]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/irqchip/irq-apple-aic.c
Merge tag 'usb-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / drivers / irqchip / irq-apple-aic.c
CommitLineData
76cde263
HM
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright The Asahi Linux Contributors
4 *
5 * Based on irq-lpc32xx:
6 * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7 * Based on irq-bcm2836:
8 * Copyright 2015 Broadcom
9 */
10
11/*
12 * AIC is a fairly simple interrupt controller with the following features:
13 *
14 * - 896 level-triggered hardware IRQs
15 * - Single mask bit per IRQ
16 * - Per-IRQ affinity setting
17 * - Automatic masking on event delivery (auto-ack)
18 * - Software triggering (ORed with hw line)
19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20 * interchangeable if not symmetric)
21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
22 * higher priority)
23 * - Automatic masking on ack
24 * - Default "this CPU" register view and explicit per-CPU views
25 *
26 * In addition, this driver also handles FIQs, as these are routed to the same
27 * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and
28 * performance counters (TODO).
29 *
30 * Implementation notes:
31 *
32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
33 * and one for IPIs.
34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35 * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37 * - DT bindings use 3-cell form (like GIC):
38 * - <0 nr flags> - hwirq #nr
39 * - <1 nr flags> - FIQ #nr
40 * - nr=0 Physical HV timer
41 * - nr=1 Virtual HV timer
42 * - nr=2 Physical guest timer
43 * - nr=3 Virtual guest timer
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/bits.h>
49#include <linux/bitfield.h>
50#include <linux/cpuhotplug.h>
51#include <linux/io.h>
52#include <linux/irqchip.h>
b6ca556c 53#include <linux/irqchip/arm-vgic-info.h>
76cde263
HM
54#include <linux/irqdomain.h>
55#include <linux/limits.h>
56#include <linux/of_address.h>
57#include <linux/slab.h>
58#include <asm/exception.h>
59#include <asm/sysreg.h>
60#include <asm/virt.h>
61
62#include <dt-bindings/interrupt-controller/apple-aic.h>
63
64/*
65 * AIC registers (MMIO)
66 */
67
68#define AIC_INFO 0x0004
69#define AIC_INFO_NR_HW GENMASK(15, 0)
70
71#define AIC_CONFIG 0x0010
72
73#define AIC_WHOAMI 0x2000
74#define AIC_EVENT 0x2004
75#define AIC_EVENT_TYPE GENMASK(31, 16)
76#define AIC_EVENT_NUM GENMASK(15, 0)
77
78#define AIC_EVENT_TYPE_HW 1
79#define AIC_EVENT_TYPE_IPI 4
80#define AIC_EVENT_IPI_OTHER 1
81#define AIC_EVENT_IPI_SELF 2
82
83#define AIC_IPI_SEND 0x2008
84#define AIC_IPI_ACK 0x200c
85#define AIC_IPI_MASK_SET 0x2024
86#define AIC_IPI_MASK_CLR 0x2028
87
88#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
89
90#define AIC_IPI_OTHER BIT(0)
91#define AIC_IPI_SELF BIT(31)
92
93#define AIC_TARGET_CPU 0x3000
94#define AIC_SW_SET 0x4000
95#define AIC_SW_CLR 0x4080
96#define AIC_MASK_SET 0x4100
97#define AIC_MASK_CLR 0x4180
98
99#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
100#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
101#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
102#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
103
104#define MASK_REG(x) (4 * ((x) >> 5))
105#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
106
107/*
108 * IMP-DEF sysregs that control FIQ sources
109 * Note: sysreg-based IPIs are not supported yet.
110 */
111
112/* Core PMC control register */
113#define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0)
114#define PMCR0_IMODE GENMASK(10, 8)
115#define PMCR0_IMODE_OFF 0
116#define PMCR0_IMODE_PMI 1
117#define PMCR0_IMODE_AIC 2
118#define PMCR0_IMODE_HALT 3
119#define PMCR0_IMODE_FIQ 4
120#define PMCR0_IACT BIT(11)
121
122/* IPI request registers */
123#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
124#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
125#define IPI_RR_CPU GENMASK(7, 0)
126/* Cluster only used for the GLOBAL register */
127#define IPI_RR_CLUSTER GENMASK(23, 16)
128#define IPI_RR_TYPE GENMASK(29, 28)
129#define IPI_RR_IMMEDIATE 0
130#define IPI_RR_RETRACT 1
131#define IPI_RR_DEFERRED 2
132#define IPI_RR_NOWAKE 3
133
134/* IPI status register */
135#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
136#define IPI_SR_PENDING BIT(0)
137
138/* Guest timer FIQ enable register */
139#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
140#define VM_TMR_FIQ_ENABLE_V BIT(0)
141#define VM_TMR_FIQ_ENABLE_P BIT(1)
142
143/* Deferred IPI countdown register */
144#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
145
146/* Uncore PMC control register */
147#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
148#define UPMCR0_IMODE GENMASK(18, 16)
149#define UPMCR0_IMODE_OFF 0
150#define UPMCR0_IMODE_AIC 2
151#define UPMCR0_IMODE_HALT 3
152#define UPMCR0_IMODE_FIQ 4
153
154/* Uncore PMC status register */
155#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
156#define UPMSR_IACT BIT(0)
157
158#define AIC_NR_FIQ 4
159#define AIC_NR_SWIPI 32
160
161/*
162 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
163 * directly, except that timers are special. At the irqchip level, the
164 * two timer types are represented by their access method: _EL0 registers
165 * or _EL02 registers. In the DT binding, the timers are represented
166 * by their purpose (HV or guest). This mapping is for when the kernel is
167 * running at EL2 (with VHE). When the kernel is running at EL1, the
168 * mapping differs and aic_irq_domain_translate() performs the remapping.
169 */
170
171#define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS
172#define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT
173#define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS
174#define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT
175
176struct aic_irq_chip {
177 void __iomem *base;
178 struct irq_domain *hw_domain;
179 struct irq_domain *ipi_domain;
180 int nr_hw;
181 int ipi_hwirq;
182};
183
184static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
185
186static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
187static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
188
189static struct aic_irq_chip *aic_irqc;
190
191static void aic_handle_ipi(struct pt_regs *regs);
192
193static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
194{
195 return readl_relaxed(ic->base + reg);
196}
197
198static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
199{
200 writel_relaxed(val, ic->base + reg);
201}
202
203/*
204 * IRQ irqchip
205 */
206
207static void aic_irq_mask(struct irq_data *d)
208{
209 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
210
211 aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)),
212 MASK_BIT(irqd_to_hwirq(d)));
213}
214
215static void aic_irq_unmask(struct irq_data *d)
216{
217 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
218
219 aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq),
220 MASK_BIT(irqd_to_hwirq(d)));
221}
222
223static void aic_irq_eoi(struct irq_data *d)
224{
225 /*
226 * Reading the interrupt reason automatically acknowledges and masks
227 * the IRQ, so we just unmask it here if needed.
228 */
229 if (!irqd_irq_disabled(d) && !irqd_irq_masked(d))
230 aic_irq_unmask(d);
231}
232
233static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
234{
235 struct aic_irq_chip *ic = aic_irqc;
236 u32 event, type, irq;
237
238 do {
239 /*
240 * We cannot use a relaxed read here, as reads from DMA buffers
241 * need to be ordered after the IRQ fires.
242 */
243 event = readl(ic->base + AIC_EVENT);
244 type = FIELD_GET(AIC_EVENT_TYPE, event);
245 irq = FIELD_GET(AIC_EVENT_NUM, event);
246
247 if (type == AIC_EVENT_TYPE_HW)
248 handle_domain_irq(aic_irqc->hw_domain, irq, regs);
249 else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
250 aic_handle_ipi(regs);
251 else if (event != 0)
252 pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
253 } while (event);
254
255 /*
256 * vGIC maintenance interrupts end up here too, so we need to check
257 * for them separately. This should never trigger if KVM is working
258 * properly, because it will have already taken care of clearing it
259 * on guest exit before this handler runs.
260 */
261 if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
262 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
263 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
264 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
265 }
266}
267
268static int aic_irq_set_affinity(struct irq_data *d,
269 const struct cpumask *mask_val, bool force)
270{
271 irq_hw_number_t hwirq = irqd_to_hwirq(d);
272 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
273 int cpu;
274
275 if (force)
276 cpu = cpumask_first(mask_val);
277 else
278 cpu = cpumask_any_and(mask_val, cpu_online_mask);
279
280 aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu));
281 irq_data_update_effective_affinity(d, cpumask_of(cpu));
282
283 return IRQ_SET_MASK_OK;
284}
285
286static int aic_irq_set_type(struct irq_data *d, unsigned int type)
287{
288 /*
289 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
290 * have a way to find out the type of any given IRQ, so just allow both.
291 */
292 return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
293}
294
295static struct irq_chip aic_chip = {
296 .name = "AIC",
297 .irq_mask = aic_irq_mask,
298 .irq_unmask = aic_irq_unmask,
299 .irq_eoi = aic_irq_eoi,
300 .irq_set_affinity = aic_irq_set_affinity,
301 .irq_set_type = aic_irq_set_type,
302};
303
304/*
305 * FIQ irqchip
306 */
307
308static unsigned long aic_fiq_get_idx(struct irq_data *d)
309{
310 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
311
312 return irqd_to_hwirq(d) - ic->nr_hw;
313}
314
315static void aic_fiq_set_mask(struct irq_data *d)
316{
317 /* Only the guest timers have real mask bits, unfortunately. */
318 switch (aic_fiq_get_idx(d)) {
319 case AIC_TMR_EL02_PHYS:
320 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
321 isb();
322 break;
323 case AIC_TMR_EL02_VIRT:
324 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
325 isb();
326 break;
327 default:
328 break;
329 }
330}
331
332static void aic_fiq_clear_mask(struct irq_data *d)
333{
334 switch (aic_fiq_get_idx(d)) {
335 case AIC_TMR_EL02_PHYS:
336 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
337 isb();
338 break;
339 case AIC_TMR_EL02_VIRT:
340 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
341 isb();
342 break;
343 default:
344 break;
345 }
346}
347
348static void aic_fiq_mask(struct irq_data *d)
349{
350 aic_fiq_set_mask(d);
351 __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
352}
353
354static void aic_fiq_unmask(struct irq_data *d)
355{
356 aic_fiq_clear_mask(d);
357 __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
358}
359
360static void aic_fiq_eoi(struct irq_data *d)
361{
362 /* We mask to ack (where we can), so we need to unmask at EOI. */
363 if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
364 aic_fiq_clear_mask(d);
365}
366
367#define TIMER_FIRING(x) \
368 (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
369 ARCH_TIMER_CTRL_IT_STAT)) == \
370 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
371
372static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
373{
374 /*
375 * It would be really nice if we had a system register that lets us get
376 * the FIQ source state without having to peek down into sources...
377 * but such a register does not seem to exist.
378 *
379 * So, we have these potential sources to test for:
380 * - Fast IPIs (not yet used)
381 * - The 4 timers (CNTP, CNTV for each of HV and guest)
382 * - Per-core PMCs (not yet supported)
383 * - Per-cluster uncore PMCs (not yet supported)
384 *
385 * Since not dealing with any of these results in a FIQ storm,
386 * we check for everything here, even things we don't support yet.
387 */
388
389 if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
390 pr_err_ratelimited("Fast IPI fired. Acking.\n");
391 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
392 }
393
394 if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
395 handle_domain_irq(aic_irqc->hw_domain,
396 aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs);
397
398 if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
399 handle_domain_irq(aic_irqc->hw_domain,
400 aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs);
401
402 if (is_kernel_in_hyp_mode()) {
403 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
404
405 if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
406 TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
407 handle_domain_irq(aic_irqc->hw_domain,
408 aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs);
409
410 if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
411 TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
412 handle_domain_irq(aic_irqc->hw_domain,
413 aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs);
414 }
415
416 if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
417 (FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) {
418 /*
419 * Not supported yet, let's figure out how to handle this when
420 * we implement these proprietary performance counters. For now,
421 * just mask it and move on.
422 */
423 pr_err_ratelimited("PMC FIQ fired. Masking.\n");
424 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
425 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
426 }
427
428 if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
429 (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
430 /* Same story with uncore PMCs */
431 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
432 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
433 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
434 }
435}
436
437static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
438{
439 return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
440}
441
442static struct irq_chip fiq_chip = {
443 .name = "AIC-FIQ",
444 .irq_mask = aic_fiq_mask,
445 .irq_unmask = aic_fiq_unmask,
446 .irq_ack = aic_fiq_set_mask,
447 .irq_eoi = aic_fiq_eoi,
448 .irq_set_type = aic_fiq_set_type,
449};
450
451/*
452 * Main IRQ domain
453 */
454
455static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
456 irq_hw_number_t hw)
457{
458 struct aic_irq_chip *ic = id->host_data;
459
460 if (hw < ic->nr_hw) {
461 irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data,
462 handle_fasteoi_irq, NULL, NULL);
463 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
464 } else {
465 irq_set_percpu_devid(irq);
466 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
467 handle_percpu_devid_irq, NULL, NULL);
468 }
469
470 return 0;
471}
472
473static int aic_irq_domain_translate(struct irq_domain *id,
474 struct irq_fwspec *fwspec,
475 unsigned long *hwirq,
476 unsigned int *type)
477{
478 struct aic_irq_chip *ic = id->host_data;
479
480 if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode))
481 return -EINVAL;
482
483 switch (fwspec->param[0]) {
484 case AIC_IRQ:
485 if (fwspec->param[1] >= ic->nr_hw)
486 return -EINVAL;
487 *hwirq = fwspec->param[1];
488 break;
489 case AIC_FIQ:
490 if (fwspec->param[1] >= AIC_NR_FIQ)
491 return -EINVAL;
492 *hwirq = ic->nr_hw + fwspec->param[1];
493
494 /*
495 * In EL1 the non-redirected registers are the guest's,
496 * not EL2's, so remap the hwirqs to match.
497 */
498 if (!is_kernel_in_hyp_mode()) {
499 switch (fwspec->param[1]) {
500 case AIC_TMR_GUEST_PHYS:
501 *hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS;
502 break;
503 case AIC_TMR_GUEST_VIRT:
504 *hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT;
505 break;
506 case AIC_TMR_HV_PHYS:
507 case AIC_TMR_HV_VIRT:
508 return -ENOENT;
509 default:
510 break;
511 }
512 }
513 break;
514 default:
515 return -EINVAL;
516 }
517
518 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
519
520 return 0;
521}
522
523static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
524 unsigned int nr_irqs, void *arg)
525{
526 unsigned int type = IRQ_TYPE_NONE;
527 struct irq_fwspec *fwspec = arg;
528 irq_hw_number_t hwirq;
529 int i, ret;
530
531 ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
532 if (ret)
533 return ret;
534
535 for (i = 0; i < nr_irqs; i++) {
536 ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
537 if (ret)
538 return ret;
539 }
540
541 return 0;
542}
543
544static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
545 unsigned int nr_irqs)
546{
547 int i;
548
549 for (i = 0; i < nr_irqs; i++) {
550 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
551
552 irq_set_handler(virq + i, NULL);
553 irq_domain_reset_irq_data(d);
554 }
555}
556
557static const struct irq_domain_ops aic_irq_domain_ops = {
558 .translate = aic_irq_domain_translate,
559 .alloc = aic_irq_domain_alloc,
560 .free = aic_irq_domain_free,
561};
562
563/*
564 * IPI irqchip
565 */
566
567static void aic_ipi_mask(struct irq_data *d)
568{
569 u32 irq_bit = BIT(irqd_to_hwirq(d));
570
571 /* No specific ordering requirements needed here. */
572 atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
573}
574
575static void aic_ipi_unmask(struct irq_data *d)
576{
577 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
578 u32 irq_bit = BIT(irqd_to_hwirq(d));
579
580 atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
581
582 /*
583 * The atomic_or() above must complete before the atomic_read()
584 * below to avoid racing aic_ipi_send_mask().
585 */
586 smp_mb__after_atomic();
587
588 /*
589 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
590 * No barriers needed here since this is a self-IPI.
591 */
592 if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit)
593 aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
594}
595
596static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
597{
598 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
599 u32 irq_bit = BIT(irqd_to_hwirq(d));
600 u32 send = 0;
601 int cpu;
602 unsigned long pending;
603
604 for_each_cpu(cpu, mask) {
605 /*
606 * This sequence is the mirror of the one in aic_ipi_unmask();
607 * see the comment there. Additionally, release semantics
608 * ensure that the vIPI flag set is ordered after any shared
609 * memory accesses that precede it. This therefore also pairs
610 * with the atomic_fetch_andnot in aic_handle_ipi().
611 */
612 pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
613
614 /*
615 * The atomic_fetch_or_release() above must complete before the
616 * atomic_read() below to avoid racing aic_ipi_unmask().
617 */
618 smp_mb__after_atomic();
619
620 if (!(pending & irq_bit) &&
621 (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit))
622 send |= AIC_IPI_SEND_CPU(cpu);
623 }
624
625 /*
626 * The flag writes must complete before the physical IPI is issued
627 * to another CPU. This is implied by the control dependency on
628 * the result of atomic_read_acquire() above, which is itself
629 * already ordered after the vIPI flag write.
630 */
631 if (send)
632 aic_ic_write(ic, AIC_IPI_SEND, send);
633}
634
635static struct irq_chip ipi_chip = {
636 .name = "AIC-IPI",
637 .irq_mask = aic_ipi_mask,
638 .irq_unmask = aic_ipi_unmask,
639 .ipi_send_mask = aic_ipi_send_mask,
640};
641
642/*
643 * IPI IRQ domain
644 */
645
646static void aic_handle_ipi(struct pt_regs *regs)
647{
648 int i;
649 unsigned long enabled, firing;
650
651 /*
652 * Ack the IPI. We need to order this after the AIC event read, but
653 * that is enforced by normal MMIO ordering guarantees.
654 */
655 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
656
657 /*
658 * The mask read does not need to be ordered. Only we can change
659 * our own mask anyway, so no races are possible here, as long as
660 * we are properly in the interrupt handler (which is covered by
661 * the barrier that is part of the top-level AIC handler's readl()).
662 */
663 enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
664
665 /*
666 * Clear the IPIs we are about to handle. This pairs with the
667 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
668 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
669 * before IPI handling code (to avoid races handling vIPIs before they
670 * are signaled). The former is taken care of by the release semantics
671 * of the write portion, while the latter is taken care of by the
672 * acquire semantics of the read portion.
673 */
674 firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
675
676 for_each_set_bit(i, &firing, AIC_NR_SWIPI)
677 handle_domain_irq(aic_irqc->ipi_domain, i, regs);
678
679 /*
680 * No ordering needed here; at worst this just changes the timing of
681 * when the next IPI will be delivered.
682 */
683 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
684}
685
686static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
687 unsigned int nr_irqs, void *args)
688{
689 int i;
690
691 for (i = 0; i < nr_irqs; i++) {
692 irq_set_percpu_devid(virq + i);
693 irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
694 handle_percpu_devid_irq, NULL, NULL);
695 }
696
697 return 0;
698}
699
700static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
701{
702 /* Not freeing IPIs */
703}
704
705static const struct irq_domain_ops aic_ipi_domain_ops = {
706 .alloc = aic_ipi_alloc,
707 .free = aic_ipi_free,
708};
709
710static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
711{
712 struct irq_domain *ipi_domain;
713 int base_ipi;
714
715 ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
716 &aic_ipi_domain_ops, irqc);
717 if (WARN_ON(!ipi_domain))
718 return -ENODEV;
719
720 ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
721 irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
722
723 base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
724 NUMA_NO_NODE, NULL, false, NULL);
725
726 if (WARN_ON(!base_ipi)) {
727 irq_domain_remove(ipi_domain);
728 return -ENODEV;
729 }
730
731 set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
732
733 irqc->ipi_domain = ipi_domain;
734
735 return 0;
736}
737
738static int aic_init_cpu(unsigned int cpu)
739{
740 /* Mask all hard-wired per-CPU IRQ/FIQ sources */
741
742 /* Pending Fast IPI FIQs */
743 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
744
745 /* Timer FIQs */
746 sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
747 sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
748
749 /* EL2-only (VHE mode) IRQ sources */
750 if (is_kernel_in_hyp_mode()) {
751 /* Guest timers */
752 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
753 VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
754
755 /* vGIC maintenance IRQ */
756 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
757 }
758
759 /* PMC FIQ */
760 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
761 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
762
763 /* Uncore PMC FIQ */
764 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
765 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
766
767 /* Commit all of the above */
768 isb();
769
770 /*
771 * Make sure the kernel's idea of logical CPU order is the same as AIC's
772 * If we ever end up with a mismatch here, we will have to introduce
773 * a mapping table similar to what other irqchip drivers do.
774 */
775 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
776
777 /*
778 * Always keep IPIs unmasked at the hardware level (except auto-masking
779 * by AIC during processing). We manage masks at the vIPI level.
780 */
781 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
782 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
783 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
784
785 /* Initialize the local mask state */
786 __this_cpu_write(aic_fiq_unmasked, 0);
787
788 return 0;
789}
790
b6ca556c
MZ
791static struct gic_kvm_info vgic_info __initdata = {
792 .type = GIC_V3,
793 .no_maint_irq_mask = true,
794 .no_hw_deactivation = true,
795};
796
76cde263
HM
797static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
798{
799 int i;
800 void __iomem *regs;
801 u32 info;
802 struct aic_irq_chip *irqc;
803
804 regs = of_iomap(node, 0);
805 if (WARN_ON(!regs))
806 return -EIO;
807
808 irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
809 if (!irqc)
810 return -ENOMEM;
811
812 aic_irqc = irqc;
813 irqc->base = regs;
814
815 info = aic_ic_read(irqc, AIC_INFO);
816 irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info);
817
818 irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node),
819 irqc->nr_hw + AIC_NR_FIQ,
820 &aic_irq_domain_ops, irqc);
821 if (WARN_ON(!irqc->hw_domain)) {
822 iounmap(irqc->base);
823 kfree(irqc);
824 return -ENODEV;
825 }
826
827 irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
828
829 if (aic_init_smp(irqc, node)) {
830 irq_domain_remove(irqc->hw_domain);
831 iounmap(irqc->base);
832 kfree(irqc);
833 return -ENODEV;
834 }
835
836 set_handle_irq(aic_handle_irq);
837 set_handle_fiq(aic_handle_fiq);
838
839 for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
840 aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX);
841 for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
842 aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX);
843 for (i = 0; i < irqc->nr_hw; i++)
844 aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1);
845
846 if (!is_kernel_in_hyp_mode())
847 pr_info("Kernel running in EL1, mapping interrupts");
848
849 cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
850 "irqchip/apple-aic/ipi:starting",
851 aic_init_cpu, NULL);
852
b6ca556c
MZ
853 vgic_set_kvm_info(&vgic_info);
854
76cde263
HM
855 pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n",
856 irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI);
857
858 return 0;
859}
860
861IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init);