rcu(&atsru->list, &dmar_atsr_units);
318fe7df
SS
4388
4389 return 0;
4390}
4391
9bdc531e
JL
4392static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4393{
4394 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4395 kfree(atsru);
4396}
4397
6b197249
JL
4398int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4399{
4400 struct acpi_dmar_atsr *atsr;
4401 struct dmar_atsr_unit *atsru;
4402
4403 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4404 atsru = dmar_find_atsr(atsr);
4405 if (atsru) {
4406 list_del_rcu(&atsru->list);
4407 synchronize_rcu();
4408 intel_iommu_free_atsr(atsru);
4409 }
4410
4411 return 0;
4412}
4413
4414int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4415{
4416 int i;
4417 struct device *dev;
4418 struct acpi_dmar_atsr *atsr;
4419 struct dmar_atsr_unit *atsru;
4420
4421 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4422 atsru = dmar_find_atsr(atsr);
4423 if (!atsru)
4424 return 0;
4425
194dc870 4426 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
6b197249
JL
4427 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4428 i, dev)
4429 return -EBUSY;
194dc870 4430 }
6b197249
JL
4431
4432 return 0;
4433}
4434
ffebeb46
JL
4435static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4436{
e083ea5b 4437 int sp, ret;
ffebeb46
JL
4438 struct intel_iommu *iommu = dmaru->iommu;
4439
4440 if (g_iommus[iommu->seq_id])
4441 return 0;
4442
4443 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
9f10e5bf 4444 pr_warn("%s: Doesn't support hardware pass through.\n",
ffebeb46
JL
4445 iommu->name);
4446 return -ENXIO;
4447 }
4448 if (!ecap_sc_support(iommu->ecap) &&
4449 domain_update_iommu_snooping(iommu)) {
9f10e5bf 4450 pr_warn("%s: Doesn't support snooping.\n",
ffebeb46
JL
4451 iommu->name);
4452 return -ENXIO;
4453 }
4454 sp = domain_update_iommu_superpage(iommu) - 1;
4455 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
9f10e5bf 4456 pr_warn("%s: Doesn't support large page.\n",
ffebeb46
JL
4457 iommu->name);
4458 return -ENXIO;
4459 }
4460
4461 /*
4462 * Disable translation if already enabled prior to OS handover.
4463 */
4464 if (iommu->gcmd & DMA_GCMD_TE)
4465 iommu_disable_translation(iommu);
4466
4467 g_iommus[iommu->seq_id] = iommu;
4468 ret = iommu_init_domains(iommu);
4469 if (ret == 0)
4470 ret = iommu_alloc_root_entry(iommu);
4471 if (ret)
4472 goto out;
4473
8a94ade4 4474#ifdef CONFIG_INTEL_IOMMU_SVM
765b6a98 4475 if (pasid_supported(iommu))
d9737953 4476 intel_svm_init(iommu);
8a94ade4
DW
4477#endif
4478
ffebeb46
JL
4479 if (dmaru->ignored) {
4480 /*
4481 * we always have to disable PMRs or DMA may fail on this device
4482 */
4483 if (force_on)
4484 iommu_disable_protect_mem_regions(iommu);
4485 return 0;
4486 }
4487
4488 intel_iommu_init_qi(iommu);
4489 iommu_flush_write_buffer(iommu);
a222a7f0
DW
4490
4491#ifdef CONFIG_INTEL_IOMMU_SVM
765b6a98 4492 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
a222a7f0
DW
4493 ret = intel_svm_enable_prq(iommu);
4494 if (ret)
4495 goto disable_iommu;
4496 }
4497#endif
ffebeb46
JL
4498 ret = dmar_set_interrupt(iommu);
4499 if (ret)
4500 goto disable_iommu;
4501
4502 iommu_set_root_entry(iommu);
4503 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4504 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4505 iommu_enable_translation(iommu);
4506
ffebeb46
JL
4507 iommu_disable_protect_mem_regions(iommu);
4508 return 0;
4509
4510disable_iommu:
4511 disable_dmar_iommu(iommu);
4512out:
4513 free_dmar_iommu(iommu);
4514 return ret;
4515}
4516
6b197249
JL
4517int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4518{
ffebeb46
JL
4519 int ret = 0;
4520 struct intel_iommu *iommu = dmaru->iommu;
4521
4522 if (!intel_iommu_enabled)
4523 return 0;
4524 if (iommu == NULL)
4525 return -EINVAL;
4526
4527 if (insert) {
4528 ret = intel_iommu_add(dmaru);
4529 } else {
4530 disable_dmar_iommu(iommu);
4531 free_dmar_iommu(iommu);
4532 }
4533
4534 return ret;
6b197249
JL
4535}
4536
9bdc531e
JL
4537static void intel_iommu_free_dmars(void)
4538{
4539 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4540 struct dmar_atsr_unit *atsru, *atsr_n;
4541
4542 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4543 list_del(&rmrru->list);
4544 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4545 kfree(rmrru);
318fe7df
SS
4546 }
4547
9bdc531e
JL
4548 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4549 list_del(&atsru->list);
4550 intel_iommu_free_atsr(atsru);
4551 }
318fe7df
SS
4552}
4553
4554int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4555{
b683b230 4556 int i, ret = 1;
318fe7df 4557 struct pci_bus *bus;
832bd858
DW
4558 struct pci_dev *bridge = NULL;
4559 struct device *tmp;
318fe7df
SS
4560 struct acpi_dmar_atsr *atsr;
4561 struct dmar_atsr_unit *atsru;
4562
4563 dev = pci_physfn(dev);
318fe7df 4564 for (bus = dev->bus; bus; bus = bus->parent) {
b5f82ddf 4565 bridge = bus->self;
d14053b3
DW
4566 /* If it's an integrated device, allow ATS */
4567 if (!bridge)
4568 return 1;
4569 /* Connected via non-PCIe: no ATS */
4570 if (!pci_is_pcie(bridge) ||
62f87c0e 4571 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
318fe7df 4572 return 0;
d14053b3 4573 /* If we found the root port, look it up in the ATSR */
b5f82ddf 4574 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
318fe7df 4575 break;
318fe7df
SS
4576 }
4577
0e242612 4578 rcu_read_lock();
b5f82ddf
JL
4579 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4580 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4581 if (atsr->segment != pci_domain_nr(dev->bus))
4582 continue;
4583
b683b230 4584 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
832bd858 4585 if (tmp == &bridge->dev)
b683b230 4586 goto out;
b5f82ddf
JL
4587
4588 if (atsru->include_all)
b683b230 4589 goto out;
b5f82ddf 4590 }
b683b230
JL
4591 ret = 0;
4592out:
0e242612 4593 rcu_read_unlock();
318fe7df 4594
b683b230 4595 return ret;
318fe7df
SS
4596}
4597
59ce0515
JL
4598int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4599{
e083ea5b 4600 int ret;
59ce0515
JL
4601 struct dmar_rmrr_unit *rmrru;
4602 struct dmar_atsr_unit *atsru;
4603 struct acpi_dmar_atsr *atsr;
4604 struct acpi_dmar_reserved_memory *rmrr;
4605
b608fe35 4606 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
59ce0515
JL
4607 return 0;
4608
4609 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4610 rmrr = container_of(rmrru->hdr,
4611 struct acpi_dmar_reserved_memory, header);
4612 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4613 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4614 ((void *)rmrr) + rmrr->header.length,
4615 rmrr->segment, rmrru->devices,
4616 rmrru->devices_cnt);
e083ea5b 4617 if (ret < 0)
59ce0515 4618 return ret;
e6a8c9b3 4619 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
27e24950
JL
4620 dmar_remove_dev_scope(info, rmrr->segment,
4621 rmrru->devices, rmrru->devices_cnt);
59ce0515
JL
4622 }
4623 }
4624
4625 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4626 if (atsru->include_all)
4627 continue;
4628
4629 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4630 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4631 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4632 (void *)atsr + atsr->header.length,
4633 atsr->segment, atsru->devices,
4634 atsru->devices_cnt);
4635 if (ret > 0)
4636 break;
e083ea5b 4637 else if (ret < 0)
59ce0515 4638 return ret;
e6a8c9b3 4639 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
59ce0515
JL
4640 if (dmar_remove_dev_scope(info, atsr->segment,
4641 atsru->devices, atsru->devices_cnt))
4642 break;
4643 }
4644 }
4645
4646 return 0;
4647}
4648
75f05569
JL
4649static int intel_iommu_memory_notifier(struct notifier_block *nb,
4650 unsigned long val, void *v)
4651{
4652 struct memory_notify *mhp = v;
4653 unsigned long long start, end;
4654 unsigned long start_vpfn, last_vpfn;
4655
4656 switch (val) {
4657 case MEM_GOING_ONLINE:
4658 start = mhp->start_pfn << PAGE_SHIFT;
4659 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4660 if (iommu_domain_identity_map(si_domain, start, end)) {
9f10e5bf 4661 pr_warn("Failed to build identity map for [%llx-%llx]\n",
75f05569
JL
4662 start, end);
4663 return NOTIFY_BAD;
4664 }
4665 break;
4666
4667 case MEM_OFFLINE:
4668 case MEM_CANCEL_ONLINE:
4669 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4670 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4671 while (start_vpfn <= last_vpfn) {
4672 struct iova *iova;
4673 struct dmar_drhd_unit *drhd;
4674 struct intel_iommu *iommu;
ea8ea460 4675 struct page *freelist;
75f05569
JL
4676
4677 iova = find_iova(&si_domain->iovad, start_vpfn);
4678 if (iova == NULL) {
9f10e5bf 4679 pr_debug("Failed get IOVA for PFN %lx\n",
75f05569
JL
4680 start_vpfn);
4681 break;
4682 }
4683
4684 iova = split_and_remove_iova(&si_domain->iovad, iova,
4685 start_vpfn, last_vpfn);
4686 if (iova == NULL) {
9f10e5bf 4687 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
75f05569
JL
4688 start_vpfn, last_vpfn);
4689 return NOTIFY_BAD;
4690 }
4691
ea8ea460
DW
4692 freelist = domain_unmap(si_domain, iova->pfn_lo,
4693 iova->pfn_hi);
4694
75f05569
JL
4695 rcu_read_lock();
4696 for_each_active_iommu(iommu, drhd)
a1ddcbe9 4697 iommu_flush_iotlb_psi(iommu, si_domain,
a156ef99 4698 iova->pfn_lo, iova_size(iova),
ea8ea460 4699 !freelist, 0);
75f05569 4700 rcu_read_unlock();
ea8ea460 4701 dma_free_pagelist(freelist);
75f05569
JL
4702
4703 start_vpfn = iova->pfn_hi + 1;
4704 free_iova_mem(iova);
4705 }
4706 break;
4707 }
4708
4709 return NOTIFY_OK;
4710}
4711
4712static struct notifier_block intel_iommu_memory_nb = {
4713 .notifier_call = intel_iommu_memory_notifier,
4714 .priority = 0
4715};
4716
22e2f9fa
OP
4717static void free_all_cpu_cached_iovas(unsigned int cpu)
4718{
4719 int i;
4720
4721 for (i = 0; i < g_num_of_iommus; i++) {
4722 struct intel_iommu *iommu = g_iommus[i];
4723 struct dmar_domain *domain;
0caa7616 4724 int did;
22e2f9fa
OP
4725
4726 if (!iommu)
4727 continue;
4728
3bd4f911 4729 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
0caa7616 4730 domain = get_iommu_domain(iommu, (u16)did);
22e2f9fa
OP
4731
4732 if (!domain)
4733 continue;
4734 free_cpu_cached_iovas(cpu, &domain->iovad);
4735 }
4736 }
4737}
4738
21647615 4739static int intel_iommu_cpu_dead(unsigned int cpu)
aa473240 4740{
21647615 4741 free_all_cpu_cached_iovas(cpu);
21647615 4742 return 0;
aa473240
OP
4743}
4744
161b28aa
JR
4745static void intel_disable_iommus(void)
4746{
4747 struct intel_iommu *iommu = NULL;
4748 struct dmar_drhd_unit *drhd;
4749
4750 for_each_iommu(iommu, drhd)
4751 iommu_disable_translation(iommu);
4752}
4753
a7fdb6e6
JR
4754static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4755{
2926a2aa
JR
4756 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4757
4758 return container_of(iommu_dev, struct intel_iommu, iommu);
a7fdb6e6
JR
4759}
4760
a5459cfe
AW
4761static ssize_t intel_iommu_show_version(struct device *dev,
4762 struct device_attribute *attr,
4763 char *buf)
4764{
a7fdb6e6 4765 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
a5459cfe
AW
4766 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4767 return sprintf(buf, "%d:%d\n",
4768 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4769}
4770static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4771
4772static ssize_t intel_iommu_show_address(struct device *dev,
4773 struct device_attribute *attr,
4774 char *buf)
4775{
a7fdb6e6 4776 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
a5459cfe
AW
4777 return sprintf(buf, "%llx\n", iommu->reg_phys);
4778}
4779static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4780
4781static ssize_t intel_iommu_show_cap(struct device *dev,
4782 struct device_attribute *attr,
4783 char *buf)
4784{
a7fdb6e6 4785 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
a5459cfe
AW
4786 return sprintf(buf, "%llx\n", iommu->cap);
4787}
4788static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4789
4790static ssize_t intel_iommu_show_ecap(struct device *dev,
4791 struct device_attribute *attr,
4792 char *buf)
4793{
a7fdb6e6 4794 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
a5459cfe
AW
4795 return sprintf(buf, "%llx\n", iommu->ecap);
4796}
4797static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4798
2238c082
AW
4799static ssize_t intel_iommu_show_ndoms(struct device *dev,
4800 struct device_attribute *attr,
4801 char *buf)
4802{
a7fdb6e6 4803 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2238c082
AW
4804 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4805}
4806static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4807
4808static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4809 struct device_attribute *attr,
4810 char *buf)
4811{
a7fdb6e6 4812 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
2238c082
AW
4813 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4814 cap_ndoms(iommu->cap)));
4815}
4816static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4817
a5459cfe
AW
4818static struct attribute *intel_iommu_attrs[] = {
4819 &dev_attr_version.attr,
4820 &dev_attr_address.attr,
4821 &dev_attr_cap.attr,
4822 &dev_attr_ecap.attr,
2238c082
AW
4823 &dev_attr_domains_supported.attr,
4824 &dev_attr_domains_used.attr,
a5459cfe
AW
4825 NULL,
4826};
4827
4828static struct attribute_group intel_iommu_group = {
4829 .name = "intel-iommu",
4830 .attrs = intel_iommu_attrs,
4831};
4832
4833const struct attribute_group *intel_iommu_groups[] = {
4834 &intel_iommu_group,
4835 NULL,
4836};
4837
c5a5dc4c 4838static inline bool has_untrusted_dev(void)
89a6079d
LB
4839{
4840 struct pci_dev *pdev = NULL;
89a6079d 4841
c5a5dc4c
LB
4842 for_each_pci_dev(pdev)
4843 if (pdev->untrusted)
4844 return true;
89a6079d 4845
c5a5dc4c
LB
4846 return false;
4847}
89a6079d 4848
c5a5dc4c
LB
4849static int __init platform_optin_force_iommu(void)
4850{
4851 if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
89a6079d
LB
4852 return 0;
4853
4854 if (no_iommu || dmar_disabled)
4855 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4856
4857 /*
4858 * If Intel-IOMMU is disabled by default, we will apply identity
4859 * map for all devices except those marked as being untrusted.
4860 */
4861 if (dmar_disabled)
4862 iommu_identity_mapping |= IDENTMAP_ALL;
4863
4864 dmar_disabled = 0;
89a6079d
LB
4865 no_iommu = 0;
4866
4867 return 1;
4868}
4869
fa212a97
LB
4870static int __init probe_acpi_namespace_devices(void)
4871{
4872 struct dmar_drhd_unit *drhd;
af88ec39
QC
4873 /* To avoid a -Wunused-but-set-variable warning. */
4874 struct intel_iommu *iommu __maybe_unused;
fa212a97
LB
4875 struct device *dev;
4876 int i, ret = 0;
4877
4878 for_each_active_iommu(iommu, drhd) {
4879 for_each_active_dev_scope(drhd->devices,
4880 drhd->devices_cnt, i, dev) {
4881 struct acpi_device_physical_node *pn;
4882 struct iommu_group *group;
4883 struct acpi_device *adev;
4884
4885 if (dev->bus != &acpi_bus_type)
4886 continue;
4887
4888 adev = to_acpi_device(dev);
4889 mutex_lock(&adev->physical_node_lock);
4890 list_for_each_entry(pn,
4891 &adev->physical_node_list, node) {
4892 group = iommu_group_get(pn->dev);
4893 if (group) {
4894 iommu_group_put(group);
4895 continue;
4896 }
4897
4898 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4899 ret = iommu_probe_device(pn->dev);
4900 if (ret)
4901 break;
4902 }
4903 mutex_unlock(&adev->physical_node_lock);
4904
4905 if (ret)
4906 return ret;
4907 }
4908 }
4909
4910 return 0;
4911}
4912
ba395927
KA
4913int __init intel_iommu_init(void)
4914{
9bdc531e 4915 int ret = -ENODEV;
3a93c841 4916 struct dmar_drhd_unit *drhd;
7c919779 4917 struct intel_iommu *iommu;
ba395927 4918
89a6079d
LB
4919 /*
4920 * Intel IOMMU is required for a TXT/tboot launch or platform
4921 * opt in, so enforce that.
4922 */
4923 force_on = tboot_force_iommu() || platform_optin_force_iommu();
a59b50e9 4924
3a5670e8
JL
4925 if (iommu_init_mempool()) {
4926 if (force_on)
4927 panic("tboot: Failed to initialize iommu memory\n");
4928 return -ENOMEM;
4929 }
4930
4931 down_write(&dmar_global_lock);
a59b50e9
JC
4932 if (dmar_table_init()) {
4933 if (force_on)
4934 panic("tboot: Failed to initialize DMAR table\n");
9bdc531e 4935 goto out_free_dmar;
a59b50e9 4936 }
ba395927 4937
c2c7286a 4938 if (dmar_dev_scope_init() < 0) {
a59b50e9
JC
4939 if (force_on)
4940 panic("tboot: Failed to initialize DMAR device scope\n");
9bdc531e 4941 goto out_free_dmar;
a59b50e9 4942 }
1886e8a9 4943
ec154bf5
JR
4944 up_write(&dmar_global_lock);
4945
4946 /*
4947 * The bus notifier takes the dmar_global_lock, so lockdep will
4948 * complain later when we register it under the lock.
4949 */
4950 dmar_register_bus_notifier();
4951
4952 down_write(&dmar_global_lock);
4953
161b28aa 4954 if (no_iommu || dmar_disabled) {
bfd20f1c
SL
4955 /*
4956 * We exit the function here to ensure IOMMU's remapping and
4957 * mempool aren't setup, which means that the IOMMU's PMRs
4958 * won't be disabled via the call to init_dmars(). So disable
4959 * it explicitly here. The PMRs were setup by tboot prior to
4960 * calling SENTER, but the kernel is expected to reset/tear
4961 * down the PMRs.
4962 */
4963 if (intel_iommu_tboot_noforce) {
4964 for_each_iommu(iommu, drhd)
4965 iommu_disable_protect_mem_regions(iommu);
4966 }
4967
161b28aa
JR
4968 /*
4969 * Make sure the IOMMUs are switched off, even when we
4970 * boot into a kexec kernel and the previous kernel left
4971 * them enabled
4972 */
4973 intel_disable_iommus();
9bdc531e 4974 goto out_free_dmar;
161b28aa 4975 }
2ae21010 4976
318fe7df 4977 if (list_empty(&dmar_rmrr_units))
9f10e5bf 4978 pr_info("No RMRR found\n");
318fe7df
SS
4979
4980 if (list_empty(&dmar_atsr_units))
9f10e5bf 4981 pr_info("No ATSR found\n");
318fe7df 4982
51a63e67
JC
4983 if (dmar_init_reserved_ranges()) {
4984 if (force_on)
4985 panic("tboot: Failed to reserve iommu ranges\n");
3a5670e8 4986 goto out_free_reserved_range;
51a63e67 4987 }
ba395927 4988
cf1ec453
LB
4989 if (dmar_map_gfx)
4990 intel_iommu_gfx_mapped = 1;
4991
ba395927
KA
4992 init_no_remapping_devices();
4993
b779260b 4994 ret = init_dmars();
ba395927 4995 if (ret) {
a59b50e9
JC
4996 if (force_on)
4997 panic("tboot: Failed to initialize DMARs\n");
9f10e5bf 4998 pr_err("Initialization failed\n");
9bdc531e 4999 goto out_free_reserved_range;
ba395927 5000 }
3a5670e8 5001 up_write(&dmar_global_lock);
ba395927 5002
4fac8076 5003#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
c5a5dc4c
LB
5004 /*
5005 * If the system has no untrusted device or the user has decided
5006 * to disable the bounce page mechanisms, we don't need swiotlb.
5007 * Mark this and the pre-allocated bounce pages will be released
5008 * later.
5009 */
5010 if (!has_untrusted_dev() || intel_no_bounce)
5011 swiotlb = 0;
75f1cdf1 5012#endif
19943b0e 5013 dma_ops = &intel_dma_ops;
4ed0d3e6 5014
134fac3f 5015 init_iommu_pm_ops();
a8bcbb0d 5016
39ab9555
JR
5017 for_each_active_iommu(iommu, drhd) {
5018 iommu_device_sysfs_add(&iommu->iommu, NULL,
5019 intel_iommu_groups,
5020 "%s", iommu->name);
5021 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
5022 iommu_device_register(&iommu->iommu);
5023 }
a5459cfe 5024
4236d97d 5025 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
75f05569
JL
5026 if (si_domain && !hw_pass_through)
5027 register_memory_notifier(&intel_iommu_memory_nb);
21647615
AMG
5028 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
5029 intel_iommu_cpu_dead);
d8190dc6 5030
d5692d4a 5031 down_read(&dmar_global_lock);
fa212a97
LB
5032 if (probe_acpi_namespace_devices())
5033 pr_warn("ACPI name space devices didn't probe correctly\n");
d5692d4a 5034 up_read(&dmar_global_lock);
fa212a97 5035
d8190dc6
LB
5036 /* Finally, we enable the DMA remapping hardware. */
5037 for_each_iommu(iommu, drhd) {
6a8c6748 5038 if (!drhd->ignored && !translation_pre_enabled(iommu))
d8190dc6
LB
5039 iommu_enable_translation(iommu);
5040
5041 iommu_disable_protect_mem_regions(iommu);
5042 }
5043 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
5044
8bc1f85c 5045 intel_iommu_enabled = 1;
ee2636b8 5046 intel_iommu_debugfs_init();
8bc1f85c 5047
ba395927 5048 return 0;
9bdc531e
JL
5049
5050out_free_reserved_range:
5051 put_iova_domain(&reserved_iova_list);
9bdc531e
JL
5052out_free_dmar:
5053 intel_iommu_free_dmars();
3a5670e8
JL
5054 up_write(&dmar_global_lock);
5055 iommu_exit_mempool();
9bdc531e 5056 return ret;
ba395927 5057}
e820482c 5058
0ce4a85f
LB
5059static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
5060{
5061 struct intel_iommu *iommu = opaque;
5062
5063 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
5064 return 0;
5065}
5066
5067/*
5068 * NB - intel-iommu lacks any sort of reference counting for the users of
5069 * dependent devices. If multiple endpoints have intersecting dependent
5070 * devices, unbinding the driver from any one of them will possibly leave
5071 * the others unable to operate.
5072 */
5073static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
5074{
5075 if (!iommu || !dev || !dev_is_pci(dev))
5076 return;
5077
5078 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
5079}
5080
127c7615 5081static void __dmar_remove_one_dev_info(struct device_domain_info *info)
c7151a8d 5082{
942067f1 5083 struct dmar_domain *domain;
c7151a8d
WH
5084 struct intel_iommu *iommu;
5085 unsigned long flags;
c7151a8d 5086
55d94043
JR
5087 assert_spin_locked(&device_domain_lock);
5088
127c7615 5089 if (WARN_ON(!info))
c7151a8d
WH
5090 return;
5091
127c7615 5092 iommu = info->iommu;
942067f1 5093 domain = info->domain;
c7151a8d 5094
127c7615 5095 if (info->dev) {
ef848b7e
LB
5096 if (dev_is_pci(info->dev) && sm_supported(iommu))
5097 intel_pasid_tear_down_entry(iommu, info->dev,
5098 PASID_RID2PASID);
5099
127c7615 5100 iommu_disable_dev_iotlb(info);
0ce4a85f 5101 domain_context_clear(iommu, info->dev);
a7fc93fe 5102 intel_pasid_free_table(info->dev);
127c7615 5103 }
c7151a8d 5104
b608ac3b 5105 unlink_domain_info(info);
c7151a8d 5106
d160aca5 5107 spin_lock_irqsave(&iommu->lock, flags);
942067f1 5108 domain_detach_iommu(domain, iommu);
d160aca5 5109 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d 5110
942067f1
LB
5111 /* free the private domain */
5112 if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
3a18844d
LB
5113 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
5114 list_empty(&domain->devices))
942067f1
LB
5115 domain_exit(info->domain);
5116
127c7615 5117 free_devinfo_mem(info);
c7151a8d 5118}
c7151a8d 5119
71753239 5120static void dmar_remove_one_dev_info(struct device *dev)
55d94043 5121{
127c7615 5122 struct device_domain_info *info;
55d94043 5123 unsigned long flags;
3e7abe25 5124
55d94043 5125 spin_lock_irqsave(&device_domain_lock, flags);
127c7615 5126 info = dev->archdata.iommu;
ae23bfb6
LB
5127 if (info)
5128 __dmar_remove_one_dev_info(info);
55d94043 5129 spin_unlock_irqrestore(&device_domain_lock, flags);
c7151a8d
WH
5130}
5131
301e7ee1
JR
5132static int md_domain_init(struct dmar_domain *domain, int guest_width)
5133{
5134 int adjust_width;
5135
5136 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5137 domain_reserve_special_ranges(domain);
5138
5139 /* calculate AGAW */
5140 domain->gaw = guest_width;
5141 adjust_width = guestwidth_to_adjustwidth(guest_width);
5142 domain->agaw = width_to_agaw(adjust_width);
5143
5144 domain->iommu_coherency = 0;
5145 domain->iommu_snooping = 0;
5146 domain->iommu_superpage = 0;
5147 domain->max_addr = 0;
5148
5149 /* always allocate the top pgd */
5150 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5151 if (!domain->pgd)
5152 return -ENOMEM;
5153 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5154 return 0;
5155}
5156
00a77deb 5157static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
38717946 5158{
5d450806 5159 struct dmar_domain *dmar_domain;
00a77deb
JR
5160 struct iommu_domain *domain;
5161
4de354ec 5162 switch (type) {
fa954e68
LB
5163 case IOMMU_DOMAIN_DMA:
5164 /* fallthrough */
4de354ec 5165 case IOMMU_DOMAIN_UNMANAGED:
fa954e68 5166 dmar_domain = alloc_domain(0);
4de354ec
LB
5167 if (!dmar_domain) {
5168 pr_err("Can't allocate dmar_domain\n");
5169 return NULL;
5170 }
301e7ee1 5171 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4de354ec
LB
5172 pr_err("Domain initialization failed\n");
5173 domain_exit(dmar_domain);
5174 return NULL;
5175 }
fa954e68
LB
5176
5177 if (type == IOMMU_DOMAIN_DMA &&
5178 init_iova_flush_queue(&dmar_domain->iovad,
5179 iommu_flush_iova, iova_entry_free)) {
5180 pr_warn("iova flush queue initialization failed\n");
5181 intel_iommu_strict = 1;
5182 }
5183
4de354ec 5184 domain_update_iommu_cap(dmar_domain);
38717946 5185
4de354ec
LB
5186 domain = &dmar_domain->domain;
5187 domain->geometry.aperture_start = 0;
5188 domain->geometry.aperture_end =
5189 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5190 domain->geometry.force_aperture = true;
5191
5192 return domain;
5193 case IOMMU_DOMAIN_IDENTITY:
5194 return &si_domain->domain;
5195 default:
00a77deb 5196 return NULL;
38717946 5197 }
8a0e715b 5198
4de354ec 5199 return NULL;
38717946 5200}
38717946 5201
00a77deb 5202static void intel_iommu_domain_free(struct iommu_domain *domain)
38717946 5203{
4de354ec
LB
5204 if (domain != &si_domain->domain)
5205 domain_exit(to_dmar_domain(domain));
38717946 5206}
38717946 5207
67b8e02b
LB
5208/*
5209 * Check whether a @domain could be attached to the @dev through the
5210 * aux-domain attach/detach APIs.
5211 */
5212static inline bool
5213is_aux_domain(struct device *dev, struct iommu_domain *domain)
5214{
5215 struct device_domain_info *info = dev->archdata.iommu;
5216
5217 return info && info->auxd_enabled &&
5218 domain->type == IOMMU_DOMAIN_UNMANAGED;
5219}
5220
5221static void auxiliary_link_device(struct dmar_domain *domain,
5222 struct device *dev)
5223{
5224 struct device_domain_info *info = dev->archdata.iommu;
5225
5226 assert_spin_locked(&device_domain_lock);
5227 if (WARN_ON(!info))
5228 return;
5229
5230 domain->auxd_refcnt++;
5231 list_add(&domain->auxd, &info->auxiliary_domains);
5232}
5233
5234static void auxiliary_unlink_device(struct dmar_domain *domain,
5235 struct device *dev)
5236{
5237 struct device_domain_info *info = dev->archdata.iommu;
5238
5239 assert_spin_locked(&device_domain_lock);
5240 if (WARN_ON(!info))
5241 return;
5242
5243 list_del(&domain->auxd);
5244 domain->auxd_refcnt--;
5245
5246 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5247 intel_pasid_free_id(domain->default_pasid);
5248}
5249
5250static int aux_domain_add_dev(struct dmar_domain *domain,
5251 struct device *dev)
5252{
5253 int ret;
5254 u8 bus, devfn;
5255 unsigned long flags;
5256 struct intel_iommu *iommu;
5257
5258 iommu = device_to_iommu(dev, &bus, &devfn);
5259 if (!iommu)
5260 return -ENODEV;
5261
5262 if (domain->default_pasid <= 0) {
5263 int pasid;
5264
5265 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5266 pci_max_pasids(to_pci_dev(dev)),
5267 GFP_KERNEL);
5268 if (pasid <= 0) {
5269 pr_err("Can't allocate default pasid\n");
5270 return -ENODEV;
5271 }
5272 domain->default_pasid = pasid;
5273 }
5274
5275 spin_lock_irqsave(&device_domain_lock, flags);
5276 /*
5277 * iommu->lock must be held to attach domain to iommu and setup the
5278 * pasid entry for second level translation.
5279 */
5280 spin_lock(&iommu->lock);
5281 ret = domain_attach_iommu(domain, iommu);
5282 if (ret)
5283 goto attach_failed;
5284
5285 /* Setup the PASID entry for mediated devices: */
5286 ret = intel_pasid_setup_second_level(iommu, domain, dev,
5287 domain->default_pasid);
5288 if (ret)
5289 goto table_failed;
5290 spin_unlock(&iommu->lock);
5291
5292 auxiliary_link_device(domain, dev);
5293
5294 spin_unlock_irqrestore(&device_domain_lock, flags);
5295
5296 return 0;
5297
5298table_failed:
5299 domain_detach_iommu(domain, iommu);
5300attach_failed:
5301 spin_unlock(&iommu->lock);
5302 spin_unlock_irqrestore(&device_domain_lock, flags);
5303 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5304 intel_pasid_free_id(domain->default_pasid);
5305
5306 return ret;
5307}
5308
5309static void aux_domain_remove_dev(struct dmar_domain *domain,
5310 struct device *dev)
5311{
5312 struct device_domain_info *info;
5313 struct intel_iommu *iommu;
5314 unsigned long flags;
5315
5316 if (!is_aux_domain(dev, &domain->domain))
5317 return;
5318
5319 spin_lock_irqsave(&device_domain_lock, flags);
5320 info = dev->archdata.iommu;
5321 iommu = info->iommu;
5322
5323 auxiliary_unlink_device(domain, dev);
5324
5325 spin_lock(&iommu->lock);
5326 intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5327 domain_detach_iommu(domain, iommu);
5328 spin_unlock(&iommu->lock);
5329
5330 spin_unlock_irqrestore(&device_domain_lock, flags);
5331}
5332
8cc3759a
LB
5333static int prepare_domain_attach_device(struct iommu_domain *domain,
5334 struct device *dev)
38717946 5335{
00a77deb 5336 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0
WH
5337 struct intel_iommu *iommu;
5338 int addr_width;
156baca8 5339 u8 bus, devfn;
faa3d6f5 5340
156baca8 5341 iommu = device_to_iommu(dev, &bus, &devfn);
fe40f1e0
WH
5342 if (!iommu)
5343 return -ENODEV;
5344
5345 /* check if this iommu agaw is sufficient for max mapped address */
5346 addr_width = agaw_to_width(iommu->agaw);
a99c47a2
TL
5347 if (addr_width > cap_mgaw(iommu->cap))
5348 addr_width = cap_mgaw(iommu->cap);
5349
5350 if (dmar_domain->max_addr > (1LL << addr_width)) {
932a6523
BH
5351 dev_err(dev, "%s: iommu width (%d) is not "
5352 "sufficient for the mapped address (%llx)\n",
5353 __func__, addr_width, dmar_domain->max_addr);
fe40f1e0
WH
5354 return -EFAULT;
5355 }
a99c47a2
TL
5356 dmar_domain->gaw = addr_width;
5357
5358 /*
5359 * Knock out extra levels of page tables if necessary
5360 */
5361 while (iommu->agaw < dmar_domain->agaw) {
5362 struct dma_pte *pte;
5363
5364 pte = dmar_domain->pgd;
5365 if (dma_pte_present(pte)) {
25cbff16
SY
5366 dmar_domain->pgd = (struct dma_pte *)
5367 phys_to_virt(dma_pte_addr(pte));
7a661013 5368 free_pgtable_page(pte);
a99c47a2
TL
5369 }
5370 dmar_domain->agaw--;
5371 }
fe40f1e0 5372
8cc3759a
LB
5373 return 0;
5374}
5375
5376static int intel_iommu_attach_device(struct iommu_domain *domain,
5377 struct device *dev)
5378{
5379 int ret;
5380
5679582c
LB
5381 if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5382 device_is_rmrr_locked(dev)) {
8cc3759a
LB
5383 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5384 return -EPERM;
5385 }
5386
67b8e02b
LB
5387 if (is_aux_domain(dev, domain))
5388 return -EPERM;
5389
8cc3759a
LB
5390 /* normally dev is not mapped */
5391 if (unlikely(domain_context_mapped(dev))) {
5392 struct dmar_domain *old_domain;
5393
5394 old_domain = find_domain(dev);
fa954e68 5395 if (old_domain)
8cc3759a 5396 dmar_remove_one_dev_info(dev);
8cc3759a
LB
5397 }
5398
5399 ret = prepare_domain_attach_device(domain, dev);
5400 if (ret)
5401 return ret;
5402
5403 return domain_add_dev_info(to_dmar_domain(domain), dev);
38717946 5404}
38717946 5405
67b8e02b
LB
5406static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5407 struct device *dev)
5408{
5409 int ret;
5410
5411 if (!is_aux_domain(dev, domain))
5412 return -EPERM;
5413
5414 ret = prepare_domain_attach_device(domain, dev);
5415 if (ret)
5416 return ret;
5417
5418 return aux_domain_add_dev(to_dmar_domain(domain), dev);
5419}
5420
4c5478c9
JR
5421static void intel_iommu_detach_device(struct iommu_domain *domain,
5422 struct device *dev)
38717946 5423{
71753239 5424 dmar_remove_one_dev_info(dev);
faa3d6f5 5425}
c7151a8d 5426
67b8e02b
LB
5427static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5428 struct device *dev)
5429{
5430 aux_domain_remove_dev(to_dmar_domain(domain), dev);
5431}
5432
b146a1c9
JR
5433static int intel_iommu_map(struct iommu_domain *domain,
5434 unsigned long iova, phys_addr_t hpa,
5009065d 5435 size_t size, int iommu_prot)
faa3d6f5 5436{
00a77deb 5437 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0 5438 u64 max_addr;
dde57a21 5439 int prot = 0;
faa3d6f5 5440 int ret;
fe40f1e0 5441
942067f1
LB
5442 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5443 return -EINVAL;
5444
dde57a21
JR
5445 if (iommu_prot & IOMMU_READ)
5446 prot |= DMA_PTE_READ;
5447 if (iommu_prot & IOMMU_WRITE)
5448 prot |= DMA_PTE_WRITE;
9cf06697
SY
5449 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5450 prot |= DMA_PTE_SNP;
dde57a21 5451
163cc52c 5452 max_addr = iova + size;
dde57a21 5453 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
5454 u64 end;
5455
5456 /* check if minimum agaw is sufficient for mapped address */
8954da1f 5457 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
fe40f1e0 5458 if (end < max_addr) {
9f10e5bf 5459 pr_err("%s: iommu width (%d) is not "
fe40f1e0 5460 "sufficient for the mapped address (%llx)\n",
8954da1f 5461 __func__, dmar_domain->gaw, max_addr);
fe40f1e0
WH
5462 return -EFAULT;
5463 }
dde57a21 5464 dmar_domain->max_addr = max_addr;
fe40f1e0 5465 }
ad051221
DW
5466 /* Round up size to next multiple of PAGE_SIZE, if it and
5467 the low bits of hpa would take us onto the next page */
88cb6a74 5468 size = aligned_nrpages(hpa, size);
ad051221
DW
5469 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5470 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 5471 return ret;
38717946 5472}
38717946 5473
5009065d 5474static size_t intel_iommu_unmap(struct iommu_domain *domain,
56f8af5e
WD
5475 unsigned long iova, size_t size,
5476 struct iommu_iotlb_gather *gather)
38717946 5477{
00a77deb 5478 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
ea8ea460 5479 struct page *freelist = NULL;
ea8ea460
DW
5480 unsigned long start_pfn, last_pfn;
5481 unsigned int npages;
42e8c186 5482 int iommu_id, level = 0;
5cf0a76f
DW
5483
5484 /* Cope with horrid API which requires us to unmap more than the
5485 size argument if it happens to be a large-page mapping. */
dc02e46e 5486 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
942067f1
LB
5487 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5488 return 0;
5cf0a76f
DW
5489
5490 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5491 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4b99d352 5492
ea8ea460
DW
5493 start_pfn = iova >> VTD_PAGE_SHIFT;
5494 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5495
5496 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5497
5498 npages = last_pfn - start_pfn + 1;
5499
f746a025 5500 for_each_domain_iommu(iommu_id, dmar_domain)
42e8c186
JR
5501 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5502 start_pfn, npages, !freelist, 0);
ea8ea460
DW
5503
5504 dma_free_pagelist(freelist);
fe40f1e0 5505
163cc52c
DW
5506 if (dmar_domain->max_addr == iova + size)
5507 dmar_domain->max_addr = iova;
b146a1c9 5508
5cf0a76f 5509 return size;
38717946 5510}
38717946 5511
d14d6577 5512static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
bb5547ac 5513 dma_addr_t iova)
38717946 5514{
00a77deb 5515 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
38717946 5516 struct dma_pte *pte;
5cf0a76f 5517 int level = 0;
faa3d6f5 5518 u64 phys = 0;
38717946 5519
942067f1
LB
5520 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5521 return 0;
5522
5cf0a76f 5523 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
38717946 5524 if (pte)
faa3d6f5 5525 phys = dma_pte_addr(pte);
38717946 5526
faa3d6f5 5527 return phys;
38717946 5528}
a8bcbb0d 5529
95587a75
LB
5530static inline bool scalable_mode_support(void)
5531{
5532 struct dmar_drhd_unit *drhd;
5533 struct intel_iommu *iommu;
5534 bool ret = true;
5535
5536 rcu_read_lock();
5537 for_each_active_iommu(iommu, drhd) {
5538 if (!sm_supported(iommu)) {
5539 ret = false;
5540 break;
5541 }
5542 }
5543 rcu_read_unlock();
5544
5545 return ret;
5546}
5547
5548static inline bool iommu_pasid_support(void)
5549{
5550 struct dmar_drhd_unit *drhd;
5551 struct intel_iommu *iommu;
5552 bool ret = true;
5553
5554 rcu_read_lock();
5555 for_each_active_iommu(iommu, drhd) {
5556 if (!pasid_supported(iommu)) {
5557 ret = false;
5558 break;
5559 }
5560 }
5561 rcu_read_unlock();
5562
5563 return ret;
5564}
5565
5d587b8d 5566static bool intel_iommu_capable(enum iommu_cap cap)
dbb9fd86 5567{
dbb9fd86 5568 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5d587b8d 5569 return domain_update_iommu_snooping(NULL) == 1;
323f99cb 5570 if (cap == IOMMU_CAP_INTR_REMAP)
5d587b8d 5571 return irq_remapping_enabled == 1;
dbb9fd86 5572
5d587b8d 5573 return false;
dbb9fd86
SY
5574}
5575
abdfdde2
AW
5576static int intel_iommu_add_device(struct device *dev)
5577{
942067f1
LB
5578 struct dmar_domain *dmar_domain;
5579 struct iommu_domain *domain;
a5459cfe 5580 struct intel_iommu *iommu;
abdfdde2 5581 struct iommu_group *group;
156baca8 5582 u8 bus, devfn;
942067f1 5583 int ret;
70ae6f0d 5584
a5459cfe
AW
5585 iommu = device_to_iommu(dev, &bus, &devfn);
5586 if (!iommu)
70ae6f0d
AW
5587 return -ENODEV;
5588
e3d10af1 5589 iommu_device_link(&iommu->iommu, dev);
a4ff1fc2 5590
8af46c78
LB
5591 if (translation_pre_enabled(iommu))
5592 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5593
e17f9ff4 5594 group = iommu_group_get_for_dev(dev);
783f157b 5595
e17f9ff4
AW
5596 if (IS_ERR(group))
5597 return PTR_ERR(group);
bcb71abe 5598
abdfdde2 5599 iommu_group_put(group);
942067f1
LB
5600
5601 domain = iommu_get_domain_for_dev(dev);
5602 dmar_domain = to_dmar_domain(domain);
5603 if (domain->type == IOMMU_DOMAIN_DMA) {
0e31a726 5604 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
942067f1
LB
5605 ret = iommu_request_dm_for_dev(dev);
5606 if (ret) {
ae23bfb6 5607 dmar_remove_one_dev_info(dev);
942067f1
LB
5608 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5609 domain_add_dev_info(si_domain, dev);
5610 dev_info(dev,
5611 "Device uses a private identity domain.\n");
942067f1 5612 }
942067f1
LB
5613 }
5614 } else {
0e31a726 5615 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
942067f1
LB
5616 ret = iommu_request_dma_domain_for_dev(dev);
5617 if (ret) {
ae23bfb6 5618 dmar_remove_one_dev_info(dev);
942067f1 5619 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
4ec066c7 5620 if (!get_private_domain_for_dev(dev)) {
942067f1
LB
5621 dev_warn(dev,
5622 "Failed to get a private domain.\n");
5623 return -ENOMEM;
5624 }
5625
5626 dev_info(dev,
5627 "Device uses a private dma domain.\n");
942067f1 5628 }
942067f1
LB
5629 }
5630 }
5631
cfb94a37
LB
5632 if (device_needs_bounce(dev)) {
5633 dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
5634 set_dma_ops(dev, &bounce_dma_ops);
5635 }
5636
e17f9ff4 5637 return 0;
abdfdde2 5638}
70ae6f0d 5639
abdfdde2
AW
5640static void intel_iommu_remove_device(struct device *dev)
5641{
a5459cfe
AW
5642 struct intel_iommu *iommu;
5643 u8 bus, devfn;
5644
5645 iommu = device_to_iommu(dev, &bus, &devfn);
5646 if (!iommu)
5647 return;
5648
458b7c8e
LB
5649 dmar_remove_one_dev_info(dev);
5650
abdfdde2 5651 iommu_group_remove_device(dev);
a5459cfe 5652
e3d10af1 5653 iommu_device_unlink(&iommu->iommu, dev);
cfb94a37
LB
5654
5655 if (device_needs_bounce(dev))
5656 set_dma_ops(dev, NULL);
70ae6f0d
AW
5657}
5658
0659b8dc
EA
5659static void intel_iommu_get_resv_regions(struct device *device,
5660 struct list_head *head)
5661{
5f64ce54 5662 int prot = DMA_PTE_READ | DMA_PTE_WRITE;
0659b8dc
EA
5663 struct iommu_resv_region *reg;
5664 struct dmar_rmrr_unit *rmrr;
5665 struct device *i_dev;
5666 int i;
5667
5f64ce54 5668 down_read(&dmar_global_lock);
0659b8dc
EA
5669 for_each_rmrr_units(rmrr) {
5670 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5671 i, i_dev) {
5f64ce54 5672 struct iommu_resv_region *resv;
1c5c59fb 5673 enum iommu_resv_type type;
5f64ce54
EA
5674 size_t length;
5675
3855ba2d
EA
5676 if (i_dev != device &&
5677 !is_downstream_to_pci_bridge(device, i_dev))
0659b8dc
EA
5678 continue;
5679
5f64ce54 5680 length = rmrr->end_address - rmrr->base_address + 1;
1c5c59fb
EA
5681
5682 type = device_rmrr_is_relaxable(device) ?
5683 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5684
5f64ce54 5685 resv = iommu_alloc_resv_region(rmrr->base_address,
1c5c59fb 5686 length, prot, type);
5f64ce54
EA
5687 if (!resv)
5688 break;
5689
5690 list_add_tail(&resv->list, head);
0659b8dc
EA
5691 }
5692 }
5f64ce54 5693 up_read(&dmar_global_lock);
0659b8dc 5694
d850c2ee
LB
5695#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5696 if (dev_is_pci(device)) {
5697 struct pci_dev *pdev = to_pci_dev(device);
5698
5699 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5700 reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5701 IOMMU_RESV_DIRECT);
5702 if (reg)
5703 list_add_tail(&reg->list, head);
5704 }
5705 }
5706#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5707
0659b8dc
EA
5708 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5709 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
9d3a4de4 5710 0, IOMMU_RESV_MSI);
0659b8dc
EA
5711 if (!reg)
5712 return;
5713 list_add_tail(&reg->list, head);
5714}
5715
5716static void intel_iommu_put_resv_regions(struct device *dev,
5717 struct list_head *head)
5718{
5719 struct iommu_resv_region *entry, *next;
5720
5f64ce54
EA
5721 list_for_each_entry_safe(entry, next, head, list)
5722 kfree(entry);
70ae6f0d
AW
5723}
5724
d7cbc0f3 5725int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
2f26e0a9
DW
5726{
5727 struct device_domain_info *info;
5728 struct context_entry *context;
5729 struct dmar_domain *domain;
5730 unsigned long flags;
5731 u64 ctx_lo;
5732 int ret;
5733
4ec066c7 5734 domain = find_domain(dev);
2f26e0a9
DW
5735 if (!domain)
5736 return -EINVAL;
5737
5738 spin_lock_irqsave(&device_domain_lock, flags);
5739 spin_lock(&iommu->lock);
5740
5741 ret = -EINVAL;
d7cbc0f3 5742 info = dev->archdata.iommu;
2f26e0a9
DW
5743 if (!info || !info->pasid_supported)
5744 goto out;
5745
5746 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5747 if (WARN_ON(!context))
5748 goto out;
5749
5750 ctx_lo = context[0].lo;
5751
2f26e0a9 5752 if (!(ctx_lo & CONTEXT_PASIDE)) {
2f26e0a9
DW
5753 ctx_lo |= CONTEXT_PASIDE;
5754 context[0].lo = ctx_lo;
5755 wmb();
d7cbc0f3
LB
5756 iommu->flush.flush_context(iommu,
5757 domain->iommu_did[iommu->seq_id],
5758 PCI_DEVID(info->bus, info->devfn),
2f26e0a9
DW
5759 DMA_CCMD_MASK_NOBIT,
5760 DMA_CCMD_DEVICE_INVL);
5761 }
5762
5763 /* Enable PASID support in the device, if it wasn't already */
5764 if (!info->pasid_enabled)
5765 iommu_enable_dev_iotlb(info);
5766
2f26e0a9
DW
5767 ret = 0;
5768
5769 out:
5770 spin_unlock(&iommu->lock);
5771 spin_unlock_irqrestore(&device_domain_lock, flags);
5772
5773 return ret;
5774}
5775
73bcbdc9
JS
5776static void intel_iommu_apply_resv_region(struct device *dev,
5777 struct iommu_domain *domain,
5778 struct iommu_resv_region *region)
5779{
5780 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5781 unsigned long start, end;
5782
5783 start = IOVA_PFN(region->start);
5784 end = IOVA_PFN(region->start + region->length - 1);
5785
5786 WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5787}
5788
d7cbc0f3 5789#ifdef CONFIG_INTEL_IOMMU_SVM
2f26e0a9
DW
5790struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5791{
5792 struct intel_iommu *iommu;
5793 u8 bus, devfn;
5794
5795 if (iommu_dummy(dev)) {
5796 dev_warn(dev,
5797 "No IOMMU translation for device; cannot enable SVM\n");
5798 return NULL;
5799 }
5800
5801 iommu = device_to_iommu(dev, &bus, &devfn);
5802 if ((!iommu)) {
b9997e38 5803 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
2f26e0a9
DW
5804 return NULL;
5805 }
5806
2f26e0a9
DW
5807 return iommu;
5808}
5809#endif /* CONFIG_INTEL_IOMMU_SVM */
5810
95587a75
LB
5811static int intel_iommu_enable_auxd(struct device *dev)
5812{
5813 struct device_domain_info *info;
5814 struct intel_iommu *iommu;
5815 unsigned long flags;
5816 u8 bus, devfn;
5817 int ret;
5818
5819 iommu = device_to_iommu(dev, &bus, &devfn);
5820 if (!iommu || dmar_disabled)
5821 return -EINVAL;
5822
5823 if (!sm_supported(iommu) || !pasid_supported(iommu))
5824 return -EINVAL;
5825
5826 ret = intel_iommu_enable_pasid(iommu, dev);
5827 if (ret)
5828 return -ENODEV;
5829
5830 spin_lock_irqsave(&device_domain_lock, flags);
5831 info = dev->archdata.iommu;
5832 info->auxd_enabled = 1;
5833 spin_unlock_irqrestore(&device_domain_lock, flags);
5834
5835 return 0;
5836}
5837
5838static int intel_iommu_disable_auxd(struct device *dev)
5839{
5840 struct device_domain_info *info;
5841 unsigned long flags;
5842
5843 spin_lock_irqsave(&device_domain_lock, flags);
5844 info = dev->archdata.iommu;
5845 if (!WARN_ON(!info))
5846 info->auxd_enabled = 0;
5847 spin_unlock_irqrestore(&device_domain_lock, flags);
5848
5849 return 0;
5850}
5851
5852/*
5853 * A PCI express designated vendor specific extended capability is defined
5854 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5855 * for system software and tools to detect endpoint devices supporting the
5856 * Intel scalable IO virtualization without host driver dependency.
5857 *
5858 * Returns the address of the matching extended capability structure within
5859 * the device's PCI configuration space or 0 if the device does not support
5860 * it.
5861 */
5862static int siov_find_pci_dvsec(struct pci_dev *pdev)
5863{
5864 int pos;
5865 u16 vendor, id;
5866
5867 pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5868 while (pos) {
5869 pci_read_config_word(pdev, pos + 4, &vendor);
5870 pci_read_config_word(pdev, pos + 8, &id);
5871 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5872 return pos;
5873
5874 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5875 }
5876
5877 return 0;
5878}
5879
5880static bool
5881intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5882{
5883 if (feat == IOMMU_DEV_FEAT_AUX) {
5884 int ret;
5885
5886 if (!dev_is_pci(dev) || dmar_disabled ||
5887 !scalable_mode_support() || !iommu_pasid_support())
5888 return false;
5889
5890 ret = pci_pasid_features(to_pci_dev(dev));
5891 if (ret < 0)
5892 return false;
5893
5894 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5895 }
5896
5897 return false;
5898}
5899
5900static int
5901intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5902{
5903 if (feat == IOMMU_DEV_FEAT_AUX)
5904 return intel_iommu_enable_auxd(dev);
5905
5906 return -ENODEV;
5907}
5908
5909static int
5910intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5911{
5912 if (feat == IOMMU_DEV_FEAT_AUX)
5913 return intel_iommu_disable_auxd(dev);
5914
5915 return -ENODEV;
5916}
5917
5918static bool
5919intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5920{
5921 struct device_domain_info *info = dev->archdata.iommu;
5922
5923 if (feat == IOMMU_DEV_FEAT_AUX)
5924 return scalable_mode_support() && info && info->auxd_enabled;
5925
5926 return false;
5927}
5928
0e8000f8
LB
5929static int
5930intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5931{
5932 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5933
5934 return dmar_domain->default_pasid > 0 ?
5935 dmar_domain->default_pasid : -EINVAL;
5936}
5937
8af46c78
LB
5938static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5939 struct device *dev)
5940{
5941 return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5942}
5943
b0119e87 5944const struct iommu_ops intel_iommu_ops = {
0659b8dc
EA
5945 .capable = intel_iommu_capable,
5946 .domain_alloc = intel_iommu_domain_alloc,
5947 .domain_free = intel_iommu_domain_free,
5948 .attach_dev = intel_iommu_attach_device,
5949 .detach_dev = intel_iommu_detach_device,
67b8e02b
LB
5950 .aux_attach_dev = intel_iommu_aux_attach_device,
5951 .aux_detach_dev = intel_iommu_aux_detach_device,
0e8000f8 5952 .aux_get_pasid = intel_iommu_aux_get_pasid,
0659b8dc
EA
5953 .map = intel_iommu_map,
5954 .unmap = intel_iommu_unmap,
0659b8dc
EA
5955 .iova_to_phys = intel_iommu_iova_to_phys,
5956 .add_device = intel_iommu_add_device,
5957 .remove_device = intel_iommu_remove_device,
5958 .get_resv_regions = intel_iommu_get_resv_regions,
5959 .put_resv_regions = intel_iommu_put_resv_regions,
73bcbdc9 5960 .apply_resv_region = intel_iommu_apply_resv_region,
0659b8dc 5961 .device_group = pci_device_group,
95587a75
LB
5962 .dev_has_feat = intel_iommu_dev_has_feat,
5963 .dev_feat_enabled = intel_iommu_dev_feat_enabled,
5964 .dev_enable_feat = intel_iommu_dev_enable_feat,
5965 .dev_disable_feat = intel_iommu_dev_disable_feat,
8af46c78 5966 .is_attach_deferred = intel_iommu_is_attach_deferred,
0659b8dc 5967 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
a8bcbb0d 5968};
9af88143 5969
1f76249c 5970static void quirk_iommu_igfx(struct pci_dev *dev)
9452618e 5971{
932a6523 5972 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
9452618e
DV
5973 dmar_map_gfx = 0;
5974}
5975
1f76249c
CW
5976/* G4x/GM45 integrated gfx dmar support is totally busted. */
5977DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
5978DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
5979DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
5980DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
5981DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
5982DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
5983DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
5984
5985/* Broadwell igfx malfunctions with dmar */
5986DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
5987DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
5988DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
5989DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
5990DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
5991DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
5992DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
5993DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
5994DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
5995DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
5996DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
5997DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
5998DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
5999DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
6000DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
6001DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
6002DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
6003DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
6004DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
6005DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
6006DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
6007DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
6008DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
6009DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
9452618e 6010
d34d6517 6011static void quirk_iommu_rwbf(struct pci_dev *dev)
9af88143
DW
6012{
6013 /*
6014 * Mobile 4 Series Chipset neglects to set RWBF capability,
210561ff 6015 * but needs it. Same seems to hold for the desktop versions.
9af88143 6016 */
932a6523 6017 pci_info(dev, "Forcing write-buffer flush capability\n");
9af88143
DW
6018 rwbf_quirk = 1;
6019}
6020
6021DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
210561ff
DV
6022DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
6023DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
6024DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
6025DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
6026DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
6027DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
e0fc7e0b 6028
eecfd57f
AJ
6029#define GGC 0x52
6030#define GGC_MEMORY_SIZE_MASK (0xf << 8)
6031#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
6032#define GGC_MEMORY_SIZE_1M (0x1 << 8)
6033#define GGC_MEMORY_SIZE_2M (0x3 << 8)
6034#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
6035#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
6036#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
6037#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
6038
d34d6517 6039static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
9eecabcb
DW
6040{
6041 unsigned short ggc;
6042
eecfd57f 6043 if (pci_read_config_word(dev, GGC, &ggc))
9eecabcb
DW
6044 return;
6045
eecfd57f 6046 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
932a6523 6047 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
9eecabcb 6048 dmar_map_gfx = 0;
6fbcfb3e
DW
6049 } else if (dmar_map_gfx) {
6050 /* we have to ensure the gfx device is idle before we flush */
932a6523 6051 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6fbcfb3e
DW
6052 intel_iommu_strict = 1;
6053 }
9eecabcb
DW
6054}
6055DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
6056DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
6057DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
6058DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
6059
e0fc7e0b
DW
6060/* On Tylersburg chipsets, some BIOSes have been known to enable the
6061 ISOCH DMAR unit for the Azalia sound device, but not give it any
6062 TLB entries, which causes it to deadlock. Check for that. We do
6063 this in a function called from init_dmars(), instead of in a PCI
6064 quirk, because we don't want to print the obnoxious "BIOS broken"
6065 message if VT-d is actually disabled.
6066*/
6067static void __init check_tylersburg_isoch(void)
6068{
6069 struct pci_dev *pdev;
6070 uint32_t vtisochctrl;
6071
6072 /* If there's no Azalia in the system anyway, forget it. */
6073 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
6074 if (!pdev)
6075 return;
6076 pci_dev_put(pdev);
6077
6078 /* System Management Registers. Might be hidden, in which case
6079 we can't do the sanity check. But that's OK, because the
6080 known-broken BIOSes _don't_ actually hide it, so far. */
6081 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
6082 if (!pdev)
6083 return;
6084
6085 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
6086 pci_dev_put(pdev);
6087 return;
6088 }
6089
6090 pci_dev_put(pdev);
6091
6092 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
6093 if (vtisochctrl & 1)
6094 return;
6095
6096 /* Drop all bits other than the number of TLB entries */
6097 vtisochctrl &= 0x1c;
6098
6099 /* If we have the recommended number of TLB entries (16), fine. */
6100 if (vtisochctrl == 0x10)
6101 return;
6102
6103 /* Zero TLB entries? You get to ride the short bus to school. */
6104 if (!vtisochctrl) {
6105 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
6106 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
6107 dmi_get_system_info(DMI_BIOS_VENDOR),
6108 dmi_get_system_info(DMI_BIOS_VERSION),
6109 dmi_get_system_info(DMI_PRODUCT_VERSION));
6110 iommu_identity_mapping |= IDENTMAP_AZALIA;
6111 return;
6112 }
9f10e5bf
JR
6113
6114 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
e0fc7e0b
DW
6115 vtisochctrl);
6116}