]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/iommu/intel-iommu.c
iommu/vt-d: Introduce intel_iommu=pasid28, and pasid_enabled() macro
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / intel-iommu.c
CommitLineData
ba395927 1/*
ea8ea460 2 * Copyright © 2006-2014 Intel Corporation.
ba395927
KA
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
ea8ea460
DW
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
9f10e5bf 18 * Joerg Roedel <jroedel@suse.de>
ba395927
KA
19 */
20
9f10e5bf
JR
21#define pr_fmt(fmt) "DMAR: " fmt
22
ba395927
KA
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
54485c30 26#include <linux/export.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
75f05569 35#include <linux/memory.h>
5e0d2a6f 36#include <linux/timer.h>
38717946 37#include <linux/iova.h>
5d450806 38#include <linux/iommu.h>
38717946 39#include <linux/intel-iommu.h>
134fac3f 40#include <linux/syscore_ops.h>
69575d38 41#include <linux/tboot.h>
adb2fe02 42#include <linux/dmi.h>
5cdede24 43#include <linux/pci-ats.h>
0ee332c1 44#include <linux/memblock.h>
36746436 45#include <linux/dma-contiguous.h>
091d42e4 46#include <linux/crash_dump.h>
8a8f422d 47#include <asm/irq_remapping.h>
ba395927 48#include <asm/cacheflush.h>
46a7fa27 49#include <asm/iommu.h>
ba395927 50
078e1ee2
JR
51#include "irq_remapping.h"
52
5b6985ce
FY
53#define ROOT_SIZE VTD_PAGE_SIZE
54#define CONTEXT_SIZE VTD_PAGE_SIZE
55
ba395927 56#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
18436afd 57#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
ba395927 58#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
e0fc7e0b 59#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
ba395927
KA
60
61#define IOAPIC_RANGE_START (0xfee00000)
62#define IOAPIC_RANGE_END (0xfeefffff)
63#define IOVA_START_ADDR (0x1000)
64
65#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
4ed0d3e6 67#define MAX_AGAW_WIDTH 64
5c645b35 68#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
4ed0d3e6 69
2ebe3151
DW
70#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
ba395927 78
1b722500
RM
79/* IO virtual address start page frame number */
80#define IOVA_START_PFN (1)
81
f27be03b 82#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 83#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 84#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 85
df08cdc7
AM
86/* page table handling */
87#define LEVEL_STRIDE (9)
88#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
6d1c56a9
OBC
90/*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
df08cdc7
AM
108static inline int agaw_to_level(int agaw)
109{
110 return agaw + 2;
111}
112
113static inline int agaw_to_width(int agaw)
114{
5c645b35 115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
df08cdc7
AM
116}
117
118static inline int width_to_agaw(int width)
119{
5c645b35 120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
df08cdc7
AM
121}
122
123static inline unsigned int level_to_offset_bits(int level)
124{
125 return (level - 1) * LEVEL_STRIDE;
126}
127
128static inline int pfn_level_offset(unsigned long pfn, int level)
129{
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131}
132
133static inline unsigned long level_mask(int level)
134{
135 return -1UL << level_to_offset_bits(level);
136}
137
138static inline unsigned long level_size(int level)
139{
140 return 1UL << level_to_offset_bits(level);
141}
142
143static inline unsigned long align_to_level(unsigned long pfn, int level)
144{
145 return (pfn + level_size(level) - 1) & level_mask(level);
146}
fd18de50 147
6dd9a7c7
YS
148static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149{
5c645b35 150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
6dd9a7c7
YS
151}
152
dd4e8319
DW
153/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156{
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158}
159
160static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161{
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163}
164static inline unsigned long page_to_dma_pfn(struct page *pg)
165{
166 return mm_to_dma_pfn(page_to_pfn(pg));
167}
168static inline unsigned long virt_to_dma_pfn(void *p)
169{
170 return page_to_dma_pfn(virt_to_page(p));
171}
172
d9630fe9
WH
173/* global iommu list, set NULL for ignored DMAR units */
174static struct intel_iommu **g_iommus;
175
e0fc7e0b 176static void __init check_tylersburg_isoch(void);
9af88143
DW
177static int rwbf_quirk;
178
b779260b
JC
179/*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183static int force_on = 0;
184
46b08e1a
MM
185/*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191struct root_entry {
03ecc32c
DW
192 u64 lo;
193 u64 hi;
46b08e1a
MM
194};
195#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
46b08e1a 196
091d42e4
JR
197/*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201static phys_addr_t root_entry_lctp(struct root_entry *re)
202{
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207}
208
209/*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213static phys_addr_t root_entry_uctp(struct root_entry *re)
214{
215 if (!(re->hi & 1))
216 return 0;
46b08e1a 217
091d42e4
JR
218 return re->hi & VTD_PAGE_MASK;
219}
7a8fc25e
MM
220/*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231struct context_entry {
232 u64 lo;
233 u64 hi;
234};
c07e7d21 235
cf484d0e
JR
236static inline void context_clear_pasid_enable(struct context_entry *context)
237{
238 context->lo &= ~(1ULL << 11);
239}
240
241static inline bool context_pasid_enabled(struct context_entry *context)
242{
243 return !!(context->lo & (1ULL << 11));
244}
245
246static inline void context_set_copied(struct context_entry *context)
247{
248 context->hi |= (1ull << 3);
249}
250
251static inline bool context_copied(struct context_entry *context)
252{
253 return !!(context->hi & (1ULL << 3));
254}
255
256static inline bool __context_present(struct context_entry *context)
c07e7d21
MM
257{
258 return (context->lo & 1);
259}
cf484d0e
JR
260
261static inline bool context_present(struct context_entry *context)
262{
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266}
267
c07e7d21
MM
268static inline void context_set_present(struct context_entry *context)
269{
270 context->lo |= 1;
271}
272
273static inline void context_set_fault_enable(struct context_entry *context)
274{
275 context->lo &= (((u64)-1) << 2) | 1;
276}
277
c07e7d21
MM
278static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280{
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283}
284
285static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287{
1a2262f9 288 context->lo &= ~VTD_PAGE_MASK;
c07e7d21
MM
289 context->lo |= value & VTD_PAGE_MASK;
290}
291
292static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294{
295 context->hi |= value & 7;
296}
297
298static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300{
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302}
303
dbcd861f
JR
304static inline int context_domain_id(struct context_entry *c)
305{
306 return((c->hi >> 8) & 0xffff);
307}
308
c07e7d21
MM
309static inline void context_clear_entry(struct context_entry *context)
310{
311 context->lo = 0;
312 context->hi = 0;
313}
7a8fc25e 314
622ba12a
MM
315/*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
9cf06697
SY
320 * 8-10: available
321 * 11: snoop behavior
622ba12a
MM
322 * 12-63: Host physcial address
323 */
324struct dma_pte {
325 u64 val;
326};
622ba12a 327
19c239ce
MM
328static inline void dma_clear_pte(struct dma_pte *pte)
329{
330 pte->val = 0;
331}
332
19c239ce
MM
333static inline u64 dma_pte_addr(struct dma_pte *pte)
334{
c85994e4
DW
335#ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337#else
338 /* Must have a full atomic 64-bit read */
1a8bd481 339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
c85994e4 340#endif
19c239ce
MM
341}
342
19c239ce
MM
343static inline bool dma_pte_present(struct dma_pte *pte)
344{
345 return (pte->val & 3) != 0;
346}
622ba12a 347
4399c8bf
AK
348static inline bool dma_pte_superpage(struct dma_pte *pte)
349{
c3c75eb7 350 return (pte->val & DMA_PTE_LARGE_PAGE);
4399c8bf
AK
351}
352
75e6bf96
DW
353static inline int first_pte_in_page(struct dma_pte *pte)
354{
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356}
357
2c2e2c38
FY
358/*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
19943b0e
DW
364static struct dmar_domain *si_domain;
365static int hw_pass_through = 1;
2c2e2c38 366
28ccce0d
JR
367/*
368 * Domain represents a virtual machine, more than one devices
1ce28feb
WH
369 * across iommus may be owned in one domain, e.g. kvm guest.
370 */
ab8dfe25 371#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
1ce28feb 372
2c2e2c38 373/* si_domain contains mulitple devices */
ab8dfe25 374#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
2c2e2c38 375
29a27719
JR
376#define for_each_domain_iommu(idx, domain) \
377 for (idx = 0; idx < g_num_of_iommus; idx++) \
378 if (domain->iommu_refcnt[idx])
379
99126f7c 380struct dmar_domain {
4c923d47 381 int nid; /* node id */
29a27719
JR
382
383 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
384 /* Refcount of devices per iommu */
385
99126f7c 386
c0e8a6c8
JR
387 u16 iommu_did[DMAR_UNITS_SUPPORTED];
388 /* Domain ids per IOMMU. Use u16 since
389 * domain ids are 16 bit wide according
390 * to VT-d spec, section 9.3 */
99126f7c 391
00a77deb 392 struct list_head devices; /* all devices' list */
99126f7c
MM
393 struct iova_domain iovad; /* iova's that belong to this domain */
394
395 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
396 int gaw; /* max guest address width */
397
398 /* adjusted guest address width, 0 is level 2 30-bit */
399 int agaw;
400
3b5410e7 401 int flags; /* flags to find out type of domain */
8e604097
WH
402
403 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 404 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d 405 int iommu_count; /* reference count of iommu */
6dd9a7c7
YS
406 int iommu_superpage;/* Level of superpages supported:
407 0 == 4KiB (no superpages), 1 == 2MiB,
408 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
fe40f1e0 409 u64 max_addr; /* maximum mapped address */
00a77deb
JR
410
411 struct iommu_domain domain; /* generic domain data structure for
412 iommu core */
99126f7c
MM
413};
414
a647dacb
MM
415/* PCI domain-device relationship */
416struct device_domain_info {
417 struct list_head link; /* link to domain siblings */
418 struct list_head global; /* link to global list */
276dbf99 419 u8 bus; /* PCI bus number */
a647dacb 420 u8 devfn; /* PCI devfn number */
fb0cc3aa
BH
421 struct {
422 u8 enabled:1;
423 u8 qdep;
424 } ats; /* ATS state */
0bcb3e28 425 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
93a23a72 426 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
427 struct dmar_domain *domain; /* pointer to domain */
428};
429
b94e4117
JL
430struct dmar_rmrr_unit {
431 struct list_head list; /* list of rmrr units */
432 struct acpi_dmar_header *hdr; /* ACPI header */
433 u64 base_address; /* reserved base address*/
434 u64 end_address; /* reserved end address */
832bd858 435 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
436 int devices_cnt; /* target device count */
437};
438
439struct dmar_atsr_unit {
440 struct list_head list; /* list of ATSR units */
441 struct acpi_dmar_header *hdr; /* ACPI header */
832bd858 442 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
443 int devices_cnt; /* target device count */
444 u8 include_all:1; /* include all ports */
445};
446
447static LIST_HEAD(dmar_atsr_units);
448static LIST_HEAD(dmar_rmrr_units);
449
450#define for_each_rmrr_units(rmrr) \
451 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
5e0d2a6f 453static void flush_unmaps_timeout(unsigned long data);
454
b707cb02 455static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
5e0d2a6f 456
80b20dd8 457#define HIGH_WATER_MARK 250
458struct deferred_flush_tables {
459 int next;
460 struct iova *iova[HIGH_WATER_MARK];
461 struct dmar_domain *domain[HIGH_WATER_MARK];
ea8ea460 462 struct page *freelist[HIGH_WATER_MARK];
80b20dd8 463};
464
465static struct deferred_flush_tables *deferred_flush;
466
5e0d2a6f 467/* bitmap for indexing intel_iommus */
5e0d2a6f 468static int g_num_of_iommus;
469
470static DEFINE_SPINLOCK(async_umap_flush_lock);
471static LIST_HEAD(unmaps_to_do);
472
473static int timer_on;
474static long list_size;
5e0d2a6f 475
92d03cc8 476static void domain_exit(struct dmar_domain *domain);
ba395927 477static void domain_remove_dev_info(struct dmar_domain *domain);
e6de0f8d
JR
478static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479 struct device *dev);
127c7615 480static void __dmar_remove_one_dev_info(struct device_domain_info *info);
2452d9db
JR
481static void domain_context_clear(struct intel_iommu *iommu,
482 struct device *dev);
2a46ddf7
JL
483static int domain_detach_iommu(struct dmar_domain *domain,
484 struct intel_iommu *iommu);
ba395927 485
d3f13810 486#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
0cd5c3c8
KM
487int dmar_disabled = 0;
488#else
489int dmar_disabled = 1;
d3f13810 490#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
0cd5c3c8 491
8bc1f85c
ED
492int intel_iommu_enabled = 0;
493EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
2d9e667e 495static int dmar_map_gfx = 1;
7d3b03ce 496static int dmar_forcedac;
5e0d2a6f 497static int intel_iommu_strict;
6dd9a7c7 498static int intel_iommu_superpage = 1;
c83b2f20 499static int intel_iommu_ecs = 1;
ae853ddb
DW
500static int intel_iommu_pasid28;
501static int iommu_identity_mapping;
502
503#define IDENTMAP_ALL 1
504#define IDENTMAP_GFX 2
505#define IDENTMAP_AZALIA 4
c83b2f20
DW
506
507/* We only actually use ECS when PASID support (on the new bit 40)
508 * is also advertised. Some early implementations — the ones with
509 * PASID support on bit 28 — have issues even when we *only* use
510 * extended root/context tables. */
ae853ddb
DW
511#define pasid_enabled(iommu) (ecap_pasid(iommu->ecap) || \
512 (intel_iommu_pasid28 && ecap_broken_pasid(iommu->ecap)))
c83b2f20 513#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
ae853ddb 514 pasid_enabled(iommu))
ba395927 515
c0771df8
DW
516int intel_iommu_gfx_mapped;
517EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
518
ba395927
KA
519#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
520static DEFINE_SPINLOCK(device_domain_lock);
521static LIST_HEAD(device_domain_list);
522
b22f6434 523static const struct iommu_ops intel_iommu_ops;
a8bcbb0d 524
4158c2ec
JR
525static bool translation_pre_enabled(struct intel_iommu *iommu)
526{
527 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
528}
529
091d42e4
JR
530static void clear_translation_pre_enabled(struct intel_iommu *iommu)
531{
532 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
533}
534
4158c2ec
JR
535static void init_translation_status(struct intel_iommu *iommu)
536{
537 u32 gsts;
538
539 gsts = readl(iommu->reg + DMAR_GSTS_REG);
540 if (gsts & DMA_GSTS_TES)
541 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
542}
543
00a77deb
JR
544/* Convert generic 'struct iommu_domain to private struct dmar_domain */
545static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
546{
547 return container_of(dom, struct dmar_domain, domain);
548}
549
ba395927
KA
550static int __init intel_iommu_setup(char *str)
551{
552 if (!str)
553 return -EINVAL;
554 while (*str) {
0cd5c3c8
KM
555 if (!strncmp(str, "on", 2)) {
556 dmar_disabled = 0;
9f10e5bf 557 pr_info("IOMMU enabled\n");
0cd5c3c8 558 } else if (!strncmp(str, "off", 3)) {
ba395927 559 dmar_disabled = 1;
9f10e5bf 560 pr_info("IOMMU disabled\n");
ba395927
KA
561 } else if (!strncmp(str, "igfx_off", 8)) {
562 dmar_map_gfx = 0;
9f10e5bf 563 pr_info("Disable GFX device mapping\n");
7d3b03ce 564 } else if (!strncmp(str, "forcedac", 8)) {
9f10e5bf 565 pr_info("Forcing DAC for PCI devices\n");
7d3b03ce 566 dmar_forcedac = 1;
5e0d2a6f 567 } else if (!strncmp(str, "strict", 6)) {
9f10e5bf 568 pr_info("Disable batched IOTLB flush\n");
5e0d2a6f 569 intel_iommu_strict = 1;
6dd9a7c7 570 } else if (!strncmp(str, "sp_off", 6)) {
9f10e5bf 571 pr_info("Disable supported super page\n");
6dd9a7c7 572 intel_iommu_superpage = 0;
c83b2f20
DW
573 } else if (!strncmp(str, "ecs_off", 7)) {
574 printk(KERN_INFO
575 "Intel-IOMMU: disable extended context table support\n");
576 intel_iommu_ecs = 0;
ae853ddb
DW
577 } else if (!strncmp(str, "pasid28", 7)) {
578 printk(KERN_INFO
579 "Intel-IOMMU: enable pre-production PASID support\n");
580 intel_iommu_pasid28 = 1;
581 iommu_identity_mapping |= IDENTMAP_GFX;
ba395927
KA
582 }
583
584 str += strcspn(str, ",");
585 while (*str == ',')
586 str++;
587 }
588 return 0;
589}
590__setup("intel_iommu=", intel_iommu_setup);
591
592static struct kmem_cache *iommu_domain_cache;
593static struct kmem_cache *iommu_devinfo_cache;
ba395927 594
9452d5bf
JR
595static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
596{
8bf47816
JR
597 struct dmar_domain **domains;
598 int idx = did >> 8;
599
600 domains = iommu->domains[idx];
601 if (!domains)
602 return NULL;
603
604 return domains[did & 0xff];
9452d5bf
JR
605}
606
607static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
608 struct dmar_domain *domain)
609{
8bf47816
JR
610 struct dmar_domain **domains;
611 int idx = did >> 8;
612
613 if (!iommu->domains[idx]) {
614 size_t size = 256 * sizeof(struct dmar_domain *);
615 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
616 }
617
618 domains = iommu->domains[idx];
619 if (WARN_ON(!domains))
620 return;
621 else
622 domains[did & 0xff] = domain;
9452d5bf
JR
623}
624
4c923d47 625static inline void *alloc_pgtable_page(int node)
eb3fa7cb 626{
4c923d47
SS
627 struct page *page;
628 void *vaddr = NULL;
eb3fa7cb 629
4c923d47
SS
630 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
631 if (page)
632 vaddr = page_address(page);
eb3fa7cb 633 return vaddr;
ba395927
KA
634}
635
636static inline void free_pgtable_page(void *vaddr)
637{
638 free_page((unsigned long)vaddr);
639}
640
641static inline void *alloc_domain_mem(void)
642{
354bb65e 643 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
ba395927
KA
644}
645
38717946 646static void free_domain_mem(void *vaddr)
ba395927
KA
647{
648 kmem_cache_free(iommu_domain_cache, vaddr);
649}
650
651static inline void * alloc_devinfo_mem(void)
652{
354bb65e 653 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
ba395927
KA
654}
655
656static inline void free_devinfo_mem(void *vaddr)
657{
658 kmem_cache_free(iommu_devinfo_cache, vaddr);
659}
660
ab8dfe25
JL
661static inline int domain_type_is_vm(struct dmar_domain *domain)
662{
663 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
664}
665
28ccce0d
JR
666static inline int domain_type_is_si(struct dmar_domain *domain)
667{
668 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
669}
670
ab8dfe25
JL
671static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
672{
673 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
674 DOMAIN_FLAG_STATIC_IDENTITY);
675}
1b573683 676
162d1b10
JL
677static inline int domain_pfn_supported(struct dmar_domain *domain,
678 unsigned long pfn)
679{
680 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
681
682 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
683}
684
4ed0d3e6 685static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
686{
687 unsigned long sagaw;
688 int agaw = -1;
689
690 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 691 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
692 agaw >= 0; agaw--) {
693 if (test_bit(agaw, &sagaw))
694 break;
695 }
696
697 return agaw;
698}
699
4ed0d3e6
FY
700/*
701 * Calculate max SAGAW for each iommu.
702 */
703int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
704{
705 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
706}
707
708/*
709 * calculate agaw for each iommu.
710 * "SAGAW" may be different across iommus, use a default agaw, and
711 * get a supported less agaw for iommus that don't support the default agaw.
712 */
713int iommu_calculate_agaw(struct intel_iommu *iommu)
714{
715 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
716}
717
2c2e2c38 718/* This functionin only returns single iommu in a domain */
8c11e798
WH
719static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
720{
721 int iommu_id;
722
2c2e2c38 723 /* si_domain and vm domain should not get here. */
ab8dfe25 724 BUG_ON(domain_type_is_vm_or_si(domain));
29a27719
JR
725 for_each_domain_iommu(iommu_id, domain)
726 break;
727
8c11e798
WH
728 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
729 return NULL;
730
731 return g_iommus[iommu_id];
732}
733
8e604097
WH
734static void domain_update_iommu_coherency(struct dmar_domain *domain)
735{
d0501960
DW
736 struct dmar_drhd_unit *drhd;
737 struct intel_iommu *iommu;
2f119c78
QL
738 bool found = false;
739 int i;
2e12bc29 740
d0501960 741 domain->iommu_coherency = 1;
8e604097 742
29a27719 743 for_each_domain_iommu(i, domain) {
2f119c78 744 found = true;
8e604097
WH
745 if (!ecap_coherent(g_iommus[i]->ecap)) {
746 domain->iommu_coherency = 0;
747 break;
748 }
8e604097 749 }
d0501960
DW
750 if (found)
751 return;
752
753 /* No hardware attached; use lowest common denominator */
754 rcu_read_lock();
755 for_each_active_iommu(iommu, drhd) {
756 if (!ecap_coherent(iommu->ecap)) {
757 domain->iommu_coherency = 0;
758 break;
759 }
760 }
761 rcu_read_unlock();
8e604097
WH
762}
763
161f6934 764static int domain_update_iommu_snooping(struct intel_iommu *skip)
58c610bd 765{
161f6934
JL
766 struct dmar_drhd_unit *drhd;
767 struct intel_iommu *iommu;
768 int ret = 1;
58c610bd 769
161f6934
JL
770 rcu_read_lock();
771 for_each_active_iommu(iommu, drhd) {
772 if (iommu != skip) {
773 if (!ecap_sc_support(iommu->ecap)) {
774 ret = 0;
775 break;
776 }
58c610bd 777 }
58c610bd 778 }
161f6934
JL
779 rcu_read_unlock();
780
781 return ret;
58c610bd
SY
782}
783
161f6934 784static int domain_update_iommu_superpage(struct intel_iommu *skip)
6dd9a7c7 785{
8140a95d 786 struct dmar_drhd_unit *drhd;
161f6934 787 struct intel_iommu *iommu;
8140a95d 788 int mask = 0xf;
6dd9a7c7
YS
789
790 if (!intel_iommu_superpage) {
161f6934 791 return 0;
6dd9a7c7
YS
792 }
793
8140a95d 794 /* set iommu_superpage to the smallest common denominator */
0e242612 795 rcu_read_lock();
8140a95d 796 for_each_active_iommu(iommu, drhd) {
161f6934
JL
797 if (iommu != skip) {
798 mask &= cap_super_page_val(iommu->cap);
799 if (!mask)
800 break;
6dd9a7c7
YS
801 }
802 }
0e242612
JL
803 rcu_read_unlock();
804
161f6934 805 return fls(mask);
6dd9a7c7
YS
806}
807
58c610bd
SY
808/* Some capabilities may be different across iommus */
809static void domain_update_iommu_cap(struct dmar_domain *domain)
810{
811 domain_update_iommu_coherency(domain);
161f6934
JL
812 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
813 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
58c610bd
SY
814}
815
03ecc32c
DW
816static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
817 u8 bus, u8 devfn, int alloc)
818{
819 struct root_entry *root = &iommu->root_entry[bus];
820 struct context_entry *context;
821 u64 *entry;
822
4df4eab1 823 entry = &root->lo;
c83b2f20 824 if (ecs_enabled(iommu)) {
03ecc32c
DW
825 if (devfn >= 0x80) {
826 devfn -= 0x80;
827 entry = &root->hi;
828 }
829 devfn *= 2;
830 }
03ecc32c
DW
831 if (*entry & 1)
832 context = phys_to_virt(*entry & VTD_PAGE_MASK);
833 else {
834 unsigned long phy_addr;
835 if (!alloc)
836 return NULL;
837
838 context = alloc_pgtable_page(iommu->node);
839 if (!context)
840 return NULL;
841
842 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
843 phy_addr = virt_to_phys((void *)context);
844 *entry = phy_addr | 1;
845 __iommu_flush_cache(iommu, entry, sizeof(*entry));
846 }
847 return &context[devfn];
848}
849
4ed6a540
DW
850static int iommu_dummy(struct device *dev)
851{
852 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
853}
854
156baca8 855static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
c7151a8d
WH
856{
857 struct dmar_drhd_unit *drhd = NULL;
b683b230 858 struct intel_iommu *iommu;
156baca8
DW
859 struct device *tmp;
860 struct pci_dev *ptmp, *pdev = NULL;
aa4d066a 861 u16 segment = 0;
c7151a8d
WH
862 int i;
863
4ed6a540
DW
864 if (iommu_dummy(dev))
865 return NULL;
866
156baca8
DW
867 if (dev_is_pci(dev)) {
868 pdev = to_pci_dev(dev);
869 segment = pci_domain_nr(pdev->bus);
ca5b74d2 870 } else if (has_acpi_companion(dev))
156baca8
DW
871 dev = &ACPI_COMPANION(dev)->dev;
872
0e242612 873 rcu_read_lock();
b683b230 874 for_each_active_iommu(iommu, drhd) {
156baca8 875 if (pdev && segment != drhd->segment)
276dbf99 876 continue;
c7151a8d 877
b683b230 878 for_each_active_dev_scope(drhd->devices,
156baca8
DW
879 drhd->devices_cnt, i, tmp) {
880 if (tmp == dev) {
881 *bus = drhd->devices[i].bus;
882 *devfn = drhd->devices[i].devfn;
b683b230 883 goto out;
156baca8
DW
884 }
885
886 if (!pdev || !dev_is_pci(tmp))
887 continue;
888
889 ptmp = to_pci_dev(tmp);
890 if (ptmp->subordinate &&
891 ptmp->subordinate->number <= pdev->bus->number &&
892 ptmp->subordinate->busn_res.end >= pdev->bus->number)
893 goto got_pdev;
924b6231 894 }
c7151a8d 895
156baca8
DW
896 if (pdev && drhd->include_all) {
897 got_pdev:
898 *bus = pdev->bus->number;
899 *devfn = pdev->devfn;
b683b230 900 goto out;
156baca8 901 }
c7151a8d 902 }
b683b230 903 iommu = NULL;
156baca8 904 out:
0e242612 905 rcu_read_unlock();
c7151a8d 906
b683b230 907 return iommu;
c7151a8d
WH
908}
909
5331fe6f
WH
910static void domain_flush_cache(struct dmar_domain *domain,
911 void *addr, int size)
912{
913 if (!domain->iommu_coherency)
914 clflush_cache_range(addr, size);
915}
916
ba395927
KA
917static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
918{
ba395927 919 struct context_entry *context;
03ecc32c 920 int ret = 0;
ba395927
KA
921 unsigned long flags;
922
923 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c
DW
924 context = iommu_context_addr(iommu, bus, devfn, 0);
925 if (context)
926 ret = context_present(context);
ba395927
KA
927 spin_unlock_irqrestore(&iommu->lock, flags);
928 return ret;
929}
930
931static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
932{
ba395927
KA
933 struct context_entry *context;
934 unsigned long flags;
935
936 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c 937 context = iommu_context_addr(iommu, bus, devfn, 0);
ba395927 938 if (context) {
03ecc32c
DW
939 context_clear_entry(context);
940 __iommu_flush_cache(iommu, context, sizeof(*context));
ba395927
KA
941 }
942 spin_unlock_irqrestore(&iommu->lock, flags);
943}
944
945static void free_context_table(struct intel_iommu *iommu)
946{
ba395927
KA
947 int i;
948 unsigned long flags;
949 struct context_entry *context;
950
951 spin_lock_irqsave(&iommu->lock, flags);
952 if (!iommu->root_entry) {
953 goto out;
954 }
955 for (i = 0; i < ROOT_ENTRY_NR; i++) {
03ecc32c 956 context = iommu_context_addr(iommu, i, 0, 0);
ba395927
KA
957 if (context)
958 free_pgtable_page(context);
03ecc32c 959
c83b2f20 960 if (!ecs_enabled(iommu))
03ecc32c
DW
961 continue;
962
963 context = iommu_context_addr(iommu, i, 0x80, 0);
964 if (context)
965 free_pgtable_page(context);
966
ba395927
KA
967 }
968 free_pgtable_page(iommu->root_entry);
969 iommu->root_entry = NULL;
970out:
971 spin_unlock_irqrestore(&iommu->lock, flags);
972}
973
b026fd28 974static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
5cf0a76f 975 unsigned long pfn, int *target_level)
ba395927 976{
ba395927
KA
977 struct dma_pte *parent, *pte = NULL;
978 int level = agaw_to_level(domain->agaw);
4399c8bf 979 int offset;
ba395927
KA
980
981 BUG_ON(!domain->pgd);
f9423606 982
162d1b10 983 if (!domain_pfn_supported(domain, pfn))
f9423606
JS
984 /* Address beyond IOMMU's addressing capabilities. */
985 return NULL;
986
ba395927
KA
987 parent = domain->pgd;
988
5cf0a76f 989 while (1) {
ba395927
KA
990 void *tmp_page;
991
b026fd28 992 offset = pfn_level_offset(pfn, level);
ba395927 993 pte = &parent[offset];
5cf0a76f 994 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
6dd9a7c7 995 break;
5cf0a76f 996 if (level == *target_level)
ba395927
KA
997 break;
998
19c239ce 999 if (!dma_pte_present(pte)) {
c85994e4
DW
1000 uint64_t pteval;
1001
4c923d47 1002 tmp_page = alloc_pgtable_page(domain->nid);
ba395927 1003
206a73c1 1004 if (!tmp_page)
ba395927 1005 return NULL;
206a73c1 1006
c85994e4 1007 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
64de5af0 1008 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
effad4b5 1009 if (cmpxchg64(&pte->val, 0ULL, pteval))
c85994e4
DW
1010 /* Someone else set it while we were thinking; use theirs. */
1011 free_pgtable_page(tmp_page);
effad4b5 1012 else
c85994e4 1013 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 1014 }
5cf0a76f
DW
1015 if (level == 1)
1016 break;
1017
19c239ce 1018 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1019 level--;
1020 }
1021
5cf0a76f
DW
1022 if (!*target_level)
1023 *target_level = level;
1024
ba395927
KA
1025 return pte;
1026}
1027
6dd9a7c7 1028
ba395927 1029/* return address's pte at specific level */
90dcfb5e
DW
1030static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1031 unsigned long pfn,
6dd9a7c7 1032 int level, int *large_page)
ba395927
KA
1033{
1034 struct dma_pte *parent, *pte = NULL;
1035 int total = agaw_to_level(domain->agaw);
1036 int offset;
1037
1038 parent = domain->pgd;
1039 while (level <= total) {
90dcfb5e 1040 offset = pfn_level_offset(pfn, total);
ba395927
KA
1041 pte = &parent[offset];
1042 if (level == total)
1043 return pte;
1044
6dd9a7c7
YS
1045 if (!dma_pte_present(pte)) {
1046 *large_page = total;
ba395927 1047 break;
6dd9a7c7
YS
1048 }
1049
e16922af 1050 if (dma_pte_superpage(pte)) {
6dd9a7c7
YS
1051 *large_page = total;
1052 return pte;
1053 }
1054
19c239ce 1055 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1056 total--;
1057 }
1058 return NULL;
1059}
1060
ba395927 1061/* clear last level pte, a tlb flush should be followed */
5cf0a76f 1062static void dma_pte_clear_range(struct dmar_domain *domain,
595badf5
DW
1063 unsigned long start_pfn,
1064 unsigned long last_pfn)
ba395927 1065{
6dd9a7c7 1066 unsigned int large_page = 1;
310a5ab9 1067 struct dma_pte *first_pte, *pte;
66eae846 1068
162d1b10
JL
1069 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1070 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1071 BUG_ON(start_pfn > last_pfn);
ba395927 1072
04b18e65 1073 /* we don't need lock here; nobody else touches the iova range */
59c36286 1074 do {
6dd9a7c7
YS
1075 large_page = 1;
1076 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
310a5ab9 1077 if (!pte) {
6dd9a7c7 1078 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
310a5ab9
DW
1079 continue;
1080 }
6dd9a7c7 1081 do {
310a5ab9 1082 dma_clear_pte(pte);
6dd9a7c7 1083 start_pfn += lvl_to_nr_pages(large_page);
310a5ab9 1084 pte++;
75e6bf96
DW
1085 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1086
310a5ab9
DW
1087 domain_flush_cache(domain, first_pte,
1088 (void *)pte - (void *)first_pte);
59c36286
DW
1089
1090 } while (start_pfn && start_pfn <= last_pfn);
ba395927
KA
1091}
1092
3269ee0b
AW
1093static void dma_pte_free_level(struct dmar_domain *domain, int level,
1094 struct dma_pte *pte, unsigned long pfn,
1095 unsigned long start_pfn, unsigned long last_pfn)
1096{
1097 pfn = max(start_pfn, pfn);
1098 pte = &pte[pfn_level_offset(pfn, level)];
1099
1100 do {
1101 unsigned long level_pfn;
1102 struct dma_pte *level_pte;
1103
1104 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1105 goto next;
1106
1107 level_pfn = pfn & level_mask(level - 1);
1108 level_pte = phys_to_virt(dma_pte_addr(pte));
1109
1110 if (level > 2)
1111 dma_pte_free_level(domain, level - 1, level_pte,
1112 level_pfn, start_pfn, last_pfn);
1113
1114 /* If range covers entire pagetable, free it */
1115 if (!(start_pfn > level_pfn ||
08336fd2 1116 last_pfn < level_pfn + level_size(level) - 1)) {
3269ee0b
AW
1117 dma_clear_pte(pte);
1118 domain_flush_cache(domain, pte, sizeof(*pte));
1119 free_pgtable_page(level_pte);
1120 }
1121next:
1122 pfn += level_size(level);
1123 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1124}
1125
ba395927
KA
1126/* free page table pages. last level pte should already be cleared */
1127static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
1128 unsigned long start_pfn,
1129 unsigned long last_pfn)
ba395927 1130{
162d1b10
JL
1131 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1132 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1133 BUG_ON(start_pfn > last_pfn);
ba395927 1134
d41a4adb
JL
1135 dma_pte_clear_range(domain, start_pfn, last_pfn);
1136
f3a0a52f 1137 /* We don't need lock here; nobody else touches the iova range */
3269ee0b
AW
1138 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1139 domain->pgd, 0, start_pfn, last_pfn);
6660c63a 1140
ba395927 1141 /* free pgd */
d794dc9b 1142 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
1143 free_pgtable_page(domain->pgd);
1144 domain->pgd = NULL;
1145 }
1146}
1147
ea8ea460
DW
1148/* When a page at a given level is being unlinked from its parent, we don't
1149 need to *modify* it at all. All we need to do is make a list of all the
1150 pages which can be freed just as soon as we've flushed the IOTLB and we
1151 know the hardware page-walk will no longer touch them.
1152 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1153 be freed. */
1154static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1155 int level, struct dma_pte *pte,
1156 struct page *freelist)
1157{
1158 struct page *pg;
1159
1160 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1161 pg->freelist = freelist;
1162 freelist = pg;
1163
1164 if (level == 1)
1165 return freelist;
1166
adeb2590
JL
1167 pte = page_address(pg);
1168 do {
ea8ea460
DW
1169 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1170 freelist = dma_pte_list_pagetables(domain, level - 1,
1171 pte, freelist);
adeb2590
JL
1172 pte++;
1173 } while (!first_pte_in_page(pte));
ea8ea460
DW
1174
1175 return freelist;
1176}
1177
1178static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1179 struct dma_pte *pte, unsigned long pfn,
1180 unsigned long start_pfn,
1181 unsigned long last_pfn,
1182 struct page *freelist)
1183{
1184 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1185
1186 pfn = max(start_pfn, pfn);
1187 pte = &pte[pfn_level_offset(pfn, level)];
1188
1189 do {
1190 unsigned long level_pfn;
1191
1192 if (!dma_pte_present(pte))
1193 goto next;
1194
1195 level_pfn = pfn & level_mask(level);
1196
1197 /* If range covers entire pagetable, free it */
1198 if (start_pfn <= level_pfn &&
1199 last_pfn >= level_pfn + level_size(level) - 1) {
1200 /* These suborbinate page tables are going away entirely. Don't
1201 bother to clear them; we're just going to *free* them. */
1202 if (level > 1 && !dma_pte_superpage(pte))
1203 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1204
1205 dma_clear_pte(pte);
1206 if (!first_pte)
1207 first_pte = pte;
1208 last_pte = pte;
1209 } else if (level > 1) {
1210 /* Recurse down into a level that isn't *entirely* obsolete */
1211 freelist = dma_pte_clear_level(domain, level - 1,
1212 phys_to_virt(dma_pte_addr(pte)),
1213 level_pfn, start_pfn, last_pfn,
1214 freelist);
1215 }
1216next:
1217 pfn += level_size(level);
1218 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1219
1220 if (first_pte)
1221 domain_flush_cache(domain, first_pte,
1222 (void *)++last_pte - (void *)first_pte);
1223
1224 return freelist;
1225}
1226
1227/* We can't just free the pages because the IOMMU may still be walking
1228 the page tables, and may have cached the intermediate levels. The
1229 pages can only be freed after the IOTLB flush has been done. */
b690420a
JR
1230static struct page *domain_unmap(struct dmar_domain *domain,
1231 unsigned long start_pfn,
1232 unsigned long last_pfn)
ea8ea460 1233{
ea8ea460
DW
1234 struct page *freelist = NULL;
1235
162d1b10
JL
1236 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1237 BUG_ON(!domain_pfn_supported(domain, last_pfn));
ea8ea460
DW
1238 BUG_ON(start_pfn > last_pfn);
1239
1240 /* we don't need lock here; nobody else touches the iova range */
1241 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1242 domain->pgd, 0, start_pfn, last_pfn, NULL);
1243
1244 /* free pgd */
1245 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1246 struct page *pgd_page = virt_to_page(domain->pgd);
1247 pgd_page->freelist = freelist;
1248 freelist = pgd_page;
1249
1250 domain->pgd = NULL;
1251 }
1252
1253 return freelist;
1254}
1255
b690420a 1256static void dma_free_pagelist(struct page *freelist)
ea8ea460
DW
1257{
1258 struct page *pg;
1259
1260 while ((pg = freelist)) {
1261 freelist = pg->freelist;
1262 free_pgtable_page(page_address(pg));
1263 }
1264}
1265
ba395927
KA
1266/* iommu handling */
1267static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1268{
1269 struct root_entry *root;
1270 unsigned long flags;
1271
4c923d47 1272 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
ffebeb46 1273 if (!root) {
9f10e5bf 1274 pr_err("Allocating root entry for %s failed\n",
ffebeb46 1275 iommu->name);
ba395927 1276 return -ENOMEM;
ffebeb46 1277 }
ba395927 1278
5b6985ce 1279 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
1280
1281 spin_lock_irqsave(&iommu->lock, flags);
1282 iommu->root_entry = root;
1283 spin_unlock_irqrestore(&iommu->lock, flags);
1284
1285 return 0;
1286}
1287
ba395927
KA
1288static void iommu_set_root_entry(struct intel_iommu *iommu)
1289{
03ecc32c 1290 u64 addr;
c416daa9 1291 u32 sts;
ba395927
KA
1292 unsigned long flag;
1293
03ecc32c 1294 addr = virt_to_phys(iommu->root_entry);
c83b2f20 1295 if (ecs_enabled(iommu))
03ecc32c 1296 addr |= DMA_RTADDR_RTT;
ba395927 1297
1f5b3c3f 1298 raw_spin_lock_irqsave(&iommu->register_lock, flag);
03ecc32c 1299 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
ba395927 1300
c416daa9 1301 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1302
1303 /* Make sure hardware complete it */
1304 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1305 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927 1306
1f5b3c3f 1307 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1308}
1309
1310static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1311{
1312 u32 val;
1313 unsigned long flag;
1314
9af88143 1315 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 1316 return;
ba395927 1317
1f5b3c3f 1318 raw_spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 1319 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1320
1321 /* Make sure hardware complete it */
1322 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1323 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927 1324
1f5b3c3f 1325 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1326}
1327
1328/* return value determine if we need a write buffer flush */
4c25a2c1
DW
1329static void __iommu_flush_context(struct intel_iommu *iommu,
1330 u16 did, u16 source_id, u8 function_mask,
1331 u64 type)
ba395927
KA
1332{
1333 u64 val = 0;
1334 unsigned long flag;
1335
ba395927
KA
1336 switch (type) {
1337 case DMA_CCMD_GLOBAL_INVL:
1338 val = DMA_CCMD_GLOBAL_INVL;
1339 break;
1340 case DMA_CCMD_DOMAIN_INVL:
1341 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1342 break;
1343 case DMA_CCMD_DEVICE_INVL:
1344 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1345 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1346 break;
1347 default:
1348 BUG();
1349 }
1350 val |= DMA_CCMD_ICC;
1351
1f5b3c3f 1352 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1353 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1354
1355 /* Make sure hardware complete it */
1356 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1357 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1358
1f5b3c3f 1359 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1360}
1361
ba395927 1362/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
1363static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1364 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
1365{
1366 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1367 u64 val = 0, val_iva = 0;
1368 unsigned long flag;
1369
ba395927
KA
1370 switch (type) {
1371 case DMA_TLB_GLOBAL_FLUSH:
1372 /* global flush doesn't need set IVA_REG */
1373 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1374 break;
1375 case DMA_TLB_DSI_FLUSH:
1376 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1377 break;
1378 case DMA_TLB_PSI_FLUSH:
1379 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
ea8ea460 1380 /* IH bit is passed in as part of address */
ba395927
KA
1381 val_iva = size_order | addr;
1382 break;
1383 default:
1384 BUG();
1385 }
1386 /* Note: set drain read/write */
1387#if 0
1388 /*
1389 * This is probably to be super secure.. Looks like we can
1390 * ignore it without any impact.
1391 */
1392 if (cap_read_drain(iommu->cap))
1393 val |= DMA_TLB_READ_DRAIN;
1394#endif
1395 if (cap_write_drain(iommu->cap))
1396 val |= DMA_TLB_WRITE_DRAIN;
1397
1f5b3c3f 1398 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1399 /* Note: Only uses first TLB reg currently */
1400 if (val_iva)
1401 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1402 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1403
1404 /* Make sure hardware complete it */
1405 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1406 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1407
1f5b3c3f 1408 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1409
1410 /* check IOTLB invalidation granularity */
1411 if (DMA_TLB_IAIG(val) == 0)
9f10e5bf 1412 pr_err("Flush IOTLB failed\n");
ba395927 1413 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
9f10e5bf 1414 pr_debug("TLB flush request %Lx, actual %Lx\n",
5b6985ce
FY
1415 (unsigned long long)DMA_TLB_IIRG(type),
1416 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
1417}
1418
64ae892b
DW
1419static struct device_domain_info *
1420iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1421 u8 bus, u8 devfn)
93a23a72 1422{
2f119c78 1423 bool found = false;
93a23a72 1424 struct device_domain_info *info;
0bcb3e28 1425 struct pci_dev *pdev;
93a23a72 1426
55d94043
JR
1427 assert_spin_locked(&device_domain_lock);
1428
93a23a72
YZ
1429 if (!ecap_dev_iotlb_support(iommu->ecap))
1430 return NULL;
1431
1432 if (!iommu->qi)
1433 return NULL;
1434
93a23a72 1435 list_for_each_entry(info, &domain->devices, link)
c3b497c6
JL
1436 if (info->iommu == iommu && info->bus == bus &&
1437 info->devfn == devfn) {
2f119c78 1438 found = true;
93a23a72
YZ
1439 break;
1440 }
93a23a72 1441
0bcb3e28 1442 if (!found || !info->dev || !dev_is_pci(info->dev))
93a23a72
YZ
1443 return NULL;
1444
0bcb3e28
DW
1445 pdev = to_pci_dev(info->dev);
1446
1447 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
93a23a72
YZ
1448 return NULL;
1449
0bcb3e28 1450 if (!dmar_find_matched_atsr_unit(pdev))
93a23a72
YZ
1451 return NULL;
1452
93a23a72
YZ
1453 return info;
1454}
1455
1456static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1457{
fb0cc3aa
BH
1458 struct pci_dev *pdev;
1459
0bcb3e28 1460 if (!info || !dev_is_pci(info->dev))
93a23a72
YZ
1461 return;
1462
fb0cc3aa
BH
1463 pdev = to_pci_dev(info->dev);
1464 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1465 return;
1466
1467 info->ats.enabled = 1;
1468 info->ats.qdep = pci_ats_queue_depth(pdev);
93a23a72
YZ
1469}
1470
1471static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1472{
fb0cc3aa 1473 if (!info->ats.enabled)
93a23a72
YZ
1474 return;
1475
0bcb3e28 1476 pci_disable_ats(to_pci_dev(info->dev));
fb0cc3aa 1477 info->ats.enabled = 0;
93a23a72
YZ
1478}
1479
1480static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1481 u64 addr, unsigned mask)
1482{
1483 u16 sid, qdep;
1484 unsigned long flags;
1485 struct device_domain_info *info;
1486
1487 spin_lock_irqsave(&device_domain_lock, flags);
1488 list_for_each_entry(info, &domain->devices, link) {
fb0cc3aa 1489 if (!info->ats.enabled)
93a23a72
YZ
1490 continue;
1491
1492 sid = info->bus << 8 | info->devfn;
fb0cc3aa 1493 qdep = info->ats.qdep;
93a23a72
YZ
1494 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1495 }
1496 spin_unlock_irqrestore(&device_domain_lock, flags);
1497}
1498
a1ddcbe9
JR
1499static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1500 struct dmar_domain *domain,
1501 unsigned long pfn, unsigned int pages,
1502 int ih, int map)
ba395927 1503{
9dd2fe89 1504 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1505 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
a1ddcbe9 1506 u16 did = domain->iommu_did[iommu->seq_id];
ba395927 1507
ba395927
KA
1508 BUG_ON(pages == 0);
1509
ea8ea460
DW
1510 if (ih)
1511 ih = 1 << 6;
ba395927 1512 /*
9dd2fe89
YZ
1513 * Fallback to domain selective flush if no PSI support or the size is
1514 * too big.
ba395927
KA
1515 * PSI requires page size to be 2 ^ x, and the base address is naturally
1516 * aligned to the size
1517 */
9dd2fe89
YZ
1518 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1519 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1520 DMA_TLB_DSI_FLUSH);
9dd2fe89 1521 else
ea8ea460 1522 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
9dd2fe89 1523 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1524
1525 /*
82653633
NA
1526 * In caching mode, changes of pages from non-present to present require
1527 * flush. However, device IOTLB doesn't need to be flushed in this case.
bf92df30 1528 */
82653633 1529 if (!cap_caching_mode(iommu->cap) || !map)
9452d5bf
JR
1530 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1531 addr, mask);
ba395927
KA
1532}
1533
f8bab735 1534static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1535{
1536 u32 pmen;
1537 unsigned long flags;
1538
1f5b3c3f 1539 raw_spin_lock_irqsave(&iommu->register_lock, flags);
f8bab735 1540 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1541 pmen &= ~DMA_PMEN_EPM;
1542 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1543
1544 /* wait for the protected region status bit to clear */
1545 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1546 readl, !(pmen & DMA_PMEN_PRS), pmen);
1547
1f5b3c3f 1548 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
f8bab735 1549}
1550
2a41ccee 1551static void iommu_enable_translation(struct intel_iommu *iommu)
ba395927
KA
1552{
1553 u32 sts;
1554 unsigned long flags;
1555
1f5b3c3f 1556 raw_spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1557 iommu->gcmd |= DMA_GCMD_TE;
1558 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1559
1560 /* Make sure hardware complete it */
1561 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1562 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1563
1f5b3c3f 1564 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
ba395927
KA
1565}
1566
2a41ccee 1567static void iommu_disable_translation(struct intel_iommu *iommu)
ba395927
KA
1568{
1569 u32 sts;
1570 unsigned long flag;
1571
1f5b3c3f 1572 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1573 iommu->gcmd &= ~DMA_GCMD_TE;
1574 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1575
1576 /* Make sure hardware complete it */
1577 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1578 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927 1579
1f5b3c3f 1580 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1581}
1582
3460a6d9 1583
ba395927
KA
1584static int iommu_init_domains(struct intel_iommu *iommu)
1585{
8bf47816
JR
1586 u32 ndomains, nlongs;
1587 size_t size;
ba395927
KA
1588
1589 ndomains = cap_ndoms(iommu->cap);
8bf47816 1590 pr_debug("%s: Number of Domains supported <%d>\n",
9f10e5bf 1591 iommu->name, ndomains);
ba395927
KA
1592 nlongs = BITS_TO_LONGS(ndomains);
1593
94a91b50
DD
1594 spin_lock_init(&iommu->lock);
1595
ba395927
KA
1596 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1597 if (!iommu->domain_ids) {
9f10e5bf
JR
1598 pr_err("%s: Allocating domain id array failed\n",
1599 iommu->name);
ba395927
KA
1600 return -ENOMEM;
1601 }
8bf47816
JR
1602
1603 size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1604 iommu->domains = kzalloc(size, GFP_KERNEL);
1605
1606 if (iommu->domains) {
1607 size = 256 * sizeof(struct dmar_domain *);
1608 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1609 }
1610
1611 if (!iommu->domains || !iommu->domains[0]) {
9f10e5bf
JR
1612 pr_err("%s: Allocating domain array failed\n",
1613 iommu->name);
852bdb04 1614 kfree(iommu->domain_ids);
8bf47816 1615 kfree(iommu->domains);
852bdb04 1616 iommu->domain_ids = NULL;
8bf47816 1617 iommu->domains = NULL;
ba395927
KA
1618 return -ENOMEM;
1619 }
1620
8bf47816
JR
1621
1622
ba395927 1623 /*
c0e8a6c8
JR
1624 * If Caching mode is set, then invalid translations are tagged
1625 * with domain-id 0, hence we need to pre-allocate it. We also
1626 * use domain-id 0 as a marker for non-allocated domain-id, so
1627 * make sure it is not used for a real domain.
ba395927 1628 */
c0e8a6c8
JR
1629 set_bit(0, iommu->domain_ids);
1630
ba395927
KA
1631 return 0;
1632}
ba395927 1633
ffebeb46 1634static void disable_dmar_iommu(struct intel_iommu *iommu)
ba395927 1635{
29a27719 1636 struct device_domain_info *info, *tmp;
55d94043 1637 unsigned long flags;
ba395927 1638
29a27719
JR
1639 if (!iommu->domains || !iommu->domain_ids)
1640 return;
a4eaa86c 1641
55d94043 1642 spin_lock_irqsave(&device_domain_lock, flags);
29a27719
JR
1643 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1644 struct dmar_domain *domain;
1645
1646 if (info->iommu != iommu)
1647 continue;
1648
1649 if (!info->dev || !info->domain)
1650 continue;
1651
1652 domain = info->domain;
1653
e6de0f8d 1654 dmar_remove_one_dev_info(domain, info->dev);
29a27719
JR
1655
1656 if (!domain_type_is_vm_or_si(domain))
1657 domain_exit(domain);
ba395927 1658 }
55d94043 1659 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927
KA
1660
1661 if (iommu->gcmd & DMA_GCMD_TE)
1662 iommu_disable_translation(iommu);
ffebeb46 1663}
ba395927 1664
ffebeb46
JL
1665static void free_dmar_iommu(struct intel_iommu *iommu)
1666{
1667 if ((iommu->domains) && (iommu->domain_ids)) {
8bf47816
JR
1668 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1669 int i;
1670
1671 for (i = 0; i < elems; i++)
1672 kfree(iommu->domains[i]);
ffebeb46
JL
1673 kfree(iommu->domains);
1674 kfree(iommu->domain_ids);
1675 iommu->domains = NULL;
1676 iommu->domain_ids = NULL;
1677 }
ba395927 1678
d9630fe9
WH
1679 g_iommus[iommu->seq_id] = NULL;
1680
ba395927
KA
1681 /* free context mapping */
1682 free_context_table(iommu);
ba395927
KA
1683}
1684
ab8dfe25 1685static struct dmar_domain *alloc_domain(int flags)
ba395927 1686{
ba395927 1687 struct dmar_domain *domain;
ba395927
KA
1688
1689 domain = alloc_domain_mem();
1690 if (!domain)
1691 return NULL;
1692
ab8dfe25 1693 memset(domain, 0, sizeof(*domain));
4c923d47 1694 domain->nid = -1;
ab8dfe25 1695 domain->flags = flags;
92d03cc8 1696 INIT_LIST_HEAD(&domain->devices);
2c2e2c38
FY
1697
1698 return domain;
1699}
1700
d160aca5
JR
1701/* Must be called with iommu->lock */
1702static int domain_attach_iommu(struct dmar_domain *domain,
fb170fb4
JL
1703 struct intel_iommu *iommu)
1704{
44bde614 1705 unsigned long ndomains;
55d94043 1706 int num;
44bde614 1707
55d94043 1708 assert_spin_locked(&device_domain_lock);
d160aca5 1709 assert_spin_locked(&iommu->lock);
ba395927 1710
29a27719
JR
1711 domain->iommu_refcnt[iommu->seq_id] += 1;
1712 domain->iommu_count += 1;
1713 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
fb170fb4 1714 ndomains = cap_ndoms(iommu->cap);
d160aca5
JR
1715 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1716
1717 if (num >= ndomains) {
1718 pr_err("%s: No free domain ids\n", iommu->name);
1719 domain->iommu_refcnt[iommu->seq_id] -= 1;
1720 domain->iommu_count -= 1;
55d94043 1721 return -ENOSPC;
2c2e2c38 1722 }
ba395927 1723
d160aca5
JR
1724 set_bit(num, iommu->domain_ids);
1725 set_iommu_domain(iommu, num, domain);
1726
1727 domain->iommu_did[iommu->seq_id] = num;
1728 domain->nid = iommu->node;
fb170fb4 1729
fb170fb4
JL
1730 domain_update_iommu_cap(domain);
1731 }
d160aca5 1732
55d94043 1733 return 0;
fb170fb4
JL
1734}
1735
1736static int domain_detach_iommu(struct dmar_domain *domain,
1737 struct intel_iommu *iommu)
1738{
d160aca5 1739 int num, count = INT_MAX;
d160aca5 1740
55d94043 1741 assert_spin_locked(&device_domain_lock);
d160aca5 1742 assert_spin_locked(&iommu->lock);
fb170fb4 1743
29a27719
JR
1744 domain->iommu_refcnt[iommu->seq_id] -= 1;
1745 count = --domain->iommu_count;
1746 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
d160aca5
JR
1747 num = domain->iommu_did[iommu->seq_id];
1748 clear_bit(num, iommu->domain_ids);
1749 set_iommu_domain(iommu, num, NULL);
fb170fb4 1750
fb170fb4 1751 domain_update_iommu_cap(domain);
c0e8a6c8 1752 domain->iommu_did[iommu->seq_id] = 0;
fb170fb4 1753 }
fb170fb4
JL
1754
1755 return count;
1756}
1757
ba395927 1758static struct iova_domain reserved_iova_list;
8a443df4 1759static struct lock_class_key reserved_rbtree_key;
ba395927 1760
51a63e67 1761static int dmar_init_reserved_ranges(void)
ba395927
KA
1762{
1763 struct pci_dev *pdev = NULL;
1764 struct iova *iova;
1765 int i;
ba395927 1766
0fb5fe87
RM
1767 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1768 DMA_32BIT_PFN);
ba395927 1769
8a443df4
MG
1770 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1771 &reserved_rbtree_key);
1772
ba395927
KA
1773 /* IOAPIC ranges shouldn't be accessed by DMA */
1774 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1775 IOVA_PFN(IOAPIC_RANGE_END));
51a63e67 1776 if (!iova) {
9f10e5bf 1777 pr_err("Reserve IOAPIC range failed\n");
51a63e67
JC
1778 return -ENODEV;
1779 }
ba395927
KA
1780
1781 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1782 for_each_pci_dev(pdev) {
1783 struct resource *r;
1784
1785 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1786 r = &pdev->resource[i];
1787 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1788 continue;
1a4a4551
DW
1789 iova = reserve_iova(&reserved_iova_list,
1790 IOVA_PFN(r->start),
1791 IOVA_PFN(r->end));
51a63e67 1792 if (!iova) {
9f10e5bf 1793 pr_err("Reserve iova failed\n");
51a63e67
JC
1794 return -ENODEV;
1795 }
ba395927
KA
1796 }
1797 }
51a63e67 1798 return 0;
ba395927
KA
1799}
1800
1801static void domain_reserve_special_ranges(struct dmar_domain *domain)
1802{
1803 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1804}
1805
1806static inline int guestwidth_to_adjustwidth(int gaw)
1807{
1808 int agaw;
1809 int r = (gaw - 12) % 9;
1810
1811 if (r == 0)
1812 agaw = gaw;
1813 else
1814 agaw = gaw + 9 - r;
1815 if (agaw > 64)
1816 agaw = 64;
1817 return agaw;
1818}
1819
dc534b25
JR
1820static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1821 int guest_width)
ba395927 1822{
ba395927
KA
1823 int adjust_width, agaw;
1824 unsigned long sagaw;
1825
0fb5fe87
RM
1826 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1827 DMA_32BIT_PFN);
ba395927
KA
1828 domain_reserve_special_ranges(domain);
1829
1830 /* calculate AGAW */
ba395927
KA
1831 if (guest_width > cap_mgaw(iommu->cap))
1832 guest_width = cap_mgaw(iommu->cap);
1833 domain->gaw = guest_width;
1834 adjust_width = guestwidth_to_adjustwidth(guest_width);
1835 agaw = width_to_agaw(adjust_width);
1836 sagaw = cap_sagaw(iommu->cap);
1837 if (!test_bit(agaw, &sagaw)) {
1838 /* hardware doesn't support it, choose a bigger one */
9f10e5bf 1839 pr_debug("Hardware doesn't support agaw %d\n", agaw);
ba395927
KA
1840 agaw = find_next_bit(&sagaw, 5, agaw);
1841 if (agaw >= 5)
1842 return -ENODEV;
1843 }
1844 domain->agaw = agaw;
ba395927 1845
8e604097
WH
1846 if (ecap_coherent(iommu->ecap))
1847 domain->iommu_coherency = 1;
1848 else
1849 domain->iommu_coherency = 0;
1850
58c610bd
SY
1851 if (ecap_sc_support(iommu->ecap))
1852 domain->iommu_snooping = 1;
1853 else
1854 domain->iommu_snooping = 0;
1855
214e39aa
DW
1856 if (intel_iommu_superpage)
1857 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1858 else
1859 domain->iommu_superpage = 0;
1860
4c923d47 1861 domain->nid = iommu->node;
c7151a8d 1862
ba395927 1863 /* always allocate the top pgd */
4c923d47 1864 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
ba395927
KA
1865 if (!domain->pgd)
1866 return -ENOMEM;
5b6985ce 1867 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1868 return 0;
1869}
1870
1871static void domain_exit(struct dmar_domain *domain)
1872{
ea8ea460 1873 struct page *freelist = NULL;
ba395927
KA
1874
1875 /* Domain 0 is reserved, so dont process it */
1876 if (!domain)
1877 return;
1878
7b668357
AW
1879 /* Flush any lazy unmaps that may reference this domain */
1880 if (!intel_iommu_strict)
1881 flush_unmaps_timeout(0);
1882
d160aca5
JR
1883 /* Remove associated devices and clear attached or cached domains */
1884 rcu_read_lock();
ba395927 1885 domain_remove_dev_info(domain);
d160aca5 1886 rcu_read_unlock();
92d03cc8 1887
ba395927
KA
1888 /* destroy iovas */
1889 put_iova_domain(&domain->iovad);
ba395927 1890
ea8ea460 1891 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 1892
ea8ea460
DW
1893 dma_free_pagelist(freelist);
1894
ba395927
KA
1895 free_domain_mem(domain);
1896}
1897
64ae892b
DW
1898static int domain_context_mapping_one(struct dmar_domain *domain,
1899 struct intel_iommu *iommu,
28ccce0d 1900 u8 bus, u8 devfn)
ba395927 1901{
c6c2cebd 1902 u16 did = domain->iommu_did[iommu->seq_id];
28ccce0d
JR
1903 int translation = CONTEXT_TT_MULTI_LEVEL;
1904 struct device_domain_info *info = NULL;
ba395927 1905 struct context_entry *context;
ba395927 1906 unsigned long flags;
ea6606b0 1907 struct dma_pte *pgd;
55d94043 1908 int ret, agaw;
28ccce0d 1909
c6c2cebd
JR
1910 WARN_ON(did == 0);
1911
28ccce0d
JR
1912 if (hw_pass_through && domain_type_is_si(domain))
1913 translation = CONTEXT_TT_PASS_THROUGH;
ba395927
KA
1914
1915 pr_debug("Set context mapping for %02x:%02x.%d\n",
1916 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1917
ba395927 1918 BUG_ON(!domain->pgd);
5331fe6f 1919
55d94043
JR
1920 spin_lock_irqsave(&device_domain_lock, flags);
1921 spin_lock(&iommu->lock);
1922
1923 ret = -ENOMEM;
03ecc32c 1924 context = iommu_context_addr(iommu, bus, devfn, 1);
ba395927 1925 if (!context)
55d94043 1926 goto out_unlock;
ba395927 1927
55d94043
JR
1928 ret = 0;
1929 if (context_present(context))
1930 goto out_unlock;
cf484d0e 1931
ea6606b0
WH
1932 pgd = domain->pgd;
1933
de24e553 1934 context_clear_entry(context);
c6c2cebd 1935 context_set_domain_id(context, did);
ea6606b0 1936
de24e553
JR
1937 /*
1938 * Skip top levels of page tables for iommu which has less agaw
1939 * than default. Unnecessary for PT mode.
1940 */
93a23a72 1941 if (translation != CONTEXT_TT_PASS_THROUGH) {
de24e553 1942 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
55d94043 1943 ret = -ENOMEM;
de24e553 1944 pgd = phys_to_virt(dma_pte_addr(pgd));
55d94043
JR
1945 if (!dma_pte_present(pgd))
1946 goto out_unlock;
ea6606b0 1947 }
4ed0d3e6 1948
64ae892b 1949 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
93a23a72
YZ
1950 translation = info ? CONTEXT_TT_DEV_IOTLB :
1951 CONTEXT_TT_MULTI_LEVEL;
de24e553 1952
93a23a72
YZ
1953 context_set_address_root(context, virt_to_phys(pgd));
1954 context_set_address_width(context, iommu->agaw);
de24e553
JR
1955 } else {
1956 /*
1957 * In pass through mode, AW must be programmed to
1958 * indicate the largest AGAW value supported by
1959 * hardware. And ASR is ignored by hardware.
1960 */
1961 context_set_address_width(context, iommu->msagaw);
93a23a72 1962 }
4ed0d3e6
FY
1963
1964 context_set_translation_type(context, translation);
c07e7d21
MM
1965 context_set_fault_enable(context);
1966 context_set_present(context);
5331fe6f 1967 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1968
4c25a2c1
DW
1969 /*
1970 * It's a non-present to present mapping. If hardware doesn't cache
1971 * non-present entry we only need to flush the write-buffer. If the
1972 * _does_ cache non-present entries, then it does so in the special
1973 * domain #0, which we have to flush:
1974 */
1975 if (cap_caching_mode(iommu->cap)) {
1976 iommu->flush.flush_context(iommu, 0,
1977 (((u16)bus) << 8) | devfn,
1978 DMA_CCMD_MASK_NOBIT,
1979 DMA_CCMD_DEVICE_INVL);
c6c2cebd 1980 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 1981 } else {
ba395927 1982 iommu_flush_write_buffer(iommu);
4c25a2c1 1983 }
93a23a72 1984 iommu_enable_dev_iotlb(info);
c7151a8d 1985
55d94043
JR
1986 ret = 0;
1987
1988out_unlock:
1989 spin_unlock(&iommu->lock);
1990 spin_unlock_irqrestore(&device_domain_lock, flags);
fb170fb4 1991
ba395927
KA
1992 return 0;
1993}
1994
579305f7
AW
1995struct domain_context_mapping_data {
1996 struct dmar_domain *domain;
1997 struct intel_iommu *iommu;
579305f7
AW
1998};
1999
2000static int domain_context_mapping_cb(struct pci_dev *pdev,
2001 u16 alias, void *opaque)
2002{
2003 struct domain_context_mapping_data *data = opaque;
2004
2005 return domain_context_mapping_one(data->domain, data->iommu,
28ccce0d 2006 PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
2007}
2008
ba395927 2009static int
28ccce0d 2010domain_context_mapping(struct dmar_domain *domain, struct device *dev)
ba395927 2011{
64ae892b 2012 struct intel_iommu *iommu;
156baca8 2013 u8 bus, devfn;
579305f7 2014 struct domain_context_mapping_data data;
64ae892b 2015
e1f167f3 2016 iommu = device_to_iommu(dev, &bus, &devfn);
64ae892b
DW
2017 if (!iommu)
2018 return -ENODEV;
ba395927 2019
579305f7 2020 if (!dev_is_pci(dev))
28ccce0d 2021 return domain_context_mapping_one(domain, iommu, bus, devfn);
579305f7
AW
2022
2023 data.domain = domain;
2024 data.iommu = iommu;
579305f7
AW
2025
2026 return pci_for_each_dma_alias(to_pci_dev(dev),
2027 &domain_context_mapping_cb, &data);
2028}
2029
2030static int domain_context_mapped_cb(struct pci_dev *pdev,
2031 u16 alias, void *opaque)
2032{
2033 struct intel_iommu *iommu = opaque;
2034
2035 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
ba395927
KA
2036}
2037
e1f167f3 2038static int domain_context_mapped(struct device *dev)
ba395927 2039{
5331fe6f 2040 struct intel_iommu *iommu;
156baca8 2041 u8 bus, devfn;
5331fe6f 2042
e1f167f3 2043 iommu = device_to_iommu(dev, &bus, &devfn);
5331fe6f
WH
2044 if (!iommu)
2045 return -ENODEV;
ba395927 2046
579305f7
AW
2047 if (!dev_is_pci(dev))
2048 return device_context_mapped(iommu, bus, devfn);
e1f167f3 2049
579305f7
AW
2050 return !pci_for_each_dma_alias(to_pci_dev(dev),
2051 domain_context_mapped_cb, iommu);
ba395927
KA
2052}
2053
f532959b
FY
2054/* Returns a number of VTD pages, but aligned to MM page size */
2055static inline unsigned long aligned_nrpages(unsigned long host_addr,
2056 size_t size)
2057{
2058 host_addr &= ~PAGE_MASK;
2059 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2060}
2061
6dd9a7c7
YS
2062/* Return largest possible superpage level for a given mapping */
2063static inline int hardware_largepage_caps(struct dmar_domain *domain,
2064 unsigned long iov_pfn,
2065 unsigned long phy_pfn,
2066 unsigned long pages)
2067{
2068 int support, level = 1;
2069 unsigned long pfnmerge;
2070
2071 support = domain->iommu_superpage;
2072
2073 /* To use a large page, the virtual *and* physical addresses
2074 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2075 of them will mean we have to use smaller pages. So just
2076 merge them and check both at once. */
2077 pfnmerge = iov_pfn | phy_pfn;
2078
2079 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2080 pages >>= VTD_STRIDE_SHIFT;
2081 if (!pages)
2082 break;
2083 pfnmerge >>= VTD_STRIDE_SHIFT;
2084 level++;
2085 support--;
2086 }
2087 return level;
2088}
2089
9051aa02
DW
2090static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2091 struct scatterlist *sg, unsigned long phys_pfn,
2092 unsigned long nr_pages, int prot)
e1605495
DW
2093{
2094 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 2095 phys_addr_t uninitialized_var(pteval);
cc4f14aa 2096 unsigned long sg_res = 0;
6dd9a7c7
YS
2097 unsigned int largepage_lvl = 0;
2098 unsigned long lvl_pages = 0;
e1605495 2099
162d1b10 2100 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
e1605495
DW
2101
2102 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2103 return -EINVAL;
2104
2105 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2106
cc4f14aa
JL
2107 if (!sg) {
2108 sg_res = nr_pages;
9051aa02
DW
2109 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2110 }
2111
6dd9a7c7 2112 while (nr_pages > 0) {
c85994e4
DW
2113 uint64_t tmp;
2114
e1605495 2115 if (!sg_res) {
f532959b 2116 sg_res = aligned_nrpages(sg->offset, sg->length);
e1605495
DW
2117 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2118 sg->dma_length = sg->length;
db0fa0cb 2119 pteval = (sg_phys(sg) & PAGE_MASK) | prot;
6dd9a7c7 2120 phys_pfn = pteval >> VTD_PAGE_SHIFT;
e1605495 2121 }
6dd9a7c7 2122
e1605495 2123 if (!pte) {
6dd9a7c7
YS
2124 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2125
5cf0a76f 2126 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
e1605495
DW
2127 if (!pte)
2128 return -ENOMEM;
6dd9a7c7 2129 /* It is large page*/
6491d4d0 2130 if (largepage_lvl > 1) {
ba2374fd
CZ
2131 unsigned long nr_superpages, end_pfn;
2132
6dd9a7c7 2133 pteval |= DMA_PTE_LARGE_PAGE;
d41a4adb 2134 lvl_pages = lvl_to_nr_pages(largepage_lvl);
ba2374fd
CZ
2135
2136 nr_superpages = sg_res / lvl_pages;
2137 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2138
d41a4adb
JL
2139 /*
2140 * Ensure that old small page tables are
ba2374fd 2141 * removed to make room for superpage(s).
d41a4adb 2142 */
ba2374fd 2143 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
6491d4d0 2144 } else {
6dd9a7c7 2145 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
6491d4d0 2146 }
6dd9a7c7 2147
e1605495
DW
2148 }
2149 /* We don't need lock here, nobody else
2150 * touches the iova range
2151 */
7766a3fb 2152 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 2153 if (tmp) {
1bf20f0d 2154 static int dumps = 5;
9f10e5bf
JR
2155 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2156 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
2157 if (dumps) {
2158 dumps--;
2159 debug_dma_dump_mappings(NULL);
2160 }
2161 WARN_ON(1);
2162 }
6dd9a7c7
YS
2163
2164 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2165
2166 BUG_ON(nr_pages < lvl_pages);
2167 BUG_ON(sg_res < lvl_pages);
2168
2169 nr_pages -= lvl_pages;
2170 iov_pfn += lvl_pages;
2171 phys_pfn += lvl_pages;
2172 pteval += lvl_pages * VTD_PAGE_SIZE;
2173 sg_res -= lvl_pages;
2174
2175 /* If the next PTE would be the first in a new page, then we
2176 need to flush the cache on the entries we've just written.
2177 And then we'll need to recalculate 'pte', so clear it and
2178 let it get set again in the if (!pte) block above.
2179
2180 If we're done (!nr_pages) we need to flush the cache too.
2181
2182 Also if we've been setting superpages, we may need to
2183 recalculate 'pte' and switch back to smaller pages for the
2184 end of the mapping, if the trailing size is not enough to
2185 use another superpage (i.e. sg_res < lvl_pages). */
e1605495 2186 pte++;
6dd9a7c7
YS
2187 if (!nr_pages || first_pte_in_page(pte) ||
2188 (largepage_lvl > 1 && sg_res < lvl_pages)) {
e1605495
DW
2189 domain_flush_cache(domain, first_pte,
2190 (void *)pte - (void *)first_pte);
2191 pte = NULL;
2192 }
6dd9a7c7
YS
2193
2194 if (!sg_res && nr_pages)
e1605495
DW
2195 sg = sg_next(sg);
2196 }
2197 return 0;
2198}
2199
9051aa02
DW
2200static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2201 struct scatterlist *sg, unsigned long nr_pages,
2202 int prot)
ba395927 2203{
9051aa02
DW
2204 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2205}
6f6a00e4 2206
9051aa02
DW
2207static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2208 unsigned long phys_pfn, unsigned long nr_pages,
2209 int prot)
2210{
2211 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
2212}
2213
2452d9db 2214static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 2215{
c7151a8d
WH
2216 if (!iommu)
2217 return;
8c11e798
WH
2218
2219 clear_context_table(iommu, bus, devfn);
2220 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2221 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2222 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
2223}
2224
109b9b04
DW
2225static inline void unlink_domain_info(struct device_domain_info *info)
2226{
2227 assert_spin_locked(&device_domain_lock);
2228 list_del(&info->link);
2229 list_del(&info->global);
2230 if (info->dev)
0bcb3e28 2231 info->dev->archdata.iommu = NULL;
109b9b04
DW
2232}
2233
ba395927
KA
2234static void domain_remove_dev_info(struct dmar_domain *domain)
2235{
3a74ca01 2236 struct device_domain_info *info, *tmp;
fb170fb4 2237 unsigned long flags;
ba395927
KA
2238
2239 spin_lock_irqsave(&device_domain_lock, flags);
76f45fe3 2240 list_for_each_entry_safe(info, tmp, &domain->devices, link)
127c7615 2241 __dmar_remove_one_dev_info(info);
ba395927
KA
2242 spin_unlock_irqrestore(&device_domain_lock, flags);
2243}
2244
2245/*
2246 * find_domain
1525a29a 2247 * Note: we use struct device->archdata.iommu stores the info
ba395927 2248 */
1525a29a 2249static struct dmar_domain *find_domain(struct device *dev)
ba395927
KA
2250{
2251 struct device_domain_info *info;
2252
2253 /* No lock here, assumes no domain exit in normal case */
1525a29a 2254 info = dev->archdata.iommu;
ba395927
KA
2255 if (info)
2256 return info->domain;
2257 return NULL;
2258}
2259
5a8f40e8 2260static inline struct device_domain_info *
745f2586
JL
2261dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2262{
2263 struct device_domain_info *info;
2264
2265 list_for_each_entry(info, &device_domain_list, global)
41e80dca 2266 if (info->iommu->segment == segment && info->bus == bus &&
745f2586 2267 info->devfn == devfn)
5a8f40e8 2268 return info;
745f2586
JL
2269
2270 return NULL;
2271}
2272
5db31569
JR
2273static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2274 int bus, int devfn,
2275 struct device *dev,
2276 struct dmar_domain *domain)
745f2586 2277{
5a8f40e8 2278 struct dmar_domain *found = NULL;
745f2586
JL
2279 struct device_domain_info *info;
2280 unsigned long flags;
d160aca5 2281 int ret;
745f2586
JL
2282
2283 info = alloc_devinfo_mem();
2284 if (!info)
b718cd3d 2285 return NULL;
745f2586 2286
745f2586
JL
2287 info->bus = bus;
2288 info->devfn = devfn;
fb0cc3aa
BH
2289 info->ats.enabled = 0;
2290 info->ats.qdep = 0;
745f2586
JL
2291 info->dev = dev;
2292 info->domain = domain;
5a8f40e8 2293 info->iommu = iommu;
745f2586
JL
2294
2295 spin_lock_irqsave(&device_domain_lock, flags);
2296 if (dev)
0bcb3e28 2297 found = find_domain(dev);
f303e507
JR
2298
2299 if (!found) {
5a8f40e8 2300 struct device_domain_info *info2;
41e80dca 2301 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
f303e507
JR
2302 if (info2) {
2303 found = info2->domain;
2304 info2->dev = dev;
2305 }
5a8f40e8 2306 }
f303e507 2307
745f2586
JL
2308 if (found) {
2309 spin_unlock_irqrestore(&device_domain_lock, flags);
2310 free_devinfo_mem(info);
b718cd3d
DW
2311 /* Caller must free the original domain */
2312 return found;
745f2586
JL
2313 }
2314
d160aca5
JR
2315 spin_lock(&iommu->lock);
2316 ret = domain_attach_iommu(domain, iommu);
2317 spin_unlock(&iommu->lock);
2318
2319 if (ret) {
c6c2cebd
JR
2320 spin_unlock_irqrestore(&device_domain_lock, flags);
2321 return NULL;
2322 }
c6c2cebd 2323
b718cd3d
DW
2324 list_add(&info->link, &domain->devices);
2325 list_add(&info->global, &device_domain_list);
2326 if (dev)
2327 dev->archdata.iommu = info;
2328 spin_unlock_irqrestore(&device_domain_lock, flags);
2329
cc4e2575
JR
2330 if (dev && domain_context_mapping(domain, dev)) {
2331 pr_err("Domain context map for %s failed\n", dev_name(dev));
e6de0f8d 2332 dmar_remove_one_dev_info(domain, dev);
cc4e2575
JR
2333 return NULL;
2334 }
2335
b718cd3d 2336 return domain;
745f2586
JL
2337}
2338
579305f7
AW
2339static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2340{
2341 *(u16 *)opaque = alias;
2342 return 0;
2343}
2344
ba395927 2345/* domain is initialized */
146922ec 2346static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
ba395927 2347{
cc4e2575 2348 struct device_domain_info *info = NULL;
579305f7
AW
2349 struct dmar_domain *domain, *tmp;
2350 struct intel_iommu *iommu;
08a7f456 2351 u16 req_id, dma_alias;
ba395927 2352 unsigned long flags;
aa4d066a 2353 u8 bus, devfn;
ba395927 2354
146922ec 2355 domain = find_domain(dev);
ba395927
KA
2356 if (domain)
2357 return domain;
2358
579305f7
AW
2359 iommu = device_to_iommu(dev, &bus, &devfn);
2360 if (!iommu)
2361 return NULL;
2362
08a7f456
JR
2363 req_id = ((u16)bus << 8) | devfn;
2364
146922ec
DW
2365 if (dev_is_pci(dev)) {
2366 struct pci_dev *pdev = to_pci_dev(dev);
276dbf99 2367
579305f7
AW
2368 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2369
2370 spin_lock_irqsave(&device_domain_lock, flags);
2371 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2372 PCI_BUS_NUM(dma_alias),
2373 dma_alias & 0xff);
2374 if (info) {
2375 iommu = info->iommu;
2376 domain = info->domain;
5a8f40e8 2377 }
579305f7 2378 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927 2379
579305f7
AW
2380 /* DMA alias already has a domain, uses it */
2381 if (info)
2382 goto found_domain;
2383 }
ba395927 2384
146922ec 2385 /* Allocate and initialize new domain for the device */
ab8dfe25 2386 domain = alloc_domain(0);
745f2586 2387 if (!domain)
579305f7 2388 return NULL;
dc534b25 2389 if (domain_init(domain, iommu, gaw)) {
579305f7
AW
2390 domain_exit(domain);
2391 return NULL;
2c2e2c38 2392 }
ba395927 2393
579305f7 2394 /* register PCI DMA alias device */
08a7f456 2395 if (req_id != dma_alias && dev_is_pci(dev)) {
5db31569
JR
2396 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2397 dma_alias & 0xff, NULL, domain);
579305f7
AW
2398
2399 if (!tmp || tmp != domain) {
2400 domain_exit(domain);
2401 domain = tmp;
2402 }
2403
b718cd3d 2404 if (!domain)
579305f7 2405 return NULL;
ba395927
KA
2406 }
2407
2408found_domain:
5db31569 2409 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
579305f7
AW
2410
2411 if (!tmp || tmp != domain) {
2412 domain_exit(domain);
2413 domain = tmp;
2414 }
b718cd3d
DW
2415
2416 return domain;
ba395927
KA
2417}
2418
b213203e
DW
2419static int iommu_domain_identity_map(struct dmar_domain *domain,
2420 unsigned long long start,
2421 unsigned long long end)
ba395927 2422{
c5395d5c
DW
2423 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2424 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2425
2426 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2427 dma_to_mm_pfn(last_vpfn))) {
9f10e5bf 2428 pr_err("Reserving iova failed\n");
b213203e 2429 return -ENOMEM;
ba395927
KA
2430 }
2431
af1089ce 2432 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
ba395927
KA
2433 /*
2434 * RMRR range might have overlap with physical memory range,
2435 * clear it first
2436 */
c5395d5c 2437 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 2438
c5395d5c
DW
2439 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2440 last_vpfn - first_vpfn + 1,
61df7443 2441 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
2442}
2443
0b9d9753 2444static int iommu_prepare_identity_map(struct device *dev,
b213203e
DW
2445 unsigned long long start,
2446 unsigned long long end)
2447{
2448 struct dmar_domain *domain;
2449 int ret;
2450
0b9d9753 2451 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
b213203e
DW
2452 if (!domain)
2453 return -ENOMEM;
2454
19943b0e
DW
2455 /* For _hardware_ passthrough, don't bother. But for software
2456 passthrough, we do it anyway -- it may indicate a memory
2457 range which is reserved in E820, so which didn't get set
2458 up to start with in si_domain */
2459 if (domain == si_domain && hw_pass_through) {
9f10e5bf
JR
2460 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2461 dev_name(dev), start, end);
19943b0e
DW
2462 return 0;
2463 }
2464
9f10e5bf
JR
2465 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2466 dev_name(dev), start, end);
2467
5595b528
DW
2468 if (end < start) {
2469 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2470 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2471 dmi_get_system_info(DMI_BIOS_VENDOR),
2472 dmi_get_system_info(DMI_BIOS_VERSION),
2473 dmi_get_system_info(DMI_PRODUCT_VERSION));
2474 ret = -EIO;
2475 goto error;
2476 }
2477
2ff729f5
DW
2478 if (end >> agaw_to_width(domain->agaw)) {
2479 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2480 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2481 agaw_to_width(domain->agaw),
2482 dmi_get_system_info(DMI_BIOS_VENDOR),
2483 dmi_get_system_info(DMI_BIOS_VERSION),
2484 dmi_get_system_info(DMI_PRODUCT_VERSION));
2485 ret = -EIO;
2486 goto error;
2487 }
19943b0e 2488
b213203e 2489 ret = iommu_domain_identity_map(domain, start, end);
ba395927
KA
2490 if (ret)
2491 goto error;
2492
b213203e
DW
2493 return 0;
2494
2495 error:
ba395927
KA
2496 domain_exit(domain);
2497 return ret;
ba395927
KA
2498}
2499
2500static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
0b9d9753 2501 struct device *dev)
ba395927 2502{
0b9d9753 2503 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927 2504 return 0;
0b9d9753
DW
2505 return iommu_prepare_identity_map(dev, rmrr->base_address,
2506 rmrr->end_address);
ba395927
KA
2507}
2508
d3f13810 2509#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
49a0429e
KA
2510static inline void iommu_prepare_isa(void)
2511{
2512 struct pci_dev *pdev;
2513 int ret;
2514
2515 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2516 if (!pdev)
2517 return;
2518
9f10e5bf 2519 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
0b9d9753 2520 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
49a0429e
KA
2521
2522 if (ret)
9f10e5bf 2523 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
49a0429e 2524
9b27e82d 2525 pci_dev_put(pdev);
49a0429e
KA
2526}
2527#else
2528static inline void iommu_prepare_isa(void)
2529{
2530 return;
2531}
d3f13810 2532#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
49a0429e 2533
2c2e2c38 2534static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2 2535
071e1374 2536static int __init si_domain_init(int hw)
2c2e2c38 2537{
c7ab48d2 2538 int nid, ret = 0;
2c2e2c38 2539
ab8dfe25 2540 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2c2e2c38
FY
2541 if (!si_domain)
2542 return -EFAULT;
2543
2c2e2c38
FY
2544 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2545 domain_exit(si_domain);
2546 return -EFAULT;
2547 }
2548
0dc79715 2549 pr_debug("Identity mapping domain allocated\n");
2c2e2c38 2550
19943b0e
DW
2551 if (hw)
2552 return 0;
2553
c7ab48d2 2554 for_each_online_node(nid) {
5dfe8660
TH
2555 unsigned long start_pfn, end_pfn;
2556 int i;
2557
2558 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2559 ret = iommu_domain_identity_map(si_domain,
2560 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2561 if (ret)
2562 return ret;
2563 }
c7ab48d2
DW
2564 }
2565
2c2e2c38
FY
2566 return 0;
2567}
2568
9b226624 2569static int identity_mapping(struct device *dev)
2c2e2c38
FY
2570{
2571 struct device_domain_info *info;
2572
2573 if (likely(!iommu_identity_mapping))
2574 return 0;
2575
9b226624 2576 info = dev->archdata.iommu;
cb452a40
MT
2577 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2578 return (info->domain == si_domain);
2c2e2c38 2579
2c2e2c38
FY
2580 return 0;
2581}
2582
28ccce0d 2583static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2c2e2c38 2584{
0ac72664 2585 struct dmar_domain *ndomain;
5a8f40e8 2586 struct intel_iommu *iommu;
156baca8 2587 u8 bus, devfn;
2c2e2c38 2588
5913c9bf 2589 iommu = device_to_iommu(dev, &bus, &devfn);
5a8f40e8
DW
2590 if (!iommu)
2591 return -ENODEV;
2592
5db31569 2593 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
0ac72664
DW
2594 if (ndomain != domain)
2595 return -EBUSY;
2c2e2c38
FY
2596
2597 return 0;
2598}
2599
0b9d9753 2600static bool device_has_rmrr(struct device *dev)
ea2447f7
TM
2601{
2602 struct dmar_rmrr_unit *rmrr;
832bd858 2603 struct device *tmp;
ea2447f7
TM
2604 int i;
2605
0e242612 2606 rcu_read_lock();
ea2447f7 2607 for_each_rmrr_units(rmrr) {
b683b230
JL
2608 /*
2609 * Return TRUE if this RMRR contains the device that
2610 * is passed in.
2611 */
2612 for_each_active_dev_scope(rmrr->devices,
2613 rmrr->devices_cnt, i, tmp)
0b9d9753 2614 if (tmp == dev) {
0e242612 2615 rcu_read_unlock();
ea2447f7 2616 return true;
b683b230 2617 }
ea2447f7 2618 }
0e242612 2619 rcu_read_unlock();
ea2447f7
TM
2620 return false;
2621}
2622
c875d2c1
AW
2623/*
2624 * There are a couple cases where we need to restrict the functionality of
2625 * devices associated with RMRRs. The first is when evaluating a device for
2626 * identity mapping because problems exist when devices are moved in and out
2627 * of domains and their respective RMRR information is lost. This means that
2628 * a device with associated RMRRs will never be in a "passthrough" domain.
2629 * The second is use of the device through the IOMMU API. This interface
2630 * expects to have full control of the IOVA space for the device. We cannot
2631 * satisfy both the requirement that RMRR access is maintained and have an
2632 * unencumbered IOVA space. We also have no ability to quiesce the device's
2633 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2634 * We therefore prevent devices associated with an RMRR from participating in
2635 * the IOMMU API, which eliminates them from device assignment.
2636 *
2637 * In both cases we assume that PCI USB devices with RMRRs have them largely
2638 * for historical reasons and that the RMRR space is not actively used post
2639 * boot. This exclusion may change if vendors begin to abuse it.
18436afd
DW
2640 *
2641 * The same exception is made for graphics devices, with the requirement that
2642 * any use of the RMRR regions will be torn down before assigning the device
2643 * to a guest.
c875d2c1
AW
2644 */
2645static bool device_is_rmrr_locked(struct device *dev)
2646{
2647 if (!device_has_rmrr(dev))
2648 return false;
2649
2650 if (dev_is_pci(dev)) {
2651 struct pci_dev *pdev = to_pci_dev(dev);
2652
18436afd 2653 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
c875d2c1
AW
2654 return false;
2655 }
2656
2657 return true;
2658}
2659
3bdb2591 2660static int iommu_should_identity_map(struct device *dev, int startup)
6941af28 2661{
ea2447f7 2662
3bdb2591
DW
2663 if (dev_is_pci(dev)) {
2664 struct pci_dev *pdev = to_pci_dev(dev);
ea2447f7 2665
c875d2c1 2666 if (device_is_rmrr_locked(dev))
3bdb2591 2667 return 0;
e0fc7e0b 2668
3bdb2591
DW
2669 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2670 return 1;
e0fc7e0b 2671
3bdb2591
DW
2672 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2673 return 1;
6941af28 2674
3bdb2591 2675 if (!(iommu_identity_mapping & IDENTMAP_ALL))
3dfc813d 2676 return 0;
3bdb2591
DW
2677
2678 /*
2679 * We want to start off with all devices in the 1:1 domain, and
2680 * take them out later if we find they can't access all of memory.
2681 *
2682 * However, we can't do this for PCI devices behind bridges,
2683 * because all PCI devices behind the same bridge will end up
2684 * with the same source-id on their transactions.
2685 *
2686 * Practically speaking, we can't change things around for these
2687 * devices at run-time, because we can't be sure there'll be no
2688 * DMA transactions in flight for any of their siblings.
2689 *
2690 * So PCI devices (unless they're on the root bus) as well as
2691 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2692 * the 1:1 domain, just in _case_ one of their siblings turns out
2693 * not to be able to map all of memory.
2694 */
2695 if (!pci_is_pcie(pdev)) {
2696 if (!pci_is_root_bus(pdev->bus))
2697 return 0;
2698 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2699 return 0;
2700 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3dfc813d 2701 return 0;
3bdb2591
DW
2702 } else {
2703 if (device_has_rmrr(dev))
2704 return 0;
2705 }
3dfc813d 2706
3bdb2591 2707 /*
3dfc813d 2708 * At boot time, we don't yet know if devices will be 64-bit capable.
3bdb2591 2709 * Assume that they will — if they turn out not to be, then we can
3dfc813d
DW
2710 * take them out of the 1:1 domain later.
2711 */
8fcc5372
CW
2712 if (!startup) {
2713 /*
2714 * If the device's dma_mask is less than the system's memory
2715 * size then this is not a candidate for identity mapping.
2716 */
3bdb2591 2717 u64 dma_mask = *dev->dma_mask;
8fcc5372 2718
3bdb2591
DW
2719 if (dev->coherent_dma_mask &&
2720 dev->coherent_dma_mask < dma_mask)
2721 dma_mask = dev->coherent_dma_mask;
8fcc5372 2722
3bdb2591 2723 return dma_mask >= dma_get_required_mask(dev);
8fcc5372 2724 }
6941af28
DW
2725
2726 return 1;
2727}
2728
cf04eee8
DW
2729static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2730{
2731 int ret;
2732
2733 if (!iommu_should_identity_map(dev, 1))
2734 return 0;
2735
28ccce0d 2736 ret = domain_add_dev_info(si_domain, dev);
cf04eee8 2737 if (!ret)
9f10e5bf
JR
2738 pr_info("%s identity mapping for device %s\n",
2739 hw ? "Hardware" : "Software", dev_name(dev));
cf04eee8
DW
2740 else if (ret == -ENODEV)
2741 /* device not associated with an iommu */
2742 ret = 0;
2743
2744 return ret;
2745}
2746
2747
071e1374 2748static int __init iommu_prepare_static_identity_mapping(int hw)
2c2e2c38 2749{
2c2e2c38 2750 struct pci_dev *pdev = NULL;
cf04eee8
DW
2751 struct dmar_drhd_unit *drhd;
2752 struct intel_iommu *iommu;
2753 struct device *dev;
2754 int i;
2755 int ret = 0;
2c2e2c38 2756
2c2e2c38 2757 for_each_pci_dev(pdev) {
cf04eee8
DW
2758 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2759 if (ret)
2760 return ret;
2761 }
2762
2763 for_each_active_iommu(iommu, drhd)
2764 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2765 struct acpi_device_physical_node *pn;
2766 struct acpi_device *adev;
2767
2768 if (dev->bus != &acpi_bus_type)
2769 continue;
86080ccc 2770
cf04eee8
DW
2771 adev= to_acpi_device(dev);
2772 mutex_lock(&adev->physical_node_lock);
2773 list_for_each_entry(pn, &adev->physical_node_list, node) {
2774 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2775 if (ret)
2776 break;
eae460b6 2777 }
cf04eee8
DW
2778 mutex_unlock(&adev->physical_node_lock);
2779 if (ret)
2780 return ret;
62edf5dc 2781 }
2c2e2c38
FY
2782
2783 return 0;
2784}
2785
ffebeb46
JL
2786static void intel_iommu_init_qi(struct intel_iommu *iommu)
2787{
2788 /*
2789 * Start from the sane iommu hardware state.
2790 * If the queued invalidation is already initialized by us
2791 * (for example, while enabling interrupt-remapping) then
2792 * we got the things already rolling from a sane state.
2793 */
2794 if (!iommu->qi) {
2795 /*
2796 * Clear any previous faults.
2797 */
2798 dmar_fault(-1, iommu);
2799 /*
2800 * Disable queued invalidation if supported and already enabled
2801 * before OS handover.
2802 */
2803 dmar_disable_qi(iommu);
2804 }
2805
2806 if (dmar_enable_qi(iommu)) {
2807 /*
2808 * Queued Invalidate not enabled, use Register Based Invalidate
2809 */
2810 iommu->flush.flush_context = __iommu_flush_context;
2811 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
9f10e5bf 2812 pr_info("%s: Using Register based invalidation\n",
ffebeb46
JL
2813 iommu->name);
2814 } else {
2815 iommu->flush.flush_context = qi_flush_context;
2816 iommu->flush.flush_iotlb = qi_flush_iotlb;
9f10e5bf 2817 pr_info("%s: Using Queued invalidation\n", iommu->name);
ffebeb46
JL
2818 }
2819}
2820
091d42e4 2821static int copy_context_table(struct intel_iommu *iommu,
543c8dcf 2822 struct root_entry __iomem *old_re,
091d42e4
JR
2823 struct context_entry **tbl,
2824 int bus, bool ext)
2825{
dbcd861f 2826 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
543c8dcf
JR
2827 struct context_entry __iomem *old_ce = NULL;
2828 struct context_entry *new_ce = NULL, ce;
2829 struct root_entry re;
091d42e4
JR
2830 phys_addr_t old_ce_phys;
2831
2832 tbl_idx = ext ? bus * 2 : bus;
543c8dcf 2833 memcpy_fromio(&re, old_re, sizeof(re));
091d42e4
JR
2834
2835 for (devfn = 0; devfn < 256; devfn++) {
2836 /* First calculate the correct index */
2837 idx = (ext ? devfn * 2 : devfn) % 256;
2838
2839 if (idx == 0) {
2840 /* First save what we may have and clean up */
2841 if (new_ce) {
2842 tbl[tbl_idx] = new_ce;
2843 __iommu_flush_cache(iommu, new_ce,
2844 VTD_PAGE_SIZE);
2845 pos = 1;
2846 }
2847
2848 if (old_ce)
2849 iounmap(old_ce);
2850
2851 ret = 0;
2852 if (devfn < 0x80)
543c8dcf 2853 old_ce_phys = root_entry_lctp(&re);
091d42e4 2854 else
543c8dcf 2855 old_ce_phys = root_entry_uctp(&re);
091d42e4
JR
2856
2857 if (!old_ce_phys) {
2858 if (ext && devfn == 0) {
2859 /* No LCTP, try UCTP */
2860 devfn = 0x7f;
2861 continue;
2862 } else {
2863 goto out;
2864 }
2865 }
2866
2867 ret = -ENOMEM;
2868 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2869 if (!old_ce)
2870 goto out;
2871
2872 new_ce = alloc_pgtable_page(iommu->node);
2873 if (!new_ce)
2874 goto out_unmap;
2875
2876 ret = 0;
2877 }
2878
2879 /* Now copy the context entry */
543c8dcf 2880 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
091d42e4 2881
cf484d0e 2882 if (!__context_present(&ce))
091d42e4
JR
2883 continue;
2884
dbcd861f
JR
2885 did = context_domain_id(&ce);
2886 if (did >= 0 && did < cap_ndoms(iommu->cap))
2887 set_bit(did, iommu->domain_ids);
2888
cf484d0e
JR
2889 /*
2890 * We need a marker for copied context entries. This
2891 * marker needs to work for the old format as well as
2892 * for extended context entries.
2893 *
2894 * Bit 67 of the context entry is used. In the old
2895 * format this bit is available to software, in the
2896 * extended format it is the PGE bit, but PGE is ignored
2897 * by HW if PASIDs are disabled (and thus still
2898 * available).
2899 *
2900 * So disable PASIDs first and then mark the entry
2901 * copied. This means that we don't copy PASID
2902 * translations from the old kernel, but this is fine as
2903 * faults there are not fatal.
2904 */
2905 context_clear_pasid_enable(&ce);
2906 context_set_copied(&ce);
2907
091d42e4
JR
2908 new_ce[idx] = ce;
2909 }
2910
2911 tbl[tbl_idx + pos] = new_ce;
2912
2913 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2914
2915out_unmap:
2916 iounmap(old_ce);
2917
2918out:
2919 return ret;
2920}
2921
2922static int copy_translation_tables(struct intel_iommu *iommu)
2923{
543c8dcf 2924 struct root_entry __iomem *old_rt;
091d42e4 2925 struct context_entry **ctxt_tbls;
091d42e4
JR
2926 phys_addr_t old_rt_phys;
2927 int ctxt_table_entries;
2928 unsigned long flags;
2929 u64 rtaddr_reg;
2930 int bus, ret;
c3361f2f 2931 bool new_ext, ext;
091d42e4
JR
2932
2933 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2934 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
c3361f2f
JR
2935 new_ext = !!ecap_ecs(iommu->ecap);
2936
2937 /*
2938 * The RTT bit can only be changed when translation is disabled,
2939 * but disabling translation means to open a window for data
2940 * corruption. So bail out and don't copy anything if we would
2941 * have to change the bit.
2942 */
2943 if (new_ext != ext)
2944 return -EINVAL;
091d42e4
JR
2945
2946 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2947 if (!old_rt_phys)
2948 return -EINVAL;
2949
2950 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2951 if (!old_rt)
2952 return -ENOMEM;
2953
2954 /* This is too big for the stack - allocate it from slab */
2955 ctxt_table_entries = ext ? 512 : 256;
2956 ret = -ENOMEM;
2957 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2958 if (!ctxt_tbls)
2959 goto out_unmap;
2960
2961 for (bus = 0; bus < 256; bus++) {
2962 ret = copy_context_table(iommu, &old_rt[bus],
2963 ctxt_tbls, bus, ext);
2964 if (ret) {
2965 pr_err("%s: Failed to copy context table for bus %d\n",
2966 iommu->name, bus);
2967 continue;
2968 }
2969 }
2970
2971 spin_lock_irqsave(&iommu->lock, flags);
2972
2973 /* Context tables are copied, now write them to the root_entry table */
2974 for (bus = 0; bus < 256; bus++) {
2975 int idx = ext ? bus * 2 : bus;
2976 u64 val;
2977
2978 if (ctxt_tbls[idx]) {
2979 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2980 iommu->root_entry[bus].lo = val;
2981 }
2982
2983 if (!ext || !ctxt_tbls[idx + 1])
2984 continue;
2985
2986 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2987 iommu->root_entry[bus].hi = val;
2988 }
2989
2990 spin_unlock_irqrestore(&iommu->lock, flags);
2991
2992 kfree(ctxt_tbls);
2993
2994 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2995
2996 ret = 0;
2997
2998out_unmap:
2999 iounmap(old_rt);
3000
3001 return ret;
3002}
3003
b779260b 3004static int __init init_dmars(void)
ba395927
KA
3005{
3006 struct dmar_drhd_unit *drhd;
3007 struct dmar_rmrr_unit *rmrr;
a87f4918 3008 bool copied_tables = false;
832bd858 3009 struct device *dev;
ba395927 3010 struct intel_iommu *iommu;
9d783ba0 3011 int i, ret;
2c2e2c38 3012
ba395927
KA
3013 /*
3014 * for each drhd
3015 * allocate root
3016 * initialize and program root entry to not present
3017 * endfor
3018 */
3019 for_each_drhd_unit(drhd) {
5e0d2a6f 3020 /*
3021 * lock not needed as this is only incremented in the single
3022 * threaded kernel __init code path all other access are read
3023 * only
3024 */
78d8e704 3025 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
1b198bb0
MT
3026 g_num_of_iommus++;
3027 continue;
3028 }
9f10e5bf 3029 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
5e0d2a6f 3030 }
3031
ffebeb46
JL
3032 /* Preallocate enough resources for IOMMU hot-addition */
3033 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3034 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3035
d9630fe9
WH
3036 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3037 GFP_KERNEL);
3038 if (!g_iommus) {
9f10e5bf 3039 pr_err("Allocating global iommu array failed\n");
d9630fe9
WH
3040 ret = -ENOMEM;
3041 goto error;
3042 }
3043
80b20dd8 3044 deferred_flush = kzalloc(g_num_of_iommus *
3045 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3046 if (!deferred_flush) {
5e0d2a6f 3047 ret = -ENOMEM;
989d51fc 3048 goto free_g_iommus;
5e0d2a6f 3049 }
3050
7c919779 3051 for_each_active_iommu(iommu, drhd) {
d9630fe9 3052 g_iommus[iommu->seq_id] = iommu;
ba395927 3053
b63d80d1
JR
3054 intel_iommu_init_qi(iommu);
3055
e61d98d8
SS
3056 ret = iommu_init_domains(iommu);
3057 if (ret)
989d51fc 3058 goto free_iommu;
e61d98d8 3059
4158c2ec
JR
3060 init_translation_status(iommu);
3061
091d42e4
JR
3062 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3063 iommu_disable_translation(iommu);
3064 clear_translation_pre_enabled(iommu);
3065 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3066 iommu->name);
3067 }
4158c2ec 3068
ba395927
KA
3069 /*
3070 * TBD:
3071 * we could share the same root & context tables
25985edc 3072 * among all IOMMU's. Need to Split it later.
ba395927
KA
3073 */
3074 ret = iommu_alloc_root_entry(iommu);
ffebeb46 3075 if (ret)
989d51fc 3076 goto free_iommu;
5f0a7f76 3077
091d42e4
JR
3078 if (translation_pre_enabled(iommu)) {
3079 pr_info("Translation already enabled - trying to copy translation structures\n");
3080
3081 ret = copy_translation_tables(iommu);
3082 if (ret) {
3083 /*
3084 * We found the IOMMU with translation
3085 * enabled - but failed to copy over the
3086 * old root-entry table. Try to proceed
3087 * by disabling translation now and
3088 * allocating a clean root-entry table.
3089 * This might cause DMAR faults, but
3090 * probably the dump will still succeed.
3091 */
3092 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3093 iommu->name);
3094 iommu_disable_translation(iommu);
3095 clear_translation_pre_enabled(iommu);
3096 } else {
3097 pr_info("Copied translation tables from previous kernel for %s\n",
3098 iommu->name);
a87f4918 3099 copied_tables = true;
091d42e4
JR
3100 }
3101 }
3102
5f0a7f76
JR
3103 iommu_flush_write_buffer(iommu);
3104 iommu_set_root_entry(iommu);
3105 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3106 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3107
4ed0d3e6 3108 if (!ecap_pass_through(iommu->ecap))
19943b0e 3109 hw_pass_through = 0;
ba395927
KA
3110 }
3111
19943b0e 3112 if (iommu_pass_through)
e0fc7e0b
DW
3113 iommu_identity_mapping |= IDENTMAP_ALL;
3114
d3f13810 3115#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
e0fc7e0b 3116 iommu_identity_mapping |= IDENTMAP_GFX;
19943b0e 3117#endif
e0fc7e0b 3118
86080ccc
JR
3119 if (iommu_identity_mapping) {
3120 ret = si_domain_init(hw_pass_through);
3121 if (ret)
3122 goto free_iommu;
3123 }
3124
e0fc7e0b
DW
3125 check_tylersburg_isoch();
3126
a87f4918
JR
3127 /*
3128 * If we copied translations from a previous kernel in the kdump
3129 * case, we can not assign the devices to domains now, as that
3130 * would eliminate the old mappings. So skip this part and defer
3131 * the assignment to device driver initialization time.
3132 */
3133 if (copied_tables)
3134 goto domains_done;
3135
ba395927 3136 /*
19943b0e
DW
3137 * If pass through is not set or not enabled, setup context entries for
3138 * identity mappings for rmrr, gfx, and isa and may fall back to static
3139 * identity mapping if iommu_identity_mapping is set.
ba395927 3140 */
19943b0e
DW
3141 if (iommu_identity_mapping) {
3142 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
4ed0d3e6 3143 if (ret) {
9f10e5bf 3144 pr_crit("Failed to setup IOMMU pass-through\n");
989d51fc 3145 goto free_iommu;
ba395927
KA
3146 }
3147 }
ba395927 3148 /*
19943b0e
DW
3149 * For each rmrr
3150 * for each dev attached to rmrr
3151 * do
3152 * locate drhd for dev, alloc domain for dev
3153 * allocate free domain
3154 * allocate page table entries for rmrr
3155 * if context not allocated for bus
3156 * allocate and init context
3157 * set present in root table for this bus
3158 * init context with domain, translation etc
3159 * endfor
3160 * endfor
ba395927 3161 */
9f10e5bf 3162 pr_info("Setting RMRR:\n");
19943b0e 3163 for_each_rmrr_units(rmrr) {
b683b230
JL
3164 /* some BIOS lists non-exist devices in DMAR table. */
3165 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
832bd858 3166 i, dev) {
0b9d9753 3167 ret = iommu_prepare_rmrr_dev(rmrr, dev);
19943b0e 3168 if (ret)
9f10e5bf 3169 pr_err("Mapping reserved region failed\n");
ba395927 3170 }
4ed0d3e6 3171 }
49a0429e 3172
19943b0e
DW
3173 iommu_prepare_isa();
3174
a87f4918
JR
3175domains_done:
3176
ba395927
KA
3177 /*
3178 * for each drhd
3179 * enable fault log
3180 * global invalidate context cache
3181 * global invalidate iotlb
3182 * enable translation
3183 */
7c919779 3184 for_each_iommu(iommu, drhd) {
51a63e67
JC
3185 if (drhd->ignored) {
3186 /*
3187 * we always have to disable PMRs or DMA may fail on
3188 * this device
3189 */
3190 if (force_on)
7c919779 3191 iommu_disable_protect_mem_regions(iommu);
ba395927 3192 continue;
51a63e67 3193 }
ba395927
KA
3194
3195 iommu_flush_write_buffer(iommu);
3196
3460a6d9
KA
3197 ret = dmar_set_interrupt(iommu);
3198 if (ret)
989d51fc 3199 goto free_iommu;
3460a6d9 3200
8939ddf6
JR
3201 if (!translation_pre_enabled(iommu))
3202 iommu_enable_translation(iommu);
3203
b94996c9 3204 iommu_disable_protect_mem_regions(iommu);
ba395927
KA
3205 }
3206
3207 return 0;
989d51fc
JL
3208
3209free_iommu:
ffebeb46
JL
3210 for_each_active_iommu(iommu, drhd) {
3211 disable_dmar_iommu(iommu);
a868e6b7 3212 free_dmar_iommu(iommu);
ffebeb46 3213 }
9bdc531e 3214 kfree(deferred_flush);
989d51fc 3215free_g_iommus:
d9630fe9 3216 kfree(g_iommus);
989d51fc 3217error:
ba395927
KA
3218 return ret;
3219}
3220
5a5e02a6 3221/* This takes a number of _MM_ pages, not VTD pages */
875764de
DW
3222static struct iova *intel_alloc_iova(struct device *dev,
3223 struct dmar_domain *domain,
3224 unsigned long nrpages, uint64_t dma_mask)
ba395927 3225{
ba395927 3226 struct iova *iova = NULL;
ba395927 3227
875764de
DW
3228 /* Restrict dma_mask to the width that the iommu can handle */
3229 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
8f6429c7
RM
3230 /* Ensure we reserve the whole size-aligned region */
3231 nrpages = __roundup_pow_of_two(nrpages);
875764de
DW
3232
3233 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
3234 /*
3235 * First try to allocate an io virtual address in
284901a9 3236 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 3237 * from higher range
ba395927 3238 */
875764de
DW
3239 iova = alloc_iova(&domain->iovad, nrpages,
3240 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3241 if (iova)
3242 return iova;
3243 }
3244 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3245 if (unlikely(!iova)) {
9f10e5bf 3246 pr_err("Allocating %ld-page iova for %s failed",
207e3592 3247 nrpages, dev_name(dev));
f76aec76
KA
3248 return NULL;
3249 }
3250
3251 return iova;
3252}
3253
d4b709f4 3254static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
f76aec76
KA
3255{
3256 struct dmar_domain *domain;
f76aec76 3257
d4b709f4 3258 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
f76aec76 3259 if (!domain) {
9f10e5bf 3260 pr_err("Allocating domain for %s failed\n",
d4b709f4 3261 dev_name(dev));
4fe05bbc 3262 return NULL;
ba395927
KA
3263 }
3264
f76aec76
KA
3265 return domain;
3266}
3267
d4b709f4 3268static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
147202aa
DW
3269{
3270 struct device_domain_info *info;
3271
3272 /* No lock here, assumes no domain exit in normal case */
d4b709f4 3273 info = dev->archdata.iommu;
147202aa
DW
3274 if (likely(info))
3275 return info->domain;
3276
3277 return __get_valid_domain_for_dev(dev);
3278}
3279
ecb509ec 3280/* Check if the dev needs to go through non-identity map and unmap process.*/
73676832 3281static int iommu_no_mapping(struct device *dev)
2c2e2c38
FY
3282{
3283 int found;
3284
3d89194a 3285 if (iommu_dummy(dev))
1e4c64c4
DW
3286 return 1;
3287
2c2e2c38 3288 if (!iommu_identity_mapping)
1e4c64c4 3289 return 0;
2c2e2c38 3290
9b226624 3291 found = identity_mapping(dev);
2c2e2c38 3292 if (found) {
ecb509ec 3293 if (iommu_should_identity_map(dev, 0))
2c2e2c38
FY
3294 return 1;
3295 else {
3296 /*
3297 * 32 bit DMA is removed from si_domain and fall back
3298 * to non-identity mapping.
3299 */
e6de0f8d 3300 dmar_remove_one_dev_info(si_domain, dev);
9f10e5bf
JR
3301 pr_info("32bit %s uses non-identity mapping\n",
3302 dev_name(dev));
2c2e2c38
FY
3303 return 0;
3304 }
3305 } else {
3306 /*
3307 * In case of a detached 64 bit DMA device from vm, the device
3308 * is put into si_domain for identity mapping.
3309 */
ecb509ec 3310 if (iommu_should_identity_map(dev, 0)) {
2c2e2c38 3311 int ret;
28ccce0d 3312 ret = domain_add_dev_info(si_domain, dev);
2c2e2c38 3313 if (!ret) {
9f10e5bf
JR
3314 pr_info("64bit %s uses identity mapping\n",
3315 dev_name(dev));
2c2e2c38
FY
3316 return 1;
3317 }
3318 }
3319 }
3320
1e4c64c4 3321 return 0;
2c2e2c38
FY
3322}
3323
5040a918 3324static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
bb9e6d65 3325 size_t size, int dir, u64 dma_mask)
f76aec76 3326{
f76aec76 3327 struct dmar_domain *domain;
5b6985ce 3328 phys_addr_t start_paddr;
f76aec76
KA
3329 struct iova *iova;
3330 int prot = 0;
6865f0d1 3331 int ret;
8c11e798 3332 struct intel_iommu *iommu;
33041ec0 3333 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
f76aec76
KA
3334
3335 BUG_ON(dir == DMA_NONE);
2c2e2c38 3336
5040a918 3337 if (iommu_no_mapping(dev))
6865f0d1 3338 return paddr;
f76aec76 3339
5040a918 3340 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3341 if (!domain)
3342 return 0;
3343
8c11e798 3344 iommu = domain_get_iommu(domain);
88cb6a74 3345 size = aligned_nrpages(paddr, size);
f76aec76 3346
5040a918 3347 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
f76aec76
KA
3348 if (!iova)
3349 goto error;
3350
ba395927
KA
3351 /*
3352 * Check if DMAR supports zero-length reads on write only
3353 * mappings..
3354 */
3355 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3356 !cap_zlr(iommu->cap))
ba395927
KA
3357 prot |= DMA_PTE_READ;
3358 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3359 prot |= DMA_PTE_WRITE;
3360 /*
6865f0d1 3361 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 3362 * page. Note: if two part of one page are separately mapped, we
6865f0d1 3363 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
3364 * is not a big problem
3365 */
0ab36de2 3366 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
33041ec0 3367 mm_to_dma_pfn(paddr_pfn), size, prot);
ba395927
KA
3368 if (ret)
3369 goto error;
3370
1f0ef2aa
DW
3371 /* it's a non-present to present mapping. Only flush if caching mode */
3372 if (cap_caching_mode(iommu->cap))
a1ddcbe9
JR
3373 iommu_flush_iotlb_psi(iommu, domain,
3374 mm_to_dma_pfn(iova->pfn_lo),
3375 size, 0, 1);
1f0ef2aa 3376 else
8c11e798 3377 iommu_flush_write_buffer(iommu);
f76aec76 3378
03d6a246
DW
3379 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3380 start_paddr += paddr & ~PAGE_MASK;
3381 return start_paddr;
ba395927 3382
ba395927 3383error:
f76aec76
KA
3384 if (iova)
3385 __free_iova(&domain->iovad, iova);
9f10e5bf 3386 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
5040a918 3387 dev_name(dev), size, (unsigned long long)paddr, dir);
ba395927
KA
3388 return 0;
3389}
3390
ffbbef5c
FT
3391static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3392 unsigned long offset, size_t size,
3393 enum dma_data_direction dir,
3394 struct dma_attrs *attrs)
bb9e6d65 3395{
ffbbef5c 3396 return __intel_map_single(dev, page_to_phys(page) + offset, size,
46333e37 3397 dir, *dev->dma_mask);
bb9e6d65
FT
3398}
3399
5e0d2a6f 3400static void flush_unmaps(void)
3401{
80b20dd8 3402 int i, j;
5e0d2a6f 3403
5e0d2a6f 3404 timer_on = 0;
3405
3406 /* just flush them all */
3407 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
3408 struct intel_iommu *iommu = g_iommus[i];
3409 if (!iommu)
3410 continue;
c42d9f32 3411
9dd2fe89
YZ
3412 if (!deferred_flush[i].next)
3413 continue;
3414
78d5f0f5
NA
3415 /* In caching mode, global flushes turn emulation expensive */
3416 if (!cap_caching_mode(iommu->cap))
3417 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 3418 DMA_TLB_GLOBAL_FLUSH);
9dd2fe89 3419 for (j = 0; j < deferred_flush[i].next; j++) {
93a23a72
YZ
3420 unsigned long mask;
3421 struct iova *iova = deferred_flush[i].iova[j];
78d5f0f5
NA
3422 struct dmar_domain *domain = deferred_flush[i].domain[j];
3423
3424 /* On real hardware multiple invalidations are expensive */
3425 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3426 iommu_flush_iotlb_psi(iommu, domain,
a156ef99 3427 iova->pfn_lo, iova_size(iova),
ea8ea460 3428 !deferred_flush[i].freelist[j], 0);
78d5f0f5 3429 else {
a156ef99 3430 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
78d5f0f5
NA
3431 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3432 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3433 }
93a23a72 3434 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
ea8ea460
DW
3435 if (deferred_flush[i].freelist[j])
3436 dma_free_pagelist(deferred_flush[i].freelist[j]);
80b20dd8 3437 }
9dd2fe89 3438 deferred_flush[i].next = 0;
5e0d2a6f 3439 }
3440
5e0d2a6f 3441 list_size = 0;
5e0d2a6f 3442}
3443
3444static void flush_unmaps_timeout(unsigned long data)
3445{
80b20dd8 3446 unsigned long flags;
3447
3448 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 3449 flush_unmaps();
80b20dd8 3450 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 3451}
3452
ea8ea460 3453static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
5e0d2a6f 3454{
3455 unsigned long flags;
80b20dd8 3456 int next, iommu_id;
8c11e798 3457 struct intel_iommu *iommu;
5e0d2a6f 3458
3459 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 3460 if (list_size == HIGH_WATER_MARK)
3461 flush_unmaps();
3462
8c11e798
WH
3463 iommu = domain_get_iommu(dom);
3464 iommu_id = iommu->seq_id;
c42d9f32 3465
80b20dd8 3466 next = deferred_flush[iommu_id].next;
3467 deferred_flush[iommu_id].domain[next] = dom;
3468 deferred_flush[iommu_id].iova[next] = iova;
ea8ea460 3469 deferred_flush[iommu_id].freelist[next] = freelist;
80b20dd8 3470 deferred_flush[iommu_id].next++;
5e0d2a6f 3471
3472 if (!timer_on) {
3473 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3474 timer_on = 1;
3475 }
3476 list_size++;
3477 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3478}
3479
d41a4adb 3480static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
ba395927 3481{
f76aec76 3482 struct dmar_domain *domain;
d794dc9b 3483 unsigned long start_pfn, last_pfn;
ba395927 3484 struct iova *iova;
8c11e798 3485 struct intel_iommu *iommu;
ea8ea460 3486 struct page *freelist;
ba395927 3487
73676832 3488 if (iommu_no_mapping(dev))
f76aec76 3489 return;
2c2e2c38 3490
1525a29a 3491 domain = find_domain(dev);
ba395927
KA
3492 BUG_ON(!domain);
3493
8c11e798
WH
3494 iommu = domain_get_iommu(domain);
3495
ba395927 3496 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
85b98276
DW
3497 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3498 (unsigned long long)dev_addr))
ba395927 3499 return;
ba395927 3500
d794dc9b
DW
3501 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3502 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
ba395927 3503
d794dc9b 3504 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
207e3592 3505 dev_name(dev), start_pfn, last_pfn);
ba395927 3506
ea8ea460 3507 freelist = domain_unmap(domain, start_pfn, last_pfn);
d794dc9b 3508
5e0d2a6f 3509 if (intel_iommu_strict) {
a1ddcbe9 3510 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
ea8ea460 3511 last_pfn - start_pfn + 1, !freelist, 0);
5e0d2a6f 3512 /* free iova */
3513 __free_iova(&domain->iovad, iova);
ea8ea460 3514 dma_free_pagelist(freelist);
5e0d2a6f 3515 } else {
ea8ea460 3516 add_unmap(domain, iova, freelist);
5e0d2a6f 3517 /*
3518 * queue up the release of the unmap to save the 1/6th of the
3519 * cpu used up by the iotlb flush operation...
3520 */
5e0d2a6f 3521 }
ba395927
KA
3522}
3523
d41a4adb
JL
3524static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3525 size_t size, enum dma_data_direction dir,
3526 struct dma_attrs *attrs)
3527{
3528 intel_unmap(dev, dev_addr);
3529}
3530
5040a918 3531static void *intel_alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
3532 dma_addr_t *dma_handle, gfp_t flags,
3533 struct dma_attrs *attrs)
ba395927 3534{
36746436 3535 struct page *page = NULL;
ba395927
KA
3536 int order;
3537
5b6985ce 3538 size = PAGE_ALIGN(size);
ba395927 3539 order = get_order(size);
e8bb910d 3540
5040a918 3541 if (!iommu_no_mapping(dev))
e8bb910d 3542 flags &= ~(GFP_DMA | GFP_DMA32);
5040a918
DW
3543 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3544 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
e8bb910d
AW
3545 flags |= GFP_DMA;
3546 else
3547 flags |= GFP_DMA32;
3548 }
ba395927 3549
36746436
AM
3550 if (flags & __GFP_WAIT) {
3551 unsigned int count = size >> PAGE_SHIFT;
3552
3553 page = dma_alloc_from_contiguous(dev, count, order);
3554 if (page && iommu_no_mapping(dev) &&
3555 page_to_phys(page) + size > dev->coherent_dma_mask) {
3556 dma_release_from_contiguous(dev, page, count);
3557 page = NULL;
3558 }
3559 }
3560
3561 if (!page)
3562 page = alloc_pages(flags, order);
3563 if (!page)
ba395927 3564 return NULL;
36746436 3565 memset(page_address(page), 0, size);
ba395927 3566
36746436 3567 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
bb9e6d65 3568 DMA_BIDIRECTIONAL,
5040a918 3569 dev->coherent_dma_mask);
ba395927 3570 if (*dma_handle)
36746436
AM
3571 return page_address(page);
3572 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3573 __free_pages(page, order);
3574
ba395927
KA
3575 return NULL;
3576}
3577
5040a918 3578static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
baa676fc 3579 dma_addr_t dma_handle, struct dma_attrs *attrs)
ba395927
KA
3580{
3581 int order;
36746436 3582 struct page *page = virt_to_page(vaddr);
ba395927 3583
5b6985ce 3584 size = PAGE_ALIGN(size);
ba395927
KA
3585 order = get_order(size);
3586
d41a4adb 3587 intel_unmap(dev, dma_handle);
36746436
AM
3588 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3589 __free_pages(page, order);
ba395927
KA
3590}
3591
5040a918 3592static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
d7ab5c46
FT
3593 int nelems, enum dma_data_direction dir,
3594 struct dma_attrs *attrs)
ba395927 3595{
d41a4adb 3596 intel_unmap(dev, sglist[0].dma_address);
ba395927
KA
3597}
3598
ba395927 3599static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 3600 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
3601{
3602 int i;
c03ab37c 3603 struct scatterlist *sg;
ba395927 3604
c03ab37c 3605 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 3606 BUG_ON(!sg_page(sg));
db0fa0cb 3607 sg->dma_address = sg_phys(sg);
c03ab37c 3608 sg->dma_length = sg->length;
ba395927
KA
3609 }
3610 return nelems;
3611}
3612
5040a918 3613static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
d7ab5c46 3614 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 3615{
ba395927 3616 int i;
ba395927 3617 struct dmar_domain *domain;
f76aec76
KA
3618 size_t size = 0;
3619 int prot = 0;
f76aec76
KA
3620 struct iova *iova = NULL;
3621 int ret;
c03ab37c 3622 struct scatterlist *sg;
b536d24d 3623 unsigned long start_vpfn;
8c11e798 3624 struct intel_iommu *iommu;
ba395927
KA
3625
3626 BUG_ON(dir == DMA_NONE);
5040a918
DW
3627 if (iommu_no_mapping(dev))
3628 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
ba395927 3629
5040a918 3630 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3631 if (!domain)
3632 return 0;
3633
8c11e798
WH
3634 iommu = domain_get_iommu(domain);
3635
b536d24d 3636 for_each_sg(sglist, sg, nelems, i)
88cb6a74 3637 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 3638
5040a918
DW
3639 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3640 *dev->dma_mask);
f76aec76 3641 if (!iova) {
c03ab37c 3642 sglist->dma_length = 0;
f76aec76
KA
3643 return 0;
3644 }
3645
3646 /*
3647 * Check if DMAR supports zero-length reads on write only
3648 * mappings..
3649 */
3650 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3651 !cap_zlr(iommu->cap))
f76aec76
KA
3652 prot |= DMA_PTE_READ;
3653 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3654 prot |= DMA_PTE_WRITE;
3655
b536d24d 3656 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
e1605495 3657
f532959b 3658 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
e1605495 3659 if (unlikely(ret)) {
e1605495
DW
3660 dma_pte_free_pagetable(domain, start_vpfn,
3661 start_vpfn + size - 1);
e1605495
DW
3662 __free_iova(&domain->iovad, iova);
3663 return 0;
ba395927
KA
3664 }
3665
1f0ef2aa
DW
3666 /* it's a non-present to present mapping. Only flush if caching mode */
3667 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3668 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
1f0ef2aa 3669 else
8c11e798 3670 iommu_flush_write_buffer(iommu);
1f0ef2aa 3671
ba395927
KA
3672 return nelems;
3673}
3674
dfb805e8
FT
3675static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3676{
3677 return !dma_addr;
3678}
3679
160c1d8e 3680struct dma_map_ops intel_dma_ops = {
baa676fc
AP
3681 .alloc = intel_alloc_coherent,
3682 .free = intel_free_coherent,
ba395927
KA
3683 .map_sg = intel_map_sg,
3684 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
3685 .map_page = intel_map_page,
3686 .unmap_page = intel_unmap_page,
dfb805e8 3687 .mapping_error = intel_mapping_error,
ba395927
KA
3688};
3689
3690static inline int iommu_domain_cache_init(void)
3691{
3692 int ret = 0;
3693
3694 iommu_domain_cache = kmem_cache_create("iommu_domain",
3695 sizeof(struct dmar_domain),
3696 0,
3697 SLAB_HWCACHE_ALIGN,
3698
3699 NULL);
3700 if (!iommu_domain_cache) {
9f10e5bf 3701 pr_err("Couldn't create iommu_domain cache\n");
ba395927
KA
3702 ret = -ENOMEM;
3703 }
3704
3705 return ret;
3706}
3707
3708static inline int iommu_devinfo_cache_init(void)
3709{
3710 int ret = 0;
3711
3712 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3713 sizeof(struct device_domain_info),
3714 0,
3715 SLAB_HWCACHE_ALIGN,
ba395927
KA
3716 NULL);
3717 if (!iommu_devinfo_cache) {
9f10e5bf 3718 pr_err("Couldn't create devinfo cache\n");
ba395927
KA
3719 ret = -ENOMEM;
3720 }
3721
3722 return ret;
3723}
3724
ba395927
KA
3725static int __init iommu_init_mempool(void)
3726{
3727 int ret;
ae1ff3d6 3728 ret = iova_cache_get();
ba395927
KA
3729 if (ret)
3730 return ret;
3731
3732 ret = iommu_domain_cache_init();
3733 if (ret)
3734 goto domain_error;
3735
3736 ret = iommu_devinfo_cache_init();
3737 if (!ret)
3738 return ret;
3739
3740 kmem_cache_destroy(iommu_domain_cache);
3741domain_error:
ae1ff3d6 3742 iova_cache_put();
ba395927
KA
3743
3744 return -ENOMEM;
3745}
3746
3747static void __init iommu_exit_mempool(void)
3748{
3749 kmem_cache_destroy(iommu_devinfo_cache);
3750 kmem_cache_destroy(iommu_domain_cache);
ae1ff3d6 3751 iova_cache_put();
ba395927
KA
3752}
3753
556ab45f
DW
3754static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3755{
3756 struct dmar_drhd_unit *drhd;
3757 u32 vtbar;
3758 int rc;
3759
3760 /* We know that this device on this chipset has its own IOMMU.
3761 * If we find it under a different IOMMU, then the BIOS is lying
3762 * to us. Hope that the IOMMU for this device is actually
3763 * disabled, and it needs no translation...
3764 */
3765 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3766 if (rc) {
3767 /* "can't" happen */
3768 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3769 return;
3770 }
3771 vtbar &= 0xffff0000;
3772
3773 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3774 drhd = dmar_find_matched_drhd_unit(pdev);
3775 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3776 TAINT_FIRMWARE_WORKAROUND,
3777 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3778 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3779}
3780DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3781
ba395927
KA
3782static void __init init_no_remapping_devices(void)
3783{
3784 struct dmar_drhd_unit *drhd;
832bd858 3785 struct device *dev;
b683b230 3786 int i;
ba395927
KA
3787
3788 for_each_drhd_unit(drhd) {
3789 if (!drhd->include_all) {
b683b230
JL
3790 for_each_active_dev_scope(drhd->devices,
3791 drhd->devices_cnt, i, dev)
3792 break;
832bd858 3793 /* ignore DMAR unit if no devices exist */
ba395927
KA
3794 if (i == drhd->devices_cnt)
3795 drhd->ignored = 1;
3796 }
3797 }
3798
7c919779 3799 for_each_active_drhd_unit(drhd) {
7c919779 3800 if (drhd->include_all)
ba395927
KA
3801 continue;
3802
b683b230
JL
3803 for_each_active_dev_scope(drhd->devices,
3804 drhd->devices_cnt, i, dev)
832bd858 3805 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
ba395927 3806 break;
ba395927
KA
3807 if (i < drhd->devices_cnt)
3808 continue;
3809
c0771df8
DW
3810 /* This IOMMU has *only* gfx devices. Either bypass it or
3811 set the gfx_mapped flag, as appropriate */
3812 if (dmar_map_gfx) {
3813 intel_iommu_gfx_mapped = 1;
3814 } else {
3815 drhd->ignored = 1;
b683b230
JL
3816 for_each_active_dev_scope(drhd->devices,
3817 drhd->devices_cnt, i, dev)
832bd858 3818 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
3819 }
3820 }
3821}
3822
f59c7b69
FY
3823#ifdef CONFIG_SUSPEND
3824static int init_iommu_hw(void)
3825{
3826 struct dmar_drhd_unit *drhd;
3827 struct intel_iommu *iommu = NULL;
3828
3829 for_each_active_iommu(iommu, drhd)
3830 if (iommu->qi)
3831 dmar_reenable_qi(iommu);
3832
b779260b
JC
3833 for_each_iommu(iommu, drhd) {
3834 if (drhd->ignored) {
3835 /*
3836 * we always have to disable PMRs or DMA may fail on
3837 * this device
3838 */
3839 if (force_on)
3840 iommu_disable_protect_mem_regions(iommu);
3841 continue;
3842 }
3843
f59c7b69
FY
3844 iommu_flush_write_buffer(iommu);
3845
3846 iommu_set_root_entry(iommu);
3847
3848 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3849 DMA_CCMD_GLOBAL_INVL);
2a41ccee
JL
3850 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3851 iommu_enable_translation(iommu);
b94996c9 3852 iommu_disable_protect_mem_regions(iommu);
f59c7b69
FY
3853 }
3854
3855 return 0;
3856}
3857
3858static void iommu_flush_all(void)
3859{
3860 struct dmar_drhd_unit *drhd;
3861 struct intel_iommu *iommu;
3862
3863 for_each_active_iommu(iommu, drhd) {
3864 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3865 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3866 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3867 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3868 }
3869}
3870
134fac3f 3871static int iommu_suspend(void)
f59c7b69
FY
3872{
3873 struct dmar_drhd_unit *drhd;
3874 struct intel_iommu *iommu = NULL;
3875 unsigned long flag;
3876
3877 for_each_active_iommu(iommu, drhd) {
3878 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3879 GFP_ATOMIC);
3880 if (!iommu->iommu_state)
3881 goto nomem;
3882 }
3883
3884 iommu_flush_all();
3885
3886 for_each_active_iommu(iommu, drhd) {
3887 iommu_disable_translation(iommu);
3888
1f5b3c3f 3889 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
3890
3891 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3892 readl(iommu->reg + DMAR_FECTL_REG);
3893 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3894 readl(iommu->reg + DMAR_FEDATA_REG);
3895 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3896 readl(iommu->reg + DMAR_FEADDR_REG);
3897 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3898 readl(iommu->reg + DMAR_FEUADDR_REG);
3899
1f5b3c3f 3900 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
3901 }
3902 return 0;
3903
3904nomem:
3905 for_each_active_iommu(iommu, drhd)
3906 kfree(iommu->iommu_state);
3907
3908 return -ENOMEM;
3909}
3910
134fac3f 3911static void iommu_resume(void)
f59c7b69
FY
3912{
3913 struct dmar_drhd_unit *drhd;
3914 struct intel_iommu *iommu = NULL;
3915 unsigned long flag;
3916
3917 if (init_iommu_hw()) {
b779260b
JC
3918 if (force_on)
3919 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3920 else
3921 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
134fac3f 3922 return;
f59c7b69
FY
3923 }
3924
3925 for_each_active_iommu(iommu, drhd) {
3926
1f5b3c3f 3927 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
3928
3929 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3930 iommu->reg + DMAR_FECTL_REG);
3931 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3932 iommu->reg + DMAR_FEDATA_REG);
3933 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3934 iommu->reg + DMAR_FEADDR_REG);
3935 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3936 iommu->reg + DMAR_FEUADDR_REG);
3937
1f5b3c3f 3938 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
3939 }
3940
3941 for_each_active_iommu(iommu, drhd)
3942 kfree(iommu->iommu_state);
f59c7b69
FY
3943}
3944
134fac3f 3945static struct syscore_ops iommu_syscore_ops = {
f59c7b69
FY
3946 .resume = iommu_resume,
3947 .suspend = iommu_suspend,
3948};
3949
134fac3f 3950static void __init init_iommu_pm_ops(void)
f59c7b69 3951{
134fac3f 3952 register_syscore_ops(&iommu_syscore_ops);
f59c7b69
FY
3953}
3954
3955#else
99592ba4 3956static inline void init_iommu_pm_ops(void) {}
f59c7b69
FY
3957#endif /* CONFIG_PM */
3958
318fe7df 3959
c2a0b538 3960int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
318fe7df
SS
3961{
3962 struct acpi_dmar_reserved_memory *rmrr;
3963 struct dmar_rmrr_unit *rmrru;
3964
3965 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3966 if (!rmrru)
3967 return -ENOMEM;
3968
3969 rmrru->hdr = header;
3970 rmrr = (struct acpi_dmar_reserved_memory *)header;
3971 rmrru->base_address = rmrr->base_address;
3972 rmrru->end_address = rmrr->end_address;
2e455289
JL
3973 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3974 ((void *)rmrr) + rmrr->header.length,
3975 &rmrru->devices_cnt);
3976 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3977 kfree(rmrru);
3978 return -ENOMEM;
3979 }
318fe7df 3980
2e455289 3981 list_add(&rmrru->list, &dmar_rmrr_units);
318fe7df 3982
2e455289 3983 return 0;
318fe7df
SS
3984}
3985
6b197249
JL
3986static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3987{
3988 struct dmar_atsr_unit *atsru;
3989 struct acpi_dmar_atsr *tmp;
3990
3991 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3992 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3993 if (atsr->segment != tmp->segment)
3994 continue;
3995 if (atsr->header.length != tmp->header.length)
3996 continue;
3997 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3998 return atsru;
3999 }
4000
4001 return NULL;
4002}
4003
4004int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
318fe7df
SS
4005{
4006 struct acpi_dmar_atsr *atsr;
4007 struct dmar_atsr_unit *atsru;
4008
6b197249
JL
4009 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4010 return 0;
4011
318fe7df 4012 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
6b197249
JL
4013 atsru = dmar_find_atsr(atsr);
4014 if (atsru)
4015 return 0;
4016
4017 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
318fe7df
SS
4018 if (!atsru)
4019 return -ENOMEM;
4020
6b197249
JL
4021 /*
4022 * If memory is allocated from slab by ACPI _DSM method, we need to
4023 * copy the memory content because the memory buffer will be freed
4024 * on return.
4025 */
4026 atsru->hdr = (void *)(atsru + 1);
4027 memcpy(atsru->hdr, hdr, hdr->length);
318fe7df 4028 atsru->include_all = atsr->flags & 0x1;
2e455289
JL
4029 if (!atsru->include_all) {
4030 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4031 (void *)atsr + atsr->header.length,
4032 &atsru->devices_cnt);
4033 if (atsru->devices_cnt && atsru->devices == NULL) {
4034 kfree(atsru);
4035 return -ENOMEM;
4036 }
4037 }
318fe7df 4038
0e242612 4039 list_add_rcu(&atsru->list, &dmar_atsr_units);
318fe7df
SS
4040
4041 return 0;
4042}
4043
9bdc531e
JL
4044static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4045{
4046 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4047 kfree(atsru);
4048}
4049
6b197249
JL
4050int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4051{
4052 struct acpi_dmar_atsr *atsr;
4053 struct dmar_atsr_unit *atsru;
4054
4055 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4056 atsru = dmar_find_atsr(atsr);
4057 if (atsru) {
4058 list_del_rcu(&atsru->list);
4059 synchronize_rcu();
4060 intel_iommu_free_atsr(atsru);
4061 }
4062
4063 return 0;
4064}
4065
4066int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4067{
4068 int i;
4069 struct device *dev;
4070 struct acpi_dmar_atsr *atsr;
4071 struct dmar_atsr_unit *atsru;
4072
4073 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4074 atsru = dmar_find_atsr(atsr);
4075 if (!atsru)
4076 return 0;
4077
4078 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4079 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4080 i, dev)
4081 return -EBUSY;
4082
4083 return 0;
4084}
4085
ffebeb46
JL
4086static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4087{
4088 int sp, ret = 0;
4089 struct intel_iommu *iommu = dmaru->iommu;
4090
4091 if (g_iommus[iommu->seq_id])
4092 return 0;
4093
4094 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
9f10e5bf 4095 pr_warn("%s: Doesn't support hardware pass through.\n",
ffebeb46
JL
4096 iommu->name);
4097 return -ENXIO;
4098 }
4099 if (!ecap_sc_support(iommu->ecap) &&
4100 domain_update_iommu_snooping(iommu)) {
9f10e5bf 4101 pr_warn("%s: Doesn't support snooping.\n",
ffebeb46
JL
4102 iommu->name);
4103 return -ENXIO;
4104 }
4105 sp = domain_update_iommu_superpage(iommu) - 1;
4106 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
9f10e5bf 4107 pr_warn("%s: Doesn't support large page.\n",
ffebeb46
JL
4108 iommu->name);
4109 return -ENXIO;
4110 }
4111
4112 /*
4113 * Disable translation if already enabled prior to OS handover.
4114 */
4115 if (iommu->gcmd & DMA_GCMD_TE)
4116 iommu_disable_translation(iommu);
4117
4118 g_iommus[iommu->seq_id] = iommu;
4119 ret = iommu_init_domains(iommu);
4120 if (ret == 0)
4121 ret = iommu_alloc_root_entry(iommu);
4122 if (ret)
4123 goto out;
4124
4125 if (dmaru->ignored) {
4126 /*
4127 * we always have to disable PMRs or DMA may fail on this device
4128 */
4129 if (force_on)
4130 iommu_disable_protect_mem_regions(iommu);
4131 return 0;
4132 }
4133
4134 intel_iommu_init_qi(iommu);
4135 iommu_flush_write_buffer(iommu);
4136 ret = dmar_set_interrupt(iommu);
4137 if (ret)
4138 goto disable_iommu;
4139
4140 iommu_set_root_entry(iommu);
4141 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4142 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4143 iommu_enable_translation(iommu);
4144
ffebeb46
JL
4145 iommu_disable_protect_mem_regions(iommu);
4146 return 0;
4147
4148disable_iommu:
4149 disable_dmar_iommu(iommu);
4150out:
4151 free_dmar_iommu(iommu);
4152 return ret;
4153}
4154
6b197249
JL
4155int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4156{
ffebeb46
JL
4157 int ret = 0;
4158 struct intel_iommu *iommu = dmaru->iommu;
4159
4160 if (!intel_iommu_enabled)
4161 return 0;
4162 if (iommu == NULL)
4163 return -EINVAL;
4164
4165 if (insert) {
4166 ret = intel_iommu_add(dmaru);
4167 } else {
4168 disable_dmar_iommu(iommu);
4169 free_dmar_iommu(iommu);
4170 }
4171
4172 return ret;
6b197249
JL
4173}
4174
9bdc531e
JL
4175static void intel_iommu_free_dmars(void)
4176{
4177 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4178 struct dmar_atsr_unit *atsru, *atsr_n;
4179
4180 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4181 list_del(&rmrru->list);
4182 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4183 kfree(rmrru);
318fe7df
SS
4184 }
4185
9bdc531e
JL
4186 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4187 list_del(&atsru->list);
4188 intel_iommu_free_atsr(atsru);
4189 }
318fe7df
SS
4190}
4191
4192int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4193{
b683b230 4194 int i, ret = 1;
318fe7df 4195 struct pci_bus *bus;
832bd858
DW
4196 struct pci_dev *bridge = NULL;
4197 struct device *tmp;
318fe7df
SS
4198 struct acpi_dmar_atsr *atsr;
4199 struct dmar_atsr_unit *atsru;
4200
4201 dev = pci_physfn(dev);
318fe7df 4202 for (bus = dev->bus; bus; bus = bus->parent) {
b5f82ddf 4203 bridge = bus->self;
d14053b3
DW
4204 /* If it's an integrated device, allow ATS */
4205 if (!bridge)
4206 return 1;
4207 /* Connected via non-PCIe: no ATS */
4208 if (!pci_is_pcie(bridge) ||
62f87c0e 4209 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
318fe7df 4210 return 0;
d14053b3 4211 /* If we found the root port, look it up in the ATSR */
b5f82ddf 4212 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
318fe7df 4213 break;
318fe7df
SS
4214 }
4215
0e242612 4216 rcu_read_lock();
b5f82ddf
JL
4217 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4218 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4219 if (atsr->segment != pci_domain_nr(dev->bus))
4220 continue;
4221
b683b230 4222 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
832bd858 4223 if (tmp == &bridge->dev)
b683b230 4224 goto out;
b5f82ddf
JL
4225
4226 if (atsru->include_all)
b683b230 4227 goto out;
b5f82ddf 4228 }
b683b230
JL
4229 ret = 0;
4230out:
0e242612 4231 rcu_read_unlock();
318fe7df 4232
b683b230 4233 return ret;
318fe7df
SS
4234}
4235
59ce0515
JL
4236int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4237{
4238 int ret = 0;
4239 struct dmar_rmrr_unit *rmrru;
4240 struct dmar_atsr_unit *atsru;
4241 struct acpi_dmar_atsr *atsr;
4242 struct acpi_dmar_reserved_memory *rmrr;
4243
4244 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4245 return 0;
4246
4247 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4248 rmrr = container_of(rmrru->hdr,
4249 struct acpi_dmar_reserved_memory, header);
4250 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4251 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4252 ((void *)rmrr) + rmrr->header.length,
4253 rmrr->segment, rmrru->devices,
4254 rmrru->devices_cnt);
27e24950 4255 if(ret < 0)
59ce0515
JL
4256 return ret;
4257 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
27e24950
JL
4258 dmar_remove_dev_scope(info, rmrr->segment,
4259 rmrru->devices, rmrru->devices_cnt);
59ce0515
JL
4260 }
4261 }
4262
4263 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4264 if (atsru->include_all)
4265 continue;
4266
4267 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4268 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4269 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4270 (void *)atsr + atsr->header.length,
4271 atsr->segment, atsru->devices,
4272 atsru->devices_cnt);
4273 if (ret > 0)
4274 break;
4275 else if(ret < 0)
4276 return ret;
4277 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4278 if (dmar_remove_dev_scope(info, atsr->segment,
4279 atsru->devices, atsru->devices_cnt))
4280 break;
4281 }
4282 }
4283
4284 return 0;
4285}
4286
99dcaded
FY
4287/*
4288 * Here we only respond to action of unbound device from driver.
4289 *
4290 * Added device is not attached to its DMAR domain here yet. That will happen
4291 * when mapping the device to iova.
4292 */
4293static int device_notifier(struct notifier_block *nb,
4294 unsigned long action, void *data)
4295{
4296 struct device *dev = data;
99dcaded
FY
4297 struct dmar_domain *domain;
4298
3d89194a 4299 if (iommu_dummy(dev))
44cd613c
DW
4300 return 0;
4301
1196c2fb 4302 if (action != BUS_NOTIFY_REMOVED_DEVICE)
7e7dfab7
JL
4303 return 0;
4304
1525a29a 4305 domain = find_domain(dev);
99dcaded
FY
4306 if (!domain)
4307 return 0;
4308
e6de0f8d 4309 dmar_remove_one_dev_info(domain, dev);
ab8dfe25 4310 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
7e7dfab7 4311 domain_exit(domain);
a97590e5 4312
99dcaded
FY
4313 return 0;
4314}
4315
4316static struct notifier_block device_nb = {
4317 .notifier_call = device_notifier,
4318};
4319
75f05569
JL
4320static int intel_iommu_memory_notifier(struct notifier_block *nb,
4321 unsigned long val, void *v)
4322{
4323 struct memory_notify *mhp = v;
4324 unsigned long long start, end;
4325 unsigned long start_vpfn, last_vpfn;
4326
4327 switch (val) {
4328 case MEM_GOING_ONLINE:
4329 start = mhp->start_pfn << PAGE_SHIFT;
4330 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4331 if (iommu_domain_identity_map(si_domain, start, end)) {
9f10e5bf 4332 pr_warn("Failed to build identity map for [%llx-%llx]\n",
75f05569
JL
4333 start, end);
4334 return NOTIFY_BAD;
4335 }
4336 break;
4337
4338 case MEM_OFFLINE:
4339 case MEM_CANCEL_ONLINE:
4340 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4341 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4342 while (start_vpfn <= last_vpfn) {
4343 struct iova *iova;
4344 struct dmar_drhd_unit *drhd;
4345 struct intel_iommu *iommu;
ea8ea460 4346 struct page *freelist;
75f05569
JL
4347
4348 iova = find_iova(&si_domain->iovad, start_vpfn);
4349 if (iova == NULL) {
9f10e5bf 4350 pr_debug("Failed get IOVA for PFN %lx\n",
75f05569
JL
4351 start_vpfn);
4352 break;
4353 }
4354
4355 iova = split_and_remove_iova(&si_domain->iovad, iova,
4356 start_vpfn, last_vpfn);
4357 if (iova == NULL) {
9f10e5bf 4358 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
75f05569
JL
4359 start_vpfn, last_vpfn);
4360 return NOTIFY_BAD;
4361 }
4362
ea8ea460
DW
4363 freelist = domain_unmap(si_domain, iova->pfn_lo,
4364 iova->pfn_hi);
4365
75f05569
JL
4366 rcu_read_lock();
4367 for_each_active_iommu(iommu, drhd)
a1ddcbe9 4368 iommu_flush_iotlb_psi(iommu, si_domain,
a156ef99 4369 iova->pfn_lo, iova_size(iova),
ea8ea460 4370 !freelist, 0);
75f05569 4371 rcu_read_unlock();
ea8ea460 4372 dma_free_pagelist(freelist);
75f05569
JL
4373
4374 start_vpfn = iova->pfn_hi + 1;
4375 free_iova_mem(iova);
4376 }
4377 break;
4378 }
4379
4380 return NOTIFY_OK;
4381}
4382
4383static struct notifier_block intel_iommu_memory_nb = {
4384 .notifier_call = intel_iommu_memory_notifier,
4385 .priority = 0
4386};
4387
a5459cfe
AW
4388
4389static ssize_t intel_iommu_show_version(struct device *dev,
4390 struct device_attribute *attr,
4391 char *buf)
4392{
4393 struct intel_iommu *iommu = dev_get_drvdata(dev);
4394 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4395 return sprintf(buf, "%d:%d\n",
4396 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4397}
4398static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4399
4400static ssize_t intel_iommu_show_address(struct device *dev,
4401 struct device_attribute *attr,
4402 char *buf)
4403{
4404 struct intel_iommu *iommu = dev_get_drvdata(dev);
4405 return sprintf(buf, "%llx\n", iommu->reg_phys);
4406}
4407static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4408
4409static ssize_t intel_iommu_show_cap(struct device *dev,
4410 struct device_attribute *attr,
4411 char *buf)
4412{
4413 struct intel_iommu *iommu = dev_get_drvdata(dev);
4414 return sprintf(buf, "%llx\n", iommu->cap);
4415}
4416static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4417
4418static ssize_t intel_iommu_show_ecap(struct device *dev,
4419 struct device_attribute *attr,
4420 char *buf)
4421{
4422 struct intel_iommu *iommu = dev_get_drvdata(dev);
4423 return sprintf(buf, "%llx\n", iommu->ecap);
4424}
4425static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4426
2238c082
AW
4427static ssize_t intel_iommu_show_ndoms(struct device *dev,
4428 struct device_attribute *attr,
4429 char *buf)
4430{
4431 struct intel_iommu *iommu = dev_get_drvdata(dev);
4432 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4433}
4434static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4435
4436static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4437 struct device_attribute *attr,
4438 char *buf)
4439{
4440 struct intel_iommu *iommu = dev_get_drvdata(dev);
4441 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4442 cap_ndoms(iommu->cap)));
4443}
4444static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4445
a5459cfe
AW
4446static struct attribute *intel_iommu_attrs[] = {
4447 &dev_attr_version.attr,
4448 &dev_attr_address.attr,
4449 &dev_attr_cap.attr,
4450 &dev_attr_ecap.attr,
2238c082
AW
4451 &dev_attr_domains_supported.attr,
4452 &dev_attr_domains_used.attr,
a5459cfe
AW
4453 NULL,
4454};
4455
4456static struct attribute_group intel_iommu_group = {
4457 .name = "intel-iommu",
4458 .attrs = intel_iommu_attrs,
4459};
4460
4461const struct attribute_group *intel_iommu_groups[] = {
4462 &intel_iommu_group,
4463 NULL,
4464};
4465
ba395927
KA
4466int __init intel_iommu_init(void)
4467{
9bdc531e 4468 int ret = -ENODEV;
3a93c841 4469 struct dmar_drhd_unit *drhd;
7c919779 4470 struct intel_iommu *iommu;
ba395927 4471
a59b50e9
JC
4472 /* VT-d is required for a TXT/tboot launch, so enforce that */
4473 force_on = tboot_force_iommu();
4474
3a5670e8
JL
4475 if (iommu_init_mempool()) {
4476 if (force_on)
4477 panic("tboot: Failed to initialize iommu memory\n");
4478 return -ENOMEM;
4479 }
4480
4481 down_write(&dmar_global_lock);
a59b50e9
JC
4482 if (dmar_table_init()) {
4483 if (force_on)
4484 panic("tboot: Failed to initialize DMAR table\n");
9bdc531e 4485 goto out_free_dmar;
a59b50e9 4486 }
ba395927 4487
c2c7286a 4488 if (dmar_dev_scope_init() < 0) {
a59b50e9
JC
4489 if (force_on)
4490 panic("tboot: Failed to initialize DMAR device scope\n");
9bdc531e 4491 goto out_free_dmar;
a59b50e9 4492 }
1886e8a9 4493
75f1cdf1 4494 if (no_iommu || dmar_disabled)
9bdc531e 4495 goto out_free_dmar;
2ae21010 4496
318fe7df 4497 if (list_empty(&dmar_rmrr_units))
9f10e5bf 4498 pr_info("No RMRR found\n");
318fe7df
SS
4499
4500 if (list_empty(&dmar_atsr_units))
9f10e5bf 4501 pr_info("No ATSR found\n");
318fe7df 4502
51a63e67
JC
4503 if (dmar_init_reserved_ranges()) {
4504 if (force_on)
4505 panic("tboot: Failed to reserve iommu ranges\n");
3a5670e8 4506 goto out_free_reserved_range;
51a63e67 4507 }
ba395927
KA
4508
4509 init_no_remapping_devices();
4510
b779260b 4511 ret = init_dmars();
ba395927 4512 if (ret) {
a59b50e9
JC
4513 if (force_on)
4514 panic("tboot: Failed to initialize DMARs\n");
9f10e5bf 4515 pr_err("Initialization failed\n");
9bdc531e 4516 goto out_free_reserved_range;
ba395927 4517 }
3a5670e8 4518 up_write(&dmar_global_lock);
9f10e5bf 4519 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
ba395927 4520
5e0d2a6f 4521 init_timer(&unmap_timer);
75f1cdf1
FT
4522#ifdef CONFIG_SWIOTLB
4523 swiotlb = 0;
4524#endif
19943b0e 4525 dma_ops = &intel_dma_ops;
4ed0d3e6 4526
134fac3f 4527 init_iommu_pm_ops();
a8bcbb0d 4528
a5459cfe
AW
4529 for_each_active_iommu(iommu, drhd)
4530 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4531 intel_iommu_groups,
2439d4aa 4532 "%s", iommu->name);
a5459cfe 4533
4236d97d 4534 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
99dcaded 4535 bus_register_notifier(&pci_bus_type, &device_nb);
75f05569
JL
4536 if (si_domain && !hw_pass_through)
4537 register_memory_notifier(&intel_iommu_memory_nb);
99dcaded 4538
8bc1f85c
ED
4539 intel_iommu_enabled = 1;
4540
ba395927 4541 return 0;
9bdc531e
JL
4542
4543out_free_reserved_range:
4544 put_iova_domain(&reserved_iova_list);
9bdc531e
JL
4545out_free_dmar:
4546 intel_iommu_free_dmars();
3a5670e8
JL
4547 up_write(&dmar_global_lock);
4548 iommu_exit_mempool();
9bdc531e 4549 return ret;
ba395927 4550}
e820482c 4551
2452d9db 4552static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
579305f7
AW
4553{
4554 struct intel_iommu *iommu = opaque;
4555
2452d9db 4556 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
4557 return 0;
4558}
4559
4560/*
4561 * NB - intel-iommu lacks any sort of reference counting for the users of
4562 * dependent devices. If multiple endpoints have intersecting dependent
4563 * devices, unbinding the driver from any one of them will possibly leave
4564 * the others unable to operate.
4565 */
2452d9db 4566static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
3199aa6b 4567{
0bcb3e28 4568 if (!iommu || !dev || !dev_is_pci(dev))
3199aa6b
HW
4569 return;
4570
2452d9db 4571 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
3199aa6b
HW
4572}
4573
127c7615 4574static void __dmar_remove_one_dev_info(struct device_domain_info *info)
c7151a8d 4575{
c7151a8d
WH
4576 struct intel_iommu *iommu;
4577 unsigned long flags;
c7151a8d 4578
55d94043
JR
4579 assert_spin_locked(&device_domain_lock);
4580
127c7615 4581 if (WARN_ON(!info))
c7151a8d
WH
4582 return;
4583
127c7615 4584 iommu = info->iommu;
c7151a8d 4585
127c7615
JR
4586 if (info->dev) {
4587 iommu_disable_dev_iotlb(info);
4588 domain_context_clear(iommu, info->dev);
4589 }
c7151a8d 4590
b608ac3b 4591 unlink_domain_info(info);
c7151a8d 4592
d160aca5 4593 spin_lock_irqsave(&iommu->lock, flags);
127c7615 4594 domain_detach_iommu(info->domain, iommu);
d160aca5 4595 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d 4596
127c7615 4597 free_devinfo_mem(info);
c7151a8d 4598}
c7151a8d 4599
55d94043
JR
4600static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4601 struct device *dev)
4602{
127c7615 4603 struct device_domain_info *info;
55d94043 4604 unsigned long flags;
3e7abe25 4605
55d94043 4606 spin_lock_irqsave(&device_domain_lock, flags);
127c7615
JR
4607 info = dev->archdata.iommu;
4608 __dmar_remove_one_dev_info(info);
55d94043 4609 spin_unlock_irqrestore(&device_domain_lock, flags);
c7151a8d
WH
4610}
4611
2c2e2c38 4612static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
4613{
4614 int adjust_width;
4615
0fb5fe87
RM
4616 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4617 DMA_32BIT_PFN);
5e98c4b1
WH
4618 domain_reserve_special_ranges(domain);
4619
4620 /* calculate AGAW */
4621 domain->gaw = guest_width;
4622 adjust_width = guestwidth_to_adjustwidth(guest_width);
4623 domain->agaw = width_to_agaw(adjust_width);
4624
5e98c4b1 4625 domain->iommu_coherency = 0;
c5b15255 4626 domain->iommu_snooping = 0;
6dd9a7c7 4627 domain->iommu_superpage = 0;
fe40f1e0 4628 domain->max_addr = 0;
5e98c4b1
WH
4629
4630 /* always allocate the top pgd */
4c923d47 4631 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5e98c4b1
WH
4632 if (!domain->pgd)
4633 return -ENOMEM;
4634 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4635 return 0;
4636}
4637
00a77deb 4638static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
38717946 4639{
5d450806 4640 struct dmar_domain *dmar_domain;
00a77deb
JR
4641 struct iommu_domain *domain;
4642
4643 if (type != IOMMU_DOMAIN_UNMANAGED)
4644 return NULL;
38717946 4645
ab8dfe25 4646 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5d450806 4647 if (!dmar_domain) {
9f10e5bf 4648 pr_err("Can't allocate dmar_domain\n");
00a77deb 4649 return NULL;
38717946 4650 }
2c2e2c38 4651 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
9f10e5bf 4652 pr_err("Domain initialization failed\n");
92d03cc8 4653 domain_exit(dmar_domain);
00a77deb 4654 return NULL;
38717946 4655 }
8140a95d 4656 domain_update_iommu_cap(dmar_domain);
faa3d6f5 4657
00a77deb 4658 domain = &dmar_domain->domain;
8a0e715b
JR
4659 domain->geometry.aperture_start = 0;
4660 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4661 domain->geometry.force_aperture = true;
4662
00a77deb 4663 return domain;
38717946 4664}
38717946 4665
00a77deb 4666static void intel_iommu_domain_free(struct iommu_domain *domain)
38717946 4667{
00a77deb 4668 domain_exit(to_dmar_domain(domain));
38717946 4669}
38717946 4670
4c5478c9
JR
4671static int intel_iommu_attach_device(struct iommu_domain *domain,
4672 struct device *dev)
38717946 4673{
00a77deb 4674 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0
WH
4675 struct intel_iommu *iommu;
4676 int addr_width;
156baca8 4677 u8 bus, devfn;
faa3d6f5 4678
c875d2c1
AW
4679 if (device_is_rmrr_locked(dev)) {
4680 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4681 return -EPERM;
4682 }
4683
7207d8f9
DW
4684 /* normally dev is not mapped */
4685 if (unlikely(domain_context_mapped(dev))) {
faa3d6f5
WH
4686 struct dmar_domain *old_domain;
4687
1525a29a 4688 old_domain = find_domain(dev);
faa3d6f5 4689 if (old_domain) {
d160aca5 4690 rcu_read_lock();
de7e8886 4691 dmar_remove_one_dev_info(old_domain, dev);
d160aca5 4692 rcu_read_unlock();
62c22167
JR
4693
4694 if (!domain_type_is_vm_or_si(old_domain) &&
4695 list_empty(&old_domain->devices))
4696 domain_exit(old_domain);
faa3d6f5
WH
4697 }
4698 }
4699
156baca8 4700 iommu = device_to_iommu(dev, &bus, &devfn);
fe40f1e0
WH
4701 if (!iommu)
4702 return -ENODEV;
4703
4704 /* check if this iommu agaw is sufficient for max mapped address */
4705 addr_width = agaw_to_width(iommu->agaw);
a99c47a2
TL
4706 if (addr_width > cap_mgaw(iommu->cap))
4707 addr_width = cap_mgaw(iommu->cap);
4708
4709 if (dmar_domain->max_addr > (1LL << addr_width)) {
9f10e5bf 4710 pr_err("%s: iommu width (%d) is not "
fe40f1e0 4711 "sufficient for the mapped address (%llx)\n",
a99c47a2 4712 __func__, addr_width, dmar_domain->max_addr);
fe40f1e0
WH
4713 return -EFAULT;
4714 }
a99c47a2
TL
4715 dmar_domain->gaw = addr_width;
4716
4717 /*
4718 * Knock out extra levels of page tables if necessary
4719 */
4720 while (iommu->agaw < dmar_domain->agaw) {
4721 struct dma_pte *pte;
4722
4723 pte = dmar_domain->pgd;
4724 if (dma_pte_present(pte)) {
25cbff16
SY
4725 dmar_domain->pgd = (struct dma_pte *)
4726 phys_to_virt(dma_pte_addr(pte));
7a661013 4727 free_pgtable_page(pte);
a99c47a2
TL
4728 }
4729 dmar_domain->agaw--;
4730 }
fe40f1e0 4731
28ccce0d 4732 return domain_add_dev_info(dmar_domain, dev);
38717946 4733}
38717946 4734
4c5478c9
JR
4735static void intel_iommu_detach_device(struct iommu_domain *domain,
4736 struct device *dev)
38717946 4737{
e6de0f8d 4738 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
faa3d6f5 4739}
c7151a8d 4740
b146a1c9
JR
4741static int intel_iommu_map(struct iommu_domain *domain,
4742 unsigned long iova, phys_addr_t hpa,
5009065d 4743 size_t size, int iommu_prot)
faa3d6f5 4744{
00a77deb 4745 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0 4746 u64 max_addr;
dde57a21 4747 int prot = 0;
faa3d6f5 4748 int ret;
fe40f1e0 4749
dde57a21
JR
4750 if (iommu_prot & IOMMU_READ)
4751 prot |= DMA_PTE_READ;
4752 if (iommu_prot & IOMMU_WRITE)
4753 prot |= DMA_PTE_WRITE;
9cf06697
SY
4754 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4755 prot |= DMA_PTE_SNP;
dde57a21 4756
163cc52c 4757 max_addr = iova + size;
dde57a21 4758 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
4759 u64 end;
4760
4761 /* check if minimum agaw is sufficient for mapped address */
8954da1f 4762 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
fe40f1e0 4763 if (end < max_addr) {
9f10e5bf 4764 pr_err("%s: iommu width (%d) is not "
fe40f1e0 4765 "sufficient for the mapped address (%llx)\n",
8954da1f 4766 __func__, dmar_domain->gaw, max_addr);
fe40f1e0
WH
4767 return -EFAULT;
4768 }
dde57a21 4769 dmar_domain->max_addr = max_addr;
fe40f1e0 4770 }
ad051221
DW
4771 /* Round up size to next multiple of PAGE_SIZE, if it and
4772 the low bits of hpa would take us onto the next page */
88cb6a74 4773 size = aligned_nrpages(hpa, size);
ad051221
DW
4774 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4775 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 4776 return ret;
38717946 4777}
38717946 4778
5009065d 4779static size_t intel_iommu_unmap(struct iommu_domain *domain,
ea8ea460 4780 unsigned long iova, size_t size)
38717946 4781{
00a77deb 4782 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
ea8ea460
DW
4783 struct page *freelist = NULL;
4784 struct intel_iommu *iommu;
4785 unsigned long start_pfn, last_pfn;
4786 unsigned int npages;
42e8c186 4787 int iommu_id, level = 0;
5cf0a76f
DW
4788
4789 /* Cope with horrid API which requires us to unmap more than the
4790 size argument if it happens to be a large-page mapping. */
dc02e46e 4791 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5cf0a76f
DW
4792
4793 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4794 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4b99d352 4795
ea8ea460
DW
4796 start_pfn = iova >> VTD_PAGE_SHIFT;
4797 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4798
4799 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4800
4801 npages = last_pfn - start_pfn + 1;
4802
29a27719 4803 for_each_domain_iommu(iommu_id, dmar_domain) {
a1ddcbe9 4804 iommu = g_iommus[iommu_id];
ea8ea460 4805
42e8c186
JR
4806 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4807 start_pfn, npages, !freelist, 0);
ea8ea460
DW
4808 }
4809
4810 dma_free_pagelist(freelist);
fe40f1e0 4811
163cc52c
DW
4812 if (dmar_domain->max_addr == iova + size)
4813 dmar_domain->max_addr = iova;
b146a1c9 4814
5cf0a76f 4815 return size;
38717946 4816}
38717946 4817
d14d6577 4818static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
bb5547ac 4819 dma_addr_t iova)
38717946 4820{
00a77deb 4821 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
38717946 4822 struct dma_pte *pte;
5cf0a76f 4823 int level = 0;
faa3d6f5 4824 u64 phys = 0;
38717946 4825
5cf0a76f 4826 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
38717946 4827 if (pte)
faa3d6f5 4828 phys = dma_pte_addr(pte);
38717946 4829
faa3d6f5 4830 return phys;
38717946 4831}
a8bcbb0d 4832
5d587b8d 4833static bool intel_iommu_capable(enum iommu_cap cap)
dbb9fd86 4834{
dbb9fd86 4835 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5d587b8d 4836 return domain_update_iommu_snooping(NULL) == 1;
323f99cb 4837 if (cap == IOMMU_CAP_INTR_REMAP)
5d587b8d 4838 return irq_remapping_enabled == 1;
dbb9fd86 4839
5d587b8d 4840 return false;
dbb9fd86
SY
4841}
4842
abdfdde2
AW
4843static int intel_iommu_add_device(struct device *dev)
4844{
a5459cfe 4845 struct intel_iommu *iommu;
abdfdde2 4846 struct iommu_group *group;
156baca8 4847 u8 bus, devfn;
70ae6f0d 4848
a5459cfe
AW
4849 iommu = device_to_iommu(dev, &bus, &devfn);
4850 if (!iommu)
70ae6f0d
AW
4851 return -ENODEV;
4852
a5459cfe 4853 iommu_device_link(iommu->iommu_dev, dev);
a4ff1fc2 4854
e17f9ff4 4855 group = iommu_group_get_for_dev(dev);
783f157b 4856
e17f9ff4
AW
4857 if (IS_ERR(group))
4858 return PTR_ERR(group);
bcb71abe 4859
abdfdde2 4860 iommu_group_put(group);
e17f9ff4 4861 return 0;
abdfdde2 4862}
70ae6f0d 4863
abdfdde2
AW
4864static void intel_iommu_remove_device(struct device *dev)
4865{
a5459cfe
AW
4866 struct intel_iommu *iommu;
4867 u8 bus, devfn;
4868
4869 iommu = device_to_iommu(dev, &bus, &devfn);
4870 if (!iommu)
4871 return;
4872
abdfdde2 4873 iommu_group_remove_device(dev);
a5459cfe
AW
4874
4875 iommu_device_unlink(iommu->iommu_dev, dev);
70ae6f0d
AW
4876}
4877
b22f6434 4878static const struct iommu_ops intel_iommu_ops = {
5d587b8d 4879 .capable = intel_iommu_capable,
00a77deb
JR
4880 .domain_alloc = intel_iommu_domain_alloc,
4881 .domain_free = intel_iommu_domain_free,
a8bcbb0d
JR
4882 .attach_dev = intel_iommu_attach_device,
4883 .detach_dev = intel_iommu_detach_device,
b146a1c9
JR
4884 .map = intel_iommu_map,
4885 .unmap = intel_iommu_unmap,
315786eb 4886 .map_sg = default_iommu_map_sg,
a8bcbb0d 4887 .iova_to_phys = intel_iommu_iova_to_phys,
abdfdde2
AW
4888 .add_device = intel_iommu_add_device,
4889 .remove_device = intel_iommu_remove_device,
6d1c56a9 4890 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
a8bcbb0d 4891};
9af88143 4892
9452618e
DV
4893static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4894{
4895 /* G4x/GM45 integrated gfx dmar support is totally busted. */
9f10e5bf 4896 pr_info("Disabling IOMMU for graphics on this chipset\n");
9452618e
DV
4897 dmar_map_gfx = 0;
4898}
4899
4900DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4901DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4902DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4903DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4904DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4905DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4906DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4907
d34d6517 4908static void quirk_iommu_rwbf(struct pci_dev *dev)
9af88143
DW
4909{
4910 /*
4911 * Mobile 4 Series Chipset neglects to set RWBF capability,
210561ff 4912 * but needs it. Same seems to hold for the desktop versions.
9af88143 4913 */
9f10e5bf 4914 pr_info("Forcing write-buffer flush capability\n");
9af88143
DW
4915 rwbf_quirk = 1;
4916}
4917
4918DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
210561ff
DV
4919DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4920DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4921DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4922DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4923DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4924DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
e0fc7e0b 4925
eecfd57f
AJ
4926#define GGC 0x52
4927#define GGC_MEMORY_SIZE_MASK (0xf << 8)
4928#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4929#define GGC_MEMORY_SIZE_1M (0x1 << 8)
4930#define GGC_MEMORY_SIZE_2M (0x3 << 8)
4931#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4932#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4933#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4934#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4935
d34d6517 4936static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
9eecabcb
DW
4937{
4938 unsigned short ggc;
4939
eecfd57f 4940 if (pci_read_config_word(dev, GGC, &ggc))
9eecabcb
DW
4941 return;
4942
eecfd57f 4943 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
9f10e5bf 4944 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
9eecabcb 4945 dmar_map_gfx = 0;
6fbcfb3e
DW
4946 } else if (dmar_map_gfx) {
4947 /* we have to ensure the gfx device is idle before we flush */
9f10e5bf 4948 pr_info("Disabling batched IOTLB flush on Ironlake\n");
6fbcfb3e
DW
4949 intel_iommu_strict = 1;
4950 }
9eecabcb
DW
4951}
4952DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4953DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4954DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4955DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4956
e0fc7e0b
DW
4957/* On Tylersburg chipsets, some BIOSes have been known to enable the
4958 ISOCH DMAR unit for the Azalia sound device, but not give it any
4959 TLB entries, which causes it to deadlock. Check for that. We do
4960 this in a function called from init_dmars(), instead of in a PCI
4961 quirk, because we don't want to print the obnoxious "BIOS broken"
4962 message if VT-d is actually disabled.
4963*/
4964static void __init check_tylersburg_isoch(void)
4965{
4966 struct pci_dev *pdev;
4967 uint32_t vtisochctrl;
4968
4969 /* If there's no Azalia in the system anyway, forget it. */
4970 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4971 if (!pdev)
4972 return;
4973 pci_dev_put(pdev);
4974
4975 /* System Management Registers. Might be hidden, in which case
4976 we can't do the sanity check. But that's OK, because the
4977 known-broken BIOSes _don't_ actually hide it, so far. */
4978 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4979 if (!pdev)
4980 return;
4981
4982 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4983 pci_dev_put(pdev);
4984 return;
4985 }
4986
4987 pci_dev_put(pdev);
4988
4989 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4990 if (vtisochctrl & 1)
4991 return;
4992
4993 /* Drop all bits other than the number of TLB entries */
4994 vtisochctrl &= 0x1c;
4995
4996 /* If we have the recommended number of TLB entries (16), fine. */
4997 if (vtisochctrl == 0x10)
4998 return;
4999
5000 /* Zero TLB entries? You get to ride the short bus to school. */
5001 if (!vtisochctrl) {
5002 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5003 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5004 dmi_get_system_info(DMI_BIOS_VENDOR),
5005 dmi_get_system_info(DMI_BIOS_VERSION),
5006 dmi_get_system_info(DMI_PRODUCT_VERSION));
5007 iommu_identity_mapping |= IDENTMAP_AZALIA;
5008 return;
5009 }
9f10e5bf
JR
5010
5011 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
e0fc7e0b
DW
5012 vtisochctrl);
5013}