]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/iommu/intel-iommu.c
Merge remote-tracking branches 'regulator/topic/act8865', 'regulator/topic/anatop...
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / intel-iommu.c
CommitLineData
ba395927 1/*
ea8ea460 2 * Copyright © 2006-2014 Intel Corporation.
ba395927
KA
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
ea8ea460
DW
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
9f10e5bf 18 * Joerg Roedel <jroedel@suse.de>
ba395927
KA
19 */
20
9f10e5bf
JR
21#define pr_fmt(fmt) "DMAR: " fmt
22
ba395927
KA
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
54485c30 26#include <linux/export.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
75f05569 35#include <linux/memory.h>
5e0d2a6f 36#include <linux/timer.h>
38717946 37#include <linux/iova.h>
5d450806 38#include <linux/iommu.h>
38717946 39#include <linux/intel-iommu.h>
134fac3f 40#include <linux/syscore_ops.h>
69575d38 41#include <linux/tboot.h>
adb2fe02 42#include <linux/dmi.h>
5cdede24 43#include <linux/pci-ats.h>
0ee332c1 44#include <linux/memblock.h>
36746436 45#include <linux/dma-contiguous.h>
091d42e4 46#include <linux/crash_dump.h>
8a8f422d 47#include <asm/irq_remapping.h>
ba395927 48#include <asm/cacheflush.h>
46a7fa27 49#include <asm/iommu.h>
ba395927 50
078e1ee2
JR
51#include "irq_remapping.h"
52
5b6985ce
FY
53#define ROOT_SIZE VTD_PAGE_SIZE
54#define CONTEXT_SIZE VTD_PAGE_SIZE
55
ba395927 56#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
18436afd 57#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
ba395927 58#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
e0fc7e0b 59#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
ba395927
KA
60
61#define IOAPIC_RANGE_START (0xfee00000)
62#define IOAPIC_RANGE_END (0xfeefffff)
63#define IOVA_START_ADDR (0x1000)
64
65#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
4ed0d3e6 67#define MAX_AGAW_WIDTH 64
5c645b35 68#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
4ed0d3e6 69
2ebe3151
DW
70#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
ba395927 78
1b722500
RM
79/* IO virtual address start page frame number */
80#define IOVA_START_PFN (1)
81
f27be03b 82#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 83#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 84#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 85
df08cdc7
AM
86/* page table handling */
87#define LEVEL_STRIDE (9)
88#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
6d1c56a9
OBC
90/*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
df08cdc7
AM
108static inline int agaw_to_level(int agaw)
109{
110 return agaw + 2;
111}
112
113static inline int agaw_to_width(int agaw)
114{
5c645b35 115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
df08cdc7
AM
116}
117
118static inline int width_to_agaw(int width)
119{
5c645b35 120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
df08cdc7
AM
121}
122
123static inline unsigned int level_to_offset_bits(int level)
124{
125 return (level - 1) * LEVEL_STRIDE;
126}
127
128static inline int pfn_level_offset(unsigned long pfn, int level)
129{
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131}
132
133static inline unsigned long level_mask(int level)
134{
135 return -1UL << level_to_offset_bits(level);
136}
137
138static inline unsigned long level_size(int level)
139{
140 return 1UL << level_to_offset_bits(level);
141}
142
143static inline unsigned long align_to_level(unsigned long pfn, int level)
144{
145 return (pfn + level_size(level) - 1) & level_mask(level);
146}
fd18de50 147
6dd9a7c7
YS
148static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149{
5c645b35 150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
6dd9a7c7
YS
151}
152
dd4e8319
DW
153/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156{
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158}
159
160static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161{
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163}
164static inline unsigned long page_to_dma_pfn(struct page *pg)
165{
166 return mm_to_dma_pfn(page_to_pfn(pg));
167}
168static inline unsigned long virt_to_dma_pfn(void *p)
169{
170 return page_to_dma_pfn(virt_to_page(p));
171}
172
d9630fe9
WH
173/* global iommu list, set NULL for ignored DMAR units */
174static struct intel_iommu **g_iommus;
175
e0fc7e0b 176static void __init check_tylersburg_isoch(void);
9af88143
DW
177static int rwbf_quirk;
178
b779260b
JC
179/*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183static int force_on = 0;
184
46b08e1a
MM
185/*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191struct root_entry {
03ecc32c
DW
192 u64 lo;
193 u64 hi;
46b08e1a
MM
194};
195#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
46b08e1a 196
091d42e4
JR
197/*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201static phys_addr_t root_entry_lctp(struct root_entry *re)
202{
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207}
208
209/*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213static phys_addr_t root_entry_uctp(struct root_entry *re)
214{
215 if (!(re->hi & 1))
216 return 0;
46b08e1a 217
091d42e4
JR
218 return re->hi & VTD_PAGE_MASK;
219}
7a8fc25e
MM
220/*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231struct context_entry {
232 u64 lo;
233 u64 hi;
234};
c07e7d21 235
cf484d0e
JR
236static inline void context_clear_pasid_enable(struct context_entry *context)
237{
238 context->lo &= ~(1ULL << 11);
239}
240
241static inline bool context_pasid_enabled(struct context_entry *context)
242{
243 return !!(context->lo & (1ULL << 11));
244}
245
246static inline void context_set_copied(struct context_entry *context)
247{
248 context->hi |= (1ull << 3);
249}
250
251static inline bool context_copied(struct context_entry *context)
252{
253 return !!(context->hi & (1ULL << 3));
254}
255
256static inline bool __context_present(struct context_entry *context)
c07e7d21
MM
257{
258 return (context->lo & 1);
259}
cf484d0e
JR
260
261static inline bool context_present(struct context_entry *context)
262{
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266}
267
c07e7d21
MM
268static inline void context_set_present(struct context_entry *context)
269{
270 context->lo |= 1;
271}
272
273static inline void context_set_fault_enable(struct context_entry *context)
274{
275 context->lo &= (((u64)-1) << 2) | 1;
276}
277
c07e7d21
MM
278static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280{
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283}
284
285static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287{
1a2262f9 288 context->lo &= ~VTD_PAGE_MASK;
c07e7d21
MM
289 context->lo |= value & VTD_PAGE_MASK;
290}
291
292static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294{
295 context->hi |= value & 7;
296}
297
298static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300{
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302}
303
dbcd861f
JR
304static inline int context_domain_id(struct context_entry *c)
305{
306 return((c->hi >> 8) & 0xffff);
307}
308
c07e7d21
MM
309static inline void context_clear_entry(struct context_entry *context)
310{
311 context->lo = 0;
312 context->hi = 0;
313}
7a8fc25e 314
622ba12a
MM
315/*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
9cf06697
SY
320 * 8-10: available
321 * 11: snoop behavior
622ba12a
MM
322 * 12-63: Host physcial address
323 */
324struct dma_pte {
325 u64 val;
326};
622ba12a 327
19c239ce
MM
328static inline void dma_clear_pte(struct dma_pte *pte)
329{
330 pte->val = 0;
331}
332
19c239ce
MM
333static inline u64 dma_pte_addr(struct dma_pte *pte)
334{
c85994e4
DW
335#ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337#else
338 /* Must have a full atomic 64-bit read */
1a8bd481 339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
c85994e4 340#endif
19c239ce
MM
341}
342
19c239ce
MM
343static inline bool dma_pte_present(struct dma_pte *pte)
344{
345 return (pte->val & 3) != 0;
346}
622ba12a 347
4399c8bf
AK
348static inline bool dma_pte_superpage(struct dma_pte *pte)
349{
c3c75eb7 350 return (pte->val & DMA_PTE_LARGE_PAGE);
4399c8bf
AK
351}
352
75e6bf96
DW
353static inline int first_pte_in_page(struct dma_pte *pte)
354{
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356}
357
2c2e2c38
FY
358/*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
19943b0e
DW
364static struct dmar_domain *si_domain;
365static int hw_pass_through = 1;
2c2e2c38 366
28ccce0d
JR
367/*
368 * Domain represents a virtual machine, more than one devices
1ce28feb
WH
369 * across iommus may be owned in one domain, e.g. kvm guest.
370 */
ab8dfe25 371#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
1ce28feb 372
2c2e2c38 373/* si_domain contains mulitple devices */
ab8dfe25 374#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
2c2e2c38 375
29a27719
JR
376#define for_each_domain_iommu(idx, domain) \
377 for (idx = 0; idx < g_num_of_iommus; idx++) \
378 if (domain->iommu_refcnt[idx])
379
99126f7c 380struct dmar_domain {
4c923d47 381 int nid; /* node id */
29a27719
JR
382
383 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
384 /* Refcount of devices per iommu */
385
99126f7c 386
c0e8a6c8
JR
387 u16 iommu_did[DMAR_UNITS_SUPPORTED];
388 /* Domain ids per IOMMU. Use u16 since
389 * domain ids are 16 bit wide according
390 * to VT-d spec, section 9.3 */
99126f7c 391
00a77deb 392 struct list_head devices; /* all devices' list */
99126f7c
MM
393 struct iova_domain iovad; /* iova's that belong to this domain */
394
395 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
396 int gaw; /* max guest address width */
397
398 /* adjusted guest address width, 0 is level 2 30-bit */
399 int agaw;
400
3b5410e7 401 int flags; /* flags to find out type of domain */
8e604097
WH
402
403 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 404 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d 405 int iommu_count; /* reference count of iommu */
6dd9a7c7
YS
406 int iommu_superpage;/* Level of superpages supported:
407 0 == 4KiB (no superpages), 1 == 2MiB,
408 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
fe40f1e0 409 u64 max_addr; /* maximum mapped address */
00a77deb
JR
410
411 struct iommu_domain domain; /* generic domain data structure for
412 iommu core */
99126f7c
MM
413};
414
a647dacb
MM
415/* PCI domain-device relationship */
416struct device_domain_info {
417 struct list_head link; /* link to domain siblings */
418 struct list_head global; /* link to global list */
276dbf99 419 u8 bus; /* PCI bus number */
a647dacb 420 u8 devfn; /* PCI devfn number */
fb0cc3aa
BH
421 struct {
422 u8 enabled:1;
423 u8 qdep;
424 } ats; /* ATS state */
0bcb3e28 425 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
93a23a72 426 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
427 struct dmar_domain *domain; /* pointer to domain */
428};
429
b94e4117
JL
430struct dmar_rmrr_unit {
431 struct list_head list; /* list of rmrr units */
432 struct acpi_dmar_header *hdr; /* ACPI header */
433 u64 base_address; /* reserved base address*/
434 u64 end_address; /* reserved end address */
832bd858 435 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
436 int devices_cnt; /* target device count */
437};
438
439struct dmar_atsr_unit {
440 struct list_head list; /* list of ATSR units */
441 struct acpi_dmar_header *hdr; /* ACPI header */
832bd858 442 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
443 int devices_cnt; /* target device count */
444 u8 include_all:1; /* include all ports */
445};
446
447static LIST_HEAD(dmar_atsr_units);
448static LIST_HEAD(dmar_rmrr_units);
449
450#define for_each_rmrr_units(rmrr) \
451 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
5e0d2a6f 453static void flush_unmaps_timeout(unsigned long data);
454
b707cb02 455static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
5e0d2a6f 456
80b20dd8 457#define HIGH_WATER_MARK 250
458struct deferred_flush_tables {
459 int next;
460 struct iova *iova[HIGH_WATER_MARK];
461 struct dmar_domain *domain[HIGH_WATER_MARK];
ea8ea460 462 struct page *freelist[HIGH_WATER_MARK];
80b20dd8 463};
464
465static struct deferred_flush_tables *deferred_flush;
466
5e0d2a6f 467/* bitmap for indexing intel_iommus */
5e0d2a6f 468static int g_num_of_iommus;
469
470static DEFINE_SPINLOCK(async_umap_flush_lock);
471static LIST_HEAD(unmaps_to_do);
472
473static int timer_on;
474static long list_size;
5e0d2a6f 475
92d03cc8 476static void domain_exit(struct dmar_domain *domain);
ba395927 477static void domain_remove_dev_info(struct dmar_domain *domain);
e6de0f8d
JR
478static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479 struct device *dev);
127c7615 480static void __dmar_remove_one_dev_info(struct device_domain_info *info);
2452d9db
JR
481static void domain_context_clear(struct intel_iommu *iommu,
482 struct device *dev);
2a46ddf7
JL
483static int domain_detach_iommu(struct dmar_domain *domain,
484 struct intel_iommu *iommu);
ba395927 485
d3f13810 486#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
0cd5c3c8
KM
487int dmar_disabled = 0;
488#else
489int dmar_disabled = 1;
d3f13810 490#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
0cd5c3c8 491
8bc1f85c
ED
492int intel_iommu_enabled = 0;
493EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
2d9e667e 495static int dmar_map_gfx = 1;
7d3b03ce 496static int dmar_forcedac;
5e0d2a6f 497static int intel_iommu_strict;
6dd9a7c7 498static int intel_iommu_superpage = 1;
c83b2f20
DW
499static int intel_iommu_ecs = 1;
500
501/* We only actually use ECS when PASID support (on the new bit 40)
502 * is also advertised. Some early implementations — the ones with
503 * PASID support on bit 28 — have issues even when we *only* use
504 * extended root/context tables. */
505#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
506 ecap_pasid(iommu->ecap))
ba395927 507
c0771df8
DW
508int intel_iommu_gfx_mapped;
509EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
510
ba395927
KA
511#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
512static DEFINE_SPINLOCK(device_domain_lock);
513static LIST_HEAD(device_domain_list);
514
b22f6434 515static const struct iommu_ops intel_iommu_ops;
a8bcbb0d 516
4158c2ec
JR
517static bool translation_pre_enabled(struct intel_iommu *iommu)
518{
519 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
520}
521
091d42e4
JR
522static void clear_translation_pre_enabled(struct intel_iommu *iommu)
523{
524 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
525}
526
4158c2ec
JR
527static void init_translation_status(struct intel_iommu *iommu)
528{
529 u32 gsts;
530
531 gsts = readl(iommu->reg + DMAR_GSTS_REG);
532 if (gsts & DMA_GSTS_TES)
533 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
534}
535
00a77deb
JR
536/* Convert generic 'struct iommu_domain to private struct dmar_domain */
537static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
538{
539 return container_of(dom, struct dmar_domain, domain);
540}
541
ba395927
KA
542static int __init intel_iommu_setup(char *str)
543{
544 if (!str)
545 return -EINVAL;
546 while (*str) {
0cd5c3c8
KM
547 if (!strncmp(str, "on", 2)) {
548 dmar_disabled = 0;
9f10e5bf 549 pr_info("IOMMU enabled\n");
0cd5c3c8 550 } else if (!strncmp(str, "off", 3)) {
ba395927 551 dmar_disabled = 1;
9f10e5bf 552 pr_info("IOMMU disabled\n");
ba395927
KA
553 } else if (!strncmp(str, "igfx_off", 8)) {
554 dmar_map_gfx = 0;
9f10e5bf 555 pr_info("Disable GFX device mapping\n");
7d3b03ce 556 } else if (!strncmp(str, "forcedac", 8)) {
9f10e5bf 557 pr_info("Forcing DAC for PCI devices\n");
7d3b03ce 558 dmar_forcedac = 1;
5e0d2a6f 559 } else if (!strncmp(str, "strict", 6)) {
9f10e5bf 560 pr_info("Disable batched IOTLB flush\n");
5e0d2a6f 561 intel_iommu_strict = 1;
6dd9a7c7 562 } else if (!strncmp(str, "sp_off", 6)) {
9f10e5bf 563 pr_info("Disable supported super page\n");
6dd9a7c7 564 intel_iommu_superpage = 0;
c83b2f20
DW
565 } else if (!strncmp(str, "ecs_off", 7)) {
566 printk(KERN_INFO
567 "Intel-IOMMU: disable extended context table support\n");
568 intel_iommu_ecs = 0;
ba395927
KA
569 }
570
571 str += strcspn(str, ",");
572 while (*str == ',')
573 str++;
574 }
575 return 0;
576}
577__setup("intel_iommu=", intel_iommu_setup);
578
579static struct kmem_cache *iommu_domain_cache;
580static struct kmem_cache *iommu_devinfo_cache;
ba395927 581
9452d5bf
JR
582static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
583{
8bf47816
JR
584 struct dmar_domain **domains;
585 int idx = did >> 8;
586
587 domains = iommu->domains[idx];
588 if (!domains)
589 return NULL;
590
591 return domains[did & 0xff];
9452d5bf
JR
592}
593
594static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
595 struct dmar_domain *domain)
596{
8bf47816
JR
597 struct dmar_domain **domains;
598 int idx = did >> 8;
599
600 if (!iommu->domains[idx]) {
601 size_t size = 256 * sizeof(struct dmar_domain *);
602 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
603 }
604
605 domains = iommu->domains[idx];
606 if (WARN_ON(!domains))
607 return;
608 else
609 domains[did & 0xff] = domain;
9452d5bf
JR
610}
611
4c923d47 612static inline void *alloc_pgtable_page(int node)
eb3fa7cb 613{
4c923d47
SS
614 struct page *page;
615 void *vaddr = NULL;
eb3fa7cb 616
4c923d47
SS
617 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
618 if (page)
619 vaddr = page_address(page);
eb3fa7cb 620 return vaddr;
ba395927
KA
621}
622
623static inline void free_pgtable_page(void *vaddr)
624{
625 free_page((unsigned long)vaddr);
626}
627
628static inline void *alloc_domain_mem(void)
629{
354bb65e 630 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
ba395927
KA
631}
632
38717946 633static void free_domain_mem(void *vaddr)
ba395927
KA
634{
635 kmem_cache_free(iommu_domain_cache, vaddr);
636}
637
638static inline void * alloc_devinfo_mem(void)
639{
354bb65e 640 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
ba395927
KA
641}
642
643static inline void free_devinfo_mem(void *vaddr)
644{
645 kmem_cache_free(iommu_devinfo_cache, vaddr);
646}
647
ab8dfe25
JL
648static inline int domain_type_is_vm(struct dmar_domain *domain)
649{
650 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
651}
652
28ccce0d
JR
653static inline int domain_type_is_si(struct dmar_domain *domain)
654{
655 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
656}
657
ab8dfe25
JL
658static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
659{
660 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
661 DOMAIN_FLAG_STATIC_IDENTITY);
662}
1b573683 663
162d1b10
JL
664static inline int domain_pfn_supported(struct dmar_domain *domain,
665 unsigned long pfn)
666{
667 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
668
669 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
670}
671
4ed0d3e6 672static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
673{
674 unsigned long sagaw;
675 int agaw = -1;
676
677 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 678 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
679 agaw >= 0; agaw--) {
680 if (test_bit(agaw, &sagaw))
681 break;
682 }
683
684 return agaw;
685}
686
4ed0d3e6
FY
687/*
688 * Calculate max SAGAW for each iommu.
689 */
690int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
691{
692 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
693}
694
695/*
696 * calculate agaw for each iommu.
697 * "SAGAW" may be different across iommus, use a default agaw, and
698 * get a supported less agaw for iommus that don't support the default agaw.
699 */
700int iommu_calculate_agaw(struct intel_iommu *iommu)
701{
702 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
703}
704
2c2e2c38 705/* This functionin only returns single iommu in a domain */
8c11e798
WH
706static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
707{
708 int iommu_id;
709
2c2e2c38 710 /* si_domain and vm domain should not get here. */
ab8dfe25 711 BUG_ON(domain_type_is_vm_or_si(domain));
29a27719
JR
712 for_each_domain_iommu(iommu_id, domain)
713 break;
714
8c11e798
WH
715 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
716 return NULL;
717
718 return g_iommus[iommu_id];
719}
720
8e604097
WH
721static void domain_update_iommu_coherency(struct dmar_domain *domain)
722{
d0501960
DW
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
2f119c78
QL
725 bool found = false;
726 int i;
2e12bc29 727
d0501960 728 domain->iommu_coherency = 1;
8e604097 729
29a27719 730 for_each_domain_iommu(i, domain) {
2f119c78 731 found = true;
8e604097
WH
732 if (!ecap_coherent(g_iommus[i]->ecap)) {
733 domain->iommu_coherency = 0;
734 break;
735 }
8e604097 736 }
d0501960
DW
737 if (found)
738 return;
739
740 /* No hardware attached; use lowest common denominator */
741 rcu_read_lock();
742 for_each_active_iommu(iommu, drhd) {
743 if (!ecap_coherent(iommu->ecap)) {
744 domain->iommu_coherency = 0;
745 break;
746 }
747 }
748 rcu_read_unlock();
8e604097
WH
749}
750
161f6934 751static int domain_update_iommu_snooping(struct intel_iommu *skip)
58c610bd 752{
161f6934
JL
753 struct dmar_drhd_unit *drhd;
754 struct intel_iommu *iommu;
755 int ret = 1;
58c610bd 756
161f6934
JL
757 rcu_read_lock();
758 for_each_active_iommu(iommu, drhd) {
759 if (iommu != skip) {
760 if (!ecap_sc_support(iommu->ecap)) {
761 ret = 0;
762 break;
763 }
58c610bd 764 }
58c610bd 765 }
161f6934
JL
766 rcu_read_unlock();
767
768 return ret;
58c610bd
SY
769}
770
161f6934 771static int domain_update_iommu_superpage(struct intel_iommu *skip)
6dd9a7c7 772{
8140a95d 773 struct dmar_drhd_unit *drhd;
161f6934 774 struct intel_iommu *iommu;
8140a95d 775 int mask = 0xf;
6dd9a7c7
YS
776
777 if (!intel_iommu_superpage) {
161f6934 778 return 0;
6dd9a7c7
YS
779 }
780
8140a95d 781 /* set iommu_superpage to the smallest common denominator */
0e242612 782 rcu_read_lock();
8140a95d 783 for_each_active_iommu(iommu, drhd) {
161f6934
JL
784 if (iommu != skip) {
785 mask &= cap_super_page_val(iommu->cap);
786 if (!mask)
787 break;
6dd9a7c7
YS
788 }
789 }
0e242612
JL
790 rcu_read_unlock();
791
161f6934 792 return fls(mask);
6dd9a7c7
YS
793}
794
58c610bd
SY
795/* Some capabilities may be different across iommus */
796static void domain_update_iommu_cap(struct dmar_domain *domain)
797{
798 domain_update_iommu_coherency(domain);
161f6934
JL
799 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
800 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
58c610bd
SY
801}
802
03ecc32c
DW
803static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
804 u8 bus, u8 devfn, int alloc)
805{
806 struct root_entry *root = &iommu->root_entry[bus];
807 struct context_entry *context;
808 u64 *entry;
809
4df4eab1 810 entry = &root->lo;
c83b2f20 811 if (ecs_enabled(iommu)) {
03ecc32c
DW
812 if (devfn >= 0x80) {
813 devfn -= 0x80;
814 entry = &root->hi;
815 }
816 devfn *= 2;
817 }
03ecc32c
DW
818 if (*entry & 1)
819 context = phys_to_virt(*entry & VTD_PAGE_MASK);
820 else {
821 unsigned long phy_addr;
822 if (!alloc)
823 return NULL;
824
825 context = alloc_pgtable_page(iommu->node);
826 if (!context)
827 return NULL;
828
829 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
830 phy_addr = virt_to_phys((void *)context);
831 *entry = phy_addr | 1;
832 __iommu_flush_cache(iommu, entry, sizeof(*entry));
833 }
834 return &context[devfn];
835}
836
4ed6a540
DW
837static int iommu_dummy(struct device *dev)
838{
839 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
840}
841
156baca8 842static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
c7151a8d
WH
843{
844 struct dmar_drhd_unit *drhd = NULL;
b683b230 845 struct intel_iommu *iommu;
156baca8
DW
846 struct device *tmp;
847 struct pci_dev *ptmp, *pdev = NULL;
aa4d066a 848 u16 segment = 0;
c7151a8d
WH
849 int i;
850
4ed6a540
DW
851 if (iommu_dummy(dev))
852 return NULL;
853
156baca8
DW
854 if (dev_is_pci(dev)) {
855 pdev = to_pci_dev(dev);
856 segment = pci_domain_nr(pdev->bus);
ca5b74d2 857 } else if (has_acpi_companion(dev))
156baca8
DW
858 dev = &ACPI_COMPANION(dev)->dev;
859
0e242612 860 rcu_read_lock();
b683b230 861 for_each_active_iommu(iommu, drhd) {
156baca8 862 if (pdev && segment != drhd->segment)
276dbf99 863 continue;
c7151a8d 864
b683b230 865 for_each_active_dev_scope(drhd->devices,
156baca8
DW
866 drhd->devices_cnt, i, tmp) {
867 if (tmp == dev) {
868 *bus = drhd->devices[i].bus;
869 *devfn = drhd->devices[i].devfn;
b683b230 870 goto out;
156baca8
DW
871 }
872
873 if (!pdev || !dev_is_pci(tmp))
874 continue;
875
876 ptmp = to_pci_dev(tmp);
877 if (ptmp->subordinate &&
878 ptmp->subordinate->number <= pdev->bus->number &&
879 ptmp->subordinate->busn_res.end >= pdev->bus->number)
880 goto got_pdev;
924b6231 881 }
c7151a8d 882
156baca8
DW
883 if (pdev && drhd->include_all) {
884 got_pdev:
885 *bus = pdev->bus->number;
886 *devfn = pdev->devfn;
b683b230 887 goto out;
156baca8 888 }
c7151a8d 889 }
b683b230 890 iommu = NULL;
156baca8 891 out:
0e242612 892 rcu_read_unlock();
c7151a8d 893
b683b230 894 return iommu;
c7151a8d
WH
895}
896
5331fe6f
WH
897static void domain_flush_cache(struct dmar_domain *domain,
898 void *addr, int size)
899{
900 if (!domain->iommu_coherency)
901 clflush_cache_range(addr, size);
902}
903
ba395927
KA
904static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
905{
ba395927 906 struct context_entry *context;
03ecc32c 907 int ret = 0;
ba395927
KA
908 unsigned long flags;
909
910 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c
DW
911 context = iommu_context_addr(iommu, bus, devfn, 0);
912 if (context)
913 ret = context_present(context);
ba395927
KA
914 spin_unlock_irqrestore(&iommu->lock, flags);
915 return ret;
916}
917
918static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
919{
ba395927
KA
920 struct context_entry *context;
921 unsigned long flags;
922
923 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c 924 context = iommu_context_addr(iommu, bus, devfn, 0);
ba395927 925 if (context) {
03ecc32c
DW
926 context_clear_entry(context);
927 __iommu_flush_cache(iommu, context, sizeof(*context));
ba395927
KA
928 }
929 spin_unlock_irqrestore(&iommu->lock, flags);
930}
931
932static void free_context_table(struct intel_iommu *iommu)
933{
ba395927
KA
934 int i;
935 unsigned long flags;
936 struct context_entry *context;
937
938 spin_lock_irqsave(&iommu->lock, flags);
939 if (!iommu->root_entry) {
940 goto out;
941 }
942 for (i = 0; i < ROOT_ENTRY_NR; i++) {
03ecc32c 943 context = iommu_context_addr(iommu, i, 0, 0);
ba395927
KA
944 if (context)
945 free_pgtable_page(context);
03ecc32c 946
c83b2f20 947 if (!ecs_enabled(iommu))
03ecc32c
DW
948 continue;
949
950 context = iommu_context_addr(iommu, i, 0x80, 0);
951 if (context)
952 free_pgtable_page(context);
953
ba395927
KA
954 }
955 free_pgtable_page(iommu->root_entry);
956 iommu->root_entry = NULL;
957out:
958 spin_unlock_irqrestore(&iommu->lock, flags);
959}
960
b026fd28 961static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
5cf0a76f 962 unsigned long pfn, int *target_level)
ba395927 963{
ba395927
KA
964 struct dma_pte *parent, *pte = NULL;
965 int level = agaw_to_level(domain->agaw);
4399c8bf 966 int offset;
ba395927
KA
967
968 BUG_ON(!domain->pgd);
f9423606 969
162d1b10 970 if (!domain_pfn_supported(domain, pfn))
f9423606
JS
971 /* Address beyond IOMMU's addressing capabilities. */
972 return NULL;
973
ba395927
KA
974 parent = domain->pgd;
975
5cf0a76f 976 while (1) {
ba395927
KA
977 void *tmp_page;
978
b026fd28 979 offset = pfn_level_offset(pfn, level);
ba395927 980 pte = &parent[offset];
5cf0a76f 981 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
6dd9a7c7 982 break;
5cf0a76f 983 if (level == *target_level)
ba395927
KA
984 break;
985
19c239ce 986 if (!dma_pte_present(pte)) {
c85994e4
DW
987 uint64_t pteval;
988
4c923d47 989 tmp_page = alloc_pgtable_page(domain->nid);
ba395927 990
206a73c1 991 if (!tmp_page)
ba395927 992 return NULL;
206a73c1 993
c85994e4 994 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
64de5af0 995 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
effad4b5 996 if (cmpxchg64(&pte->val, 0ULL, pteval))
c85994e4
DW
997 /* Someone else set it while we were thinking; use theirs. */
998 free_pgtable_page(tmp_page);
effad4b5 999 else
c85994e4 1000 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 1001 }
5cf0a76f
DW
1002 if (level == 1)
1003 break;
1004
19c239ce 1005 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1006 level--;
1007 }
1008
5cf0a76f
DW
1009 if (!*target_level)
1010 *target_level = level;
1011
ba395927
KA
1012 return pte;
1013}
1014
6dd9a7c7 1015
ba395927 1016/* return address's pte at specific level */
90dcfb5e
DW
1017static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1018 unsigned long pfn,
6dd9a7c7 1019 int level, int *large_page)
ba395927
KA
1020{
1021 struct dma_pte *parent, *pte = NULL;
1022 int total = agaw_to_level(domain->agaw);
1023 int offset;
1024
1025 parent = domain->pgd;
1026 while (level <= total) {
90dcfb5e 1027 offset = pfn_level_offset(pfn, total);
ba395927
KA
1028 pte = &parent[offset];
1029 if (level == total)
1030 return pte;
1031
6dd9a7c7
YS
1032 if (!dma_pte_present(pte)) {
1033 *large_page = total;
ba395927 1034 break;
6dd9a7c7
YS
1035 }
1036
e16922af 1037 if (dma_pte_superpage(pte)) {
6dd9a7c7
YS
1038 *large_page = total;
1039 return pte;
1040 }
1041
19c239ce 1042 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1043 total--;
1044 }
1045 return NULL;
1046}
1047
ba395927 1048/* clear last level pte, a tlb flush should be followed */
5cf0a76f 1049static void dma_pte_clear_range(struct dmar_domain *domain,
595badf5
DW
1050 unsigned long start_pfn,
1051 unsigned long last_pfn)
ba395927 1052{
6dd9a7c7 1053 unsigned int large_page = 1;
310a5ab9 1054 struct dma_pte *first_pte, *pte;
66eae846 1055
162d1b10
JL
1056 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1057 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1058 BUG_ON(start_pfn > last_pfn);
ba395927 1059
04b18e65 1060 /* we don't need lock here; nobody else touches the iova range */
59c36286 1061 do {
6dd9a7c7
YS
1062 large_page = 1;
1063 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
310a5ab9 1064 if (!pte) {
6dd9a7c7 1065 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
310a5ab9
DW
1066 continue;
1067 }
6dd9a7c7 1068 do {
310a5ab9 1069 dma_clear_pte(pte);
6dd9a7c7 1070 start_pfn += lvl_to_nr_pages(large_page);
310a5ab9 1071 pte++;
75e6bf96
DW
1072 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1073
310a5ab9
DW
1074 domain_flush_cache(domain, first_pte,
1075 (void *)pte - (void *)first_pte);
59c36286
DW
1076
1077 } while (start_pfn && start_pfn <= last_pfn);
ba395927
KA
1078}
1079
3269ee0b
AW
1080static void dma_pte_free_level(struct dmar_domain *domain, int level,
1081 struct dma_pte *pte, unsigned long pfn,
1082 unsigned long start_pfn, unsigned long last_pfn)
1083{
1084 pfn = max(start_pfn, pfn);
1085 pte = &pte[pfn_level_offset(pfn, level)];
1086
1087 do {
1088 unsigned long level_pfn;
1089 struct dma_pte *level_pte;
1090
1091 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1092 goto next;
1093
1094 level_pfn = pfn & level_mask(level - 1);
1095 level_pte = phys_to_virt(dma_pte_addr(pte));
1096
1097 if (level > 2)
1098 dma_pte_free_level(domain, level - 1, level_pte,
1099 level_pfn, start_pfn, last_pfn);
1100
1101 /* If range covers entire pagetable, free it */
1102 if (!(start_pfn > level_pfn ||
08336fd2 1103 last_pfn < level_pfn + level_size(level) - 1)) {
3269ee0b
AW
1104 dma_clear_pte(pte);
1105 domain_flush_cache(domain, pte, sizeof(*pte));
1106 free_pgtable_page(level_pte);
1107 }
1108next:
1109 pfn += level_size(level);
1110 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111}
1112
ba395927
KA
1113/* free page table pages. last level pte should already be cleared */
1114static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
1115 unsigned long start_pfn,
1116 unsigned long last_pfn)
ba395927 1117{
162d1b10
JL
1118 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1119 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1120 BUG_ON(start_pfn > last_pfn);
ba395927 1121
d41a4adb
JL
1122 dma_pte_clear_range(domain, start_pfn, last_pfn);
1123
f3a0a52f 1124 /* We don't need lock here; nobody else touches the iova range */
3269ee0b
AW
1125 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1126 domain->pgd, 0, start_pfn, last_pfn);
6660c63a 1127
ba395927 1128 /* free pgd */
d794dc9b 1129 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
1130 free_pgtable_page(domain->pgd);
1131 domain->pgd = NULL;
1132 }
1133}
1134
ea8ea460
DW
1135/* When a page at a given level is being unlinked from its parent, we don't
1136 need to *modify* it at all. All we need to do is make a list of all the
1137 pages which can be freed just as soon as we've flushed the IOTLB and we
1138 know the hardware page-walk will no longer touch them.
1139 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1140 be freed. */
1141static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1142 int level, struct dma_pte *pte,
1143 struct page *freelist)
1144{
1145 struct page *pg;
1146
1147 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1148 pg->freelist = freelist;
1149 freelist = pg;
1150
1151 if (level == 1)
1152 return freelist;
1153
adeb2590
JL
1154 pte = page_address(pg);
1155 do {
ea8ea460
DW
1156 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1157 freelist = dma_pte_list_pagetables(domain, level - 1,
1158 pte, freelist);
adeb2590
JL
1159 pte++;
1160 } while (!first_pte_in_page(pte));
ea8ea460
DW
1161
1162 return freelist;
1163}
1164
1165static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1166 struct dma_pte *pte, unsigned long pfn,
1167 unsigned long start_pfn,
1168 unsigned long last_pfn,
1169 struct page *freelist)
1170{
1171 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1172
1173 pfn = max(start_pfn, pfn);
1174 pte = &pte[pfn_level_offset(pfn, level)];
1175
1176 do {
1177 unsigned long level_pfn;
1178
1179 if (!dma_pte_present(pte))
1180 goto next;
1181
1182 level_pfn = pfn & level_mask(level);
1183
1184 /* If range covers entire pagetable, free it */
1185 if (start_pfn <= level_pfn &&
1186 last_pfn >= level_pfn + level_size(level) - 1) {
1187 /* These suborbinate page tables are going away entirely. Don't
1188 bother to clear them; we're just going to *free* them. */
1189 if (level > 1 && !dma_pte_superpage(pte))
1190 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1191
1192 dma_clear_pte(pte);
1193 if (!first_pte)
1194 first_pte = pte;
1195 last_pte = pte;
1196 } else if (level > 1) {
1197 /* Recurse down into a level that isn't *entirely* obsolete */
1198 freelist = dma_pte_clear_level(domain, level - 1,
1199 phys_to_virt(dma_pte_addr(pte)),
1200 level_pfn, start_pfn, last_pfn,
1201 freelist);
1202 }
1203next:
1204 pfn += level_size(level);
1205 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1206
1207 if (first_pte)
1208 domain_flush_cache(domain, first_pte,
1209 (void *)++last_pte - (void *)first_pte);
1210
1211 return freelist;
1212}
1213
1214/* We can't just free the pages because the IOMMU may still be walking
1215 the page tables, and may have cached the intermediate levels. The
1216 pages can only be freed after the IOTLB flush has been done. */
b690420a
JR
1217static struct page *domain_unmap(struct dmar_domain *domain,
1218 unsigned long start_pfn,
1219 unsigned long last_pfn)
ea8ea460 1220{
ea8ea460
DW
1221 struct page *freelist = NULL;
1222
162d1b10
JL
1223 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1224 BUG_ON(!domain_pfn_supported(domain, last_pfn));
ea8ea460
DW
1225 BUG_ON(start_pfn > last_pfn);
1226
1227 /* we don't need lock here; nobody else touches the iova range */
1228 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1229 domain->pgd, 0, start_pfn, last_pfn, NULL);
1230
1231 /* free pgd */
1232 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1233 struct page *pgd_page = virt_to_page(domain->pgd);
1234 pgd_page->freelist = freelist;
1235 freelist = pgd_page;
1236
1237 domain->pgd = NULL;
1238 }
1239
1240 return freelist;
1241}
1242
b690420a 1243static void dma_free_pagelist(struct page *freelist)
ea8ea460
DW
1244{
1245 struct page *pg;
1246
1247 while ((pg = freelist)) {
1248 freelist = pg->freelist;
1249 free_pgtable_page(page_address(pg));
1250 }
1251}
1252
ba395927
KA
1253/* iommu handling */
1254static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1255{
1256 struct root_entry *root;
1257 unsigned long flags;
1258
4c923d47 1259 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
ffebeb46 1260 if (!root) {
9f10e5bf 1261 pr_err("Allocating root entry for %s failed\n",
ffebeb46 1262 iommu->name);
ba395927 1263 return -ENOMEM;
ffebeb46 1264 }
ba395927 1265
5b6985ce 1266 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
1267
1268 spin_lock_irqsave(&iommu->lock, flags);
1269 iommu->root_entry = root;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272 return 0;
1273}
1274
ba395927
KA
1275static void iommu_set_root_entry(struct intel_iommu *iommu)
1276{
03ecc32c 1277 u64 addr;
c416daa9 1278 u32 sts;
ba395927
KA
1279 unsigned long flag;
1280
03ecc32c 1281 addr = virt_to_phys(iommu->root_entry);
c83b2f20 1282 if (ecs_enabled(iommu))
03ecc32c 1283 addr |= DMA_RTADDR_RTT;
ba395927 1284
1f5b3c3f 1285 raw_spin_lock_irqsave(&iommu->register_lock, flag);
03ecc32c 1286 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
ba395927 1287
c416daa9 1288 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1289
1290 /* Make sure hardware complete it */
1291 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1292 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927 1293
1f5b3c3f 1294 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1295}
1296
1297static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1298{
1299 u32 val;
1300 unsigned long flag;
1301
9af88143 1302 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 1303 return;
ba395927 1304
1f5b3c3f 1305 raw_spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 1306 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1307
1308 /* Make sure hardware complete it */
1309 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1310 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927 1311
1f5b3c3f 1312 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1313}
1314
1315/* return value determine if we need a write buffer flush */
4c25a2c1
DW
1316static void __iommu_flush_context(struct intel_iommu *iommu,
1317 u16 did, u16 source_id, u8 function_mask,
1318 u64 type)
ba395927
KA
1319{
1320 u64 val = 0;
1321 unsigned long flag;
1322
ba395927
KA
1323 switch (type) {
1324 case DMA_CCMD_GLOBAL_INVL:
1325 val = DMA_CCMD_GLOBAL_INVL;
1326 break;
1327 case DMA_CCMD_DOMAIN_INVL:
1328 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1329 break;
1330 case DMA_CCMD_DEVICE_INVL:
1331 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1332 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1333 break;
1334 default:
1335 BUG();
1336 }
1337 val |= DMA_CCMD_ICC;
1338
1f5b3c3f 1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1340 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1341
1342 /* Make sure hardware complete it */
1343 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1344 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1345
1f5b3c3f 1346 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1347}
1348
ba395927 1349/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
1350static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1351 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
1352{
1353 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1354 u64 val = 0, val_iva = 0;
1355 unsigned long flag;
1356
ba395927
KA
1357 switch (type) {
1358 case DMA_TLB_GLOBAL_FLUSH:
1359 /* global flush doesn't need set IVA_REG */
1360 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1361 break;
1362 case DMA_TLB_DSI_FLUSH:
1363 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1364 break;
1365 case DMA_TLB_PSI_FLUSH:
1366 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
ea8ea460 1367 /* IH bit is passed in as part of address */
ba395927
KA
1368 val_iva = size_order | addr;
1369 break;
1370 default:
1371 BUG();
1372 }
1373 /* Note: set drain read/write */
1374#if 0
1375 /*
1376 * This is probably to be super secure.. Looks like we can
1377 * ignore it without any impact.
1378 */
1379 if (cap_read_drain(iommu->cap))
1380 val |= DMA_TLB_READ_DRAIN;
1381#endif
1382 if (cap_write_drain(iommu->cap))
1383 val |= DMA_TLB_WRITE_DRAIN;
1384
1f5b3c3f 1385 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1386 /* Note: Only uses first TLB reg currently */
1387 if (val_iva)
1388 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1389 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1390
1391 /* Make sure hardware complete it */
1392 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1393 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1394
1f5b3c3f 1395 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1396
1397 /* check IOTLB invalidation granularity */
1398 if (DMA_TLB_IAIG(val) == 0)
9f10e5bf 1399 pr_err("Flush IOTLB failed\n");
ba395927 1400 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
9f10e5bf 1401 pr_debug("TLB flush request %Lx, actual %Lx\n",
5b6985ce
FY
1402 (unsigned long long)DMA_TLB_IIRG(type),
1403 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
1404}
1405
64ae892b
DW
1406static struct device_domain_info *
1407iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1408 u8 bus, u8 devfn)
93a23a72 1409{
2f119c78 1410 bool found = false;
93a23a72 1411 struct device_domain_info *info;
0bcb3e28 1412 struct pci_dev *pdev;
93a23a72 1413
55d94043
JR
1414 assert_spin_locked(&device_domain_lock);
1415
93a23a72
YZ
1416 if (!ecap_dev_iotlb_support(iommu->ecap))
1417 return NULL;
1418
1419 if (!iommu->qi)
1420 return NULL;
1421
93a23a72 1422 list_for_each_entry(info, &domain->devices, link)
c3b497c6
JL
1423 if (info->iommu == iommu && info->bus == bus &&
1424 info->devfn == devfn) {
2f119c78 1425 found = true;
93a23a72
YZ
1426 break;
1427 }
93a23a72 1428
0bcb3e28 1429 if (!found || !info->dev || !dev_is_pci(info->dev))
93a23a72
YZ
1430 return NULL;
1431
0bcb3e28
DW
1432 pdev = to_pci_dev(info->dev);
1433
1434 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
93a23a72
YZ
1435 return NULL;
1436
0bcb3e28 1437 if (!dmar_find_matched_atsr_unit(pdev))
93a23a72
YZ
1438 return NULL;
1439
93a23a72
YZ
1440 return info;
1441}
1442
1443static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1444{
fb0cc3aa
BH
1445 struct pci_dev *pdev;
1446
0bcb3e28 1447 if (!info || !dev_is_pci(info->dev))
93a23a72
YZ
1448 return;
1449
fb0cc3aa
BH
1450 pdev = to_pci_dev(info->dev);
1451 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1452 return;
1453
1454 info->ats.enabled = 1;
1455 info->ats.qdep = pci_ats_queue_depth(pdev);
93a23a72
YZ
1456}
1457
1458static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1459{
fb0cc3aa 1460 if (!info->ats.enabled)
93a23a72
YZ
1461 return;
1462
0bcb3e28 1463 pci_disable_ats(to_pci_dev(info->dev));
fb0cc3aa 1464 info->ats.enabled = 0;
93a23a72
YZ
1465}
1466
1467static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1468 u64 addr, unsigned mask)
1469{
1470 u16 sid, qdep;
1471 unsigned long flags;
1472 struct device_domain_info *info;
1473
1474 spin_lock_irqsave(&device_domain_lock, flags);
1475 list_for_each_entry(info, &domain->devices, link) {
fb0cc3aa 1476 if (!info->ats.enabled)
93a23a72
YZ
1477 continue;
1478
1479 sid = info->bus << 8 | info->devfn;
fb0cc3aa 1480 qdep = info->ats.qdep;
93a23a72
YZ
1481 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484}
1485
a1ddcbe9
JR
1486static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
ba395927 1490{
9dd2fe89 1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
a1ddcbe9 1493 u16 did = domain->iommu_did[iommu->seq_id];
ba395927 1494
ba395927
KA
1495 BUG_ON(pages == 0);
1496
ea8ea460
DW
1497 if (ih)
1498 ih = 1 << 6;
ba395927 1499 /*
9dd2fe89
YZ
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
ba395927
KA
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
9dd2fe89
YZ
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1507 DMA_TLB_DSI_FLUSH);
9dd2fe89 1508 else
ea8ea460 1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
9dd2fe89 1510 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1511
1512 /*
82653633
NA
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
bf92df30 1515 */
82653633 1516 if (!cap_caching_mode(iommu->cap) || !map)
9452d5bf
JR
1517 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1518 addr, mask);
ba395927
KA
1519}
1520
f8bab735 1521static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1522{
1523 u32 pmen;
1524 unsigned long flags;
1525
1f5b3c3f 1526 raw_spin_lock_irqsave(&iommu->register_lock, flags);
f8bab735 1527 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1528 pmen &= ~DMA_PMEN_EPM;
1529 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1530
1531 /* wait for the protected region status bit to clear */
1532 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1533 readl, !(pmen & DMA_PMEN_PRS), pmen);
1534
1f5b3c3f 1535 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
f8bab735 1536}
1537
2a41ccee 1538static void iommu_enable_translation(struct intel_iommu *iommu)
ba395927
KA
1539{
1540 u32 sts;
1541 unsigned long flags;
1542
1f5b3c3f 1543 raw_spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1544 iommu->gcmd |= DMA_GCMD_TE;
1545 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1546
1547 /* Make sure hardware complete it */
1548 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1549 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1550
1f5b3c3f 1551 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
ba395927
KA
1552}
1553
2a41ccee 1554static void iommu_disable_translation(struct intel_iommu *iommu)
ba395927
KA
1555{
1556 u32 sts;
1557 unsigned long flag;
1558
1f5b3c3f 1559 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1560 iommu->gcmd &= ~DMA_GCMD_TE;
1561 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562
1563 /* Make sure hardware complete it */
1564 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1565 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927 1566
1f5b3c3f 1567 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1568}
1569
3460a6d9 1570
ba395927
KA
1571static int iommu_init_domains(struct intel_iommu *iommu)
1572{
8bf47816
JR
1573 u32 ndomains, nlongs;
1574 size_t size;
ba395927
KA
1575
1576 ndomains = cap_ndoms(iommu->cap);
8bf47816 1577 pr_debug("%s: Number of Domains supported <%d>\n",
9f10e5bf 1578 iommu->name, ndomains);
ba395927
KA
1579 nlongs = BITS_TO_LONGS(ndomains);
1580
94a91b50
DD
1581 spin_lock_init(&iommu->lock);
1582
ba395927
KA
1583 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1584 if (!iommu->domain_ids) {
9f10e5bf
JR
1585 pr_err("%s: Allocating domain id array failed\n",
1586 iommu->name);
ba395927
KA
1587 return -ENOMEM;
1588 }
8bf47816
JR
1589
1590 size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1591 iommu->domains = kzalloc(size, GFP_KERNEL);
1592
1593 if (iommu->domains) {
1594 size = 256 * sizeof(struct dmar_domain *);
1595 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1596 }
1597
1598 if (!iommu->domains || !iommu->domains[0]) {
9f10e5bf
JR
1599 pr_err("%s: Allocating domain array failed\n",
1600 iommu->name);
852bdb04 1601 kfree(iommu->domain_ids);
8bf47816 1602 kfree(iommu->domains);
852bdb04 1603 iommu->domain_ids = NULL;
8bf47816 1604 iommu->domains = NULL;
ba395927
KA
1605 return -ENOMEM;
1606 }
1607
8bf47816
JR
1608
1609
ba395927 1610 /*
c0e8a6c8
JR
1611 * If Caching mode is set, then invalid translations are tagged
1612 * with domain-id 0, hence we need to pre-allocate it. We also
1613 * use domain-id 0 as a marker for non-allocated domain-id, so
1614 * make sure it is not used for a real domain.
ba395927 1615 */
c0e8a6c8
JR
1616 set_bit(0, iommu->domain_ids);
1617
ba395927
KA
1618 return 0;
1619}
ba395927 1620
ffebeb46 1621static void disable_dmar_iommu(struct intel_iommu *iommu)
ba395927 1622{
29a27719 1623 struct device_domain_info *info, *tmp;
55d94043 1624 unsigned long flags;
ba395927 1625
29a27719
JR
1626 if (!iommu->domains || !iommu->domain_ids)
1627 return;
a4eaa86c 1628
55d94043 1629 spin_lock_irqsave(&device_domain_lock, flags);
29a27719
JR
1630 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1631 struct dmar_domain *domain;
1632
1633 if (info->iommu != iommu)
1634 continue;
1635
1636 if (!info->dev || !info->domain)
1637 continue;
1638
1639 domain = info->domain;
1640
e6de0f8d 1641 dmar_remove_one_dev_info(domain, info->dev);
29a27719
JR
1642
1643 if (!domain_type_is_vm_or_si(domain))
1644 domain_exit(domain);
ba395927 1645 }
55d94043 1646 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927
KA
1647
1648 if (iommu->gcmd & DMA_GCMD_TE)
1649 iommu_disable_translation(iommu);
ffebeb46 1650}
ba395927 1651
ffebeb46
JL
1652static void free_dmar_iommu(struct intel_iommu *iommu)
1653{
1654 if ((iommu->domains) && (iommu->domain_ids)) {
8bf47816
JR
1655 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1656 int i;
1657
1658 for (i = 0; i < elems; i++)
1659 kfree(iommu->domains[i]);
ffebeb46
JL
1660 kfree(iommu->domains);
1661 kfree(iommu->domain_ids);
1662 iommu->domains = NULL;
1663 iommu->domain_ids = NULL;
1664 }
ba395927 1665
d9630fe9
WH
1666 g_iommus[iommu->seq_id] = NULL;
1667
ba395927
KA
1668 /* free context mapping */
1669 free_context_table(iommu);
ba395927
KA
1670}
1671
ab8dfe25 1672static struct dmar_domain *alloc_domain(int flags)
ba395927 1673{
ba395927 1674 struct dmar_domain *domain;
ba395927
KA
1675
1676 domain = alloc_domain_mem();
1677 if (!domain)
1678 return NULL;
1679
ab8dfe25 1680 memset(domain, 0, sizeof(*domain));
4c923d47 1681 domain->nid = -1;
ab8dfe25 1682 domain->flags = flags;
92d03cc8 1683 INIT_LIST_HEAD(&domain->devices);
2c2e2c38
FY
1684
1685 return domain;
1686}
1687
d160aca5
JR
1688/* Must be called with iommu->lock */
1689static int domain_attach_iommu(struct dmar_domain *domain,
fb170fb4
JL
1690 struct intel_iommu *iommu)
1691{
44bde614 1692 unsigned long ndomains;
55d94043 1693 int num;
44bde614 1694
55d94043 1695 assert_spin_locked(&device_domain_lock);
d160aca5 1696 assert_spin_locked(&iommu->lock);
ba395927 1697
29a27719
JR
1698 domain->iommu_refcnt[iommu->seq_id] += 1;
1699 domain->iommu_count += 1;
1700 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
fb170fb4 1701 ndomains = cap_ndoms(iommu->cap);
d160aca5
JR
1702 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1703
1704 if (num >= ndomains) {
1705 pr_err("%s: No free domain ids\n", iommu->name);
1706 domain->iommu_refcnt[iommu->seq_id] -= 1;
1707 domain->iommu_count -= 1;
55d94043 1708 return -ENOSPC;
2c2e2c38 1709 }
ba395927 1710
d160aca5
JR
1711 set_bit(num, iommu->domain_ids);
1712 set_iommu_domain(iommu, num, domain);
1713
1714 domain->iommu_did[iommu->seq_id] = num;
1715 domain->nid = iommu->node;
fb170fb4 1716
fb170fb4
JL
1717 domain_update_iommu_cap(domain);
1718 }
d160aca5 1719
55d94043 1720 return 0;
fb170fb4
JL
1721}
1722
1723static int domain_detach_iommu(struct dmar_domain *domain,
1724 struct intel_iommu *iommu)
1725{
d160aca5 1726 int num, count = INT_MAX;
d160aca5 1727
55d94043 1728 assert_spin_locked(&device_domain_lock);
d160aca5 1729 assert_spin_locked(&iommu->lock);
fb170fb4 1730
29a27719
JR
1731 domain->iommu_refcnt[iommu->seq_id] -= 1;
1732 count = --domain->iommu_count;
1733 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
d160aca5
JR
1734 num = domain->iommu_did[iommu->seq_id];
1735 clear_bit(num, iommu->domain_ids);
1736 set_iommu_domain(iommu, num, NULL);
fb170fb4 1737
fb170fb4 1738 domain_update_iommu_cap(domain);
c0e8a6c8 1739 domain->iommu_did[iommu->seq_id] = 0;
fb170fb4 1740 }
fb170fb4
JL
1741
1742 return count;
1743}
1744
ba395927 1745static struct iova_domain reserved_iova_list;
8a443df4 1746static struct lock_class_key reserved_rbtree_key;
ba395927 1747
51a63e67 1748static int dmar_init_reserved_ranges(void)
ba395927
KA
1749{
1750 struct pci_dev *pdev = NULL;
1751 struct iova *iova;
1752 int i;
ba395927 1753
0fb5fe87
RM
1754 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1755 DMA_32BIT_PFN);
ba395927 1756
8a443df4
MG
1757 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1758 &reserved_rbtree_key);
1759
ba395927
KA
1760 /* IOAPIC ranges shouldn't be accessed by DMA */
1761 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1762 IOVA_PFN(IOAPIC_RANGE_END));
51a63e67 1763 if (!iova) {
9f10e5bf 1764 pr_err("Reserve IOAPIC range failed\n");
51a63e67
JC
1765 return -ENODEV;
1766 }
ba395927
KA
1767
1768 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1769 for_each_pci_dev(pdev) {
1770 struct resource *r;
1771
1772 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1773 r = &pdev->resource[i];
1774 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1775 continue;
1a4a4551
DW
1776 iova = reserve_iova(&reserved_iova_list,
1777 IOVA_PFN(r->start),
1778 IOVA_PFN(r->end));
51a63e67 1779 if (!iova) {
9f10e5bf 1780 pr_err("Reserve iova failed\n");
51a63e67
JC
1781 return -ENODEV;
1782 }
ba395927
KA
1783 }
1784 }
51a63e67 1785 return 0;
ba395927
KA
1786}
1787
1788static void domain_reserve_special_ranges(struct dmar_domain *domain)
1789{
1790 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1791}
1792
1793static inline int guestwidth_to_adjustwidth(int gaw)
1794{
1795 int agaw;
1796 int r = (gaw - 12) % 9;
1797
1798 if (r == 0)
1799 agaw = gaw;
1800 else
1801 agaw = gaw + 9 - r;
1802 if (agaw > 64)
1803 agaw = 64;
1804 return agaw;
1805}
1806
dc534b25
JR
1807static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1808 int guest_width)
ba395927 1809{
ba395927
KA
1810 int adjust_width, agaw;
1811 unsigned long sagaw;
1812
0fb5fe87
RM
1813 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1814 DMA_32BIT_PFN);
ba395927
KA
1815 domain_reserve_special_ranges(domain);
1816
1817 /* calculate AGAW */
ba395927
KA
1818 if (guest_width > cap_mgaw(iommu->cap))
1819 guest_width = cap_mgaw(iommu->cap);
1820 domain->gaw = guest_width;
1821 adjust_width = guestwidth_to_adjustwidth(guest_width);
1822 agaw = width_to_agaw(adjust_width);
1823 sagaw = cap_sagaw(iommu->cap);
1824 if (!test_bit(agaw, &sagaw)) {
1825 /* hardware doesn't support it, choose a bigger one */
9f10e5bf 1826 pr_debug("Hardware doesn't support agaw %d\n", agaw);
ba395927
KA
1827 agaw = find_next_bit(&sagaw, 5, agaw);
1828 if (agaw >= 5)
1829 return -ENODEV;
1830 }
1831 domain->agaw = agaw;
ba395927 1832
8e604097
WH
1833 if (ecap_coherent(iommu->ecap))
1834 domain->iommu_coherency = 1;
1835 else
1836 domain->iommu_coherency = 0;
1837
58c610bd
SY
1838 if (ecap_sc_support(iommu->ecap))
1839 domain->iommu_snooping = 1;
1840 else
1841 domain->iommu_snooping = 0;
1842
214e39aa
DW
1843 if (intel_iommu_superpage)
1844 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1845 else
1846 domain->iommu_superpage = 0;
1847
4c923d47 1848 domain->nid = iommu->node;
c7151a8d 1849
ba395927 1850 /* always allocate the top pgd */
4c923d47 1851 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
ba395927
KA
1852 if (!domain->pgd)
1853 return -ENOMEM;
5b6985ce 1854 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1855 return 0;
1856}
1857
1858static void domain_exit(struct dmar_domain *domain)
1859{
ea8ea460 1860 struct page *freelist = NULL;
ba395927
KA
1861
1862 /* Domain 0 is reserved, so dont process it */
1863 if (!domain)
1864 return;
1865
7b668357
AW
1866 /* Flush any lazy unmaps that may reference this domain */
1867 if (!intel_iommu_strict)
1868 flush_unmaps_timeout(0);
1869
d160aca5
JR
1870 /* Remove associated devices and clear attached or cached domains */
1871 rcu_read_lock();
ba395927 1872 domain_remove_dev_info(domain);
d160aca5 1873 rcu_read_unlock();
92d03cc8 1874
ba395927
KA
1875 /* destroy iovas */
1876 put_iova_domain(&domain->iovad);
ba395927 1877
ea8ea460 1878 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 1879
ea8ea460
DW
1880 dma_free_pagelist(freelist);
1881
ba395927
KA
1882 free_domain_mem(domain);
1883}
1884
64ae892b
DW
1885static int domain_context_mapping_one(struct dmar_domain *domain,
1886 struct intel_iommu *iommu,
28ccce0d 1887 u8 bus, u8 devfn)
ba395927 1888{
c6c2cebd 1889 u16 did = domain->iommu_did[iommu->seq_id];
28ccce0d
JR
1890 int translation = CONTEXT_TT_MULTI_LEVEL;
1891 struct device_domain_info *info = NULL;
ba395927 1892 struct context_entry *context;
ba395927 1893 unsigned long flags;
ea6606b0 1894 struct dma_pte *pgd;
55d94043 1895 int ret, agaw;
28ccce0d 1896
c6c2cebd
JR
1897 WARN_ON(did == 0);
1898
28ccce0d
JR
1899 if (hw_pass_through && domain_type_is_si(domain))
1900 translation = CONTEXT_TT_PASS_THROUGH;
ba395927
KA
1901
1902 pr_debug("Set context mapping for %02x:%02x.%d\n",
1903 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1904
ba395927 1905 BUG_ON(!domain->pgd);
5331fe6f 1906
55d94043
JR
1907 spin_lock_irqsave(&device_domain_lock, flags);
1908 spin_lock(&iommu->lock);
1909
1910 ret = -ENOMEM;
03ecc32c 1911 context = iommu_context_addr(iommu, bus, devfn, 1);
ba395927 1912 if (!context)
55d94043 1913 goto out_unlock;
ba395927 1914
55d94043
JR
1915 ret = 0;
1916 if (context_present(context))
1917 goto out_unlock;
cf484d0e 1918
ea6606b0
WH
1919 pgd = domain->pgd;
1920
de24e553 1921 context_clear_entry(context);
c6c2cebd 1922 context_set_domain_id(context, did);
ea6606b0 1923
de24e553
JR
1924 /*
1925 * Skip top levels of page tables for iommu which has less agaw
1926 * than default. Unnecessary for PT mode.
1927 */
93a23a72 1928 if (translation != CONTEXT_TT_PASS_THROUGH) {
de24e553 1929 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
55d94043 1930 ret = -ENOMEM;
de24e553 1931 pgd = phys_to_virt(dma_pte_addr(pgd));
55d94043
JR
1932 if (!dma_pte_present(pgd))
1933 goto out_unlock;
ea6606b0 1934 }
4ed0d3e6 1935
64ae892b 1936 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
93a23a72
YZ
1937 translation = info ? CONTEXT_TT_DEV_IOTLB :
1938 CONTEXT_TT_MULTI_LEVEL;
de24e553 1939
93a23a72
YZ
1940 context_set_address_root(context, virt_to_phys(pgd));
1941 context_set_address_width(context, iommu->agaw);
de24e553
JR
1942 } else {
1943 /*
1944 * In pass through mode, AW must be programmed to
1945 * indicate the largest AGAW value supported by
1946 * hardware. And ASR is ignored by hardware.
1947 */
1948 context_set_address_width(context, iommu->msagaw);
93a23a72 1949 }
4ed0d3e6
FY
1950
1951 context_set_translation_type(context, translation);
c07e7d21
MM
1952 context_set_fault_enable(context);
1953 context_set_present(context);
5331fe6f 1954 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1955
4c25a2c1
DW
1956 /*
1957 * It's a non-present to present mapping. If hardware doesn't cache
1958 * non-present entry we only need to flush the write-buffer. If the
1959 * _does_ cache non-present entries, then it does so in the special
1960 * domain #0, which we have to flush:
1961 */
1962 if (cap_caching_mode(iommu->cap)) {
1963 iommu->flush.flush_context(iommu, 0,
1964 (((u16)bus) << 8) | devfn,
1965 DMA_CCMD_MASK_NOBIT,
1966 DMA_CCMD_DEVICE_INVL);
c6c2cebd 1967 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 1968 } else {
ba395927 1969 iommu_flush_write_buffer(iommu);
4c25a2c1 1970 }
93a23a72 1971 iommu_enable_dev_iotlb(info);
c7151a8d 1972
55d94043
JR
1973 ret = 0;
1974
1975out_unlock:
1976 spin_unlock(&iommu->lock);
1977 spin_unlock_irqrestore(&device_domain_lock, flags);
fb170fb4 1978
ba395927
KA
1979 return 0;
1980}
1981
579305f7
AW
1982struct domain_context_mapping_data {
1983 struct dmar_domain *domain;
1984 struct intel_iommu *iommu;
579305f7
AW
1985};
1986
1987static int domain_context_mapping_cb(struct pci_dev *pdev,
1988 u16 alias, void *opaque)
1989{
1990 struct domain_context_mapping_data *data = opaque;
1991
1992 return domain_context_mapping_one(data->domain, data->iommu,
28ccce0d 1993 PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
1994}
1995
ba395927 1996static int
28ccce0d 1997domain_context_mapping(struct dmar_domain *domain, struct device *dev)
ba395927 1998{
64ae892b 1999 struct intel_iommu *iommu;
156baca8 2000 u8 bus, devfn;
579305f7 2001 struct domain_context_mapping_data data;
64ae892b 2002
e1f167f3 2003 iommu = device_to_iommu(dev, &bus, &devfn);
64ae892b
DW
2004 if (!iommu)
2005 return -ENODEV;
ba395927 2006
579305f7 2007 if (!dev_is_pci(dev))
28ccce0d 2008 return domain_context_mapping_one(domain, iommu, bus, devfn);
579305f7
AW
2009
2010 data.domain = domain;
2011 data.iommu = iommu;
579305f7
AW
2012
2013 return pci_for_each_dma_alias(to_pci_dev(dev),
2014 &domain_context_mapping_cb, &data);
2015}
2016
2017static int domain_context_mapped_cb(struct pci_dev *pdev,
2018 u16 alias, void *opaque)
2019{
2020 struct intel_iommu *iommu = opaque;
2021
2022 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
ba395927
KA
2023}
2024
e1f167f3 2025static int domain_context_mapped(struct device *dev)
ba395927 2026{
5331fe6f 2027 struct intel_iommu *iommu;
156baca8 2028 u8 bus, devfn;
5331fe6f 2029
e1f167f3 2030 iommu = device_to_iommu(dev, &bus, &devfn);
5331fe6f
WH
2031 if (!iommu)
2032 return -ENODEV;
ba395927 2033
579305f7
AW
2034 if (!dev_is_pci(dev))
2035 return device_context_mapped(iommu, bus, devfn);
e1f167f3 2036
579305f7
AW
2037 return !pci_for_each_dma_alias(to_pci_dev(dev),
2038 domain_context_mapped_cb, iommu);
ba395927
KA
2039}
2040
f532959b
FY
2041/* Returns a number of VTD pages, but aligned to MM page size */
2042static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043 size_t size)
2044{
2045 host_addr &= ~PAGE_MASK;
2046 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047}
2048
6dd9a7c7
YS
2049/* Return largest possible superpage level for a given mapping */
2050static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051 unsigned long iov_pfn,
2052 unsigned long phy_pfn,
2053 unsigned long pages)
2054{
2055 int support, level = 1;
2056 unsigned long pfnmerge;
2057
2058 support = domain->iommu_superpage;
2059
2060 /* To use a large page, the virtual *and* physical addresses
2061 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062 of them will mean we have to use smaller pages. So just
2063 merge them and check both at once. */
2064 pfnmerge = iov_pfn | phy_pfn;
2065
2066 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067 pages >>= VTD_STRIDE_SHIFT;
2068 if (!pages)
2069 break;
2070 pfnmerge >>= VTD_STRIDE_SHIFT;
2071 level++;
2072 support--;
2073 }
2074 return level;
2075}
2076
9051aa02
DW
2077static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078 struct scatterlist *sg, unsigned long phys_pfn,
2079 unsigned long nr_pages, int prot)
e1605495
DW
2080{
2081 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 2082 phys_addr_t uninitialized_var(pteval);
cc4f14aa 2083 unsigned long sg_res = 0;
6dd9a7c7
YS
2084 unsigned int largepage_lvl = 0;
2085 unsigned long lvl_pages = 0;
e1605495 2086
162d1b10 2087 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
e1605495
DW
2088
2089 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090 return -EINVAL;
2091
2092 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
cc4f14aa
JL
2094 if (!sg) {
2095 sg_res = nr_pages;
9051aa02
DW
2096 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097 }
2098
6dd9a7c7 2099 while (nr_pages > 0) {
c85994e4
DW
2100 uint64_t tmp;
2101
e1605495 2102 if (!sg_res) {
f532959b 2103 sg_res = aligned_nrpages(sg->offset, sg->length);
e1605495
DW
2104 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105 sg->dma_length = sg->length;
db0fa0cb 2106 pteval = (sg_phys(sg) & PAGE_MASK) | prot;
6dd9a7c7 2107 phys_pfn = pteval >> VTD_PAGE_SHIFT;
e1605495 2108 }
6dd9a7c7 2109
e1605495 2110 if (!pte) {
6dd9a7c7
YS
2111 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
5cf0a76f 2113 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
e1605495
DW
2114 if (!pte)
2115 return -ENOMEM;
6dd9a7c7 2116 /* It is large page*/
6491d4d0 2117 if (largepage_lvl > 1) {
ba2374fd
CZ
2118 unsigned long nr_superpages, end_pfn;
2119
6dd9a7c7 2120 pteval |= DMA_PTE_LARGE_PAGE;
d41a4adb 2121 lvl_pages = lvl_to_nr_pages(largepage_lvl);
ba2374fd
CZ
2122
2123 nr_superpages = sg_res / lvl_pages;
2124 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2125
d41a4adb
JL
2126 /*
2127 * Ensure that old small page tables are
ba2374fd 2128 * removed to make room for superpage(s).
d41a4adb 2129 */
ba2374fd 2130 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
6491d4d0 2131 } else {
6dd9a7c7 2132 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
6491d4d0 2133 }
6dd9a7c7 2134
e1605495
DW
2135 }
2136 /* We don't need lock here, nobody else
2137 * touches the iova range
2138 */
7766a3fb 2139 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 2140 if (tmp) {
1bf20f0d 2141 static int dumps = 5;
9f10e5bf
JR
2142 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2143 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
2144 if (dumps) {
2145 dumps--;
2146 debug_dma_dump_mappings(NULL);
2147 }
2148 WARN_ON(1);
2149 }
6dd9a7c7
YS
2150
2151 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2152
2153 BUG_ON(nr_pages < lvl_pages);
2154 BUG_ON(sg_res < lvl_pages);
2155
2156 nr_pages -= lvl_pages;
2157 iov_pfn += lvl_pages;
2158 phys_pfn += lvl_pages;
2159 pteval += lvl_pages * VTD_PAGE_SIZE;
2160 sg_res -= lvl_pages;
2161
2162 /* If the next PTE would be the first in a new page, then we
2163 need to flush the cache on the entries we've just written.
2164 And then we'll need to recalculate 'pte', so clear it and
2165 let it get set again in the if (!pte) block above.
2166
2167 If we're done (!nr_pages) we need to flush the cache too.
2168
2169 Also if we've been setting superpages, we may need to
2170 recalculate 'pte' and switch back to smaller pages for the
2171 end of the mapping, if the trailing size is not enough to
2172 use another superpage (i.e. sg_res < lvl_pages). */
e1605495 2173 pte++;
6dd9a7c7
YS
2174 if (!nr_pages || first_pte_in_page(pte) ||
2175 (largepage_lvl > 1 && sg_res < lvl_pages)) {
e1605495
DW
2176 domain_flush_cache(domain, first_pte,
2177 (void *)pte - (void *)first_pte);
2178 pte = NULL;
2179 }
6dd9a7c7
YS
2180
2181 if (!sg_res && nr_pages)
e1605495
DW
2182 sg = sg_next(sg);
2183 }
2184 return 0;
2185}
2186
9051aa02
DW
2187static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2188 struct scatterlist *sg, unsigned long nr_pages,
2189 int prot)
ba395927 2190{
9051aa02
DW
2191 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2192}
6f6a00e4 2193
9051aa02
DW
2194static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2195 unsigned long phys_pfn, unsigned long nr_pages,
2196 int prot)
2197{
2198 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
2199}
2200
2452d9db 2201static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 2202{
c7151a8d
WH
2203 if (!iommu)
2204 return;
8c11e798
WH
2205
2206 clear_context_table(iommu, bus, devfn);
2207 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2208 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2209 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
2210}
2211
109b9b04
DW
2212static inline void unlink_domain_info(struct device_domain_info *info)
2213{
2214 assert_spin_locked(&device_domain_lock);
2215 list_del(&info->link);
2216 list_del(&info->global);
2217 if (info->dev)
0bcb3e28 2218 info->dev->archdata.iommu = NULL;
109b9b04
DW
2219}
2220
ba395927
KA
2221static void domain_remove_dev_info(struct dmar_domain *domain)
2222{
3a74ca01 2223 struct device_domain_info *info, *tmp;
fb170fb4 2224 unsigned long flags;
ba395927
KA
2225
2226 spin_lock_irqsave(&device_domain_lock, flags);
76f45fe3 2227 list_for_each_entry_safe(info, tmp, &domain->devices, link)
127c7615 2228 __dmar_remove_one_dev_info(info);
ba395927
KA
2229 spin_unlock_irqrestore(&device_domain_lock, flags);
2230}
2231
2232/*
2233 * find_domain
1525a29a 2234 * Note: we use struct device->archdata.iommu stores the info
ba395927 2235 */
1525a29a 2236static struct dmar_domain *find_domain(struct device *dev)
ba395927
KA
2237{
2238 struct device_domain_info *info;
2239
2240 /* No lock here, assumes no domain exit in normal case */
1525a29a 2241 info = dev->archdata.iommu;
ba395927
KA
2242 if (info)
2243 return info->domain;
2244 return NULL;
2245}
2246
5a8f40e8 2247static inline struct device_domain_info *
745f2586
JL
2248dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2249{
2250 struct device_domain_info *info;
2251
2252 list_for_each_entry(info, &device_domain_list, global)
41e80dca 2253 if (info->iommu->segment == segment && info->bus == bus &&
745f2586 2254 info->devfn == devfn)
5a8f40e8 2255 return info;
745f2586
JL
2256
2257 return NULL;
2258}
2259
5db31569
JR
2260static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2261 int bus, int devfn,
2262 struct device *dev,
2263 struct dmar_domain *domain)
745f2586 2264{
5a8f40e8 2265 struct dmar_domain *found = NULL;
745f2586
JL
2266 struct device_domain_info *info;
2267 unsigned long flags;
d160aca5 2268 int ret;
745f2586
JL
2269
2270 info = alloc_devinfo_mem();
2271 if (!info)
b718cd3d 2272 return NULL;
745f2586 2273
745f2586
JL
2274 info->bus = bus;
2275 info->devfn = devfn;
fb0cc3aa
BH
2276 info->ats.enabled = 0;
2277 info->ats.qdep = 0;
745f2586
JL
2278 info->dev = dev;
2279 info->domain = domain;
5a8f40e8 2280 info->iommu = iommu;
745f2586
JL
2281
2282 spin_lock_irqsave(&device_domain_lock, flags);
2283 if (dev)
0bcb3e28 2284 found = find_domain(dev);
f303e507
JR
2285
2286 if (!found) {
5a8f40e8 2287 struct device_domain_info *info2;
41e80dca 2288 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
f303e507
JR
2289 if (info2) {
2290 found = info2->domain;
2291 info2->dev = dev;
2292 }
5a8f40e8 2293 }
f303e507 2294
745f2586
JL
2295 if (found) {
2296 spin_unlock_irqrestore(&device_domain_lock, flags);
2297 free_devinfo_mem(info);
b718cd3d
DW
2298 /* Caller must free the original domain */
2299 return found;
745f2586
JL
2300 }
2301
d160aca5
JR
2302 spin_lock(&iommu->lock);
2303 ret = domain_attach_iommu(domain, iommu);
2304 spin_unlock(&iommu->lock);
2305
2306 if (ret) {
c6c2cebd 2307 spin_unlock_irqrestore(&device_domain_lock, flags);
499f3aa4 2308 free_devinfo_mem(info);
c6c2cebd
JR
2309 return NULL;
2310 }
c6c2cebd 2311
b718cd3d
DW
2312 list_add(&info->link, &domain->devices);
2313 list_add(&info->global, &device_domain_list);
2314 if (dev)
2315 dev->archdata.iommu = info;
2316 spin_unlock_irqrestore(&device_domain_lock, flags);
2317
cc4e2575
JR
2318 if (dev && domain_context_mapping(domain, dev)) {
2319 pr_err("Domain context map for %s failed\n", dev_name(dev));
e6de0f8d 2320 dmar_remove_one_dev_info(domain, dev);
cc4e2575
JR
2321 return NULL;
2322 }
2323
b718cd3d 2324 return domain;
745f2586
JL
2325}
2326
579305f7
AW
2327static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2328{
2329 *(u16 *)opaque = alias;
2330 return 0;
2331}
2332
ba395927 2333/* domain is initialized */
146922ec 2334static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
ba395927 2335{
cc4e2575 2336 struct device_domain_info *info = NULL;
579305f7
AW
2337 struct dmar_domain *domain, *tmp;
2338 struct intel_iommu *iommu;
08a7f456 2339 u16 req_id, dma_alias;
ba395927 2340 unsigned long flags;
aa4d066a 2341 u8 bus, devfn;
ba395927 2342
146922ec 2343 domain = find_domain(dev);
ba395927
KA
2344 if (domain)
2345 return domain;
2346
579305f7
AW
2347 iommu = device_to_iommu(dev, &bus, &devfn);
2348 if (!iommu)
2349 return NULL;
2350
08a7f456
JR
2351 req_id = ((u16)bus << 8) | devfn;
2352
146922ec
DW
2353 if (dev_is_pci(dev)) {
2354 struct pci_dev *pdev = to_pci_dev(dev);
276dbf99 2355
579305f7
AW
2356 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2357
2358 spin_lock_irqsave(&device_domain_lock, flags);
2359 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2360 PCI_BUS_NUM(dma_alias),
2361 dma_alias & 0xff);
2362 if (info) {
2363 iommu = info->iommu;
2364 domain = info->domain;
5a8f40e8 2365 }
579305f7 2366 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927 2367
579305f7
AW
2368 /* DMA alias already has a domain, uses it */
2369 if (info)
2370 goto found_domain;
2371 }
ba395927 2372
146922ec 2373 /* Allocate and initialize new domain for the device */
ab8dfe25 2374 domain = alloc_domain(0);
745f2586 2375 if (!domain)
579305f7 2376 return NULL;
dc534b25 2377 if (domain_init(domain, iommu, gaw)) {
579305f7
AW
2378 domain_exit(domain);
2379 return NULL;
2c2e2c38 2380 }
ba395927 2381
579305f7 2382 /* register PCI DMA alias device */
08a7f456 2383 if (req_id != dma_alias && dev_is_pci(dev)) {
5db31569
JR
2384 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2385 dma_alias & 0xff, NULL, domain);
579305f7
AW
2386
2387 if (!tmp || tmp != domain) {
2388 domain_exit(domain);
2389 domain = tmp;
2390 }
2391
b718cd3d 2392 if (!domain)
579305f7 2393 return NULL;
ba395927
KA
2394 }
2395
2396found_domain:
5db31569 2397 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
579305f7
AW
2398
2399 if (!tmp || tmp != domain) {
2400 domain_exit(domain);
2401 domain = tmp;
2402 }
b718cd3d
DW
2403
2404 return domain;
ba395927
KA
2405}
2406
2c2e2c38 2407static int iommu_identity_mapping;
e0fc7e0b
DW
2408#define IDENTMAP_ALL 1
2409#define IDENTMAP_GFX 2
2410#define IDENTMAP_AZALIA 4
2c2e2c38 2411
b213203e
DW
2412static int iommu_domain_identity_map(struct dmar_domain *domain,
2413 unsigned long long start,
2414 unsigned long long end)
ba395927 2415{
c5395d5c
DW
2416 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2417 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2418
2419 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2420 dma_to_mm_pfn(last_vpfn))) {
9f10e5bf 2421 pr_err("Reserving iova failed\n");
b213203e 2422 return -ENOMEM;
ba395927
KA
2423 }
2424
af1089ce 2425 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
ba395927
KA
2426 /*
2427 * RMRR range might have overlap with physical memory range,
2428 * clear it first
2429 */
c5395d5c 2430 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 2431
c5395d5c
DW
2432 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2433 last_vpfn - first_vpfn + 1,
61df7443 2434 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
2435}
2436
0b9d9753 2437static int iommu_prepare_identity_map(struct device *dev,
b213203e
DW
2438 unsigned long long start,
2439 unsigned long long end)
2440{
2441 struct dmar_domain *domain;
2442 int ret;
2443
0b9d9753 2444 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
b213203e
DW
2445 if (!domain)
2446 return -ENOMEM;
2447
19943b0e
DW
2448 /* For _hardware_ passthrough, don't bother. But for software
2449 passthrough, we do it anyway -- it may indicate a memory
2450 range which is reserved in E820, so which didn't get set
2451 up to start with in si_domain */
2452 if (domain == si_domain && hw_pass_through) {
9f10e5bf
JR
2453 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2454 dev_name(dev), start, end);
19943b0e
DW
2455 return 0;
2456 }
2457
9f10e5bf
JR
2458 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2459 dev_name(dev), start, end);
2460
5595b528
DW
2461 if (end < start) {
2462 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2463 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2464 dmi_get_system_info(DMI_BIOS_VENDOR),
2465 dmi_get_system_info(DMI_BIOS_VERSION),
2466 dmi_get_system_info(DMI_PRODUCT_VERSION));
2467 ret = -EIO;
2468 goto error;
2469 }
2470
2ff729f5
DW
2471 if (end >> agaw_to_width(domain->agaw)) {
2472 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2474 agaw_to_width(domain->agaw),
2475 dmi_get_system_info(DMI_BIOS_VENDOR),
2476 dmi_get_system_info(DMI_BIOS_VERSION),
2477 dmi_get_system_info(DMI_PRODUCT_VERSION));
2478 ret = -EIO;
2479 goto error;
2480 }
19943b0e 2481
b213203e 2482 ret = iommu_domain_identity_map(domain, start, end);
ba395927
KA
2483 if (ret)
2484 goto error;
2485
b213203e
DW
2486 return 0;
2487
2488 error:
ba395927
KA
2489 domain_exit(domain);
2490 return ret;
ba395927
KA
2491}
2492
2493static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
0b9d9753 2494 struct device *dev)
ba395927 2495{
0b9d9753 2496 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927 2497 return 0;
0b9d9753
DW
2498 return iommu_prepare_identity_map(dev, rmrr->base_address,
2499 rmrr->end_address);
ba395927
KA
2500}
2501
d3f13810 2502#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
49a0429e
KA
2503static inline void iommu_prepare_isa(void)
2504{
2505 struct pci_dev *pdev;
2506 int ret;
2507
2508 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2509 if (!pdev)
2510 return;
2511
9f10e5bf 2512 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
0b9d9753 2513 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
49a0429e
KA
2514
2515 if (ret)
9f10e5bf 2516 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
49a0429e 2517
9b27e82d 2518 pci_dev_put(pdev);
49a0429e
KA
2519}
2520#else
2521static inline void iommu_prepare_isa(void)
2522{
2523 return;
2524}
d3f13810 2525#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
49a0429e 2526
2c2e2c38 2527static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2 2528
071e1374 2529static int __init si_domain_init(int hw)
2c2e2c38 2530{
c7ab48d2 2531 int nid, ret = 0;
2c2e2c38 2532
ab8dfe25 2533 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2c2e2c38
FY
2534 if (!si_domain)
2535 return -EFAULT;
2536
2c2e2c38
FY
2537 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2538 domain_exit(si_domain);
2539 return -EFAULT;
2540 }
2541
0dc79715 2542 pr_debug("Identity mapping domain allocated\n");
2c2e2c38 2543
19943b0e
DW
2544 if (hw)
2545 return 0;
2546
c7ab48d2 2547 for_each_online_node(nid) {
5dfe8660
TH
2548 unsigned long start_pfn, end_pfn;
2549 int i;
2550
2551 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2552 ret = iommu_domain_identity_map(si_domain,
2553 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2554 if (ret)
2555 return ret;
2556 }
c7ab48d2
DW
2557 }
2558
2c2e2c38
FY
2559 return 0;
2560}
2561
9b226624 2562static int identity_mapping(struct device *dev)
2c2e2c38
FY
2563{
2564 struct device_domain_info *info;
2565
2566 if (likely(!iommu_identity_mapping))
2567 return 0;
2568
9b226624 2569 info = dev->archdata.iommu;
cb452a40
MT
2570 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2571 return (info->domain == si_domain);
2c2e2c38 2572
2c2e2c38
FY
2573 return 0;
2574}
2575
28ccce0d 2576static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2c2e2c38 2577{
0ac72664 2578 struct dmar_domain *ndomain;
5a8f40e8 2579 struct intel_iommu *iommu;
156baca8 2580 u8 bus, devfn;
2c2e2c38 2581
5913c9bf 2582 iommu = device_to_iommu(dev, &bus, &devfn);
5a8f40e8
DW
2583 if (!iommu)
2584 return -ENODEV;
2585
5db31569 2586 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
0ac72664
DW
2587 if (ndomain != domain)
2588 return -EBUSY;
2c2e2c38
FY
2589
2590 return 0;
2591}
2592
0b9d9753 2593static bool device_has_rmrr(struct device *dev)
ea2447f7
TM
2594{
2595 struct dmar_rmrr_unit *rmrr;
832bd858 2596 struct device *tmp;
ea2447f7
TM
2597 int i;
2598
0e242612 2599 rcu_read_lock();
ea2447f7 2600 for_each_rmrr_units(rmrr) {
b683b230
JL
2601 /*
2602 * Return TRUE if this RMRR contains the device that
2603 * is passed in.
2604 */
2605 for_each_active_dev_scope(rmrr->devices,
2606 rmrr->devices_cnt, i, tmp)
0b9d9753 2607 if (tmp == dev) {
0e242612 2608 rcu_read_unlock();
ea2447f7 2609 return true;
b683b230 2610 }
ea2447f7 2611 }
0e242612 2612 rcu_read_unlock();
ea2447f7
TM
2613 return false;
2614}
2615
c875d2c1
AW
2616/*
2617 * There are a couple cases where we need to restrict the functionality of
2618 * devices associated with RMRRs. The first is when evaluating a device for
2619 * identity mapping because problems exist when devices are moved in and out
2620 * of domains and their respective RMRR information is lost. This means that
2621 * a device with associated RMRRs will never be in a "passthrough" domain.
2622 * The second is use of the device through the IOMMU API. This interface
2623 * expects to have full control of the IOVA space for the device. We cannot
2624 * satisfy both the requirement that RMRR access is maintained and have an
2625 * unencumbered IOVA space. We also have no ability to quiesce the device's
2626 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2627 * We therefore prevent devices associated with an RMRR from participating in
2628 * the IOMMU API, which eliminates them from device assignment.
2629 *
2630 * In both cases we assume that PCI USB devices with RMRRs have them largely
2631 * for historical reasons and that the RMRR space is not actively used post
2632 * boot. This exclusion may change if vendors begin to abuse it.
18436afd
DW
2633 *
2634 * The same exception is made for graphics devices, with the requirement that
2635 * any use of the RMRR regions will be torn down before assigning the device
2636 * to a guest.
c875d2c1
AW
2637 */
2638static bool device_is_rmrr_locked(struct device *dev)
2639{
2640 if (!device_has_rmrr(dev))
2641 return false;
2642
2643 if (dev_is_pci(dev)) {
2644 struct pci_dev *pdev = to_pci_dev(dev);
2645
18436afd 2646 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
c875d2c1
AW
2647 return false;
2648 }
2649
2650 return true;
2651}
2652
3bdb2591 2653static int iommu_should_identity_map(struct device *dev, int startup)
6941af28 2654{
ea2447f7 2655
3bdb2591
DW
2656 if (dev_is_pci(dev)) {
2657 struct pci_dev *pdev = to_pci_dev(dev);
ea2447f7 2658
c875d2c1 2659 if (device_is_rmrr_locked(dev))
3bdb2591 2660 return 0;
e0fc7e0b 2661
3bdb2591
DW
2662 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2663 return 1;
e0fc7e0b 2664
3bdb2591
DW
2665 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2666 return 1;
6941af28 2667
3bdb2591 2668 if (!(iommu_identity_mapping & IDENTMAP_ALL))
3dfc813d 2669 return 0;
3bdb2591
DW
2670
2671 /*
2672 * We want to start off with all devices in the 1:1 domain, and
2673 * take them out later if we find they can't access all of memory.
2674 *
2675 * However, we can't do this for PCI devices behind bridges,
2676 * because all PCI devices behind the same bridge will end up
2677 * with the same source-id on their transactions.
2678 *
2679 * Practically speaking, we can't change things around for these
2680 * devices at run-time, because we can't be sure there'll be no
2681 * DMA transactions in flight for any of their siblings.
2682 *
2683 * So PCI devices (unless they're on the root bus) as well as
2684 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2685 * the 1:1 domain, just in _case_ one of their siblings turns out
2686 * not to be able to map all of memory.
2687 */
2688 if (!pci_is_pcie(pdev)) {
2689 if (!pci_is_root_bus(pdev->bus))
2690 return 0;
2691 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2692 return 0;
2693 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3dfc813d 2694 return 0;
3bdb2591
DW
2695 } else {
2696 if (device_has_rmrr(dev))
2697 return 0;
2698 }
3dfc813d 2699
3bdb2591 2700 /*
3dfc813d 2701 * At boot time, we don't yet know if devices will be 64-bit capable.
3bdb2591 2702 * Assume that they will — if they turn out not to be, then we can
3dfc813d
DW
2703 * take them out of the 1:1 domain later.
2704 */
8fcc5372
CW
2705 if (!startup) {
2706 /*
2707 * If the device's dma_mask is less than the system's memory
2708 * size then this is not a candidate for identity mapping.
2709 */
3bdb2591 2710 u64 dma_mask = *dev->dma_mask;
8fcc5372 2711
3bdb2591
DW
2712 if (dev->coherent_dma_mask &&
2713 dev->coherent_dma_mask < dma_mask)
2714 dma_mask = dev->coherent_dma_mask;
8fcc5372 2715
3bdb2591 2716 return dma_mask >= dma_get_required_mask(dev);
8fcc5372 2717 }
6941af28
DW
2718
2719 return 1;
2720}
2721
cf04eee8
DW
2722static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2723{
2724 int ret;
2725
2726 if (!iommu_should_identity_map(dev, 1))
2727 return 0;
2728
28ccce0d 2729 ret = domain_add_dev_info(si_domain, dev);
cf04eee8 2730 if (!ret)
9f10e5bf
JR
2731 pr_info("%s identity mapping for device %s\n",
2732 hw ? "Hardware" : "Software", dev_name(dev));
cf04eee8
DW
2733 else if (ret == -ENODEV)
2734 /* device not associated with an iommu */
2735 ret = 0;
2736
2737 return ret;
2738}
2739
2740
071e1374 2741static int __init iommu_prepare_static_identity_mapping(int hw)
2c2e2c38 2742{
2c2e2c38 2743 struct pci_dev *pdev = NULL;
cf04eee8
DW
2744 struct dmar_drhd_unit *drhd;
2745 struct intel_iommu *iommu;
2746 struct device *dev;
2747 int i;
2748 int ret = 0;
2c2e2c38 2749
2c2e2c38 2750 for_each_pci_dev(pdev) {
cf04eee8
DW
2751 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2752 if (ret)
2753 return ret;
2754 }
2755
2756 for_each_active_iommu(iommu, drhd)
2757 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2758 struct acpi_device_physical_node *pn;
2759 struct acpi_device *adev;
2760
2761 if (dev->bus != &acpi_bus_type)
2762 continue;
86080ccc 2763
cf04eee8
DW
2764 adev= to_acpi_device(dev);
2765 mutex_lock(&adev->physical_node_lock);
2766 list_for_each_entry(pn, &adev->physical_node_list, node) {
2767 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2768 if (ret)
2769 break;
eae460b6 2770 }
cf04eee8
DW
2771 mutex_unlock(&adev->physical_node_lock);
2772 if (ret)
2773 return ret;
62edf5dc 2774 }
2c2e2c38
FY
2775
2776 return 0;
2777}
2778
ffebeb46
JL
2779static void intel_iommu_init_qi(struct intel_iommu *iommu)
2780{
2781 /*
2782 * Start from the sane iommu hardware state.
2783 * If the queued invalidation is already initialized by us
2784 * (for example, while enabling interrupt-remapping) then
2785 * we got the things already rolling from a sane state.
2786 */
2787 if (!iommu->qi) {
2788 /*
2789 * Clear any previous faults.
2790 */
2791 dmar_fault(-1, iommu);
2792 /*
2793 * Disable queued invalidation if supported and already enabled
2794 * before OS handover.
2795 */
2796 dmar_disable_qi(iommu);
2797 }
2798
2799 if (dmar_enable_qi(iommu)) {
2800 /*
2801 * Queued Invalidate not enabled, use Register Based Invalidate
2802 */
2803 iommu->flush.flush_context = __iommu_flush_context;
2804 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
9f10e5bf 2805 pr_info("%s: Using Register based invalidation\n",
ffebeb46
JL
2806 iommu->name);
2807 } else {
2808 iommu->flush.flush_context = qi_flush_context;
2809 iommu->flush.flush_iotlb = qi_flush_iotlb;
9f10e5bf 2810 pr_info("%s: Using Queued invalidation\n", iommu->name);
ffebeb46
JL
2811 }
2812}
2813
091d42e4 2814static int copy_context_table(struct intel_iommu *iommu,
543c8dcf 2815 struct root_entry __iomem *old_re,
091d42e4
JR
2816 struct context_entry **tbl,
2817 int bus, bool ext)
2818{
dbcd861f 2819 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
543c8dcf
JR
2820 struct context_entry __iomem *old_ce = NULL;
2821 struct context_entry *new_ce = NULL, ce;
2822 struct root_entry re;
091d42e4
JR
2823 phys_addr_t old_ce_phys;
2824
2825 tbl_idx = ext ? bus * 2 : bus;
543c8dcf 2826 memcpy_fromio(&re, old_re, sizeof(re));
091d42e4
JR
2827
2828 for (devfn = 0; devfn < 256; devfn++) {
2829 /* First calculate the correct index */
2830 idx = (ext ? devfn * 2 : devfn) % 256;
2831
2832 if (idx == 0) {
2833 /* First save what we may have and clean up */
2834 if (new_ce) {
2835 tbl[tbl_idx] = new_ce;
2836 __iommu_flush_cache(iommu, new_ce,
2837 VTD_PAGE_SIZE);
2838 pos = 1;
2839 }
2840
2841 if (old_ce)
2842 iounmap(old_ce);
2843
2844 ret = 0;
2845 if (devfn < 0x80)
543c8dcf 2846 old_ce_phys = root_entry_lctp(&re);
091d42e4 2847 else
543c8dcf 2848 old_ce_phys = root_entry_uctp(&re);
091d42e4
JR
2849
2850 if (!old_ce_phys) {
2851 if (ext && devfn == 0) {
2852 /* No LCTP, try UCTP */
2853 devfn = 0x7f;
2854 continue;
2855 } else {
2856 goto out;
2857 }
2858 }
2859
2860 ret = -ENOMEM;
2861 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2862 if (!old_ce)
2863 goto out;
2864
2865 new_ce = alloc_pgtable_page(iommu->node);
2866 if (!new_ce)
2867 goto out_unmap;
2868
2869 ret = 0;
2870 }
2871
2872 /* Now copy the context entry */
543c8dcf 2873 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
091d42e4 2874
cf484d0e 2875 if (!__context_present(&ce))
091d42e4
JR
2876 continue;
2877
dbcd861f
JR
2878 did = context_domain_id(&ce);
2879 if (did >= 0 && did < cap_ndoms(iommu->cap))
2880 set_bit(did, iommu->domain_ids);
2881
cf484d0e
JR
2882 /*
2883 * We need a marker for copied context entries. This
2884 * marker needs to work for the old format as well as
2885 * for extended context entries.
2886 *
2887 * Bit 67 of the context entry is used. In the old
2888 * format this bit is available to software, in the
2889 * extended format it is the PGE bit, but PGE is ignored
2890 * by HW if PASIDs are disabled (and thus still
2891 * available).
2892 *
2893 * So disable PASIDs first and then mark the entry
2894 * copied. This means that we don't copy PASID
2895 * translations from the old kernel, but this is fine as
2896 * faults there are not fatal.
2897 */
2898 context_clear_pasid_enable(&ce);
2899 context_set_copied(&ce);
2900
091d42e4
JR
2901 new_ce[idx] = ce;
2902 }
2903
2904 tbl[tbl_idx + pos] = new_ce;
2905
2906 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2907
2908out_unmap:
2909 iounmap(old_ce);
2910
2911out:
2912 return ret;
2913}
2914
2915static int copy_translation_tables(struct intel_iommu *iommu)
2916{
543c8dcf 2917 struct root_entry __iomem *old_rt;
091d42e4 2918 struct context_entry **ctxt_tbls;
091d42e4
JR
2919 phys_addr_t old_rt_phys;
2920 int ctxt_table_entries;
2921 unsigned long flags;
2922 u64 rtaddr_reg;
2923 int bus, ret;
c3361f2f 2924 bool new_ext, ext;
091d42e4
JR
2925
2926 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2927 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
c3361f2f
JR
2928 new_ext = !!ecap_ecs(iommu->ecap);
2929
2930 /*
2931 * The RTT bit can only be changed when translation is disabled,
2932 * but disabling translation means to open a window for data
2933 * corruption. So bail out and don't copy anything if we would
2934 * have to change the bit.
2935 */
2936 if (new_ext != ext)
2937 return -EINVAL;
091d42e4
JR
2938
2939 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2940 if (!old_rt_phys)
2941 return -EINVAL;
2942
2943 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2944 if (!old_rt)
2945 return -ENOMEM;
2946
2947 /* This is too big for the stack - allocate it from slab */
2948 ctxt_table_entries = ext ? 512 : 256;
2949 ret = -ENOMEM;
2950 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2951 if (!ctxt_tbls)
2952 goto out_unmap;
2953
2954 for (bus = 0; bus < 256; bus++) {
2955 ret = copy_context_table(iommu, &old_rt[bus],
2956 ctxt_tbls, bus, ext);
2957 if (ret) {
2958 pr_err("%s: Failed to copy context table for bus %d\n",
2959 iommu->name, bus);
2960 continue;
2961 }
2962 }
2963
2964 spin_lock_irqsave(&iommu->lock, flags);
2965
2966 /* Context tables are copied, now write them to the root_entry table */
2967 for (bus = 0; bus < 256; bus++) {
2968 int idx = ext ? bus * 2 : bus;
2969 u64 val;
2970
2971 if (ctxt_tbls[idx]) {
2972 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2973 iommu->root_entry[bus].lo = val;
2974 }
2975
2976 if (!ext || !ctxt_tbls[idx + 1])
2977 continue;
2978
2979 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2980 iommu->root_entry[bus].hi = val;
2981 }
2982
2983 spin_unlock_irqrestore(&iommu->lock, flags);
2984
2985 kfree(ctxt_tbls);
2986
2987 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2988
2989 ret = 0;
2990
2991out_unmap:
2992 iounmap(old_rt);
2993
2994 return ret;
2995}
2996
b779260b 2997static int __init init_dmars(void)
ba395927
KA
2998{
2999 struct dmar_drhd_unit *drhd;
3000 struct dmar_rmrr_unit *rmrr;
a87f4918 3001 bool copied_tables = false;
832bd858 3002 struct device *dev;
ba395927 3003 struct intel_iommu *iommu;
9d783ba0 3004 int i, ret;
2c2e2c38 3005
ba395927
KA
3006 /*
3007 * for each drhd
3008 * allocate root
3009 * initialize and program root entry to not present
3010 * endfor
3011 */
3012 for_each_drhd_unit(drhd) {
5e0d2a6f 3013 /*
3014 * lock not needed as this is only incremented in the single
3015 * threaded kernel __init code path all other access are read
3016 * only
3017 */
78d8e704 3018 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
1b198bb0
MT
3019 g_num_of_iommus++;
3020 continue;
3021 }
9f10e5bf 3022 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
5e0d2a6f 3023 }
3024
ffebeb46
JL
3025 /* Preallocate enough resources for IOMMU hot-addition */
3026 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3027 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3028
d9630fe9
WH
3029 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3030 GFP_KERNEL);
3031 if (!g_iommus) {
9f10e5bf 3032 pr_err("Allocating global iommu array failed\n");
d9630fe9
WH
3033 ret = -ENOMEM;
3034 goto error;
3035 }
3036
80b20dd8 3037 deferred_flush = kzalloc(g_num_of_iommus *
3038 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3039 if (!deferred_flush) {
5e0d2a6f 3040 ret = -ENOMEM;
989d51fc 3041 goto free_g_iommus;
5e0d2a6f 3042 }
3043
7c919779 3044 for_each_active_iommu(iommu, drhd) {
d9630fe9 3045 g_iommus[iommu->seq_id] = iommu;
ba395927 3046
b63d80d1
JR
3047 intel_iommu_init_qi(iommu);
3048
e61d98d8
SS
3049 ret = iommu_init_domains(iommu);
3050 if (ret)
989d51fc 3051 goto free_iommu;
e61d98d8 3052
4158c2ec
JR
3053 init_translation_status(iommu);
3054
091d42e4
JR
3055 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3056 iommu_disable_translation(iommu);
3057 clear_translation_pre_enabled(iommu);
3058 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3059 iommu->name);
3060 }
4158c2ec 3061
ba395927
KA
3062 /*
3063 * TBD:
3064 * we could share the same root & context tables
25985edc 3065 * among all IOMMU's. Need to Split it later.
ba395927
KA
3066 */
3067 ret = iommu_alloc_root_entry(iommu);
ffebeb46 3068 if (ret)
989d51fc 3069 goto free_iommu;
5f0a7f76 3070
091d42e4
JR
3071 if (translation_pre_enabled(iommu)) {
3072 pr_info("Translation already enabled - trying to copy translation structures\n");
3073
3074 ret = copy_translation_tables(iommu);
3075 if (ret) {
3076 /*
3077 * We found the IOMMU with translation
3078 * enabled - but failed to copy over the
3079 * old root-entry table. Try to proceed
3080 * by disabling translation now and
3081 * allocating a clean root-entry table.
3082 * This might cause DMAR faults, but
3083 * probably the dump will still succeed.
3084 */
3085 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3086 iommu->name);
3087 iommu_disable_translation(iommu);
3088 clear_translation_pre_enabled(iommu);
3089 } else {
3090 pr_info("Copied translation tables from previous kernel for %s\n",
3091 iommu->name);
a87f4918 3092 copied_tables = true;
091d42e4
JR
3093 }
3094 }
3095
5f0a7f76
JR
3096 iommu_flush_write_buffer(iommu);
3097 iommu_set_root_entry(iommu);
3098 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3099 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3100
4ed0d3e6 3101 if (!ecap_pass_through(iommu->ecap))
19943b0e 3102 hw_pass_through = 0;
ba395927
KA
3103 }
3104
19943b0e 3105 if (iommu_pass_through)
e0fc7e0b
DW
3106 iommu_identity_mapping |= IDENTMAP_ALL;
3107
d3f13810 3108#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
e0fc7e0b 3109 iommu_identity_mapping |= IDENTMAP_GFX;
19943b0e 3110#endif
e0fc7e0b 3111
86080ccc
JR
3112 if (iommu_identity_mapping) {
3113 ret = si_domain_init(hw_pass_through);
3114 if (ret)
3115 goto free_iommu;
3116 }
3117
e0fc7e0b
DW
3118 check_tylersburg_isoch();
3119
a87f4918
JR
3120 /*
3121 * If we copied translations from a previous kernel in the kdump
3122 * case, we can not assign the devices to domains now, as that
3123 * would eliminate the old mappings. So skip this part and defer
3124 * the assignment to device driver initialization time.
3125 */
3126 if (copied_tables)
3127 goto domains_done;
3128
ba395927 3129 /*
19943b0e
DW
3130 * If pass through is not set or not enabled, setup context entries for
3131 * identity mappings for rmrr, gfx, and isa and may fall back to static
3132 * identity mapping if iommu_identity_mapping is set.
ba395927 3133 */
19943b0e
DW
3134 if (iommu_identity_mapping) {
3135 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
4ed0d3e6 3136 if (ret) {
9f10e5bf 3137 pr_crit("Failed to setup IOMMU pass-through\n");
989d51fc 3138 goto free_iommu;
ba395927
KA
3139 }
3140 }
ba395927 3141 /*
19943b0e
DW
3142 * For each rmrr
3143 * for each dev attached to rmrr
3144 * do
3145 * locate drhd for dev, alloc domain for dev
3146 * allocate free domain
3147 * allocate page table entries for rmrr
3148 * if context not allocated for bus
3149 * allocate and init context
3150 * set present in root table for this bus
3151 * init context with domain, translation etc
3152 * endfor
3153 * endfor
ba395927 3154 */
9f10e5bf 3155 pr_info("Setting RMRR:\n");
19943b0e 3156 for_each_rmrr_units(rmrr) {
b683b230
JL
3157 /* some BIOS lists non-exist devices in DMAR table. */
3158 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
832bd858 3159 i, dev) {
0b9d9753 3160 ret = iommu_prepare_rmrr_dev(rmrr, dev);
19943b0e 3161 if (ret)
9f10e5bf 3162 pr_err("Mapping reserved region failed\n");
ba395927 3163 }
4ed0d3e6 3164 }
49a0429e 3165
19943b0e
DW
3166 iommu_prepare_isa();
3167
a87f4918
JR
3168domains_done:
3169
ba395927
KA
3170 /*
3171 * for each drhd
3172 * enable fault log
3173 * global invalidate context cache
3174 * global invalidate iotlb
3175 * enable translation
3176 */
7c919779 3177 for_each_iommu(iommu, drhd) {
51a63e67
JC
3178 if (drhd->ignored) {
3179 /*
3180 * we always have to disable PMRs or DMA may fail on
3181 * this device
3182 */
3183 if (force_on)
7c919779 3184 iommu_disable_protect_mem_regions(iommu);
ba395927 3185 continue;
51a63e67 3186 }
ba395927
KA
3187
3188 iommu_flush_write_buffer(iommu);
3189
3460a6d9
KA
3190 ret = dmar_set_interrupt(iommu);
3191 if (ret)
989d51fc 3192 goto free_iommu;
3460a6d9 3193
8939ddf6
JR
3194 if (!translation_pre_enabled(iommu))
3195 iommu_enable_translation(iommu);
3196
b94996c9 3197 iommu_disable_protect_mem_regions(iommu);
ba395927
KA
3198 }
3199
3200 return 0;
989d51fc
JL
3201
3202free_iommu:
ffebeb46
JL
3203 for_each_active_iommu(iommu, drhd) {
3204 disable_dmar_iommu(iommu);
a868e6b7 3205 free_dmar_iommu(iommu);
ffebeb46 3206 }
9bdc531e 3207 kfree(deferred_flush);
989d51fc 3208free_g_iommus:
d9630fe9 3209 kfree(g_iommus);
989d51fc 3210error:
ba395927
KA
3211 return ret;
3212}
3213
5a5e02a6 3214/* This takes a number of _MM_ pages, not VTD pages */
875764de
DW
3215static struct iova *intel_alloc_iova(struct device *dev,
3216 struct dmar_domain *domain,
3217 unsigned long nrpages, uint64_t dma_mask)
ba395927 3218{
ba395927 3219 struct iova *iova = NULL;
ba395927 3220
875764de
DW
3221 /* Restrict dma_mask to the width that the iommu can handle */
3222 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
8f6429c7
RM
3223 /* Ensure we reserve the whole size-aligned region */
3224 nrpages = __roundup_pow_of_two(nrpages);
875764de
DW
3225
3226 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
3227 /*
3228 * First try to allocate an io virtual address in
284901a9 3229 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 3230 * from higher range
ba395927 3231 */
875764de
DW
3232 iova = alloc_iova(&domain->iovad, nrpages,
3233 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3234 if (iova)
3235 return iova;
3236 }
3237 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3238 if (unlikely(!iova)) {
9f10e5bf 3239 pr_err("Allocating %ld-page iova for %s failed",
207e3592 3240 nrpages, dev_name(dev));
f76aec76
KA
3241 return NULL;
3242 }
3243
3244 return iova;
3245}
3246
d4b709f4 3247static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
f76aec76
KA
3248{
3249 struct dmar_domain *domain;
f76aec76 3250
d4b709f4 3251 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
f76aec76 3252 if (!domain) {
9f10e5bf 3253 pr_err("Allocating domain for %s failed\n",
d4b709f4 3254 dev_name(dev));
4fe05bbc 3255 return NULL;
ba395927
KA
3256 }
3257
f76aec76
KA
3258 return domain;
3259}
3260
d4b709f4 3261static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
147202aa
DW
3262{
3263 struct device_domain_info *info;
3264
3265 /* No lock here, assumes no domain exit in normal case */
d4b709f4 3266 info = dev->archdata.iommu;
147202aa
DW
3267 if (likely(info))
3268 return info->domain;
3269
3270 return __get_valid_domain_for_dev(dev);
3271}
3272
ecb509ec 3273/* Check if the dev needs to go through non-identity map and unmap process.*/
73676832 3274static int iommu_no_mapping(struct device *dev)
2c2e2c38
FY
3275{
3276 int found;
3277
3d89194a 3278 if (iommu_dummy(dev))
1e4c64c4
DW
3279 return 1;
3280
2c2e2c38 3281 if (!iommu_identity_mapping)
1e4c64c4 3282 return 0;
2c2e2c38 3283
9b226624 3284 found = identity_mapping(dev);
2c2e2c38 3285 if (found) {
ecb509ec 3286 if (iommu_should_identity_map(dev, 0))
2c2e2c38
FY
3287 return 1;
3288 else {
3289 /*
3290 * 32 bit DMA is removed from si_domain and fall back
3291 * to non-identity mapping.
3292 */
e6de0f8d 3293 dmar_remove_one_dev_info(si_domain, dev);
9f10e5bf
JR
3294 pr_info("32bit %s uses non-identity mapping\n",
3295 dev_name(dev));
2c2e2c38
FY
3296 return 0;
3297 }
3298 } else {
3299 /*
3300 * In case of a detached 64 bit DMA device from vm, the device
3301 * is put into si_domain for identity mapping.
3302 */
ecb509ec 3303 if (iommu_should_identity_map(dev, 0)) {
2c2e2c38 3304 int ret;
28ccce0d 3305 ret = domain_add_dev_info(si_domain, dev);
2c2e2c38 3306 if (!ret) {
9f10e5bf
JR
3307 pr_info("64bit %s uses identity mapping\n",
3308 dev_name(dev));
2c2e2c38
FY
3309 return 1;
3310 }
3311 }
3312 }
3313
1e4c64c4 3314 return 0;
2c2e2c38
FY
3315}
3316
5040a918 3317static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
bb9e6d65 3318 size_t size, int dir, u64 dma_mask)
f76aec76 3319{
f76aec76 3320 struct dmar_domain *domain;
5b6985ce 3321 phys_addr_t start_paddr;
f76aec76
KA
3322 struct iova *iova;
3323 int prot = 0;
6865f0d1 3324 int ret;
8c11e798 3325 struct intel_iommu *iommu;
33041ec0 3326 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
f76aec76
KA
3327
3328 BUG_ON(dir == DMA_NONE);
2c2e2c38 3329
5040a918 3330 if (iommu_no_mapping(dev))
6865f0d1 3331 return paddr;
f76aec76 3332
5040a918 3333 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3334 if (!domain)
3335 return 0;
3336
8c11e798 3337 iommu = domain_get_iommu(domain);
88cb6a74 3338 size = aligned_nrpages(paddr, size);
f76aec76 3339
5040a918 3340 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
f76aec76
KA
3341 if (!iova)
3342 goto error;
3343
ba395927
KA
3344 /*
3345 * Check if DMAR supports zero-length reads on write only
3346 * mappings..
3347 */
3348 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3349 !cap_zlr(iommu->cap))
ba395927
KA
3350 prot |= DMA_PTE_READ;
3351 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3352 prot |= DMA_PTE_WRITE;
3353 /*
6865f0d1 3354 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 3355 * page. Note: if two part of one page are separately mapped, we
6865f0d1 3356 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
3357 * is not a big problem
3358 */
0ab36de2 3359 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
33041ec0 3360 mm_to_dma_pfn(paddr_pfn), size, prot);
ba395927
KA
3361 if (ret)
3362 goto error;
3363
1f0ef2aa
DW
3364 /* it's a non-present to present mapping. Only flush if caching mode */
3365 if (cap_caching_mode(iommu->cap))
a1ddcbe9
JR
3366 iommu_flush_iotlb_psi(iommu, domain,
3367 mm_to_dma_pfn(iova->pfn_lo),
3368 size, 0, 1);
1f0ef2aa 3369 else
8c11e798 3370 iommu_flush_write_buffer(iommu);
f76aec76 3371
03d6a246
DW
3372 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3373 start_paddr += paddr & ~PAGE_MASK;
3374 return start_paddr;
ba395927 3375
ba395927 3376error:
f76aec76
KA
3377 if (iova)
3378 __free_iova(&domain->iovad, iova);
9f10e5bf 3379 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
5040a918 3380 dev_name(dev), size, (unsigned long long)paddr, dir);
ba395927
KA
3381 return 0;
3382}
3383
ffbbef5c
FT
3384static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3385 unsigned long offset, size_t size,
3386 enum dma_data_direction dir,
3387 struct dma_attrs *attrs)
bb9e6d65 3388{
ffbbef5c 3389 return __intel_map_single(dev, page_to_phys(page) + offset, size,
46333e37 3390 dir, *dev->dma_mask);
bb9e6d65
FT
3391}
3392
5e0d2a6f 3393static void flush_unmaps(void)
3394{
80b20dd8 3395 int i, j;
5e0d2a6f 3396
5e0d2a6f 3397 timer_on = 0;
3398
3399 /* just flush them all */
3400 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
3401 struct intel_iommu *iommu = g_iommus[i];
3402 if (!iommu)
3403 continue;
c42d9f32 3404
9dd2fe89
YZ
3405 if (!deferred_flush[i].next)
3406 continue;
3407
78d5f0f5
NA
3408 /* In caching mode, global flushes turn emulation expensive */
3409 if (!cap_caching_mode(iommu->cap))
3410 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 3411 DMA_TLB_GLOBAL_FLUSH);
9dd2fe89 3412 for (j = 0; j < deferred_flush[i].next; j++) {
93a23a72
YZ
3413 unsigned long mask;
3414 struct iova *iova = deferred_flush[i].iova[j];
78d5f0f5
NA
3415 struct dmar_domain *domain = deferred_flush[i].domain[j];
3416
3417 /* On real hardware multiple invalidations are expensive */
3418 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3419 iommu_flush_iotlb_psi(iommu, domain,
a156ef99 3420 iova->pfn_lo, iova_size(iova),
ea8ea460 3421 !deferred_flush[i].freelist[j], 0);
78d5f0f5 3422 else {
a156ef99 3423 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
78d5f0f5
NA
3424 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3425 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3426 }
93a23a72 3427 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
ea8ea460
DW
3428 if (deferred_flush[i].freelist[j])
3429 dma_free_pagelist(deferred_flush[i].freelist[j]);
80b20dd8 3430 }
9dd2fe89 3431 deferred_flush[i].next = 0;
5e0d2a6f 3432 }
3433
5e0d2a6f 3434 list_size = 0;
5e0d2a6f 3435}
3436
3437static void flush_unmaps_timeout(unsigned long data)
3438{
80b20dd8 3439 unsigned long flags;
3440
3441 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 3442 flush_unmaps();
80b20dd8 3443 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 3444}
3445
ea8ea460 3446static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
5e0d2a6f 3447{
3448 unsigned long flags;
80b20dd8 3449 int next, iommu_id;
8c11e798 3450 struct intel_iommu *iommu;
5e0d2a6f 3451
3452 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 3453 if (list_size == HIGH_WATER_MARK)
3454 flush_unmaps();
3455
8c11e798
WH
3456 iommu = domain_get_iommu(dom);
3457 iommu_id = iommu->seq_id;
c42d9f32 3458
80b20dd8 3459 next = deferred_flush[iommu_id].next;
3460 deferred_flush[iommu_id].domain[next] = dom;
3461 deferred_flush[iommu_id].iova[next] = iova;
ea8ea460 3462 deferred_flush[iommu_id].freelist[next] = freelist;
80b20dd8 3463 deferred_flush[iommu_id].next++;
5e0d2a6f 3464
3465 if (!timer_on) {
3466 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3467 timer_on = 1;
3468 }
3469 list_size++;
3470 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3471}
3472
d41a4adb 3473static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
ba395927 3474{
f76aec76 3475 struct dmar_domain *domain;
d794dc9b 3476 unsigned long start_pfn, last_pfn;
ba395927 3477 struct iova *iova;
8c11e798 3478 struct intel_iommu *iommu;
ea8ea460 3479 struct page *freelist;
ba395927 3480
73676832 3481 if (iommu_no_mapping(dev))
f76aec76 3482 return;
2c2e2c38 3483
1525a29a 3484 domain = find_domain(dev);
ba395927
KA
3485 BUG_ON(!domain);
3486
8c11e798
WH
3487 iommu = domain_get_iommu(domain);
3488
ba395927 3489 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
85b98276
DW
3490 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3491 (unsigned long long)dev_addr))
ba395927 3492 return;
ba395927 3493
d794dc9b
DW
3494 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3495 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
ba395927 3496
d794dc9b 3497 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
207e3592 3498 dev_name(dev), start_pfn, last_pfn);
ba395927 3499
ea8ea460 3500 freelist = domain_unmap(domain, start_pfn, last_pfn);
d794dc9b 3501
5e0d2a6f 3502 if (intel_iommu_strict) {
a1ddcbe9 3503 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
ea8ea460 3504 last_pfn - start_pfn + 1, !freelist, 0);
5e0d2a6f 3505 /* free iova */
3506 __free_iova(&domain->iovad, iova);
ea8ea460 3507 dma_free_pagelist(freelist);
5e0d2a6f 3508 } else {
ea8ea460 3509 add_unmap(domain, iova, freelist);
5e0d2a6f 3510 /*
3511 * queue up the release of the unmap to save the 1/6th of the
3512 * cpu used up by the iotlb flush operation...
3513 */
5e0d2a6f 3514 }
ba395927
KA
3515}
3516
d41a4adb
JL
3517static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3518 size_t size, enum dma_data_direction dir,
3519 struct dma_attrs *attrs)
3520{
3521 intel_unmap(dev, dev_addr);
3522}
3523
5040a918 3524static void *intel_alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
3525 dma_addr_t *dma_handle, gfp_t flags,
3526 struct dma_attrs *attrs)
ba395927 3527{
36746436 3528 struct page *page = NULL;
ba395927
KA
3529 int order;
3530
5b6985ce 3531 size = PAGE_ALIGN(size);
ba395927 3532 order = get_order(size);
e8bb910d 3533
5040a918 3534 if (!iommu_no_mapping(dev))
e8bb910d 3535 flags &= ~(GFP_DMA | GFP_DMA32);
5040a918
DW
3536 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3537 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
e8bb910d
AW
3538 flags |= GFP_DMA;
3539 else
3540 flags |= GFP_DMA32;
3541 }
ba395927 3542
36746436
AM
3543 if (flags & __GFP_WAIT) {
3544 unsigned int count = size >> PAGE_SHIFT;
3545
3546 page = dma_alloc_from_contiguous(dev, count, order);
3547 if (page && iommu_no_mapping(dev) &&
3548 page_to_phys(page) + size > dev->coherent_dma_mask) {
3549 dma_release_from_contiguous(dev, page, count);
3550 page = NULL;
3551 }
3552 }
3553
3554 if (!page)
3555 page = alloc_pages(flags, order);
3556 if (!page)
ba395927 3557 return NULL;
36746436 3558 memset(page_address(page), 0, size);
ba395927 3559
36746436 3560 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
bb9e6d65 3561 DMA_BIDIRECTIONAL,
5040a918 3562 dev->coherent_dma_mask);
ba395927 3563 if (*dma_handle)
36746436
AM
3564 return page_address(page);
3565 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3566 __free_pages(page, order);
3567
ba395927
KA
3568 return NULL;
3569}
3570
5040a918 3571static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
baa676fc 3572 dma_addr_t dma_handle, struct dma_attrs *attrs)
ba395927
KA
3573{
3574 int order;
36746436 3575 struct page *page = virt_to_page(vaddr);
ba395927 3576
5b6985ce 3577 size = PAGE_ALIGN(size);
ba395927
KA
3578 order = get_order(size);
3579
d41a4adb 3580 intel_unmap(dev, dma_handle);
36746436
AM
3581 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3582 __free_pages(page, order);
ba395927
KA
3583}
3584
5040a918 3585static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
d7ab5c46
FT
3586 int nelems, enum dma_data_direction dir,
3587 struct dma_attrs *attrs)
ba395927 3588{
d41a4adb 3589 intel_unmap(dev, sglist[0].dma_address);
ba395927
KA
3590}
3591
ba395927 3592static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 3593 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
3594{
3595 int i;
c03ab37c 3596 struct scatterlist *sg;
ba395927 3597
c03ab37c 3598 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 3599 BUG_ON(!sg_page(sg));
db0fa0cb 3600 sg->dma_address = sg_phys(sg);
c03ab37c 3601 sg->dma_length = sg->length;
ba395927
KA
3602 }
3603 return nelems;
3604}
3605
5040a918 3606static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
d7ab5c46 3607 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 3608{
ba395927 3609 int i;
ba395927 3610 struct dmar_domain *domain;
f76aec76
KA
3611 size_t size = 0;
3612 int prot = 0;
f76aec76
KA
3613 struct iova *iova = NULL;
3614 int ret;
c03ab37c 3615 struct scatterlist *sg;
b536d24d 3616 unsigned long start_vpfn;
8c11e798 3617 struct intel_iommu *iommu;
ba395927
KA
3618
3619 BUG_ON(dir == DMA_NONE);
5040a918
DW
3620 if (iommu_no_mapping(dev))
3621 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
ba395927 3622
5040a918 3623 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3624 if (!domain)
3625 return 0;
3626
8c11e798
WH
3627 iommu = domain_get_iommu(domain);
3628
b536d24d 3629 for_each_sg(sglist, sg, nelems, i)
88cb6a74 3630 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 3631
5040a918
DW
3632 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3633 *dev->dma_mask);
f76aec76 3634 if (!iova) {
c03ab37c 3635 sglist->dma_length = 0;
f76aec76
KA
3636 return 0;
3637 }
3638
3639 /*
3640 * Check if DMAR supports zero-length reads on write only
3641 * mappings..
3642 */
3643 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3644 !cap_zlr(iommu->cap))
f76aec76
KA
3645 prot |= DMA_PTE_READ;
3646 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3647 prot |= DMA_PTE_WRITE;
3648
b536d24d 3649 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
e1605495 3650
f532959b 3651 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
e1605495 3652 if (unlikely(ret)) {
e1605495
DW
3653 dma_pte_free_pagetable(domain, start_vpfn,
3654 start_vpfn + size - 1);
e1605495
DW
3655 __free_iova(&domain->iovad, iova);
3656 return 0;
ba395927
KA
3657 }
3658
1f0ef2aa
DW
3659 /* it's a non-present to present mapping. Only flush if caching mode */
3660 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3661 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
1f0ef2aa 3662 else
8c11e798 3663 iommu_flush_write_buffer(iommu);
1f0ef2aa 3664
ba395927
KA
3665 return nelems;
3666}
3667
dfb805e8
FT
3668static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3669{
3670 return !dma_addr;
3671}
3672
160c1d8e 3673struct dma_map_ops intel_dma_ops = {
baa676fc
AP
3674 .alloc = intel_alloc_coherent,
3675 .free = intel_free_coherent,
ba395927
KA
3676 .map_sg = intel_map_sg,
3677 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
3678 .map_page = intel_map_page,
3679 .unmap_page = intel_unmap_page,
dfb805e8 3680 .mapping_error = intel_mapping_error,
ba395927
KA
3681};
3682
3683static inline int iommu_domain_cache_init(void)
3684{
3685 int ret = 0;
3686
3687 iommu_domain_cache = kmem_cache_create("iommu_domain",
3688 sizeof(struct dmar_domain),
3689 0,
3690 SLAB_HWCACHE_ALIGN,
3691
3692 NULL);
3693 if (!iommu_domain_cache) {
9f10e5bf 3694 pr_err("Couldn't create iommu_domain cache\n");
ba395927
KA
3695 ret = -ENOMEM;
3696 }
3697
3698 return ret;
3699}
3700
3701static inline int iommu_devinfo_cache_init(void)
3702{
3703 int ret = 0;
3704
3705 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3706 sizeof(struct device_domain_info),
3707 0,
3708 SLAB_HWCACHE_ALIGN,
ba395927
KA
3709 NULL);
3710 if (!iommu_devinfo_cache) {
9f10e5bf 3711 pr_err("Couldn't create devinfo cache\n");
ba395927
KA
3712 ret = -ENOMEM;
3713 }
3714
3715 return ret;
3716}
3717
ba395927
KA
3718static int __init iommu_init_mempool(void)
3719{
3720 int ret;
ae1ff3d6 3721 ret = iova_cache_get();
ba395927
KA
3722 if (ret)
3723 return ret;
3724
3725 ret = iommu_domain_cache_init();
3726 if (ret)
3727 goto domain_error;
3728
3729 ret = iommu_devinfo_cache_init();
3730 if (!ret)
3731 return ret;
3732
3733 kmem_cache_destroy(iommu_domain_cache);
3734domain_error:
ae1ff3d6 3735 iova_cache_put();
ba395927
KA
3736
3737 return -ENOMEM;
3738}
3739
3740static void __init iommu_exit_mempool(void)
3741{
3742 kmem_cache_destroy(iommu_devinfo_cache);
3743 kmem_cache_destroy(iommu_domain_cache);
ae1ff3d6 3744 iova_cache_put();
ba395927
KA
3745}
3746
556ab45f
DW
3747static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3748{
3749 struct dmar_drhd_unit *drhd;
3750 u32 vtbar;
3751 int rc;
3752
3753 /* We know that this device on this chipset has its own IOMMU.
3754 * If we find it under a different IOMMU, then the BIOS is lying
3755 * to us. Hope that the IOMMU for this device is actually
3756 * disabled, and it needs no translation...
3757 */
3758 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3759 if (rc) {
3760 /* "can't" happen */
3761 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3762 return;
3763 }
3764 vtbar &= 0xffff0000;
3765
3766 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3767 drhd = dmar_find_matched_drhd_unit(pdev);
3768 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3769 TAINT_FIRMWARE_WORKAROUND,
3770 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3771 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3772}
3773DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3774
ba395927
KA
3775static void __init init_no_remapping_devices(void)
3776{
3777 struct dmar_drhd_unit *drhd;
832bd858 3778 struct device *dev;
b683b230 3779 int i;
ba395927
KA
3780
3781 for_each_drhd_unit(drhd) {
3782 if (!drhd->include_all) {
b683b230
JL
3783 for_each_active_dev_scope(drhd->devices,
3784 drhd->devices_cnt, i, dev)
3785 break;
832bd858 3786 /* ignore DMAR unit if no devices exist */
ba395927
KA
3787 if (i == drhd->devices_cnt)
3788 drhd->ignored = 1;
3789 }
3790 }
3791
7c919779 3792 for_each_active_drhd_unit(drhd) {
7c919779 3793 if (drhd->include_all)
ba395927
KA
3794 continue;
3795
b683b230
JL
3796 for_each_active_dev_scope(drhd->devices,
3797 drhd->devices_cnt, i, dev)
832bd858 3798 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
ba395927 3799 break;
ba395927
KA
3800 if (i < drhd->devices_cnt)
3801 continue;
3802
c0771df8
DW
3803 /* This IOMMU has *only* gfx devices. Either bypass it or
3804 set the gfx_mapped flag, as appropriate */
3805 if (dmar_map_gfx) {
3806 intel_iommu_gfx_mapped = 1;
3807 } else {
3808 drhd->ignored = 1;
b683b230
JL
3809 for_each_active_dev_scope(drhd->devices,
3810 drhd->devices_cnt, i, dev)
832bd858 3811 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
3812 }
3813 }
3814}
3815
f59c7b69
FY
3816#ifdef CONFIG_SUSPEND
3817static int init_iommu_hw(void)
3818{
3819 struct dmar_drhd_unit *drhd;
3820 struct intel_iommu *iommu = NULL;
3821
3822 for_each_active_iommu(iommu, drhd)
3823 if (iommu->qi)
3824 dmar_reenable_qi(iommu);
3825
b779260b
JC
3826 for_each_iommu(iommu, drhd) {
3827 if (drhd->ignored) {
3828 /*
3829 * we always have to disable PMRs or DMA may fail on
3830 * this device
3831 */
3832 if (force_on)
3833 iommu_disable_protect_mem_regions(iommu);
3834 continue;
3835 }
3836
f59c7b69
FY
3837 iommu_flush_write_buffer(iommu);
3838
3839 iommu_set_root_entry(iommu);
3840
3841 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3842 DMA_CCMD_GLOBAL_INVL);
2a41ccee
JL
3843 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3844 iommu_enable_translation(iommu);
b94996c9 3845 iommu_disable_protect_mem_regions(iommu);
f59c7b69
FY
3846 }
3847
3848 return 0;
3849}
3850
3851static void iommu_flush_all(void)
3852{
3853 struct dmar_drhd_unit *drhd;
3854 struct intel_iommu *iommu;
3855
3856 for_each_active_iommu(iommu, drhd) {
3857 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3858 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3859 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3860 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3861 }
3862}
3863
134fac3f 3864static int iommu_suspend(void)
f59c7b69
FY
3865{
3866 struct dmar_drhd_unit *drhd;
3867 struct intel_iommu *iommu = NULL;
3868 unsigned long flag;
3869
3870 for_each_active_iommu(iommu, drhd) {
3871 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3872 GFP_ATOMIC);
3873 if (!iommu->iommu_state)
3874 goto nomem;
3875 }
3876
3877 iommu_flush_all();
3878
3879 for_each_active_iommu(iommu, drhd) {
3880 iommu_disable_translation(iommu);
3881
1f5b3c3f 3882 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
3883
3884 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3885 readl(iommu->reg + DMAR_FECTL_REG);
3886 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3887 readl(iommu->reg + DMAR_FEDATA_REG);
3888 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3889 readl(iommu->reg + DMAR_FEADDR_REG);
3890 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3891 readl(iommu->reg + DMAR_FEUADDR_REG);
3892
1f5b3c3f 3893 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
3894 }
3895 return 0;
3896
3897nomem:
3898 for_each_active_iommu(iommu, drhd)
3899 kfree(iommu->iommu_state);
3900
3901 return -ENOMEM;
3902}
3903
134fac3f 3904static void iommu_resume(void)
f59c7b69
FY
3905{
3906 struct dmar_drhd_unit *drhd;
3907 struct intel_iommu *iommu = NULL;
3908 unsigned long flag;
3909
3910 if (init_iommu_hw()) {
b779260b
JC
3911 if (force_on)
3912 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3913 else
3914 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
134fac3f 3915 return;
f59c7b69
FY
3916 }
3917
3918 for_each_active_iommu(iommu, drhd) {
3919
1f5b3c3f 3920 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
3921
3922 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3923 iommu->reg + DMAR_FECTL_REG);
3924 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3925 iommu->reg + DMAR_FEDATA_REG);
3926 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3927 iommu->reg + DMAR_FEADDR_REG);
3928 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3929 iommu->reg + DMAR_FEUADDR_REG);
3930
1f5b3c3f 3931 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
3932 }
3933
3934 for_each_active_iommu(iommu, drhd)
3935 kfree(iommu->iommu_state);
f59c7b69
FY
3936}
3937
134fac3f 3938static struct syscore_ops iommu_syscore_ops = {
f59c7b69
FY
3939 .resume = iommu_resume,
3940 .suspend = iommu_suspend,
3941};
3942
134fac3f 3943static void __init init_iommu_pm_ops(void)
f59c7b69 3944{
134fac3f 3945 register_syscore_ops(&iommu_syscore_ops);
f59c7b69
FY
3946}
3947
3948#else
99592ba4 3949static inline void init_iommu_pm_ops(void) {}
f59c7b69
FY
3950#endif /* CONFIG_PM */
3951
318fe7df 3952
c2a0b538 3953int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
318fe7df
SS
3954{
3955 struct acpi_dmar_reserved_memory *rmrr;
3956 struct dmar_rmrr_unit *rmrru;
3957
3958 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3959 if (!rmrru)
3960 return -ENOMEM;
3961
3962 rmrru->hdr = header;
3963 rmrr = (struct acpi_dmar_reserved_memory *)header;
3964 rmrru->base_address = rmrr->base_address;
3965 rmrru->end_address = rmrr->end_address;
2e455289
JL
3966 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3967 ((void *)rmrr) + rmrr->header.length,
3968 &rmrru->devices_cnt);
3969 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3970 kfree(rmrru);
3971 return -ENOMEM;
3972 }
318fe7df 3973
2e455289 3974 list_add(&rmrru->list, &dmar_rmrr_units);
318fe7df 3975
2e455289 3976 return 0;
318fe7df
SS
3977}
3978
6b197249
JL
3979static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3980{
3981 struct dmar_atsr_unit *atsru;
3982 struct acpi_dmar_atsr *tmp;
3983
3984 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3985 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3986 if (atsr->segment != tmp->segment)
3987 continue;
3988 if (atsr->header.length != tmp->header.length)
3989 continue;
3990 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3991 return atsru;
3992 }
3993
3994 return NULL;
3995}
3996
3997int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
318fe7df
SS
3998{
3999 struct acpi_dmar_atsr *atsr;
4000 struct dmar_atsr_unit *atsru;
4001
6b197249
JL
4002 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4003 return 0;
4004
318fe7df 4005 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
6b197249
JL
4006 atsru = dmar_find_atsr(atsr);
4007 if (atsru)
4008 return 0;
4009
4010 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
318fe7df
SS
4011 if (!atsru)
4012 return -ENOMEM;
4013
6b197249
JL
4014 /*
4015 * If memory is allocated from slab by ACPI _DSM method, we need to
4016 * copy the memory content because the memory buffer will be freed
4017 * on return.
4018 */
4019 atsru->hdr = (void *)(atsru + 1);
4020 memcpy(atsru->hdr, hdr, hdr->length);
318fe7df 4021 atsru->include_all = atsr->flags & 0x1;
2e455289
JL
4022 if (!atsru->include_all) {
4023 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4024 (void *)atsr + atsr->header.length,
4025 &atsru->devices_cnt);
4026 if (atsru->devices_cnt && atsru->devices == NULL) {
4027 kfree(atsru);
4028 return -ENOMEM;
4029 }
4030 }
318fe7df 4031
0e242612 4032 list_add_rcu(&atsru->list, &dmar_atsr_units);
318fe7df
SS
4033
4034 return 0;
4035}
4036
9bdc531e
JL
4037static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4038{
4039 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4040 kfree(atsru);
4041}
4042
6b197249
JL
4043int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4044{
4045 struct acpi_dmar_atsr *atsr;
4046 struct dmar_atsr_unit *atsru;
4047
4048 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4049 atsru = dmar_find_atsr(atsr);
4050 if (atsru) {
4051 list_del_rcu(&atsru->list);
4052 synchronize_rcu();
4053 intel_iommu_free_atsr(atsru);
4054 }
4055
4056 return 0;
4057}
4058
4059int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4060{
4061 int i;
4062 struct device *dev;
4063 struct acpi_dmar_atsr *atsr;
4064 struct dmar_atsr_unit *atsru;
4065
4066 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4067 atsru = dmar_find_atsr(atsr);
4068 if (!atsru)
4069 return 0;
4070
4071 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4072 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4073 i, dev)
4074 return -EBUSY;
4075
4076 return 0;
4077}
4078
ffebeb46
JL
4079static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4080{
4081 int sp, ret = 0;
4082 struct intel_iommu *iommu = dmaru->iommu;
4083
4084 if (g_iommus[iommu->seq_id])
4085 return 0;
4086
4087 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
9f10e5bf 4088 pr_warn("%s: Doesn't support hardware pass through.\n",
ffebeb46
JL
4089 iommu->name);
4090 return -ENXIO;
4091 }
4092 if (!ecap_sc_support(iommu->ecap) &&
4093 domain_update_iommu_snooping(iommu)) {
9f10e5bf 4094 pr_warn("%s: Doesn't support snooping.\n",
ffebeb46
JL
4095 iommu->name);
4096 return -ENXIO;
4097 }
4098 sp = domain_update_iommu_superpage(iommu) - 1;
4099 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
9f10e5bf 4100 pr_warn("%s: Doesn't support large page.\n",
ffebeb46
JL
4101 iommu->name);
4102 return -ENXIO;
4103 }
4104
4105 /*
4106 * Disable translation if already enabled prior to OS handover.
4107 */
4108 if (iommu->gcmd & DMA_GCMD_TE)
4109 iommu_disable_translation(iommu);
4110
4111 g_iommus[iommu->seq_id] = iommu;
4112 ret = iommu_init_domains(iommu);
4113 if (ret == 0)
4114 ret = iommu_alloc_root_entry(iommu);
4115 if (ret)
4116 goto out;
4117
4118 if (dmaru->ignored) {
4119 /*
4120 * we always have to disable PMRs or DMA may fail on this device
4121 */
4122 if (force_on)
4123 iommu_disable_protect_mem_regions(iommu);
4124 return 0;
4125 }
4126
4127 intel_iommu_init_qi(iommu);
4128 iommu_flush_write_buffer(iommu);
4129 ret = dmar_set_interrupt(iommu);
4130 if (ret)
4131 goto disable_iommu;
4132
4133 iommu_set_root_entry(iommu);
4134 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4135 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4136 iommu_enable_translation(iommu);
4137
ffebeb46
JL
4138 iommu_disable_protect_mem_regions(iommu);
4139 return 0;
4140
4141disable_iommu:
4142 disable_dmar_iommu(iommu);
4143out:
4144 free_dmar_iommu(iommu);
4145 return ret;
4146}
4147
6b197249
JL
4148int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4149{
ffebeb46
JL
4150 int ret = 0;
4151 struct intel_iommu *iommu = dmaru->iommu;
4152
4153 if (!intel_iommu_enabled)
4154 return 0;
4155 if (iommu == NULL)
4156 return -EINVAL;
4157
4158 if (insert) {
4159 ret = intel_iommu_add(dmaru);
4160 } else {
4161 disable_dmar_iommu(iommu);
4162 free_dmar_iommu(iommu);
4163 }
4164
4165 return ret;
6b197249
JL
4166}
4167
9bdc531e
JL
4168static void intel_iommu_free_dmars(void)
4169{
4170 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4171 struct dmar_atsr_unit *atsru, *atsr_n;
4172
4173 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4174 list_del(&rmrru->list);
4175 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4176 kfree(rmrru);
318fe7df
SS
4177 }
4178
9bdc531e
JL
4179 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4180 list_del(&atsru->list);
4181 intel_iommu_free_atsr(atsru);
4182 }
318fe7df
SS
4183}
4184
4185int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4186{
b683b230 4187 int i, ret = 1;
318fe7df 4188 struct pci_bus *bus;
832bd858
DW
4189 struct pci_dev *bridge = NULL;
4190 struct device *tmp;
318fe7df
SS
4191 struct acpi_dmar_atsr *atsr;
4192 struct dmar_atsr_unit *atsru;
4193
4194 dev = pci_physfn(dev);
318fe7df 4195 for (bus = dev->bus; bus; bus = bus->parent) {
b5f82ddf 4196 bridge = bus->self;
318fe7df 4197 if (!bridge || !pci_is_pcie(bridge) ||
62f87c0e 4198 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
318fe7df 4199 return 0;
b5f82ddf 4200 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
318fe7df 4201 break;
318fe7df 4202 }
b5f82ddf
JL
4203 if (!bridge)
4204 return 0;
318fe7df 4205
0e242612 4206 rcu_read_lock();
b5f82ddf
JL
4207 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4208 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4209 if (atsr->segment != pci_domain_nr(dev->bus))
4210 continue;
4211
b683b230 4212 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
832bd858 4213 if (tmp == &bridge->dev)
b683b230 4214 goto out;
b5f82ddf
JL
4215
4216 if (atsru->include_all)
b683b230 4217 goto out;
b5f82ddf 4218 }
b683b230
JL
4219 ret = 0;
4220out:
0e242612 4221 rcu_read_unlock();
318fe7df 4222
b683b230 4223 return ret;
318fe7df
SS
4224}
4225
59ce0515
JL
4226int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4227{
4228 int ret = 0;
4229 struct dmar_rmrr_unit *rmrru;
4230 struct dmar_atsr_unit *atsru;
4231 struct acpi_dmar_atsr *atsr;
4232 struct acpi_dmar_reserved_memory *rmrr;
4233
4234 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4235 return 0;
4236
4237 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4238 rmrr = container_of(rmrru->hdr,
4239 struct acpi_dmar_reserved_memory, header);
4240 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4241 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4242 ((void *)rmrr) + rmrr->header.length,
4243 rmrr->segment, rmrru->devices,
4244 rmrru->devices_cnt);
27e24950 4245 if(ret < 0)
59ce0515
JL
4246 return ret;
4247 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
27e24950
JL
4248 dmar_remove_dev_scope(info, rmrr->segment,
4249 rmrru->devices, rmrru->devices_cnt);
59ce0515
JL
4250 }
4251 }
4252
4253 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4254 if (atsru->include_all)
4255 continue;
4256
4257 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4258 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4259 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4260 (void *)atsr + atsr->header.length,
4261 atsr->segment, atsru->devices,
4262 atsru->devices_cnt);
4263 if (ret > 0)
4264 break;
4265 else if(ret < 0)
4266 return ret;
4267 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4268 if (dmar_remove_dev_scope(info, atsr->segment,
4269 atsru->devices, atsru->devices_cnt))
4270 break;
4271 }
4272 }
4273
4274 return 0;
4275}
4276
99dcaded
FY
4277/*
4278 * Here we only respond to action of unbound device from driver.
4279 *
4280 * Added device is not attached to its DMAR domain here yet. That will happen
4281 * when mapping the device to iova.
4282 */
4283static int device_notifier(struct notifier_block *nb,
4284 unsigned long action, void *data)
4285{
4286 struct device *dev = data;
99dcaded
FY
4287 struct dmar_domain *domain;
4288
3d89194a 4289 if (iommu_dummy(dev))
44cd613c
DW
4290 return 0;
4291
1196c2fb 4292 if (action != BUS_NOTIFY_REMOVED_DEVICE)
7e7dfab7
JL
4293 return 0;
4294
1525a29a 4295 domain = find_domain(dev);
99dcaded
FY
4296 if (!domain)
4297 return 0;
4298
e6de0f8d 4299 dmar_remove_one_dev_info(domain, dev);
ab8dfe25 4300 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
7e7dfab7 4301 domain_exit(domain);
a97590e5 4302
99dcaded
FY
4303 return 0;
4304}
4305
4306static struct notifier_block device_nb = {
4307 .notifier_call = device_notifier,
4308};
4309
75f05569
JL
4310static int intel_iommu_memory_notifier(struct notifier_block *nb,
4311 unsigned long val, void *v)
4312{
4313 struct memory_notify *mhp = v;
4314 unsigned long long start, end;
4315 unsigned long start_vpfn, last_vpfn;
4316
4317 switch (val) {
4318 case MEM_GOING_ONLINE:
4319 start = mhp->start_pfn << PAGE_SHIFT;
4320 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4321 if (iommu_domain_identity_map(si_domain, start, end)) {
9f10e5bf 4322 pr_warn("Failed to build identity map for [%llx-%llx]\n",
75f05569
JL
4323 start, end);
4324 return NOTIFY_BAD;
4325 }
4326 break;
4327
4328 case MEM_OFFLINE:
4329 case MEM_CANCEL_ONLINE:
4330 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4331 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4332 while (start_vpfn <= last_vpfn) {
4333 struct iova *iova;
4334 struct dmar_drhd_unit *drhd;
4335 struct intel_iommu *iommu;
ea8ea460 4336 struct page *freelist;
75f05569
JL
4337
4338 iova = find_iova(&si_domain->iovad, start_vpfn);
4339 if (iova == NULL) {
9f10e5bf 4340 pr_debug("Failed get IOVA for PFN %lx\n",
75f05569
JL
4341 start_vpfn);
4342 break;
4343 }
4344
4345 iova = split_and_remove_iova(&si_domain->iovad, iova,
4346 start_vpfn, last_vpfn);
4347 if (iova == NULL) {
9f10e5bf 4348 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
75f05569
JL
4349 start_vpfn, last_vpfn);
4350 return NOTIFY_BAD;
4351 }
4352
ea8ea460
DW
4353 freelist = domain_unmap(si_domain, iova->pfn_lo,
4354 iova->pfn_hi);
4355
75f05569
JL
4356 rcu_read_lock();
4357 for_each_active_iommu(iommu, drhd)
a1ddcbe9 4358 iommu_flush_iotlb_psi(iommu, si_domain,
a156ef99 4359 iova->pfn_lo, iova_size(iova),
ea8ea460 4360 !freelist, 0);
75f05569 4361 rcu_read_unlock();
ea8ea460 4362 dma_free_pagelist(freelist);
75f05569
JL
4363
4364 start_vpfn = iova->pfn_hi + 1;
4365 free_iova_mem(iova);
4366 }
4367 break;
4368 }
4369
4370 return NOTIFY_OK;
4371}
4372
4373static struct notifier_block intel_iommu_memory_nb = {
4374 .notifier_call = intel_iommu_memory_notifier,
4375 .priority = 0
4376};
4377
a5459cfe
AW
4378
4379static ssize_t intel_iommu_show_version(struct device *dev,
4380 struct device_attribute *attr,
4381 char *buf)
4382{
4383 struct intel_iommu *iommu = dev_get_drvdata(dev);
4384 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4385 return sprintf(buf, "%d:%d\n",
4386 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4387}
4388static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4389
4390static ssize_t intel_iommu_show_address(struct device *dev,
4391 struct device_attribute *attr,
4392 char *buf)
4393{
4394 struct intel_iommu *iommu = dev_get_drvdata(dev);
4395 return sprintf(buf, "%llx\n", iommu->reg_phys);
4396}
4397static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4398
4399static ssize_t intel_iommu_show_cap(struct device *dev,
4400 struct device_attribute *attr,
4401 char *buf)
4402{
4403 struct intel_iommu *iommu = dev_get_drvdata(dev);
4404 return sprintf(buf, "%llx\n", iommu->cap);
4405}
4406static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4407
4408static ssize_t intel_iommu_show_ecap(struct device *dev,
4409 struct device_attribute *attr,
4410 char *buf)
4411{
4412 struct intel_iommu *iommu = dev_get_drvdata(dev);
4413 return sprintf(buf, "%llx\n", iommu->ecap);
4414}
4415static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4416
2238c082
AW
4417static ssize_t intel_iommu_show_ndoms(struct device *dev,
4418 struct device_attribute *attr,
4419 char *buf)
4420{
4421 struct intel_iommu *iommu = dev_get_drvdata(dev);
4422 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4423}
4424static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4425
4426static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4427 struct device_attribute *attr,
4428 char *buf)
4429{
4430 struct intel_iommu *iommu = dev_get_drvdata(dev);
4431 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4432 cap_ndoms(iommu->cap)));
4433}
4434static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4435
a5459cfe
AW
4436static struct attribute *intel_iommu_attrs[] = {
4437 &dev_attr_version.attr,
4438 &dev_attr_address.attr,
4439 &dev_attr_cap.attr,
4440 &dev_attr_ecap.attr,
2238c082
AW
4441 &dev_attr_domains_supported.attr,
4442 &dev_attr_domains_used.attr,
a5459cfe
AW
4443 NULL,
4444};
4445
4446static struct attribute_group intel_iommu_group = {
4447 .name = "intel-iommu",
4448 .attrs = intel_iommu_attrs,
4449};
4450
4451const struct attribute_group *intel_iommu_groups[] = {
4452 &intel_iommu_group,
4453 NULL,
4454};
4455
ba395927
KA
4456int __init intel_iommu_init(void)
4457{
9bdc531e 4458 int ret = -ENODEV;
3a93c841 4459 struct dmar_drhd_unit *drhd;
7c919779 4460 struct intel_iommu *iommu;
ba395927 4461
a59b50e9
JC
4462 /* VT-d is required for a TXT/tboot launch, so enforce that */
4463 force_on = tboot_force_iommu();
4464
3a5670e8
JL
4465 if (iommu_init_mempool()) {
4466 if (force_on)
4467 panic("tboot: Failed to initialize iommu memory\n");
4468 return -ENOMEM;
4469 }
4470
4471 down_write(&dmar_global_lock);
a59b50e9
JC
4472 if (dmar_table_init()) {
4473 if (force_on)
4474 panic("tboot: Failed to initialize DMAR table\n");
9bdc531e 4475 goto out_free_dmar;
a59b50e9 4476 }
ba395927 4477
c2c7286a 4478 if (dmar_dev_scope_init() < 0) {
a59b50e9
JC
4479 if (force_on)
4480 panic("tboot: Failed to initialize DMAR device scope\n");
9bdc531e 4481 goto out_free_dmar;
a59b50e9 4482 }
1886e8a9 4483
75f1cdf1 4484 if (no_iommu || dmar_disabled)
9bdc531e 4485 goto out_free_dmar;
2ae21010 4486
318fe7df 4487 if (list_empty(&dmar_rmrr_units))
9f10e5bf 4488 pr_info("No RMRR found\n");
318fe7df
SS
4489
4490 if (list_empty(&dmar_atsr_units))
9f10e5bf 4491 pr_info("No ATSR found\n");
318fe7df 4492
51a63e67
JC
4493 if (dmar_init_reserved_ranges()) {
4494 if (force_on)
4495 panic("tboot: Failed to reserve iommu ranges\n");
3a5670e8 4496 goto out_free_reserved_range;
51a63e67 4497 }
ba395927
KA
4498
4499 init_no_remapping_devices();
4500
b779260b 4501 ret = init_dmars();
ba395927 4502 if (ret) {
a59b50e9
JC
4503 if (force_on)
4504 panic("tboot: Failed to initialize DMARs\n");
9f10e5bf 4505 pr_err("Initialization failed\n");
9bdc531e 4506 goto out_free_reserved_range;
ba395927 4507 }
3a5670e8 4508 up_write(&dmar_global_lock);
9f10e5bf 4509 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
ba395927 4510
5e0d2a6f 4511 init_timer(&unmap_timer);
75f1cdf1
FT
4512#ifdef CONFIG_SWIOTLB
4513 swiotlb = 0;
4514#endif
19943b0e 4515 dma_ops = &intel_dma_ops;
4ed0d3e6 4516
134fac3f 4517 init_iommu_pm_ops();
a8bcbb0d 4518
a5459cfe
AW
4519 for_each_active_iommu(iommu, drhd)
4520 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4521 intel_iommu_groups,
2439d4aa 4522 "%s", iommu->name);
a5459cfe 4523
4236d97d 4524 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
99dcaded 4525 bus_register_notifier(&pci_bus_type, &device_nb);
75f05569
JL
4526 if (si_domain && !hw_pass_through)
4527 register_memory_notifier(&intel_iommu_memory_nb);
99dcaded 4528
8bc1f85c
ED
4529 intel_iommu_enabled = 1;
4530
ba395927 4531 return 0;
9bdc531e
JL
4532
4533out_free_reserved_range:
4534 put_iova_domain(&reserved_iova_list);
9bdc531e
JL
4535out_free_dmar:
4536 intel_iommu_free_dmars();
3a5670e8
JL
4537 up_write(&dmar_global_lock);
4538 iommu_exit_mempool();
9bdc531e 4539 return ret;
ba395927 4540}
e820482c 4541
2452d9db 4542static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
579305f7
AW
4543{
4544 struct intel_iommu *iommu = opaque;
4545
2452d9db 4546 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
4547 return 0;
4548}
4549
4550/*
4551 * NB - intel-iommu lacks any sort of reference counting for the users of
4552 * dependent devices. If multiple endpoints have intersecting dependent
4553 * devices, unbinding the driver from any one of them will possibly leave
4554 * the others unable to operate.
4555 */
2452d9db 4556static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
3199aa6b 4557{
0bcb3e28 4558 if (!iommu || !dev || !dev_is_pci(dev))
3199aa6b
HW
4559 return;
4560
2452d9db 4561 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
3199aa6b
HW
4562}
4563
127c7615 4564static void __dmar_remove_one_dev_info(struct device_domain_info *info)
c7151a8d 4565{
c7151a8d
WH
4566 struct intel_iommu *iommu;
4567 unsigned long flags;
c7151a8d 4568
55d94043
JR
4569 assert_spin_locked(&device_domain_lock);
4570
127c7615 4571 if (WARN_ON(!info))
c7151a8d
WH
4572 return;
4573
127c7615 4574 iommu = info->iommu;
c7151a8d 4575
127c7615
JR
4576 if (info->dev) {
4577 iommu_disable_dev_iotlb(info);
4578 domain_context_clear(iommu, info->dev);
4579 }
c7151a8d 4580
b608ac3b 4581 unlink_domain_info(info);
c7151a8d 4582
d160aca5 4583 spin_lock_irqsave(&iommu->lock, flags);
127c7615 4584 domain_detach_iommu(info->domain, iommu);
d160aca5 4585 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d 4586
127c7615 4587 free_devinfo_mem(info);
c7151a8d 4588}
c7151a8d 4589
55d94043
JR
4590static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4591 struct device *dev)
4592{
127c7615 4593 struct device_domain_info *info;
55d94043 4594 unsigned long flags;
3e7abe25 4595
55d94043 4596 spin_lock_irqsave(&device_domain_lock, flags);
127c7615
JR
4597 info = dev->archdata.iommu;
4598 __dmar_remove_one_dev_info(info);
55d94043 4599 spin_unlock_irqrestore(&device_domain_lock, flags);
c7151a8d
WH
4600}
4601
2c2e2c38 4602static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
4603{
4604 int adjust_width;
4605
0fb5fe87
RM
4606 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4607 DMA_32BIT_PFN);
5e98c4b1
WH
4608 domain_reserve_special_ranges(domain);
4609
4610 /* calculate AGAW */
4611 domain->gaw = guest_width;
4612 adjust_width = guestwidth_to_adjustwidth(guest_width);
4613 domain->agaw = width_to_agaw(adjust_width);
4614
5e98c4b1 4615 domain->iommu_coherency = 0;
c5b15255 4616 domain->iommu_snooping = 0;
6dd9a7c7 4617 domain->iommu_superpage = 0;
fe40f1e0 4618 domain->max_addr = 0;
5e98c4b1
WH
4619
4620 /* always allocate the top pgd */
4c923d47 4621 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5e98c4b1
WH
4622 if (!domain->pgd)
4623 return -ENOMEM;
4624 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4625 return 0;
4626}
4627
00a77deb 4628static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
38717946 4629{
5d450806 4630 struct dmar_domain *dmar_domain;
00a77deb
JR
4631 struct iommu_domain *domain;
4632
4633 if (type != IOMMU_DOMAIN_UNMANAGED)
4634 return NULL;
38717946 4635
ab8dfe25 4636 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5d450806 4637 if (!dmar_domain) {
9f10e5bf 4638 pr_err("Can't allocate dmar_domain\n");
00a77deb 4639 return NULL;
38717946 4640 }
2c2e2c38 4641 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
9f10e5bf 4642 pr_err("Domain initialization failed\n");
92d03cc8 4643 domain_exit(dmar_domain);
00a77deb 4644 return NULL;
38717946 4645 }
8140a95d 4646 domain_update_iommu_cap(dmar_domain);
faa3d6f5 4647
00a77deb 4648 domain = &dmar_domain->domain;
8a0e715b
JR
4649 domain->geometry.aperture_start = 0;
4650 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4651 domain->geometry.force_aperture = true;
4652
00a77deb 4653 return domain;
38717946 4654}
38717946 4655
00a77deb 4656static void intel_iommu_domain_free(struct iommu_domain *domain)
38717946 4657{
00a77deb 4658 domain_exit(to_dmar_domain(domain));
38717946 4659}
38717946 4660
4c5478c9
JR
4661static int intel_iommu_attach_device(struct iommu_domain *domain,
4662 struct device *dev)
38717946 4663{
00a77deb 4664 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0
WH
4665 struct intel_iommu *iommu;
4666 int addr_width;
156baca8 4667 u8 bus, devfn;
faa3d6f5 4668
c875d2c1
AW
4669 if (device_is_rmrr_locked(dev)) {
4670 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4671 return -EPERM;
4672 }
4673
7207d8f9
DW
4674 /* normally dev is not mapped */
4675 if (unlikely(domain_context_mapped(dev))) {
faa3d6f5
WH
4676 struct dmar_domain *old_domain;
4677
1525a29a 4678 old_domain = find_domain(dev);
faa3d6f5 4679 if (old_domain) {
d160aca5 4680 rcu_read_lock();
de7e8886 4681 dmar_remove_one_dev_info(old_domain, dev);
d160aca5 4682 rcu_read_unlock();
62c22167
JR
4683
4684 if (!domain_type_is_vm_or_si(old_domain) &&
4685 list_empty(&old_domain->devices))
4686 domain_exit(old_domain);
faa3d6f5
WH
4687 }
4688 }
4689
156baca8 4690 iommu = device_to_iommu(dev, &bus, &devfn);
fe40f1e0
WH
4691 if (!iommu)
4692 return -ENODEV;
4693
4694 /* check if this iommu agaw is sufficient for max mapped address */
4695 addr_width = agaw_to_width(iommu->agaw);
a99c47a2
TL
4696 if (addr_width > cap_mgaw(iommu->cap))
4697 addr_width = cap_mgaw(iommu->cap);
4698
4699 if (dmar_domain->max_addr > (1LL << addr_width)) {
9f10e5bf 4700 pr_err("%s: iommu width (%d) is not "
fe40f1e0 4701 "sufficient for the mapped address (%llx)\n",
a99c47a2 4702 __func__, addr_width, dmar_domain->max_addr);
fe40f1e0
WH
4703 return -EFAULT;
4704 }
a99c47a2
TL
4705 dmar_domain->gaw = addr_width;
4706
4707 /*
4708 * Knock out extra levels of page tables if necessary
4709 */
4710 while (iommu->agaw < dmar_domain->agaw) {
4711 struct dma_pte *pte;
4712
4713 pte = dmar_domain->pgd;
4714 if (dma_pte_present(pte)) {
25cbff16
SY
4715 dmar_domain->pgd = (struct dma_pte *)
4716 phys_to_virt(dma_pte_addr(pte));
7a661013 4717 free_pgtable_page(pte);
a99c47a2
TL
4718 }
4719 dmar_domain->agaw--;
4720 }
fe40f1e0 4721
28ccce0d 4722 return domain_add_dev_info(dmar_domain, dev);
38717946 4723}
38717946 4724
4c5478c9
JR
4725static void intel_iommu_detach_device(struct iommu_domain *domain,
4726 struct device *dev)
38717946 4727{
e6de0f8d 4728 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
faa3d6f5 4729}
c7151a8d 4730
b146a1c9
JR
4731static int intel_iommu_map(struct iommu_domain *domain,
4732 unsigned long iova, phys_addr_t hpa,
5009065d 4733 size_t size, int iommu_prot)
faa3d6f5 4734{
00a77deb 4735 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0 4736 u64 max_addr;
dde57a21 4737 int prot = 0;
faa3d6f5 4738 int ret;
fe40f1e0 4739
dde57a21
JR
4740 if (iommu_prot & IOMMU_READ)
4741 prot |= DMA_PTE_READ;
4742 if (iommu_prot & IOMMU_WRITE)
4743 prot |= DMA_PTE_WRITE;
9cf06697
SY
4744 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4745 prot |= DMA_PTE_SNP;
dde57a21 4746
163cc52c 4747 max_addr = iova + size;
dde57a21 4748 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
4749 u64 end;
4750
4751 /* check if minimum agaw is sufficient for mapped address */
8954da1f 4752 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
fe40f1e0 4753 if (end < max_addr) {
9f10e5bf 4754 pr_err("%s: iommu width (%d) is not "
fe40f1e0 4755 "sufficient for the mapped address (%llx)\n",
8954da1f 4756 __func__, dmar_domain->gaw, max_addr);
fe40f1e0
WH
4757 return -EFAULT;
4758 }
dde57a21 4759 dmar_domain->max_addr = max_addr;
fe40f1e0 4760 }
ad051221
DW
4761 /* Round up size to next multiple of PAGE_SIZE, if it and
4762 the low bits of hpa would take us onto the next page */
88cb6a74 4763 size = aligned_nrpages(hpa, size);
ad051221
DW
4764 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4765 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 4766 return ret;
38717946 4767}
38717946 4768
5009065d 4769static size_t intel_iommu_unmap(struct iommu_domain *domain,
ea8ea460 4770 unsigned long iova, size_t size)
38717946 4771{
00a77deb 4772 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
ea8ea460
DW
4773 struct page *freelist = NULL;
4774 struct intel_iommu *iommu;
4775 unsigned long start_pfn, last_pfn;
4776 unsigned int npages;
42e8c186 4777 int iommu_id, level = 0;
5cf0a76f
DW
4778
4779 /* Cope with horrid API which requires us to unmap more than the
4780 size argument if it happens to be a large-page mapping. */
dc02e46e 4781 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5cf0a76f
DW
4782
4783 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4784 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4b99d352 4785
ea8ea460
DW
4786 start_pfn = iova >> VTD_PAGE_SHIFT;
4787 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4788
4789 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4790
4791 npages = last_pfn - start_pfn + 1;
4792
29a27719 4793 for_each_domain_iommu(iommu_id, dmar_domain) {
a1ddcbe9 4794 iommu = g_iommus[iommu_id];
ea8ea460 4795
42e8c186
JR
4796 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4797 start_pfn, npages, !freelist, 0);
ea8ea460
DW
4798 }
4799
4800 dma_free_pagelist(freelist);
fe40f1e0 4801
163cc52c
DW
4802 if (dmar_domain->max_addr == iova + size)
4803 dmar_domain->max_addr = iova;
b146a1c9 4804
5cf0a76f 4805 return size;
38717946 4806}
38717946 4807
d14d6577 4808static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
bb5547ac 4809 dma_addr_t iova)
38717946 4810{
00a77deb 4811 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
38717946 4812 struct dma_pte *pte;
5cf0a76f 4813 int level = 0;
faa3d6f5 4814 u64 phys = 0;
38717946 4815
5cf0a76f 4816 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
38717946 4817 if (pte)
faa3d6f5 4818 phys = dma_pte_addr(pte);
38717946 4819
faa3d6f5 4820 return phys;
38717946 4821}
a8bcbb0d 4822
5d587b8d 4823static bool intel_iommu_capable(enum iommu_cap cap)
dbb9fd86 4824{
dbb9fd86 4825 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5d587b8d 4826 return domain_update_iommu_snooping(NULL) == 1;
323f99cb 4827 if (cap == IOMMU_CAP_INTR_REMAP)
5d587b8d 4828 return irq_remapping_enabled == 1;
dbb9fd86 4829
5d587b8d 4830 return false;
dbb9fd86
SY
4831}
4832
abdfdde2
AW
4833static int intel_iommu_add_device(struct device *dev)
4834{
a5459cfe 4835 struct intel_iommu *iommu;
abdfdde2 4836 struct iommu_group *group;
156baca8 4837 u8 bus, devfn;
70ae6f0d 4838
a5459cfe
AW
4839 iommu = device_to_iommu(dev, &bus, &devfn);
4840 if (!iommu)
70ae6f0d
AW
4841 return -ENODEV;
4842
a5459cfe 4843 iommu_device_link(iommu->iommu_dev, dev);
a4ff1fc2 4844
e17f9ff4 4845 group = iommu_group_get_for_dev(dev);
783f157b 4846
e17f9ff4
AW
4847 if (IS_ERR(group))
4848 return PTR_ERR(group);
bcb71abe 4849
abdfdde2 4850 iommu_group_put(group);
e17f9ff4 4851 return 0;
abdfdde2 4852}
70ae6f0d 4853
abdfdde2
AW
4854static void intel_iommu_remove_device(struct device *dev)
4855{
a5459cfe
AW
4856 struct intel_iommu *iommu;
4857 u8 bus, devfn;
4858
4859 iommu = device_to_iommu(dev, &bus, &devfn);
4860 if (!iommu)
4861 return;
4862
abdfdde2 4863 iommu_group_remove_device(dev);
a5459cfe
AW
4864
4865 iommu_device_unlink(iommu->iommu_dev, dev);
70ae6f0d
AW
4866}
4867
b22f6434 4868static const struct iommu_ops intel_iommu_ops = {
5d587b8d 4869 .capable = intel_iommu_capable,
00a77deb
JR
4870 .domain_alloc = intel_iommu_domain_alloc,
4871 .domain_free = intel_iommu_domain_free,
a8bcbb0d
JR
4872 .attach_dev = intel_iommu_attach_device,
4873 .detach_dev = intel_iommu_detach_device,
b146a1c9
JR
4874 .map = intel_iommu_map,
4875 .unmap = intel_iommu_unmap,
315786eb 4876 .map_sg = default_iommu_map_sg,
a8bcbb0d 4877 .iova_to_phys = intel_iommu_iova_to_phys,
abdfdde2
AW
4878 .add_device = intel_iommu_add_device,
4879 .remove_device = intel_iommu_remove_device,
6d1c56a9 4880 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
a8bcbb0d 4881};
9af88143 4882
9452618e
DV
4883static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4884{
4885 /* G4x/GM45 integrated gfx dmar support is totally busted. */
9f10e5bf 4886 pr_info("Disabling IOMMU for graphics on this chipset\n");
9452618e
DV
4887 dmar_map_gfx = 0;
4888}
4889
4890DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4891DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4892DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4893DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4894DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4895DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4896DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4897
d34d6517 4898static void quirk_iommu_rwbf(struct pci_dev *dev)
9af88143
DW
4899{
4900 /*
4901 * Mobile 4 Series Chipset neglects to set RWBF capability,
210561ff 4902 * but needs it. Same seems to hold for the desktop versions.
9af88143 4903 */
9f10e5bf 4904 pr_info("Forcing write-buffer flush capability\n");
9af88143
DW
4905 rwbf_quirk = 1;
4906}
4907
4908DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
210561ff
DV
4909DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4910DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4911DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4912DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4913DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4914DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
e0fc7e0b 4915
eecfd57f
AJ
4916#define GGC 0x52
4917#define GGC_MEMORY_SIZE_MASK (0xf << 8)
4918#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4919#define GGC_MEMORY_SIZE_1M (0x1 << 8)
4920#define GGC_MEMORY_SIZE_2M (0x3 << 8)
4921#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4922#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4923#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4924#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4925
d34d6517 4926static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
9eecabcb
DW
4927{
4928 unsigned short ggc;
4929
eecfd57f 4930 if (pci_read_config_word(dev, GGC, &ggc))
9eecabcb
DW
4931 return;
4932
eecfd57f 4933 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
9f10e5bf 4934 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
9eecabcb 4935 dmar_map_gfx = 0;
6fbcfb3e
DW
4936 } else if (dmar_map_gfx) {
4937 /* we have to ensure the gfx device is idle before we flush */
9f10e5bf 4938 pr_info("Disabling batched IOTLB flush on Ironlake\n");
6fbcfb3e
DW
4939 intel_iommu_strict = 1;
4940 }
9eecabcb
DW
4941}
4942DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4943DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4944DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4945DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4946
e0fc7e0b
DW
4947/* On Tylersburg chipsets, some BIOSes have been known to enable the
4948 ISOCH DMAR unit for the Azalia sound device, but not give it any
4949 TLB entries, which causes it to deadlock. Check for that. We do
4950 this in a function called from init_dmars(), instead of in a PCI
4951 quirk, because we don't want to print the obnoxious "BIOS broken"
4952 message if VT-d is actually disabled.
4953*/
4954static void __init check_tylersburg_isoch(void)
4955{
4956 struct pci_dev *pdev;
4957 uint32_t vtisochctrl;
4958
4959 /* If there's no Azalia in the system anyway, forget it. */
4960 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4961 if (!pdev)
4962 return;
4963 pci_dev_put(pdev);
4964
4965 /* System Management Registers. Might be hidden, in which case
4966 we can't do the sanity check. But that's OK, because the
4967 known-broken BIOSes _don't_ actually hide it, so far. */
4968 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4969 if (!pdev)
4970 return;
4971
4972 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4973 pci_dev_put(pdev);
4974 return;
4975 }
4976
4977 pci_dev_put(pdev);
4978
4979 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4980 if (vtisochctrl & 1)
4981 return;
4982
4983 /* Drop all bits other than the number of TLB entries */
4984 vtisochctrl &= 0x1c;
4985
4986 /* If we have the recommended number of TLB entries (16), fine. */
4987 if (vtisochctrl == 0x10)
4988 return;
4989
4990 /* Zero TLB entries? You get to ride the short bus to school. */
4991 if (!vtisochctrl) {
4992 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4993 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4994 dmi_get_system_info(DMI_BIOS_VENDOR),
4995 dmi_get_system_info(DMI_BIOS_VERSION),
4996 dmi_get_system_info(DMI_PRODUCT_VERSION));
4997 iommu_identity_mapping |= IDENTMAP_AZALIA;
4998 return;
4999 }
9f10e5bf
JR
5000
5001 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
e0fc7e0b
DW
5002 vtisochctrl);
5003}