]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/isdn/hardware/mISDN/hfcmulti.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
CommitLineData
af69fb3a
KK
1/*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31/*
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
64 *
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
105 *
106 * dslot:
44e09589 107 * NOTE: only one dslot value must be given for every card.
af69fb3a
KK
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
115 *
116 * iomode:
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
f77f13e2 120 * Some cards require specific IO mode, so it cannot be changed.
25985edc 121 * It may be useful to set IO mode to register io (REGIO) to solve
af69fb3a
KK
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
124 *
125 * clockdelay_nt:
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
130 *
131 * clockdelay_te:
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
3bd69ad1
AE
136 *
137 * clock:
1b36c78f 138 * NOTE: only one clock value must be given once
3bd69ad1
AE
139 * Selects interface with clock source for mISDN and applications.
140 * Set to card number starting with 1. Set to -1 to disable.
141 * By default, the first card is used as clock source.
db9bb63a
KK
142 *
143 * hwid:
144 * NOTE: only one hwid value must be given once
145 * Enable special embedded devices with XHFC controllers.
af69fb3a
KK
146 */
147
148/*
149 * debug register access (never use this, it will flood your system log)
150 * #define HFC_REGISTER_DEBUG
151 */
152
69e656cc 153#define HFC_MULTI_VERSION "2.03"
af69fb3a
KK
154
155#include <linux/module.h>
5a0e3ad6 156#include <linux/slab.h>
af69fb3a
KK
157#include <linux/pci.h>
158#include <linux/delay.h>
159#include <linux/mISDNhw.h>
160#include <linux/mISDNdsp.h>
161
162/*
163#define IRQCOUNT_DEBUG
164#define IRQ_DEBUG
165*/
166
167#include "hfc_multi.h"
168#ifdef ECHOPREP
169#include "gaintab.h"
170#endif
171
172#define MAX_CARDS 8
173#define MAX_PORTS (8 * MAX_CARDS)
174
175static LIST_HEAD(HFClist);
176static spinlock_t HFClock; /* global hfc list lock */
177
178static void ph_state_change(struct dchannel *);
af69fb3a
KK
179
180static struct hfc_multi *syncmaster;
5b834354 181static int plxsd_master; /* if we have a master card (yet) */
af69fb3a 182static spinlock_t plx_lock; /* may not acquire other lock inside */
af69fb3a
KK
183
184#define TYP_E1 1
185#define TYP_4S 4
186#define TYP_8S 8
187
188static int poll_timer = 6; /* default = 128 samples = 16ms */
189/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191#define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192#define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
af69fb3a
KK
194
195#define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196#define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197#define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198
199/*
200 * module stuff
201 */
202
203static uint type[MAX_CARDS];
3bd69ad1
AE
204static int pcm[MAX_CARDS];
205static int dslot[MAX_CARDS];
af69fb3a
KK
206static uint iomode[MAX_CARDS];
207static uint port[MAX_PORTS];
208static uint debug;
209static uint poll;
3bd69ad1 210static int clock;
af69fb3a
KK
211static uint timer;
212static uint clockdelay_te = CLKDEL_TE;
213static uint clockdelay_nt = CLKDEL_NT;
db9bb63a
KK
214#define HWID_NONE 0
215#define HWID_MINIP4 1
216#define HWID_MINIP8 2
217#define HWID_MINIP16 3
218static uint hwid = HWID_NONE;
af69fb3a
KK
219
220static int HFC_cnt, Port_cnt, PCM_cnt = 99;
221
222MODULE_AUTHOR("Andreas Eversberg");
223MODULE_LICENSE("GPL");
69e656cc 224MODULE_VERSION(HFC_MULTI_VERSION);
af69fb3a
KK
225module_param(debug, uint, S_IRUGO | S_IWUSR);
226module_param(poll, uint, S_IRUGO | S_IWUSR);
3bd69ad1 227module_param(clock, int, S_IRUGO | S_IWUSR);
af69fb3a
KK
228module_param(timer, uint, S_IRUGO | S_IWUSR);
229module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
230module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
231module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
3bd69ad1
AE
232module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
233module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
af69fb3a
KK
234module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
235module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
db9bb63a 236module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
af69fb3a
KK
237
238#ifdef HFC_REGISTER_DEBUG
239#define HFC_outb(hc, reg, val) \
240 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
241#define HFC_outb_nodebug(hc, reg, val) \
242 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
243#define HFC_inb(hc, reg) \
244 (hc->HFC_inb(hc, reg, __func__, __LINE__))
245#define HFC_inb_nodebug(hc, reg) \
246 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
247#define HFC_inw(hc, reg) \
248 (hc->HFC_inw(hc, reg, __func__, __LINE__))
249#define HFC_inw_nodebug(hc, reg) \
250 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
251#define HFC_wait(hc) \
252 (hc->HFC_wait(hc, __func__, __LINE__))
253#define HFC_wait_nodebug(hc) \
254 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
255#else
256#define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
257#define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
258#define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
259#define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
260#define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
261#define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
262#define HFC_wait(hc) (hc->HFC_wait(hc))
263#define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
264#endif
265
db9bb63a
KK
266#ifdef CONFIG_MISDN_HFCMULTI_8xx
267#include "hfc_multi_8xx.h"
268#endif
269
af69fb3a
KK
270/* HFC_IO_MODE_PCIMEM */
271static void
272#ifdef HFC_REGISTER_DEBUG
273HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
274 const char *function, int line)
275#else
276HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
277#endif
278{
eac74af9 279 writeb(val, hc->pci_membase + reg);
af69fb3a
KK
280}
281static u_char
282#ifdef HFC_REGISTER_DEBUG
283HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
284#else
285HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
286#endif
287{
eac74af9 288 return readb(hc->pci_membase + reg);
af69fb3a
KK
289}
290static u_short
291#ifdef HFC_REGISTER_DEBUG
292HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
293#else
294HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
295#endif
296{
eac74af9 297 return readw(hc->pci_membase + reg);
af69fb3a
KK
298}
299static void
300#ifdef HFC_REGISTER_DEBUG
301HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
302#else
303HFC_wait_pcimem(struct hfc_multi *hc)
304#endif
305{
eac74af9
KK
306 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
307 cpu_relax();
af69fb3a
KK
308}
309
310/* HFC_IO_MODE_REGIO */
311static void
312#ifdef HFC_REGISTER_DEBUG
313HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
314 const char *function, int line)
315#else
316HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
317#endif
318{
eac74af9 319 outb(reg, hc->pci_iobase + 4);
af69fb3a
KK
320 outb(val, hc->pci_iobase);
321}
322static u_char
323#ifdef HFC_REGISTER_DEBUG
324HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
325#else
326HFC_inb_regio(struct hfc_multi *hc, u_char reg)
327#endif
328{
eac74af9 329 outb(reg, hc->pci_iobase + 4);
af69fb3a
KK
330 return inb(hc->pci_iobase);
331}
332static u_short
333#ifdef HFC_REGISTER_DEBUG
334HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
335#else
336HFC_inw_regio(struct hfc_multi *hc, u_char reg)
337#endif
338{
eac74af9 339 outb(reg, hc->pci_iobase + 4);
af69fb3a
KK
340 return inw(hc->pci_iobase);
341}
342static void
343#ifdef HFC_REGISTER_DEBUG
344HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
345#else
346HFC_wait_regio(struct hfc_multi *hc)
347#endif
348{
eac74af9
KK
349 outb(R_STATUS, hc->pci_iobase + 4);
350 while (inb(hc->pci_iobase) & V_BUSY)
351 cpu_relax();
af69fb3a
KK
352}
353
354#ifdef HFC_REGISTER_DEBUG
355static void
356HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
357 const char *function, int line)
358{
359 char regname[256] = "", bits[9] = "xxxxxxxx";
360 int i;
361
362 i = -1;
363 while (hfc_register_names[++i].name) {
364 if (hfc_register_names[i].reg == reg)
365 strcat(regname, hfc_register_names[i].name);
366 }
367 if (regname[0] == '\0')
368 strcpy(regname, "register");
369
eac74af9
KK
370 bits[7] = '0' + (!!(val & 1));
371 bits[6] = '0' + (!!(val & 2));
372 bits[5] = '0' + (!!(val & 4));
373 bits[4] = '0' + (!!(val & 8));
374 bits[3] = '0' + (!!(val & 16));
375 bits[2] = '0' + (!!(val & 32));
376 bits[1] = '0' + (!!(val & 64));
377 bits[0] = '0' + (!!(val & 128));
af69fb3a
KK
378 printk(KERN_DEBUG
379 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
380 hc->id, reg, regname, val, bits, function, line);
381 HFC_outb_nodebug(hc, reg, val);
382}
383static u_char
384HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
385{
386 char regname[256] = "", bits[9] = "xxxxxxxx";
387 u_char val = HFC_inb_nodebug(hc, reg);
388 int i;
389
390 i = 0;
391 while (hfc_register_names[i++].name)
392 ;
393 while (hfc_register_names[++i].name) {
394 if (hfc_register_names[i].reg == reg)
395 strcat(regname, hfc_register_names[i].name);
396 }
397 if (regname[0] == '\0')
398 strcpy(regname, "register");
399
eac74af9
KK
400 bits[7] = '0' + (!!(val & 1));
401 bits[6] = '0' + (!!(val & 2));
402 bits[5] = '0' + (!!(val & 4));
403 bits[4] = '0' + (!!(val & 8));
404 bits[3] = '0' + (!!(val & 16));
405 bits[2] = '0' + (!!(val & 32));
406 bits[1] = '0' + (!!(val & 64));
407 bits[0] = '0' + (!!(val & 128));
af69fb3a
KK
408 printk(KERN_DEBUG
409 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
410 hc->id, reg, regname, val, bits, function, line);
411 return val;
412}
413static u_short
414HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
415{
416 char regname[256] = "";
417 u_short val = HFC_inw_nodebug(hc, reg);
418 int i;
419
420 i = 0;
421 while (hfc_register_names[i++].name)
422 ;
423 while (hfc_register_names[++i].name) {
424 if (hfc_register_names[i].reg == reg)
425 strcat(regname, hfc_register_names[i].name);
426 }
427 if (regname[0] == '\0')
428 strcpy(regname, "register");
429
430 printk(KERN_DEBUG
431 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
432 hc->id, reg, regname, val, function, line);
433 return val;
434}
435static void
436HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
437{
438 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
439 hc->id, function, line);
440 HFC_wait_nodebug(hc);
441}
442#endif
443
444/* write fifo data (REGIO) */
5b834354 445static void
af69fb3a
KK
446write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
447{
448 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
449 while (len>>2) {
b3e0aeeb 450 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
af69fb3a
KK
451 data += 4;
452 len -= 4;
453 }
454 while (len>>1) {
b3e0aeeb 455 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
af69fb3a
KK
456 data += 2;
457 len -= 2;
458 }
459 while (len) {
460 outb(*data, hc->pci_iobase);
461 data++;
462 len--;
463 }
464}
465/* write fifo data (PCIMEM) */
5b834354 466static void
af69fb3a
KK
467write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
468{
469 while (len>>2) {
b3e0aeeb
KK
470 writel(cpu_to_le32(*(u32 *)data),
471 hc->pci_membase + A_FIFO_DATA0);
af69fb3a
KK
472 data += 4;
473 len -= 4;
474 }
475 while (len>>1) {
b3e0aeeb
KK
476 writew(cpu_to_le16(*(u16 *)data),
477 hc->pci_membase + A_FIFO_DATA0);
af69fb3a
KK
478 data += 2;
479 len -= 2;
480 }
481 while (len) {
b3e0aeeb 482 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
af69fb3a
KK
483 data++;
484 len--;
485 }
486}
eac74af9 487
af69fb3a 488/* read fifo data (REGIO) */
5b834354 489static void
af69fb3a
KK
490read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
491{
492 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
493 while (len>>2) {
b3e0aeeb 494 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
af69fb3a
KK
495 data += 4;
496 len -= 4;
497 }
498 while (len>>1) {
b3e0aeeb 499 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
af69fb3a
KK
500 data += 2;
501 len -= 2;
502 }
503 while (len) {
504 *data = inb(hc->pci_iobase);
505 data++;
506 len--;
507 }
508}
509
510/* read fifo data (PCIMEM) */
5b834354 511static void
af69fb3a
KK
512read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
513{
514 while (len>>2) {
515 *(u32 *)data =
b3e0aeeb 516 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
af69fb3a
KK
517 data += 4;
518 len -= 4;
519 }
520 while (len>>1) {
521 *(u16 *)data =
b3e0aeeb 522 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
af69fb3a
KK
523 data += 2;
524 len -= 2;
525 }
526 while (len) {
b3e0aeeb 527 *data = readb(hc->pci_membase + A_FIFO_DATA0);
af69fb3a
KK
528 data++;
529 len--;
530 }
531}
532
af69fb3a
KK
533static void
534enable_hwirq(struct hfc_multi *hc)
535{
536 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
537 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
538}
539
540static void
541disable_hwirq(struct hfc_multi *hc)
542{
543 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
544 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
545}
546
547#define NUM_EC 2
548#define MAX_TDM_CHAN 32
549
550
551inline void
552enablepcibridge(struct hfc_multi *c)
553{
554 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
555}
556
557inline void
558disablepcibridge(struct hfc_multi *c)
559{
560 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
561}
562
563inline unsigned char
564readpcibridge(struct hfc_multi *hc, unsigned char address)
565{
566 unsigned short cipv;
567 unsigned char data;
568
569 if (!hc->pci_iobase)
570 return 0;
571
572 /* slow down a PCI read access by 1 PCI clock cycle */
573 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
574
575 if (address == 0)
576 cipv = 0x4000;
577 else
578 cipv = 0x5800;
579
580 /* select local bridge port address by writing to CIP port */
581 /* data = HFC_inb(c, cipv); * was _io before */
582 outw(cipv, hc->pci_iobase + 4);
583 data = inb(hc->pci_iobase);
584
585 /* restore R_CTRL for normal PCI read cycle speed */
586 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
587
588 return data;
589}
590
591inline void
592writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
593{
594 unsigned short cipv;
595 unsigned int datav;
596
597 if (!hc->pci_iobase)
598 return;
599
600 if (address == 0)
601 cipv = 0x4000;
602 else
603 cipv = 0x5800;
604
605 /* select local bridge port address by writing to CIP port */
606 outw(cipv, hc->pci_iobase + 4);
607 /* define a 32 bit dword with 4 identical bytes for write sequence */
608 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
609 ((__u32) data << 24);
610
611 /*
612 * write this 32 bit dword to the bridge data port
613 * this will initiate a write sequence of up to 4 writes to the same
614 * address on the local bus interface the number of write accesses
615 * is undefined but >=1 and depends on the next PCI transaction
616 * during write sequence on the local bus
617 */
618 outl(datav, hc->pci_iobase);
619}
620
621inline void
622cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
623{
624 /* Do data pin read low byte */
625 HFC_outb(hc, R_GPIO_OUT1, reg);
626}
627
628inline void
629cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
630{
631 cpld_set_reg(hc, reg);
632
633 enablepcibridge(hc);
634 writepcibridge(hc, 1, val);
635 disablepcibridge(hc);
636
637 return;
638}
639
640inline unsigned char
641cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
642{
643 unsigned char bytein;
644
645 cpld_set_reg(hc, reg);
646
647 /* Do data pin read low byte */
648 HFC_outb(hc, R_GPIO_OUT1, reg);
649
650 enablepcibridge(hc);
651 bytein = readpcibridge(hc, 1);
652 disablepcibridge(hc);
653
654 return bytein;
655}
656
657inline void
658vpm_write_address(struct hfc_multi *hc, unsigned short addr)
659{
660 cpld_write_reg(hc, 0, 0xff & addr);
661 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
662}
663
664inline unsigned short
665vpm_read_address(struct hfc_multi *c)
666{
667 unsigned short addr;
668 unsigned short highbit;
669
670 addr = cpld_read_reg(c, 0);
671 highbit = cpld_read_reg(c, 1);
672
673 addr = addr | (highbit << 8);
674
675 return addr & 0x1ff;
676}
677
678inline unsigned char
679vpm_in(struct hfc_multi *c, int which, unsigned short addr)
680{
681 unsigned char res;
682
683 vpm_write_address(c, addr);
684
685 if (!which)
686 cpld_set_reg(c, 2);
687 else
688 cpld_set_reg(c, 3);
689
690 enablepcibridge(c);
691 res = readpcibridge(c, 1);
692 disablepcibridge(c);
693
694 cpld_set_reg(c, 0);
695
696 return res;
697}
698
699inline void
700vpm_out(struct hfc_multi *c, int which, unsigned short addr,
701 unsigned char data)
702{
703 vpm_write_address(c, addr);
704
705 enablepcibridge(c);
706
707 if (!which)
708 cpld_set_reg(c, 2);
709 else
710 cpld_set_reg(c, 3);
711
712 writepcibridge(c, 1, data);
713
714 cpld_set_reg(c, 0);
715
716 disablepcibridge(c);
717
718 {
719 unsigned char regin;
720 regin = vpm_in(c, which, addr);
721 if (regin != data)
722 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
723 "0x%x\n", data, addr, regin);
724 }
725
726}
727
728
5b834354 729static void
af69fb3a
KK
730vpm_init(struct hfc_multi *wc)
731{
732 unsigned char reg;
733 unsigned int mask;
734 unsigned int i, x, y;
735 unsigned int ver;
736
737 for (x = 0; x < NUM_EC; x++) {
738 /* Setup GPIO's */
739 if (!x) {
740 ver = vpm_in(wc, x, 0x1a0);
741 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
742 }
743
744 for (y = 0; y < 4; y++) {
745 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
746 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
747 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
748 }
749
750 /* Setup TDM path - sets fsync and tdm_clk as inputs */
751 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
752 vpm_out(wc, x, 0x1a3, reg & ~2);
753
754 /* Setup Echo length (256 taps) */
755 vpm_out(wc, x, 0x022, 1);
756 vpm_out(wc, x, 0x023, 0xff);
757
758 /* Setup timeslots */
759 vpm_out(wc, x, 0x02f, 0x00);
760 mask = 0x02020202 << (x * 4);
761
762 /* Setup the tdm channel masks for all chips */
763 for (i = 0; i < 4; i++)
764 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
765
766 /* Setup convergence rate */
767 printk(KERN_DEBUG "VPM: A-law mode\n");
768 reg = 0x00 | 0x10 | 0x01;
769 vpm_out(wc, x, 0x20, reg);
770 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
771 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
772
773 vpm_out(wc, x, 0x24, 0x02);
774 reg = vpm_in(wc, x, 0x24);
775 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
776
777 /* Initialize echo cans */
778 for (i = 0; i < MAX_TDM_CHAN; i++) {
779 if (mask & (0x00000001 << i))
780 vpm_out(wc, x, i, 0x00);
781 }
782
783 /*
784 * ARM arch at least disallows a udelay of
785 * more than 2ms... it gives a fake "__bad_udelay"
786 * reference at link-time.
787 * long delays in kernel code are pretty sucky anyway
788 * for now work around it using 5 x 2ms instead of 1 x 10ms
789 */
790
791 udelay(2000);
792 udelay(2000);
793 udelay(2000);
794 udelay(2000);
795 udelay(2000);
796
797 /* Put in bypass mode */
798 for (i = 0; i < MAX_TDM_CHAN; i++) {
799 if (mask & (0x00000001 << i))
800 vpm_out(wc, x, i, 0x01);
801 }
802
803 /* Enable bypass */
804 for (i = 0; i < MAX_TDM_CHAN; i++) {
805 if (mask & (0x00000001 << i))
806 vpm_out(wc, x, 0x78 + i, 0x01);
807 }
808
809 }
810}
811
047ce8f2 812#ifdef UNUSED
5b834354 813static void
af69fb3a
KK
814vpm_check(struct hfc_multi *hctmp)
815{
816 unsigned char gpi2;
817
818 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
819
820 if ((gpi2 & 0x3) != 0x3)
821 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
822}
047ce8f2 823#endif /* UNUSED */
af69fb3a
KK
824
825
826/*
827 * Interface to enable/disable the HW Echocan
828 *
829 * these functions are called within a spin_lock_irqsave on
830 * the channel instance lock, so we are not disturbed by irqs
831 *
832 * we can later easily change the interface to make other
833 * things configurable, for now we configure the taps
834 *
835 */
836
5b834354 837static void
af69fb3a
KK
838vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
839{
840 unsigned int timeslot;
841 unsigned int unit;
842 struct bchannel *bch = hc->chan[ch].bch;
843#ifdef TXADJ
844 int txadj = -4;
845 struct sk_buff *skb;
846#endif
847 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
848 return;
849
850 if (!bch)
851 return;
852
853#ifdef TXADJ
854 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
855 sizeof(int), &txadj, GFP_ATOMIC);
856 if (skb)
857 recv_Bchannel_skb(bch, skb);
858#endif
859
860 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
861 unit = ch % 4;
862
863 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
864 taps, timeslot);
865
866 vpm_out(hc, unit, timeslot, 0x7e);
867}
868
5b834354 869static void
af69fb3a
KK
870vpm_echocan_off(struct hfc_multi *hc, int ch)
871{
872 unsigned int timeslot;
873 unsigned int unit;
874 struct bchannel *bch = hc->chan[ch].bch;
875#ifdef TXADJ
876 int txadj = 0;
877 struct sk_buff *skb;
878#endif
879
880 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
881 return;
882
883 if (!bch)
884 return;
885
886#ifdef TXADJ
887 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
888 sizeof(int), &txadj, GFP_ATOMIC);
889 if (skb)
890 recv_Bchannel_skb(bch, skb);
891#endif
892
893 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
894 unit = ch % 4;
895
896 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
897 timeslot);
898 /* FILLME */
899 vpm_out(hc, unit, timeslot, 0x01);
900}
901
902
903/*
904 * Speech Design resync feature
905 * NOTE: This is called sometimes outside interrupt handler.
25985edc 906 * We must lock irqsave, so no other interrupt (other card) will occur!
af69fb3a
KK
907 * Also multiple interrupts may nest, so must lock each access (lists, card)!
908 */
909static inline void
910hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
911{
bcf91745 912 struct hfc_multi *hc, *next, *pcmmaster = NULL;
c31655fc
HE
913 void __iomem *plx_acc_32;
914 u_int pv;
af69fb3a
KK
915 u_long flags;
916
917 spin_lock_irqsave(&HFClock, flags);
918 spin_lock(&plx_lock); /* must be locked inside other locks */
919
920 if (debug & DEBUG_HFCMULTI_PLXSD)
921 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
922 __func__, syncmaster);
923
924 /* select new master */
925 if (newmaster) {
926 if (debug & DEBUG_HFCMULTI_PLXSD)
927 printk(KERN_DEBUG "using provided controller\n");
928 } else {
929 list_for_each_entry_safe(hc, next, &HFClist, list) {
930 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
931 if (hc->syncronized) {
932 newmaster = hc;
933 break;
934 }
935 }
936 }
937 }
938
939 /* Disable sync of all cards */
940 list_for_each_entry_safe(hc, next, &HFClist, list) {
941 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
c31655fc 942 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
943 pv = readl(plx_acc_32);
944 pv &= ~PLX_SYNC_O_EN;
945 writel(pv, plx_acc_32);
946 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
947 pcmmaster = hc;
db9bb63a 948 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
949 if (debug & DEBUG_HFCMULTI_PLXSD)
950 printk(KERN_DEBUG
951 "Schedule SYNC_I\n");
952 hc->e1_resync |= 1; /* get SYNC_I */
953 }
954 }
955 }
956 }
957
958 if (newmaster) {
959 hc = newmaster;
960 if (debug & DEBUG_HFCMULTI_PLXSD)
961 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
962 "interface.\n", hc->id, hc);
963 /* Enable new sync master */
c31655fc 964 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
965 pv = readl(plx_acc_32);
966 pv |= PLX_SYNC_O_EN;
967 writel(pv, plx_acc_32);
968 /* switch to jatt PLL, if not disabled by RX_SYNC */
db9bb63a
KK
969 if (hc->ctype == HFC_TYPE_E1
970 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
af69fb3a
KK
971 if (debug & DEBUG_HFCMULTI_PLXSD)
972 printk(KERN_DEBUG "Schedule jatt PLL\n");
973 hc->e1_resync |= 2; /* switch to jatt */
974 }
975 } else {
976 if (pcmmaster) {
977 hc = pcmmaster;
978 if (debug & DEBUG_HFCMULTI_PLXSD)
979 printk(KERN_DEBUG
980 "id=%d (0x%p) = PCM master syncronized "
981 "with QUARTZ\n", hc->id, hc);
db9bb63a 982 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
983 /* Use the crystal clock for the PCM
984 master card */
985 if (debug & DEBUG_HFCMULTI_PLXSD)
986 printk(KERN_DEBUG
987 "Schedule QUARTZ for HFC-E1\n");
988 hc->e1_resync |= 4; /* switch quartz */
989 } else {
990 if (debug & DEBUG_HFCMULTI_PLXSD)
991 printk(KERN_DEBUG
992 "QUARTZ is automatically "
db9bb63a 993 "enabled by HFC-%dS\n", hc->ctype);
af69fb3a 994 }
c31655fc 995 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
996 pv = readl(plx_acc_32);
997 pv |= PLX_SYNC_O_EN;
998 writel(pv, plx_acc_32);
999 } else
1000 if (!rm)
1001 printk(KERN_ERR "%s no pcm master, this MUST "
1002 "not happen!\n", __func__);
1003 }
1004 syncmaster = newmaster;
1005
1006 spin_unlock(&plx_lock);
1007 spin_unlock_irqrestore(&HFClock, flags);
1008}
1009
1010/* This must be called AND hc must be locked irqsave!!! */
1011inline void
1012plxsd_checksync(struct hfc_multi *hc, int rm)
1013{
1014 if (hc->syncronized) {
1015 if (syncmaster == NULL) {
1016 if (debug & DEBUG_HFCMULTI_PLXSD)
eac74af9 1017 printk(KERN_DEBUG "%s: GOT sync on card %d"
af69fb3a
KK
1018 " (id=%d)\n", __func__, hc->id + 1,
1019 hc->id);
1020 hfcmulti_resync(hc, hc, rm);
1021 }
1022 } else {
1023 if (syncmaster == hc) {
1024 if (debug & DEBUG_HFCMULTI_PLXSD)
eac74af9 1025 printk(KERN_DEBUG "%s: LOST sync on card %d"
af69fb3a
KK
1026 " (id=%d)\n", __func__, hc->id + 1,
1027 hc->id);
1028 hfcmulti_resync(hc, NULL, rm);
1029 }
1030 }
1031}
1032
1033
1034/*
1035 * free hardware resources used by driver
1036 */
1037static void
1038release_io_hfcmulti(struct hfc_multi *hc)
1039{
c31655fc
HE
1040 void __iomem *plx_acc_32;
1041 u_int pv;
af69fb3a
KK
1042 u_long plx_flags;
1043
1044 if (debug & DEBUG_HFCMULTI_INIT)
1045 printk(KERN_DEBUG "%s: entered\n", __func__);
1046
1047 /* soft reset also masks all interrupts */
1048 hc->hw.r_cirm |= V_SRES;
1049 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1050 udelay(1000);
1051 hc->hw.r_cirm &= ~V_SRES;
1052 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1053 udelay(1000); /* instead of 'wait' that may cause locking */
1054
1055 /* release Speech Design card, if PLX was initialized */
1056 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1057 if (debug & DEBUG_HFCMULTI_PLXSD)
1058 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1059 __func__, hc->id + 1);
1060 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1061 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1062 writel(PLX_GPIOC_INIT, plx_acc_32);
1063 pv = readl(plx_acc_32);
1064 /* Termination off */
1065 pv &= ~PLX_TERM_ON;
1066 /* Disconnect the PCM */
1067 pv |= PLX_SLAVE_EN_N;
1068 pv &= ~PLX_MASTER_EN;
1069 pv &= ~PLX_SYNC_O_EN;
1070 /* Put the DSP in Reset */
1071 pv &= ~PLX_DSP_RES_N;
1072 writel(pv, plx_acc_32);
1073 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 1074 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
af69fb3a
KK
1075 __func__, pv);
1076 spin_unlock_irqrestore(&plx_lock, plx_flags);
1077 }
1078
1079 /* disable memory mapped ports / io ports */
1080 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
db9bb63a
KK
1081 if (hc->pci_dev)
1082 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
af69fb3a 1083 if (hc->pci_membase)
c31655fc 1084 iounmap(hc->pci_membase);
af69fb3a 1085 if (hc->plx_membase)
c31655fc 1086 iounmap(hc->plx_membase);
af69fb3a
KK
1087 if (hc->pci_iobase)
1088 release_region(hc->pci_iobase, 8);
db9bb63a
KK
1089 if (hc->xhfc_membase)
1090 iounmap((void *)hc->xhfc_membase);
af69fb3a
KK
1091
1092 if (hc->pci_dev) {
1093 pci_disable_device(hc->pci_dev);
1094 pci_set_drvdata(hc->pci_dev, NULL);
1095 }
1096 if (debug & DEBUG_HFCMULTI_INIT)
1097 printk(KERN_DEBUG "%s: done\n", __func__);
1098}
1099
1100/*
1101 * function called to reset the HFC chip. A complete software reset of chip
1102 * and fifos is done. All configuration of the chip is done.
1103 */
1104
1105static int
1106init_chip(struct hfc_multi *hc)
1107{
1108 u_long flags, val, val2 = 0, rev;
1109 int i, err = 0;
1110 u_char r_conf_en, rval;
c31655fc
HE
1111 void __iomem *plx_acc_32;
1112 u_int pv;
af69fb3a
KK
1113 u_long plx_flags, hfc_flags;
1114 int plx_count;
1115 struct hfc_multi *pos, *next, *plx_last_hc;
1116
1117 spin_lock_irqsave(&hc->lock, flags);
1118 /* reset all registers */
1119 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1120
1121 /* revision check */
1122 if (debug & DEBUG_HFCMULTI_INIT)
1123 printk(KERN_DEBUG "%s: entered\n", __func__);
db9bb63a 1124 val = HFC_inb(hc, R_CHIP_ID);
eac74af9
KK
1125 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1126 (val >> 1) != 0x31) {
af69fb3a
KK
1127 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1128 err = -EIO;
1129 goto out;
1130 }
1131 rev = HFC_inb(hc, R_CHIP_RV);
1132 printk(KERN_INFO
1133 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
db9bb63a
KK
1134 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1135 " (old FIFO handling)" : "");
1136 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
af69fb3a
KK
1137 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1138 printk(KERN_WARNING
1139 "HFC_multi: NOTE: Your chip is revision 0, "
1140 "ask Cologne Chip for update. Newer chips "
1141 "have a better FIFO handling. Old chips "
1142 "still work but may have slightly lower "
1143 "HDLC transmit performance.\n");
1144 }
1145 if (rev > 1) {
1146 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1147 "consider chip revision = %ld. The chip / "
1148 "bridge may not work.\n", rev);
1149 }
1150
1151 /* set s-ram size */
1152 hc->Flen = 0x10;
1153 hc->Zmin = 0x80;
1154 hc->Zlen = 384;
1155 hc->DTMFbase = 0x1000;
1156 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1157 if (debug & DEBUG_HFCMULTI_INIT)
1158 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1159 __func__);
1160 hc->hw.r_ctrl |= V_EXT_RAM;
1161 hc->hw.r_ram_sz = 1;
1162 hc->Flen = 0x20;
1163 hc->Zmin = 0xc0;
1164 hc->Zlen = 1856;
1165 hc->DTMFbase = 0x2000;
1166 }
1167 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1168 if (debug & DEBUG_HFCMULTI_INIT)
1169 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1170 __func__);
1171 hc->hw.r_ctrl |= V_EXT_RAM;
1172 hc->hw.r_ram_sz = 2;
1173 hc->Flen = 0x20;
1174 hc->Zmin = 0xc0;
1175 hc->Zlen = 8000;
1176 hc->DTMFbase = 0x2000;
1177 }
db9bb63a
KK
1178 if (hc->ctype == HFC_TYPE_XHFC) {
1179 hc->Flen = 0x8;
1180 hc->Zmin = 0x0;
1181 hc->Zlen = 64;
1182 hc->DTMFbase = 0x0;
1183 }
af69fb3a
KK
1184 hc->max_trans = poll << 1;
1185 if (hc->max_trans > hc->Zlen)
1186 hc->max_trans = hc->Zlen;
1187
1188 /* Speech Design PLX bridge */
1189 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1190 if (debug & DEBUG_HFCMULTI_PLXSD)
1191 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1192 __func__, hc->id + 1);
1193 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1194 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1195 writel(PLX_GPIOC_INIT, plx_acc_32);
1196 pv = readl(plx_acc_32);
1197 /* The first and the last cards are terminating the PCM bus */
1198 pv |= PLX_TERM_ON; /* hc is currently the last */
1199 /* Disconnect the PCM */
1200 pv |= PLX_SLAVE_EN_N;
1201 pv &= ~PLX_MASTER_EN;
1202 pv &= ~PLX_SYNC_O_EN;
1203 /* Put the DSP in Reset */
1204 pv &= ~PLX_DSP_RES_N;
1205 writel(pv, plx_acc_32);
1206 spin_unlock_irqrestore(&plx_lock, plx_flags);
1207 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 1208 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
af69fb3a
KK
1209 __func__, pv);
1210 /*
1211 * If we are the 3rd PLXSD card or higher, we must turn
1212 * termination of last PLXSD card off.
1213 */
1214 spin_lock_irqsave(&HFClock, hfc_flags);
1215 plx_count = 0;
1216 plx_last_hc = NULL;
1217 list_for_each_entry_safe(pos, next, &HFClist, list) {
1218 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1219 plx_count++;
1220 if (pos != hc)
1221 plx_last_hc = pos;
1222 }
1223 }
1224 if (plx_count >= 3) {
1225 if (debug & DEBUG_HFCMULTI_PLXSD)
1226 printk(KERN_DEBUG "%s: card %d is between, so "
1227 "we disable termination\n",
1228 __func__, plx_last_hc->id + 1);
1229 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1230 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1231 pv = readl(plx_acc_32);
1232 pv &= ~PLX_TERM_ON;
1233 writel(pv, plx_acc_32);
1234 spin_unlock_irqrestore(&plx_lock, plx_flags);
1235 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9
KK
1236 printk(KERN_DEBUG
1237 "%s: term off: PLX_GPIO=%x\n",
1238 __func__, pv);
af69fb3a
KK
1239 }
1240 spin_unlock_irqrestore(&HFClock, hfc_flags);
1241 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1242 }
1243
db9bb63a
KK
1244 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1245 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1246
af69fb3a
KK
1247 /* we only want the real Z2 read-pointer for revision > 0 */
1248 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1249 hc->hw.r_ram_sz |= V_FZ_MD;
1250
1251 /* select pcm mode */
1252 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1253 if (debug & DEBUG_HFCMULTI_INIT)
1254 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1255 __func__);
1256 } else
1257 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1258 if (debug & DEBUG_HFCMULTI_INIT)
1259 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1260 __func__);
1261 hc->hw.r_pcm_md0 |= V_PCM_MD;
1262 } else {
1263 if (debug & DEBUG_HFCMULTI_INIT)
1264 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1265 __func__);
1266 }
1267
1268 /* soft reset */
1269 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
db9bb63a
KK
1270 if (hc->ctype == HFC_TYPE_XHFC)
1271 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1272 0x11 /* 16 Bytes TX/RX */);
1273 else
1274 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
af69fb3a 1275 HFC_outb(hc, R_FIFO_MD, 0);
db9bb63a
KK
1276 if (hc->ctype == HFC_TYPE_XHFC)
1277 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1278 else
1279 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1280 | V_RLD_EPR;
af69fb3a
KK
1281 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1282 udelay(100);
1283 hc->hw.r_cirm = 0;
1284 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1285 udelay(100);
db9bb63a
KK
1286 if (hc->ctype != HFC_TYPE_XHFC)
1287 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
af69fb3a
KK
1288
1289 /* Speech Design PLX bridge pcm and sync mode */
1290 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1291 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1292 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1293 pv = readl(plx_acc_32);
1294 /* Connect PCM */
1295 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1296 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1297 pv |= PLX_SYNC_O_EN;
1298 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 1299 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
af69fb3a
KK
1300 __func__, pv);
1301 } else {
1302 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1303 pv &= ~PLX_SYNC_O_EN;
1304 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 1305 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
af69fb3a
KK
1306 __func__, pv);
1307 }
1308 writel(pv, plx_acc_32);
1309 spin_unlock_irqrestore(&plx_lock, plx_flags);
1310 }
1311
1312 /* PCM setup */
1313 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1314 if (hc->slots == 32)
1315 HFC_outb(hc, R_PCM_MD1, 0x00);
1316 if (hc->slots == 64)
1317 HFC_outb(hc, R_PCM_MD1, 0x10);
1318 if (hc->slots == 128)
1319 HFC_outb(hc, R_PCM_MD1, 0x20);
1320 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1321 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1322 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
db9bb63a
KK
1323 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1324 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
af69fb3a
KK
1325 else
1326 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1327 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1328 for (i = 0; i < 256; i++) {
1329 HFC_outb_nodebug(hc, R_SLOT, i);
1330 HFC_outb_nodebug(hc, A_SL_CFG, 0);
db9bb63a
KK
1331 if (hc->ctype != HFC_TYPE_XHFC)
1332 HFC_outb_nodebug(hc, A_CONF, 0);
af69fb3a
KK
1333 hc->slot_owner[i] = -1;
1334 }
1335
1336 /* set clock speed */
1337 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1338 if (debug & DEBUG_HFCMULTI_INIT)
1339 printk(KERN_DEBUG
1340 "%s: setting double clock\n", __func__);
1341 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1342 }
1343
db9bb63a
KK
1344 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1345 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1346
af69fb3a
KK
1347 /* B410P GPIO */
1348 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1349 printk(KERN_NOTICE "Setting GPIOs\n");
1350 HFC_outb(hc, R_GPIO_SEL, 0x30);
1351 HFC_outb(hc, R_GPIO_EN1, 0x3);
1352 udelay(1000);
1353 printk(KERN_NOTICE "calling vpm_init\n");
1354 vpm_init(hc);
1355 }
1356
1357 /* check if R_F0_CNT counts (8 kHz frame count) */
1358 val = HFC_inb(hc, R_F0_CNTL);
1359 val += HFC_inb(hc, R_F0_CNTH) << 8;
1360 if (debug & DEBUG_HFCMULTI_INIT)
1361 printk(KERN_DEBUG
1362 "HFC_multi F0_CNT %ld after reset\n", val);
1363 spin_unlock_irqrestore(&hc->lock, flags);
1364 set_current_state(TASK_UNINTERRUPTIBLE);
1365 schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1366 spin_lock_irqsave(&hc->lock, flags);
1367 val2 = HFC_inb(hc, R_F0_CNTL);
1368 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1369 if (debug & DEBUG_HFCMULTI_INIT)
1370 printk(KERN_DEBUG
1371 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1372 val2);
1373 if (val2 >= val+8) { /* 1 ms */
1374 /* it counts, so we keep the pcm mode */
1375 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1376 printk(KERN_INFO "controller is PCM bus MASTER\n");
1377 else
1378 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1379 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1380 else {
1381 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1382 printk(KERN_INFO "controller is PCM bus SLAVE "
1383 "(auto detected)\n");
1384 }
1385 } else {
1386 /* does not count */
1387 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1388controller_fail:
1389 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1390 "pulse. Seems that controller fails.\n");
1391 err = -EIO;
1392 goto out;
1393 }
1394 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1395 printk(KERN_INFO "controller is PCM bus SLAVE "
1396 "(ignoring missing PCM clock)\n");
1397 } else {
1398 /* only one pcm master */
1399 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1400 && plxsd_master) {
1401 printk(KERN_ERR "HFC_multi ERROR, no clock "
1402 "on another Speech Design card found. "
1403 "Please be sure to connect PCM cable.\n");
1404 err = -EIO;
1405 goto out;
1406 }
1407 /* retry with master clock */
1408 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1409 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1410 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1411 pv = readl(plx_acc_32);
1412 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1413 pv |= PLX_SYNC_O_EN;
1414 writel(pv, plx_acc_32);
1415 spin_unlock_irqrestore(&plx_lock, plx_flags);
1416 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9
KK
1417 printk(KERN_DEBUG "%s: master: "
1418 "PLX_GPIO=%x\n", __func__, pv);
af69fb3a
KK
1419 }
1420 hc->hw.r_pcm_md0 |= V_PCM_MD;
1421 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1422 spin_unlock_irqrestore(&hc->lock, flags);
1423 set_current_state(TASK_UNINTERRUPTIBLE);
1424 schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1425 spin_lock_irqsave(&hc->lock, flags);
1426 val2 = HFC_inb(hc, R_F0_CNTL);
1427 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1428 if (debug & DEBUG_HFCMULTI_INIT)
1429 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1430 "10 ms (2nd try)\n", val2);
1431 if (val2 >= val+8) { /* 1 ms */
1432 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1433 &hc->chip);
1434 printk(KERN_INFO "controller is PCM bus MASTER "
1435 "(auto detected)\n");
1436 } else
1437 goto controller_fail;
1438 }
1439 }
1440
1441 /* Release the DSP Reset */
1442 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1443 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1444 plxsd_master = 1;
1445 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 1446 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
af69fb3a
KK
1447 pv = readl(plx_acc_32);
1448 pv |= PLX_DSP_RES_N;
1449 writel(pv, plx_acc_32);
1450 spin_unlock_irqrestore(&plx_lock, plx_flags);
1451 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 1452 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
af69fb3a
KK
1453 __func__, pv);
1454 }
1455
1456 /* pcm id */
1457 if (hc->pcm)
1458 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1459 hc->pcm);
1460 else {
1461 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1462 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1463 PCM_cnt++; /* SD has proprietary bridging */
1464 }
1465 hc->pcm = PCM_cnt;
1466 printk(KERN_INFO "controller has PCM BUS ID %d "
1467 "(auto selected)\n", hc->pcm);
1468 }
1469
1470 /* set up timer */
1471 HFC_outb(hc, R_TI_WD, poll_timer);
1472 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1473
af69fb3a 1474 /* set E1 state machine IRQ */
db9bb63a 1475 if (hc->ctype == HFC_TYPE_E1)
af69fb3a
KK
1476 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1477
1478 /* set DTMF detection */
1479 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1480 if (debug & DEBUG_HFCMULTI_INIT)
1481 printk(KERN_DEBUG "%s: enabling DTMF detection "
1482 "for all B-channel\n", __func__);
1483 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1484 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1485 hc->hw.r_dtmf |= V_ULAW_SEL;
1486 HFC_outb(hc, R_DTMF_N, 102 - 1);
1487 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1488 }
1489
1490 /* conference engine */
1491 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1492 r_conf_en = V_CONF_EN | V_ULAW;
1493 else
1494 r_conf_en = V_CONF_EN;
db9bb63a
KK
1495 if (hc->ctype != HFC_TYPE_XHFC)
1496 HFC_outb(hc, R_CONF_EN, r_conf_en);
af69fb3a
KK
1497
1498 /* setting leds */
1499 switch (hc->leds) {
1500 case 1: /* HFC-E1 OEM */
1501 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1502 HFC_outb(hc, R_GPIO_SEL, 0x32);
1503 else
1504 HFC_outb(hc, R_GPIO_SEL, 0x30);
1505
1506 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1507 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1508
1509 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1510 break;
1511
1512 case 2: /* HFC-4S OEM */
1513 case 3:
1514 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1515 HFC_outb(hc, R_GPIO_EN1, 0xff);
1516 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1517 break;
1518 }
1519
db9bb63a
KK
1520 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1521 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1522 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1523 }
1524
af69fb3a
KK
1525 /* set master clock */
1526 if (hc->masterclk >= 0) {
1527 if (debug & DEBUG_HFCMULTI_INIT)
1528 printk(KERN_DEBUG "%s: setting ST master clock "
1529 "to port %d (0..%d)\n",
1530 __func__, hc->masterclk, hc->ports-1);
db9bb63a 1531 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
af69fb3a
KK
1532 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1533 }
1534
db9bb63a
KK
1535
1536
af69fb3a
KK
1537 /* setting misc irq */
1538 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1539 if (debug & DEBUG_HFCMULTI_INIT)
1540 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1541 hc->hw.r_irqmsk_misc);
1542
1543 /* RAM access test */
1544 HFC_outb(hc, R_RAM_ADDR0, 0);
1545 HFC_outb(hc, R_RAM_ADDR1, 0);
1546 HFC_outb(hc, R_RAM_ADDR2, 0);
1547 for (i = 0; i < 256; i++) {
1548 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1549 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1550 }
1551 for (i = 0; i < 256; i++) {
1552 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1553 HFC_inb_nodebug(hc, R_RAM_DATA);
1554 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1555 if (rval != ((i * 3) & 0xff)) {
1556 printk(KERN_DEBUG
1557 "addr:%x val:%x should:%x\n", i, rval,
1558 (i * 3) & 0xff);
1559 err++;
1560 }
1561 }
1562 if (err) {
1563 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1564 err = -EIO;
1565 goto out;
1566 }
1567
1568 if (debug & DEBUG_HFCMULTI_INIT)
1569 printk(KERN_DEBUG "%s: done\n", __func__);
1570out:
1571 spin_unlock_irqrestore(&hc->lock, flags);
1572 return err;
1573}
1574
1575
1576/*
1577 * control the watchdog
1578 */
1579static void
1580hfcmulti_watchdog(struct hfc_multi *hc)
1581{
1582 hc->wdcount++;
1583
1584 if (hc->wdcount > 10) {
1585 hc->wdcount = 0;
1586 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1587 V_GPIO_OUT3 : V_GPIO_OUT2;
1588
1589 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1590 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1591 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1592 }
1593}
1594
1595
1596
1597/*
1598 * output leds
1599 */
1600static void
1601hfcmulti_leds(struct hfc_multi *hc)
1602{
1603 unsigned long lled;
1604 unsigned long leddw;
1605 int i, state, active, leds;
1606 struct dchannel *dch;
1607 int led[4];
1608
1609 hc->ledcount += poll;
1610 if (hc->ledcount > 4096) {
1611 hc->ledcount -= 4096;
1612 hc->ledstate = 0xAFFEAFFE;
1613 }
1614
1615 switch (hc->leds) {
1616 case 1: /* HFC-E1 OEM */
1617 /* 2 red blinking: NT mode deactivate
1618 * 2 red steady: TE mode deactivate
1619 * left green: L1 active
1620 * left red: frame sync, but no L1
1621 * right green: L2 active
1622 */
1623 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1624 if (hc->chan[hc->dslot].dch->dev.D.protocol
1625 != ISDN_P_NT_E1) {
1626 led[0] = 1;
1627 led[1] = 1;
1628 } else if (hc->ledcount>>11) {
1629 led[0] = 1;
1630 led[1] = 1;
1631 } else {
1632 led[0] = 0;
1633 led[1] = 0;
1634 }
1635 led[2] = 0;
1636 led[3] = 0;
1637 } else { /* with frame sync */
1638 /* TODO make it work */
1639 led[0] = 0;
1640 led[1] = 0;
1641 led[2] = 0;
1642 led[3] = 1;
1643 }
1644 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1645 /* leds are inverted */
1646 if (leds != (int)hc->ledstate) {
1647 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1648 hc->ledstate = leds;
1649 }
1650 break;
1651
1652 case 2: /* HFC-4S OEM */
1653 /* red blinking = PH_DEACTIVATE NT Mode
1654 * red steady = PH_DEACTIVATE TE Mode
1655 * green steady = PH_ACTIVATE
1656 */
1657 for (i = 0; i < 4; i++) {
1658 state = 0;
1659 active = -1;
1660 dch = hc->chan[(i << 2) | 2].dch;
1661 if (dch) {
1662 state = dch->state;
1663 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1664 active = 3;
1665 else
1666 active = 7;
1667 }
1668 if (state) {
1669 if (state == active) {
1670 led[i] = 1; /* led green */
1671 } else
1672 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1673 /* TE mode: led red */
1674 led[i] = 2;
1675 else
1676 if (hc->ledcount>>11)
1677 /* led red */
1678 led[i] = 2;
1679 else
1680 /* led off */
1681 led[i] = 0;
1682 } else
1683 led[i] = 0; /* led off */
1684 }
1685 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1686 leds = 0;
1687 for (i = 0; i < 4; i++) {
1688 if (led[i] == 1) {
1689 /*green*/
1690 leds |= (0x2 << (i * 2));
1691 } else if (led[i] == 2) {
1692 /*red*/
1693 leds |= (0x1 << (i * 2));
1694 }
1695 }
1696 if (leds != (int)hc->ledstate) {
1697 vpm_out(hc, 0, 0x1a8 + 3, leds);
1698 hc->ledstate = leds;
1699 }
1700 } else {
1701 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1702 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1703 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1704 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1705 if (leds != (int)hc->ledstate) {
1706 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1707 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1708 hc->ledstate = leds;
1709 }
1710 }
1711 break;
1712
1713 case 3: /* HFC 1S/2S Beronet */
1714 /* red blinking = PH_DEACTIVATE NT Mode
1715 * red steady = PH_DEACTIVATE TE Mode
1716 * green steady = PH_ACTIVATE
1717 */
1718 for (i = 0; i < 2; i++) {
1719 state = 0;
1720 active = -1;
1721 dch = hc->chan[(i << 2) | 2].dch;
1722 if (dch) {
1723 state = dch->state;
1724 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1725 active = 3;
1726 else
1727 active = 7;
1728 }
1729 if (state) {
1730 if (state == active) {
1731 led[i] = 1; /* led green */
1732 } else
1733 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1734 /* TE mode: led red */
1735 led[i] = 2;
1736 else
1737 if (hc->ledcount >> 11)
1738 /* led red */
1739 led[i] = 2;
1740 else
1741 /* led off */
1742 led[i] = 0;
1743 } else
1744 led[i] = 0; /* led off */
1745 }
1746
1747
1748 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1749 | ((led[1]&1)<<3);
1750 if (leds != (int)hc->ledstate) {
1751 HFC_outb_nodebug(hc, R_GPIO_EN1,
1752 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1753 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1754 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1755 hc->ledstate = leds;
1756 }
1757 break;
1758 case 8: /* HFC 8S+ Beronet */
1759 lled = 0;
1760
1761 for (i = 0; i < 8; i++) {
1762 state = 0;
1763 active = -1;
1764 dch = hc->chan[(i << 2) | 2].dch;
1765 if (dch) {
1766 state = dch->state;
1767 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1768 active = 3;
1769 else
1770 active = 7;
1771 }
1772 if (state) {
1773 if (state == active) {
1774 lled |= 0 << i;
1775 } else
1776 if (hc->ledcount >> 11)
1777 lled |= 0 << i;
1778 else
1779 lled |= 1 << i;
1780 } else
1781 lled |= 1 << i;
1782 }
1783 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1784 if (leddw != hc->ledstate) {
1785 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1786 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1787 /* was _io before */
1788 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1789 outw(0x4000, hc->pci_iobase + 4);
1790 outl(leddw, hc->pci_iobase);
1791 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1792 hc->ledstate = leddw;
1793 }
1794 break;
1795 }
1796}
1797/*
1798 * read dtmf coefficients
1799 */
1800
1801static void
1802hfcmulti_dtmf(struct hfc_multi *hc)
1803{
1804 s32 *coeff;
1805 u_int mantissa;
1806 int co, ch;
1807 struct bchannel *bch = NULL;
1808 u8 exponent;
1809 int dtmf = 0;
1810 int addr;
1811 u16 w_float;
1812 struct sk_buff *skb;
1813 struct mISDNhead *hh;
1814
1815 if (debug & DEBUG_HFCMULTI_DTMF)
1816 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1817 for (ch = 0; ch <= 31; ch++) {
1818 /* only process enabled B-channels */
1819 bch = hc->chan[ch].bch;
1820 if (!bch)
1821 continue;
1822 if (!hc->created[hc->chan[ch].port])
1823 continue;
1824 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1825 continue;
1826 if (debug & DEBUG_HFCMULTI_DTMF)
1827 printk(KERN_DEBUG "%s: dtmf channel %d:",
1828 __func__, ch);
1829 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1830 dtmf = 1;
1831 for (co = 0; co < 8; co++) {
1832 /* read W(n-1) coefficient */
1833 addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1834 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1835 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1836 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1837 | V_ADDR_INC);
1838 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1839 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1840 if (debug & DEBUG_HFCMULTI_DTMF)
1841 printk(" %04x", w_float);
1842
1843 /* decode float (see chip doc) */
1844 mantissa = w_float & 0x0fff;
1845 if (w_float & 0x8000)
1846 mantissa |= 0xfffff000;
1847 exponent = (w_float>>12) & 0x7;
1848 if (exponent) {
1849 mantissa ^= 0x1000;
1850 mantissa <<= (exponent-1);
1851 }
1852
1853 /* store coefficient */
1854 coeff[co<<1] = mantissa;
1855
1856 /* read W(n) coefficient */
1857 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1858 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1859 if (debug & DEBUG_HFCMULTI_DTMF)
1860 printk(" %04x", w_float);
1861
1862 /* decode float (see chip doc) */
1863 mantissa = w_float & 0x0fff;
1864 if (w_float & 0x8000)
1865 mantissa |= 0xfffff000;
1866 exponent = (w_float>>12) & 0x7;
1867 if (exponent) {
1868 mantissa ^= 0x1000;
1869 mantissa <<= (exponent-1);
1870 }
1871
1872 /* store coefficient */
1873 coeff[(co<<1)|1] = mantissa;
1874 }
1875 if (debug & DEBUG_HFCMULTI_DTMF)
b5df5a5c
AE
1876 printk(" DTMF ready %08x %08x %08x %08x "
1877 "%08x %08x %08x %08x\n",
af69fb3a
KK
1878 coeff[0], coeff[1], coeff[2], coeff[3],
1879 coeff[4], coeff[5], coeff[6], coeff[7]);
1880 hc->chan[ch].coeff_count++;
1881 if (hc->chan[ch].coeff_count == 8) {
1882 hc->chan[ch].coeff_count = 0;
1883 skb = mI_alloc_skb(512, GFP_ATOMIC);
1884 if (!skb) {
eac74af9 1885 printk(KERN_DEBUG "%s: No memory for skb\n",
af69fb3a
KK
1886 __func__);
1887 continue;
1888 }
1889 hh = mISDN_HEAD_P(skb);
1890 hh->prim = PH_CONTROL_IND;
1891 hh->id = DTMF_HFC_COEF;
1892 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1893 recv_Bchannel_skb(bch, skb);
1894 }
1895 }
1896
1897 /* restart DTMF processing */
1898 hc->dtmf = dtmf;
1899 if (dtmf)
1900 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1901}
1902
1903
1904/*
1905 * fill fifo as much as possible
1906 */
1907
1908static void
1909hfcmulti_tx(struct hfc_multi *hc, int ch)
1910{
1911 int i, ii, temp, len = 0;
1912 int Zspace, z1, z2; /* must be int for calculation */
1913 int Fspace, f1, f2;
1914 u_char *d;
1915 int *txpending, slot_tx;
1916 struct bchannel *bch;
1917 struct dchannel *dch;
1918 struct sk_buff **sp = NULL;
1919 int *idxp;
1920
1921 bch = hc->chan[ch].bch;
1922 dch = hc->chan[ch].dch;
1923 if ((!dch) && (!bch))
1924 return;
1925
1926 txpending = &hc->chan[ch].txpending;
1927 slot_tx = hc->chan[ch].slot_tx;
1928 if (dch) {
1929 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1930 return;
1931 sp = &dch->tx_skb;
1932 idxp = &dch->tx_idx;
1933 } else {
1934 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1935 return;
1936 sp = &bch->tx_skb;
1937 idxp = &bch->tx_idx;
1938 }
1939 if (*sp)
1940 len = (*sp)->len;
1941
1942 if ((!len) && *txpending != 1)
1943 return; /* no data */
1944
1945 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1946 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1947 (hc->chan[ch].slot_rx < 0) &&
1948 (hc->chan[ch].slot_tx < 0))
1949 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1950 else
1951 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1952 HFC_wait_nodebug(hc);
1953
1954 if (*txpending == 2) {
1955 /* reset fifo */
1956 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1957 HFC_wait_nodebug(hc);
1958 HFC_outb(hc, A_SUBCH_CFG, 0);
1959 *txpending = 1;
1960 }
1961next_frame:
1962 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1963 f1 = HFC_inb_nodebug(hc, A_F1);
1964 f2 = HFC_inb_nodebug(hc, A_F2);
1965 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1966 if (debug & DEBUG_HFCMULTI_FIFO)
1967 printk(KERN_DEBUG
1968 "%s(card %d): reread f2 because %d!=%d\n",
1969 __func__, hc->id + 1, temp, f2);
1970 f2 = temp; /* repeat until F2 is equal */
1971 }
1972 Fspace = f2 - f1 - 1;
1973 if (Fspace < 0)
1974 Fspace += hc->Flen;
1975 /*
1976 * Old FIFO handling doesn't give us the current Z2 read
1977 * pointer, so we cannot send the next frame before the fifo
1978 * is empty. It makes no difference except for a slightly
1979 * lower performance.
1980 */
1981 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1982 if (f1 != f2)
1983 Fspace = 0;
1984 else
1985 Fspace = 1;
1986 }
1987 /* one frame only for ST D-channels, to allow resending */
db9bb63a 1988 if (hc->ctype != HFC_TYPE_E1 && dch) {
af69fb3a
KK
1989 if (f1 != f2)
1990 Fspace = 0;
1991 }
1992 /* F-counter full condition */
1993 if (Fspace == 0)
1994 return;
1995 }
1996 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1997 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1998 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1999 if (debug & DEBUG_HFCMULTI_FIFO)
2000 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2001 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2002 z2 = temp; /* repeat unti Z2 is equal */
2003 }
7cfa153d
AE
2004 hc->chan[ch].Zfill = z1 - z2;
2005 if (hc->chan[ch].Zfill < 0)
2006 hc->chan[ch].Zfill += hc->Zlen;
af69fb3a
KK
2007 Zspace = z2 - z1;
2008 if (Zspace <= 0)
2009 Zspace += hc->Zlen;
2010 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2011 /* fill transparent data only to maxinum transparent load (minus 4) */
2012 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2013 Zspace = Zspace - hc->Zlen + hc->max_trans;
2014 if (Zspace <= 0) /* no space of 4 bytes */
2015 return;
2016
2017 /* if no data */
2018 if (!len) {
2019 if (z1 == z2) { /* empty */
2020 /* if done with FIFO audio data during PCM connection */
2021 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2022 *txpending && slot_tx >= 0) {
2023 if (debug & DEBUG_HFCMULTI_MODE)
2024 printk(KERN_DEBUG
2025 "%s: reconnecting PCM due to no "
2026 "more FIFO data: channel %d "
2027 "slot_tx %d\n",
2028 __func__, ch, slot_tx);
2029 /* connect slot */
db9bb63a
KK
2030 if (hc->ctype == HFC_TYPE_XHFC)
2031 HFC_outb(hc, A_CON_HDLC, 0xc0
2032 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2033 /* Enable FIFO, no interrupt */
2034 else
2035 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2036 V_HDLC_TRP | V_IFF);
af69fb3a
KK
2037 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2038 HFC_wait_nodebug(hc);
db9bb63a
KK
2039 if (hc->ctype == HFC_TYPE_XHFC)
2040 HFC_outb(hc, A_CON_HDLC, 0xc0
2041 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2042 /* Enable FIFO, no interrupt */
2043 else
2044 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2045 V_HDLC_TRP | V_IFF);
af69fb3a
KK
2046 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2047 HFC_wait_nodebug(hc);
2048 }
2049 *txpending = 0;
2050 }
2051 return; /* no data */
2052 }
2053
8dd2f36f
AE
2054 /* "fill fifo if empty" feature */
2055 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2056 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2057 if (debug & DEBUG_HFCMULTI_FILL)
2058 printk(KERN_DEBUG "%s: buffer empty, so we have "
2059 "underrun\n", __func__);
2060 /* fill buffer, to prevent future underrun */
2061 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2062 Zspace -= (poll >> 1);
2063 }
2064
af69fb3a
KK
2065 /* if audio data and connected slot */
2066 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2067 && slot_tx >= 0) {
2068 if (debug & DEBUG_HFCMULTI_MODE)
2069 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2070 "FIFO data: channel %d slot_tx %d\n",
2071 __func__, ch, slot_tx);
2072 /* disconnect slot */
db9bb63a
KK
2073 if (hc->ctype == HFC_TYPE_XHFC)
2074 HFC_outb(hc, A_CON_HDLC, 0x80
2075 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2076 /* Enable FIFO, no interrupt */
2077 else
2078 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2079 V_HDLC_TRP | V_IFF);
af69fb3a
KK
2080 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2081 HFC_wait_nodebug(hc);
db9bb63a
KK
2082 if (hc->ctype == HFC_TYPE_XHFC)
2083 HFC_outb(hc, A_CON_HDLC, 0x80
2084 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2085 /* Enable FIFO, no interrupt */
2086 else
2087 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2088 V_HDLC_TRP | V_IFF);
af69fb3a
KK
2089 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2090 HFC_wait_nodebug(hc);
2091 }
2092 *txpending = 1;
2093
2094 /* show activity */
2095 hc->activity[hc->chan[ch].port] = 1;
2096
2097 /* fill fifo to what we have left */
2098 ii = len;
2099 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2100 temp = 1;
2101 else
2102 temp = 0;
2103 i = *idxp;
2104 d = (*sp)->data + i;
2105 if (ii - i > Zspace)
2106 ii = Zspace + i;
2107 if (debug & DEBUG_HFCMULTI_FIFO)
2108 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2109 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2110 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
eac74af9 2111 temp ? "HDLC" : "TRANS");
af69fb3a 2112
af69fb3a
KK
2113 /* Have to prep the audio data */
2114 hc->write_fifo(hc, d, ii - i);
7cfa153d 2115 hc->chan[ch].Zfill += ii - i;
af69fb3a
KK
2116 *idxp = ii;
2117
2118 /* if not all data has been written */
2119 if (ii != len) {
2120 /* NOTE: fifo is started by the calling function */
2121 return;
2122 }
2123
2124 /* if all data has been written, terminate frame */
2125 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2126 /* increment f-counter */
2127 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2128 HFC_wait_nodebug(hc);
2129 }
2130
2131 /* send confirm, since get_net_bframe will not do it with trans */
2132 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2133 confirm_Bsend(bch);
2134
2135 /* check for next frame */
2136 dev_kfree_skb(*sp);
2137 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2138 len = (*sp)->len;
2139 goto next_frame;
2140 }
2141 if (dch && get_next_dframe(dch)) {
2142 len = (*sp)->len;
2143 goto next_frame;
2144 }
2145
2146 /*
2147 * now we have no more data, so in case of transparent,
2148 * we set the last byte in fifo to 'silence' in case we will get
2149 * no more data at all. this prevents sending an undefined value.
2150 */
2151 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
8dd2f36f 2152 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
af69fb3a
KK
2153}
2154
2155
2156/* NOTE: only called if E1 card is in active state */
2157static void
2158hfcmulti_rx(struct hfc_multi *hc, int ch)
2159{
2160 int temp;
2161 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2162 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2163 int again = 0;
2164 struct bchannel *bch;
2165 struct dchannel *dch;
2166 struct sk_buff *skb, **sp = NULL;
2167 int maxlen;
2168
2169 bch = hc->chan[ch].bch;
2170 dch = hc->chan[ch].dch;
2171 if ((!dch) && (!bch))
2172 return;
2173 if (dch) {
2174 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2175 return;
2176 sp = &dch->rx_skb;
2177 maxlen = dch->maxlen;
2178 } else {
2179 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2180 return;
2181 sp = &bch->rx_skb;
2182 maxlen = bch->maxlen;
2183 }
2184next_frame:
2185 /* on first AND before getting next valid frame, R_FIFO must be written
2186 to. */
2187 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2188 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2189 (hc->chan[ch].slot_rx < 0) &&
2190 (hc->chan[ch].slot_tx < 0))
2191 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2192 else
2193 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2194 HFC_wait_nodebug(hc);
2195
2196 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2197 if (hc->chan[ch].rx_off)
2198 return;
2199
2200 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2201 f1 = HFC_inb_nodebug(hc, A_F1);
2202 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2203 if (debug & DEBUG_HFCMULTI_FIFO)
2204 printk(KERN_DEBUG
2205 "%s(card %d): reread f1 because %d!=%d\n",
2206 __func__, hc->id + 1, temp, f1);
2207 f1 = temp; /* repeat until F1 is equal */
2208 }
2209 f2 = HFC_inb_nodebug(hc, A_F2);
2210 }
2211 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2212 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2213 if (debug & DEBUG_HFCMULTI_FIFO)
2214 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2215 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2216 z1 = temp; /* repeat until Z1 is equal */
2217 }
2218 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2219 Zsize = z1 - z2;
2220 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2221 /* complete hdlc frame */
2222 Zsize++;
2223 if (Zsize < 0)
2224 Zsize += hc->Zlen;
2225 /* if buffer is empty */
2226 if (Zsize <= 0)
2227 return;
2228
2229 if (*sp == NULL) {
2230 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2231 if (*sp == NULL) {
2232 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2233 __func__);
2234 return;
2235 }
2236 }
2237 /* show activity */
2238 hc->activity[hc->chan[ch].port] = 1;
2239
2240 /* empty fifo with what we have */
2241 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2242 if (debug & DEBUG_HFCMULTI_FIFO)
2243 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2244 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2245 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2246 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2247 f1, f2, Zsize + (*sp)->len, again);
2248 /* HDLC */
2249 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2250 if (debug & DEBUG_HFCMULTI_FIFO)
2251 printk(KERN_DEBUG
2252 "%s(card %d): hdlc-frame too large.\n",
2253 __func__, hc->id + 1);
2254 skb_trim(*sp, 0);
2255 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2256 HFC_wait_nodebug(hc);
2257 return;
2258 }
2259
2260 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2261
2262 if (f1 != f2) {
2263 /* increment Z2,F2-counter */
2264 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2265 HFC_wait_nodebug(hc);
2266 /* check size */
2267 if ((*sp)->len < 4) {
2268 if (debug & DEBUG_HFCMULTI_FIFO)
2269 printk(KERN_DEBUG
2270 "%s(card %d): Frame below minimum "
2271 "size\n", __func__, hc->id + 1);
2272 skb_trim(*sp, 0);
2273 goto next_frame;
2274 }
2275 /* there is at least one complete frame, check crc */
2276 if ((*sp)->data[(*sp)->len - 1]) {
2277 if (debug & DEBUG_HFCMULTI_CRC)
2278 printk(KERN_DEBUG
2279 "%s: CRC-error\n", __func__);
2280 skb_trim(*sp, 0);
2281 goto next_frame;
2282 }
2283 skb_trim(*sp, (*sp)->len - 3);
2284 if ((*sp)->len < MISDN_COPY_SIZE) {
2285 skb = *sp;
2286 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2287 if (*sp) {
2288 memcpy(skb_put(*sp, skb->len),
2289 skb->data, skb->len);
2290 skb_trim(skb, 0);
2291 } else {
2292 printk(KERN_DEBUG "%s: No mem\n",
2293 __func__);
2294 *sp = skb;
2295 skb = NULL;
2296 }
2297 } else {
2298 skb = NULL;
2299 }
2300 if (debug & DEBUG_HFCMULTI_FIFO) {
2301 printk(KERN_DEBUG "%s(card %d):",
2302 __func__, hc->id + 1);
2303 temp = 0;
2304 while (temp < (*sp)->len)
2305 printk(" %02x", (*sp)->data[temp++]);
2306 printk("\n");
2307 }
2308 if (dch)
2309 recv_Dchannel(dch);
2310 else
7cfa153d 2311 recv_Bchannel(bch, MISDN_ID_ANY);
af69fb3a
KK
2312 *sp = skb;
2313 again++;
2314 goto next_frame;
2315 }
2316 /* there is an incomplete frame */
2317 } else {
2318 /* transparent */
2319 if (Zsize > skb_tailroom(*sp))
2320 Zsize = skb_tailroom(*sp);
2321 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2322 if (((*sp)->len) < MISDN_COPY_SIZE) {
2323 skb = *sp;
2324 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2325 if (*sp) {
2326 memcpy(skb_put(*sp, skb->len),
2327 skb->data, skb->len);
2328 skb_trim(skb, 0);
2329 } else {
2330 printk(KERN_DEBUG "%s: No mem\n", __func__);
2331 *sp = skb;
2332 skb = NULL;
2333 }
2334 } else {
2335 skb = NULL;
2336 }
2337 if (debug & DEBUG_HFCMULTI_FIFO)
2338 printk(KERN_DEBUG
2339 "%s(card %d): fifo(%d) reading %d bytes "
2340 "(z1=%04x, z2=%04x) TRANS\n",
2341 __func__, hc->id + 1, ch, Zsize, z1, z2);
2342 /* only bch is transparent */
7cfa153d 2343 recv_Bchannel(bch, hc->chan[ch].Zfill);
af69fb3a
KK
2344 *sp = skb;
2345 }
2346}
2347
2348
2349/*
2350 * Interrupt handler
2351 */
2352static void
2353signal_state_up(struct dchannel *dch, int info, char *msg)
2354{
2355 struct sk_buff *skb;
2356 int id, data = info;
2357
2358 if (debug & DEBUG_HFCMULTI_STATE)
2359 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2360
2361 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2362
2363 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2364 GFP_ATOMIC);
2365 if (!skb)
2366 return;
2367 recv_Dchannel_skb(dch, skb);
2368}
2369
2370static inline void
2371handle_timer_irq(struct hfc_multi *hc)
2372{
2373 int ch, temp;
2374 struct dchannel *dch;
2375 u_long flags;
2376
2377 /* process queued resync jobs */
2378 if (hc->e1_resync) {
2379 /* lock, so e1_resync gets not changed */
2380 spin_lock_irqsave(&HFClock, flags);
2381 if (hc->e1_resync & 1) {
2382 if (debug & DEBUG_HFCMULTI_PLXSD)
2383 printk(KERN_DEBUG "Enable SYNC_I\n");
2384 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2385 /* disable JATT, if RX_SYNC is set */
2386 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2387 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2388 }
2389 if (hc->e1_resync & 2) {
2390 if (debug & DEBUG_HFCMULTI_PLXSD)
2391 printk(KERN_DEBUG "Enable jatt PLL\n");
2392 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2393 }
2394 if (hc->e1_resync & 4) {
2395 if (debug & DEBUG_HFCMULTI_PLXSD)
2396 printk(KERN_DEBUG
2397 "Enable QUARTZ for HFC-E1\n");
2398 /* set jatt to quartz */
2399 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2400 | V_JATT_OFF);
2401 /* switch to JATT, in case it is not already */
2402 HFC_outb(hc, R_SYNC_OUT, 0);
2403 }
2404 hc->e1_resync = 0;
2405 spin_unlock_irqrestore(&HFClock, flags);
2406 }
2407
db9bb63a 2408 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
af69fb3a
KK
2409 for (ch = 0; ch <= 31; ch++) {
2410 if (hc->created[hc->chan[ch].port]) {
2411 hfcmulti_tx(hc, ch);
2412 /* fifo is started when switching to rx-fifo */
2413 hfcmulti_rx(hc, ch);
2414 if (hc->chan[ch].dch &&
2415 hc->chan[ch].nt_timer > -1) {
2416 dch = hc->chan[ch].dch;
2417 if (!(--hc->chan[ch].nt_timer)) {
2418 schedule_event(dch,
2419 FLG_PHCHANGE);
2420 if (debug &
2421 DEBUG_HFCMULTI_STATE)
2422 printk(KERN_DEBUG
2423 "%s: nt_timer at "
2424 "state %x\n",
2425 __func__,
2426 dch->state);
2427 }
2428 }
2429 }
2430 }
db9bb63a 2431 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
af69fb3a
KK
2432 dch = hc->chan[hc->dslot].dch;
2433 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2434 /* LOS */
2435 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2436 if (!temp && hc->chan[hc->dslot].los)
2437 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2438 "LOS detected");
2439 if (temp && !hc->chan[hc->dslot].los)
2440 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2441 "LOS gone");
2442 hc->chan[hc->dslot].los = temp;
2443 }
2444 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2445 /* AIS */
2446 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2447 if (!temp && hc->chan[hc->dslot].ais)
2448 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2449 "AIS detected");
2450 if (temp && !hc->chan[hc->dslot].ais)
2451 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2452 "AIS gone");
2453 hc->chan[hc->dslot].ais = temp;
2454 }
2455 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2456 /* SLIP */
2457 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2458 if (!temp && hc->chan[hc->dslot].slip_rx)
2459 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2460 " bit SLIP detected RX");
2461 hc->chan[hc->dslot].slip_rx = temp;
2462 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2463 if (!temp && hc->chan[hc->dslot].slip_tx)
2464 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2465 " bit SLIP detected TX");
2466 hc->chan[hc->dslot].slip_tx = temp;
2467 }
2468 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2469 /* RDI */
2470 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2471 if (!temp && hc->chan[hc->dslot].rdi)
2472 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2473 "RDI detected");
2474 if (temp && !hc->chan[hc->dslot].rdi)
2475 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2476 "RDI gone");
2477 hc->chan[hc->dslot].rdi = temp;
2478 }
2479 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2480 switch (hc->chan[hc->dslot].sync) {
2481 case 0:
2482 if ((temp & 0x60) == 0x60) {
2483 if (debug & DEBUG_HFCMULTI_SYNC)
2484 printk(KERN_DEBUG
2485 "%s: (id=%d) E1 now "
2486 "in clock sync\n",
2487 __func__, hc->id);
2488 HFC_outb(hc, R_RX_OFF,
2489 hc->chan[hc->dslot].jitter | V_RX_INIT);
2490 HFC_outb(hc, R_TX_OFF,
2491 hc->chan[hc->dslot].jitter | V_RX_INIT);
2492 hc->chan[hc->dslot].sync = 1;
2493 goto check_framesync;
2494 }
2495 break;
2496 case 1:
2497 if ((temp & 0x60) != 0x60) {
2498 if (debug & DEBUG_HFCMULTI_SYNC)
2499 printk(KERN_DEBUG
2500 "%s: (id=%d) E1 "
2501 "lost clock sync\n",
2502 __func__, hc->id);
2503 hc->chan[hc->dslot].sync = 0;
2504 break;
2505 }
2506check_framesync:
2507 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2508 if (temp == 0x27) {
2509 if (debug & DEBUG_HFCMULTI_SYNC)
2510 printk(KERN_DEBUG
2511 "%s: (id=%d) E1 "
2512 "now in frame sync\n",
2513 __func__, hc->id);
2514 hc->chan[hc->dslot].sync = 2;
2515 }
2516 break;
2517 case 2:
2518 if ((temp & 0x60) != 0x60) {
2519 if (debug & DEBUG_HFCMULTI_SYNC)
2520 printk(KERN_DEBUG
2521 "%s: (id=%d) E1 lost "
2522 "clock & frame sync\n",
2523 __func__, hc->id);
2524 hc->chan[hc->dslot].sync = 0;
2525 break;
2526 }
2527 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2528 if (temp != 0x27) {
2529 if (debug & DEBUG_HFCMULTI_SYNC)
2530 printk(KERN_DEBUG
2531 "%s: (id=%d) E1 "
2532 "lost frame sync\n",
2533 __func__, hc->id);
2534 hc->chan[hc->dslot].sync = 1;
2535 }
2536 break;
2537 }
2538 }
2539
2540 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2541 hfcmulti_watchdog(hc);
2542
2543 if (hc->leds)
2544 hfcmulti_leds(hc);
2545}
2546
2547static void
2548ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2549{
2550 struct dchannel *dch;
2551 int ch;
2552 int active;
2553 u_char st_status, temp;
2554
2555 /* state machine */
2556 for (ch = 0; ch <= 31; ch++) {
2557 if (hc->chan[ch].dch) {
2558 dch = hc->chan[ch].dch;
2559 if (r_irq_statech & 1) {
2560 HFC_outb_nodebug(hc, R_ST_SEL,
2561 hc->chan[ch].port);
2562 /* undocumented: delay after R_ST_SEL */
2563 udelay(1);
2564 /* undocumented: status changes during read */
2565 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2566 while (st_status != (temp =
2567 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2568 if (debug & DEBUG_HFCMULTI_STATE)
2569 printk(KERN_DEBUG "%s: reread "
2570 "STATE because %d!=%d\n",
2571 __func__, temp,
2572 st_status);
2573 st_status = temp; /* repeat */
2574 }
2575
2576 /* Speech Design TE-sync indication */
2577 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2578 dch->dev.D.protocol == ISDN_P_TE_S0) {
2579 if (st_status & V_FR_SYNC_ST)
2580 hc->syncronized |=
2581 (1 << hc->chan[ch].port);
2582 else
2583 hc->syncronized &=
2584 ~(1 << hc->chan[ch].port);
2585 }
2586 dch->state = st_status & 0x0f;
2587 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2588 active = 3;
2589 else
2590 active = 7;
2591 if (dch->state == active) {
2592 HFC_outb_nodebug(hc, R_FIFO,
2593 (ch << 1) | 1);
2594 HFC_wait_nodebug(hc);
2595 HFC_outb_nodebug(hc,
2596 R_INC_RES_FIFO, V_RES_F);
2597 HFC_wait_nodebug(hc);
2598 dch->tx_idx = 0;
2599 }
2600 schedule_event(dch, FLG_PHCHANGE);
2601 if (debug & DEBUG_HFCMULTI_STATE)
2602 printk(KERN_DEBUG
2603 "%s: S/T newstate %x port %d\n",
2604 __func__, dch->state,
2605 hc->chan[ch].port);
2606 }
2607 r_irq_statech >>= 1;
2608 }
2609 }
2610 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2611 plxsd_checksync(hc, 0);
2612}
2613
2614static void
2615fifo_irq(struct hfc_multi *hc, int block)
2616{
2617 int ch, j;
2618 struct dchannel *dch;
2619 struct bchannel *bch;
2620 u_char r_irq_fifo_bl;
2621
2622 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2623 j = 0;
2624 while (j < 8) {
2625 ch = (block << 2) + (j >> 1);
2626 dch = hc->chan[ch].dch;
2627 bch = hc->chan[ch].bch;
2628 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2629 j += 2;
2630 continue;
2631 }
2632 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2633 test_bit(FLG_ACTIVE, &dch->Flags)) {
2634 hfcmulti_tx(hc, ch);
2635 /* start fifo */
2636 HFC_outb_nodebug(hc, R_FIFO, 0);
2637 HFC_wait_nodebug(hc);
2638 }
2639 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2640 test_bit(FLG_ACTIVE, &bch->Flags)) {
2641 hfcmulti_tx(hc, ch);
2642 /* start fifo */
2643 HFC_outb_nodebug(hc, R_FIFO, 0);
2644 HFC_wait_nodebug(hc);
2645 }
2646 j++;
2647 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2648 test_bit(FLG_ACTIVE, &dch->Flags)) {
2649 hfcmulti_rx(hc, ch);
2650 }
2651 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2652 test_bit(FLG_ACTIVE, &bch->Flags)) {
2653 hfcmulti_rx(hc, ch);
2654 }
2655 j++;
2656 }
2657}
2658
2659#ifdef IRQ_DEBUG
2660int irqsem;
2661#endif
2662static irqreturn_t
2663hfcmulti_interrupt(int intno, void *dev_id)
2664{
2665#ifdef IRQCOUNT_DEBUG
2666 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2667 iq5 = 0, iq6 = 0, iqcnt = 0;
2668#endif
af69fb3a
KK
2669 struct hfc_multi *hc = dev_id;
2670 struct dchannel *dch;
2671 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2672 int i;
c31655fc
HE
2673 void __iomem *plx_acc;
2674 u_short wval;
af69fb3a
KK
2675 u_char e1_syncsta, temp;
2676 u_long flags;
2677
2678 if (!hc) {
2679 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2680 return IRQ_NONE;
2681 }
2682
2683 spin_lock(&hc->lock);
2684
2685#ifdef IRQ_DEBUG
2686 if (irqsem)
2687 printk(KERN_ERR "irq for card %d during irq from "
2688 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2689 irqsem = hc->id + 1;
2690#endif
db9bb63a
KK
2691#ifdef CONFIG_MISDN_HFCMULTI_8xx
2692 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2693 goto irq_notforus;
2694#endif
af69fb3a
KK
2695 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2696 spin_lock_irqsave(&plx_lock, flags);
c31655fc 2697 plx_acc = hc->plx_membase + PLX_INTCSR;
af69fb3a
KK
2698 wval = readw(plx_acc);
2699 spin_unlock_irqrestore(&plx_lock, flags);
2700 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2701 goto irq_notforus;
2702 }
2703
2704 status = HFC_inb_nodebug(hc, R_STATUS);
2705 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2706#ifdef IRQCOUNT_DEBUG
2707 if (r_irq_statech)
2708 iq1++;
2709 if (status & V_DTMF_STA)
2710 iq2++;
2711 if (status & V_LOST_STA)
2712 iq3++;
2713 if (status & V_EXT_IRQSTA)
2714 iq4++;
2715 if (status & V_MISC_IRQSTA)
2716 iq5++;
2717 if (status & V_FR_IRQSTA)
2718 iq6++;
2719 if (iqcnt++ > 5000) {
2720 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2721 iq1, iq2, iq3, iq4, iq5, iq6);
2722 iqcnt = 0;
2723 }
2724#endif
3bd69ad1 2725
af69fb3a
KK
2726 if (!r_irq_statech &&
2727 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2728 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2729 /* irq is not for us */
2730 goto irq_notforus;
2731 }
2732 hc->irqcnt++;
2733 if (r_irq_statech) {
db9bb63a 2734 if (hc->ctype != HFC_TYPE_E1)
af69fb3a
KK
2735 ph_state_irq(hc, r_irq_statech);
2736 }
2737 if (status & V_EXT_IRQSTA)
2738 ; /* external IRQ */
2739 if (status & V_LOST_STA) {
2740 /* LOST IRQ */
2741 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2742 }
2743 if (status & V_MISC_IRQSTA) {
2744 /* misc IRQ */
2745 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
9e6115f2 2746 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
af69fb3a 2747 if (r_irq_misc & V_STA_IRQ) {
db9bb63a 2748 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
2749 /* state machine */
2750 dch = hc->chan[hc->dslot].dch;
2751 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2752 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2753 && hc->e1_getclock) {
2754 if (e1_syncsta & V_FR_SYNC_E1)
2755 hc->syncronized = 1;
2756 else
2757 hc->syncronized = 0;
2758 }
2759 /* undocumented: status changes during read */
2760 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2761 while (dch->state != (temp =
2762 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2763 if (debug & DEBUG_HFCMULTI_STATE)
2764 printk(KERN_DEBUG "%s: reread "
2765 "STATE because %d!=%d\n",
2766 __func__, temp,
2767 dch->state);
2768 dch->state = temp; /* repeat */
2769 }
2770 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2771 & 0x7;
2772 schedule_event(dch, FLG_PHCHANGE);
2773 if (debug & DEBUG_HFCMULTI_STATE)
2774 printk(KERN_DEBUG
2775 "%s: E1 (id=%d) newstate %x\n",
2776 __func__, hc->id, dch->state);
2777 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2778 plxsd_checksync(hc, 0);
2779 }
2780 }
3bd69ad1
AE
2781 if (r_irq_misc & V_TI_IRQ) {
2782 if (hc->iclock_on)
2783 mISDN_clock_update(hc->iclock, poll, NULL);
af69fb3a 2784 handle_timer_irq(hc);
3bd69ad1 2785 }
af69fb3a 2786
eac74af9 2787 if (r_irq_misc & V_DTMF_IRQ)
af69fb3a 2788 hfcmulti_dtmf(hc);
eac74af9 2789
af69fb3a 2790 if (r_irq_misc & V_IRQ_PROC) {
69e656cc
KK
2791 static int irq_proc_cnt;
2792 if (!irq_proc_cnt++)
eac74af9 2793 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
69e656cc 2794 " this should not happen\n", __func__);
af69fb3a
KK
2795 }
2796
2797 }
2798 if (status & V_FR_IRQSTA) {
2799 /* FIFO IRQ */
2800 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2801 for (i = 0; i < 8; i++) {
2802 if (r_irq_oview & (1 << i))
2803 fifo_irq(hc, i);
2804 }
2805 }
2806
2807#ifdef IRQ_DEBUG
2808 irqsem = 0;
2809#endif
2810 spin_unlock(&hc->lock);
2811 return IRQ_HANDLED;
2812
2813irq_notforus:
2814#ifdef IRQ_DEBUG
2815 irqsem = 0;
2816#endif
2817 spin_unlock(&hc->lock);
2818 return IRQ_NONE;
2819}
2820
2821
2822/*
2823 * timer callback for D-chan busy resolution. Currently no function
2824 */
2825
2826static void
2827hfcmulti_dbusy_timer(struct hfc_multi *hc)
2828{
2829}
2830
2831
2832/*
2833 * activate/deactivate hardware for selected channels and mode
2834 *
2835 * configure B-channel with the given protocol
2836 * ch eqals to the HFC-channel (0-31)
2837 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2838 * for S/T, 1-31 for E1)
2839 * the hdlc interrupts will be set/unset
2840 */
2841static int
2842mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2843 int bank_tx, int slot_rx, int bank_rx)
2844{
2845 int flow_tx = 0, flow_rx = 0, routing = 0;
2846 int oslot_tx, oslot_rx;
2847 int conf;
2848
2849 if (ch < 0 || ch > 31)
650b2ef5 2850 return -EINVAL;
af69fb3a
KK
2851 oslot_tx = hc->chan[ch].slot_tx;
2852 oslot_rx = hc->chan[ch].slot_rx;
2853 conf = hc->chan[ch].conf;
2854
2855 if (debug & DEBUG_HFCMULTI_MODE)
2856 printk(KERN_DEBUG
2857 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2858 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2859 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2860 bank_tx, oslot_rx, slot_rx, bank_rx);
2861
2862 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2863 /* remove from slot */
2864 if (debug & DEBUG_HFCMULTI_MODE)
2865 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2866 __func__, oslot_tx);
2867 if (hc->slot_owner[oslot_tx<<1] == ch) {
2868 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2869 HFC_outb(hc, A_SL_CFG, 0);
db9bb63a
KK
2870 if (hc->ctype != HFC_TYPE_XHFC)
2871 HFC_outb(hc, A_CONF, 0);
af69fb3a
KK
2872 hc->slot_owner[oslot_tx<<1] = -1;
2873 } else {
2874 if (debug & DEBUG_HFCMULTI_MODE)
2875 printk(KERN_DEBUG
2876 "%s: we are not owner of this tx slot "
2877 "anymore, channel %d is.\n",
2878 __func__, hc->slot_owner[oslot_tx<<1]);
2879 }
2880 }
2881
2882 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2883 /* remove from slot */
2884 if (debug & DEBUG_HFCMULTI_MODE)
2885 printk(KERN_DEBUG
2886 "%s: remove from slot %d (RX)\n",
2887 __func__, oslot_rx);
2888 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2889 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2890 HFC_outb(hc, A_SL_CFG, 0);
2891 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2892 } else {
2893 if (debug & DEBUG_HFCMULTI_MODE)
2894 printk(KERN_DEBUG
2895 "%s: we are not owner of this rx slot "
2896 "anymore, channel %d is.\n",
2897 __func__,
2898 hc->slot_owner[(oslot_rx << 1) | 1]);
2899 }
2900 }
2901
2902 if (slot_tx < 0) {
2903 flow_tx = 0x80; /* FIFO->ST */
2904 /* disable pcm slot */
2905 hc->chan[ch].slot_tx = -1;
2906 hc->chan[ch].bank_tx = 0;
2907 } else {
2908 /* set pcm slot */
2909 if (hc->chan[ch].txpending)
2910 flow_tx = 0x80; /* FIFO->ST */
2911 else
2912 flow_tx = 0xc0; /* PCM->ST */
2913 /* put on slot */
2914 routing = bank_tx ? 0xc0 : 0x80;
2915 if (conf >= 0 || bank_tx > 1)
2916 routing = 0x40; /* loop */
2917 if (debug & DEBUG_HFCMULTI_MODE)
2918 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2919 " %d flow %02x routing %02x conf %d (TX)\n",
2920 __func__, ch, slot_tx, bank_tx,
2921 flow_tx, routing, conf);
2922 HFC_outb(hc, R_SLOT, slot_tx << 1);
2923 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
db9bb63a
KK
2924 if (hc->ctype != HFC_TYPE_XHFC)
2925 HFC_outb(hc, A_CONF,
2926 (conf < 0) ? 0 : (conf | V_CONF_SL));
af69fb3a
KK
2927 hc->slot_owner[slot_tx << 1] = ch;
2928 hc->chan[ch].slot_tx = slot_tx;
2929 hc->chan[ch].bank_tx = bank_tx;
2930 }
2931 if (slot_rx < 0) {
2932 /* disable pcm slot */
2933 flow_rx = 0x80; /* ST->FIFO */
2934 hc->chan[ch].slot_rx = -1;
2935 hc->chan[ch].bank_rx = 0;
2936 } else {
2937 /* set pcm slot */
2938 if (hc->chan[ch].txpending)
2939 flow_rx = 0x80; /* ST->FIFO */
2940 else
2941 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2942 /* put on slot */
eac74af9 2943 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
af69fb3a
KK
2944 if (conf >= 0 || bank_rx > 1)
2945 routing = 0x40; /* loop */
2946 if (debug & DEBUG_HFCMULTI_MODE)
2947 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2948 " %d flow %02x routing %02x conf %d (RX)\n",
2949 __func__, ch, slot_rx, bank_rx,
2950 flow_rx, routing, conf);
2951 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2952 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2953 hc->slot_owner[(slot_rx<<1)|1] = ch;
2954 hc->chan[ch].slot_rx = slot_rx;
2955 hc->chan[ch].bank_rx = bank_rx;
2956 }
2957
2958 switch (protocol) {
2959 case (ISDN_P_NONE):
2960 /* disable TX fifo */
2961 HFC_outb(hc, R_FIFO, ch << 1);
2962 HFC_wait(hc);
2963 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2964 HFC_outb(hc, A_SUBCH_CFG, 0);
2965 HFC_outb(hc, A_IRQ_MSK, 0);
2966 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2967 HFC_wait(hc);
2968 /* disable RX fifo */
2969 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2970 HFC_wait(hc);
2971 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2972 HFC_outb(hc, A_SUBCH_CFG, 0);
2973 HFC_outb(hc, A_IRQ_MSK, 0);
2974 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2975 HFC_wait(hc);
db9bb63a 2976 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
af69fb3a 2977 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
eac74af9 2978 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
af69fb3a
KK
2979 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2980 /* undocumented: delay after R_ST_SEL */
2981 udelay(1);
2982 HFC_outb(hc, A_ST_CTRL0,
2983 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2984 }
2985 if (hc->chan[ch].bch) {
2986 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2987 test_and_clear_bit(FLG_TRANSPARENT,
2988 &hc->chan[ch].bch->Flags);
2989 }
2990 break;
2991 case (ISDN_P_B_RAW): /* B-channel */
2992
2993 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2994 (hc->chan[ch].slot_rx < 0) &&
2995 (hc->chan[ch].slot_tx < 0)) {
2996
2997 printk(KERN_DEBUG
2998 "Setting B-channel %d to echo cancelable "
2999 "state on PCM slot %d\n", ch,
3000 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3001 printk(KERN_DEBUG
3002 "Enabling pass through for channel\n");
3003 vpm_out(hc, ch, ((ch / 4) * 8) +
3004 ((ch % 4) * 4) + 1, 0x01);
3005 /* rx path */
3006 /* S/T -> PCM */
3007 HFC_outb(hc, R_FIFO, (ch << 1));
3008 HFC_wait(hc);
3009 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3010 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3011 ((ch % 4) * 4) + 1) << 1);
3012 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3013
3014 /* PCM -> FIFO */
3015 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3016 HFC_wait(hc);
3017 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3018 HFC_outb(hc, A_SUBCH_CFG, 0);
3019 HFC_outb(hc, A_IRQ_MSK, 0);
3020 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3021 HFC_wait(hc);
3022 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3023 ((ch % 4) * 4) + 1) << 1) | 1);
3024 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3025
3026 /* tx path */
3027 /* PCM -> S/T */
3028 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3029 HFC_wait(hc);
3030 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3031 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3032 ((ch % 4) * 4)) << 1) | 1);
3033 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3034
3035 /* FIFO -> PCM */
3036 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3037 HFC_wait(hc);
3038 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3039 HFC_outb(hc, A_SUBCH_CFG, 0);
3040 HFC_outb(hc, A_IRQ_MSK, 0);
3041 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3042 HFC_wait(hc);
3043 /* tx silence */
8dd2f36f 3044 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
af69fb3a
KK
3045 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3046 ((ch % 4) * 4)) << 1);
3047 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3048 } else {
3049 /* enable TX fifo */
3050 HFC_outb(hc, R_FIFO, ch << 1);
3051 HFC_wait(hc);
db9bb63a
KK
3052 if (hc->ctype == HFC_TYPE_XHFC)
3053 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3054 V_HDLC_TRP | V_IFF);
3055 /* Enable FIFO, no interrupt */
3056 else
3057 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3058 V_HDLC_TRP | V_IFF);
af69fb3a
KK
3059 HFC_outb(hc, A_SUBCH_CFG, 0);
3060 HFC_outb(hc, A_IRQ_MSK, 0);
3061 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3062 HFC_wait(hc);
3063 /* tx silence */
8dd2f36f 3064 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
af69fb3a
KK
3065 /* enable RX fifo */
3066 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3067 HFC_wait(hc);
db9bb63a
KK
3068 if (hc->ctype == HFC_TYPE_XHFC)
3069 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3070 V_HDLC_TRP);
3071 /* Enable FIFO, no interrupt*/
3072 else
3073 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3074 V_HDLC_TRP);
af69fb3a
KK
3075 HFC_outb(hc, A_SUBCH_CFG, 0);
3076 HFC_outb(hc, A_IRQ_MSK, 0);
3077 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3078 HFC_wait(hc);
3079 }
db9bb63a 3080 if (hc->ctype != HFC_TYPE_E1) {
af69fb3a
KK
3081 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3082 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3083 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3084 /* undocumented: delay after R_ST_SEL */
3085 udelay(1);
3086 HFC_outb(hc, A_ST_CTRL0,
3087 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3088 }
3089 if (hc->chan[ch].bch)
3090 test_and_set_bit(FLG_TRANSPARENT,
3091 &hc->chan[ch].bch->Flags);
3092 break;
3093 case (ISDN_P_B_HDLC): /* B-channel */
3094 case (ISDN_P_TE_S0): /* D-channel */
3095 case (ISDN_P_NT_S0):
3096 case (ISDN_P_TE_E1):
3097 case (ISDN_P_NT_E1):
3098 /* enable TX fifo */
3099 HFC_outb(hc, R_FIFO, ch<<1);
3100 HFC_wait(hc);
db9bb63a 3101 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
af69fb3a
KK
3102 /* E1 or B-channel */
3103 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3104 HFC_outb(hc, A_SUBCH_CFG, 0);
3105 } else {
3106 /* D-Channel without HDLC fill flags */
3107 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3108 HFC_outb(hc, A_SUBCH_CFG, 2);
3109 }
3110 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3111 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3112 HFC_wait(hc);
3113 /* enable RX fifo */
3114 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3115 HFC_wait(hc);
3116 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
db9bb63a 3117 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
af69fb3a
KK
3118 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3119 else
3120 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3121 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3122 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3123 HFC_wait(hc);
3124 if (hc->chan[ch].bch) {
3125 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
db9bb63a 3126 if (hc->ctype != HFC_TYPE_E1) {
af69fb3a
KK
3127 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3128 ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3129 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3130 /* undocumented: delay after R_ST_SEL */
3131 udelay(1);
3132 HFC_outb(hc, A_ST_CTRL0,
3133 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3134 }
3135 }
3136 break;
3137 default:
3138 printk(KERN_DEBUG "%s: protocol not known %x\n",
3139 __func__, protocol);
3140 hc->chan[ch].protocol = ISDN_P_NONE;
3141 return -ENOPROTOOPT;
3142 }
3143 hc->chan[ch].protocol = protocol;
3144 return 0;
3145}
3146
3147
3148/*
3149 * connect/disconnect PCM
3150 */
3151
3152static void
3153hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3154 int slot_rx, int bank_rx)
3155{
073bd90f 3156 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
af69fb3a
KK
3157 /* disable PCM */
3158 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3159 return;
3160 }
3161
3162 /* enable pcm */
3163 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3164 slot_rx, bank_rx);
3165}
3166
3167/*
3168 * set/disable conference
3169 */
3170
3171static void
3172hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3173{
3174 if (num >= 0 && num <= 7)
3175 hc->chan[ch].conf = num;
3176 else
3177 hc->chan[ch].conf = -1;
3178 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3179 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3180 hc->chan[ch].bank_rx);
3181}
3182
3183
3184/*
3185 * set/disable sample loop
3186 */
3187
3188/* NOTE: this function is experimental and therefore disabled */
3189
3190/*
3191 * Layer 1 callback function
3192 */
3193static int
3194hfcm_l1callback(struct dchannel *dch, u_int cmd)
3195{
3196 struct hfc_multi *hc = dch->hw;
3197 u_long flags;
3198
3199 switch (cmd) {
3200 case INFO3_P8:
3201 case INFO3_P10:
3202 break;
3203 case HW_RESET_REQ:
3204 /* start activation */
3205 spin_lock_irqsave(&hc->lock, flags);
db9bb63a 3206 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3207 if (debug & DEBUG_HFCMULTI_MSG)
3208 printk(KERN_DEBUG
3209 "%s: HW_RESET_REQ no BRI\n",
3210 __func__);
3211 } else {
3212 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3213 /* undocumented: delay after R_ST_SEL */
3214 udelay(1);
3215 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3216 udelay(6); /* wait at least 5,21us */
3217 HFC_outb(hc, A_ST_WR_STATE, 3);
3218 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3219 /* activate */
3220 }
3221 spin_unlock_irqrestore(&hc->lock, flags);
3222 l1_event(dch->l1, HW_POWERUP_IND);
3223 break;
3224 case HW_DEACT_REQ:
3225 /* start deactivation */
3226 spin_lock_irqsave(&hc->lock, flags);
db9bb63a 3227 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3228 if (debug & DEBUG_HFCMULTI_MSG)
3229 printk(KERN_DEBUG
3230 "%s: HW_DEACT_REQ no BRI\n",
3231 __func__);
3232 } else {
3233 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3234 /* undocumented: delay after R_ST_SEL */
3235 udelay(1);
3236 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3237 /* deactivate */
3238 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3239 hc->syncronized &=
3240 ~(1 << hc->chan[dch->slot].port);
3241 plxsd_checksync(hc, 0);
3242 }
3243 }
3244 skb_queue_purge(&dch->squeue);
3245 if (dch->tx_skb) {
3246 dev_kfree_skb(dch->tx_skb);
3247 dch->tx_skb = NULL;
3248 }
3249 dch->tx_idx = 0;
3250 if (dch->rx_skb) {
3251 dev_kfree_skb(dch->rx_skb);
3252 dch->rx_skb = NULL;
3253 }
3254 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3255 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3256 del_timer(&dch->timer);
3257 spin_unlock_irqrestore(&hc->lock, flags);
3258 break;
3259 case HW_POWERUP_REQ:
3260 spin_lock_irqsave(&hc->lock, flags);
db9bb63a 3261 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3262 if (debug & DEBUG_HFCMULTI_MSG)
3263 printk(KERN_DEBUG
3264 "%s: HW_POWERUP_REQ no BRI\n",
3265 __func__);
3266 } else {
3267 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3268 /* undocumented: delay after R_ST_SEL */
3269 udelay(1);
3270 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3271 udelay(6); /* wait at least 5,21us */
3272 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3273 }
3274 spin_unlock_irqrestore(&hc->lock, flags);
3275 break;
3276 case PH_ACTIVATE_IND:
3277 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3278 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3279 GFP_ATOMIC);
3280 break;
3281 case PH_DEACTIVATE_IND:
3282 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3283 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3284 GFP_ATOMIC);
3285 break;
3286 default:
3287 if (dch->debug & DEBUG_HW)
3288 printk(KERN_DEBUG "%s: unknown command %x\n",
3289 __func__, cmd);
3290 return -1;
3291 }
3292 return 0;
3293}
3294
3295/*
3296 * Layer2 -> Layer 1 Transfer
3297 */
3298
3299static int
3300handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3301{
3302 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3303 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3304 struct hfc_multi *hc = dch->hw;
3305 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3306 int ret = -EINVAL;
3307 unsigned int id;
3308 u_long flags;
3309
3310 switch (hh->prim) {
3311 case PH_DATA_REQ:
3312 if (skb->len < 1)
3313 break;
3314 spin_lock_irqsave(&hc->lock, flags);
3315 ret = dchannel_senddata(dch, skb);
3316 if (ret > 0) { /* direct TX */
3317 id = hh->id; /* skb can be freed */
3318 hfcmulti_tx(hc, dch->slot);
3319 ret = 0;
3320 /* start fifo */
3321 HFC_outb(hc, R_FIFO, 0);
3322 HFC_wait(hc);
3323 spin_unlock_irqrestore(&hc->lock, flags);
3324 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3325 } else
3326 spin_unlock_irqrestore(&hc->lock, flags);
3327 return ret;
3328 case PH_ACTIVATE_REQ:
3329 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3330 spin_lock_irqsave(&hc->lock, flags);
3331 ret = 0;
3332 if (debug & DEBUG_HFCMULTI_MSG)
3333 printk(KERN_DEBUG
3334 "%s: PH_ACTIVATE port %d (0..%d)\n",
3335 __func__, hc->chan[dch->slot].port,
3336 hc->ports-1);
3337 /* start activation */
db9bb63a 3338 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3339 ph_state_change(dch);
3340 if (debug & DEBUG_HFCMULTI_STATE)
3341 printk(KERN_DEBUG
3342 "%s: E1 report state %x \n",
3343 __func__, dch->state);
3344 } else {
3345 HFC_outb(hc, R_ST_SEL,
3346 hc->chan[dch->slot].port);
3347 /* undocumented: delay after R_ST_SEL */
3348 udelay(1);
3349 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3350 /* G1 */
3351 udelay(6); /* wait at least 5,21us */
3352 HFC_outb(hc, A_ST_WR_STATE, 1);
3353 HFC_outb(hc, A_ST_WR_STATE, 1 |
3354 (V_ST_ACT*3)); /* activate */
3355 dch->state = 1;
3356 }
3357 spin_unlock_irqrestore(&hc->lock, flags);
3358 } else
3359 ret = l1_event(dch->l1, hh->prim);
3360 break;
3361 case PH_DEACTIVATE_REQ:
3362 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3363 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3364 spin_lock_irqsave(&hc->lock, flags);
3365 if (debug & DEBUG_HFCMULTI_MSG)
3366 printk(KERN_DEBUG
3367 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3368 __func__, hc->chan[dch->slot].port,
3369 hc->ports-1);
3370 /* start deactivation */
db9bb63a 3371 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3372 if (debug & DEBUG_HFCMULTI_MSG)
3373 printk(KERN_DEBUG
3374 "%s: PH_DEACTIVATE no BRI\n",
3375 __func__);
3376 } else {
3377 HFC_outb(hc, R_ST_SEL,
3378 hc->chan[dch->slot].port);
3379 /* undocumented: delay after R_ST_SEL */
3380 udelay(1);
3381 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3382 /* deactivate */
3383 dch->state = 1;
3384 }
3385 skb_queue_purge(&dch->squeue);
3386 if (dch->tx_skb) {
3387 dev_kfree_skb(dch->tx_skb);
3388 dch->tx_skb = NULL;
3389 }
3390 dch->tx_idx = 0;
3391 if (dch->rx_skb) {
3392 dev_kfree_skb(dch->rx_skb);
3393 dch->rx_skb = NULL;
3394 }
3395 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3396 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3397 del_timer(&dch->timer);
3398#ifdef FIXME
3399 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3400 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3401#endif
3402 ret = 0;
3403 spin_unlock_irqrestore(&hc->lock, flags);
3404 } else
3405 ret = l1_event(dch->l1, hh->prim);
3406 break;
3407 }
3408 if (!ret)
3409 dev_kfree_skb(skb);
3410 return ret;
3411}
3412
3413static void
3414deactivate_bchannel(struct bchannel *bch)
3415{
3416 struct hfc_multi *hc = bch->hw;
3417 u_long flags;
3418
3419 spin_lock_irqsave(&hc->lock, flags);
fb286f04 3420 mISDN_clear_bchannel(bch);
af69fb3a 3421 hc->chan[bch->slot].coeff_count = 0;
af69fb3a
KK
3422 hc->chan[bch->slot].rx_off = 0;
3423 hc->chan[bch->slot].conf = -1;
3424 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3425 spin_unlock_irqrestore(&hc->lock, flags);
3426}
3427
3428static int
3429handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3430{
3431 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3432 struct hfc_multi *hc = bch->hw;
3433 int ret = -EINVAL;
3434 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3435 unsigned int id;
3436 u_long flags;
3437
3438 switch (hh->prim) {
3439 case PH_DATA_REQ:
3440 if (!skb->len)
3441 break;
3442 spin_lock_irqsave(&hc->lock, flags);
3443 ret = bchannel_senddata(bch, skb);
3444 if (ret > 0) { /* direct TX */
3445 id = hh->id; /* skb can be freed */
3446 hfcmulti_tx(hc, bch->slot);
3447 ret = 0;
3448 /* start fifo */
3449 HFC_outb_nodebug(hc, R_FIFO, 0);
3450 HFC_wait_nodebug(hc);
3451 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3452 spin_unlock_irqrestore(&hc->lock, flags);
3453 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3454 } else
3455 spin_unlock_irqrestore(&hc->lock, flags);
3456 } else
3457 spin_unlock_irqrestore(&hc->lock, flags);
3458 return ret;
3459 case PH_ACTIVATE_REQ:
3460 if (debug & DEBUG_HFCMULTI_MSG)
3461 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3462 __func__, bch->slot);
3463 spin_lock_irqsave(&hc->lock, flags);
3464 /* activate B-channel if not already activated */
3465 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3466 hc->chan[bch->slot].txpending = 0;
3467 ret = mode_hfcmulti(hc, bch->slot,
3468 ch->protocol,
3469 hc->chan[bch->slot].slot_tx,
3470 hc->chan[bch->slot].bank_tx,
3471 hc->chan[bch->slot].slot_rx,
3472 hc->chan[bch->slot].bank_rx);
3473 if (!ret) {
3474 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3475 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3476 /* start decoder */
3477 hc->dtmf = 1;
3478 if (debug & DEBUG_HFCMULTI_DTMF)
3479 printk(KERN_DEBUG
3480 "%s: start dtmf decoder\n",
3481 __func__);
3482 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3483 V_RST_DTMF);
3484 }
3485 }
3486 } else
3487 ret = 0;
3488 spin_unlock_irqrestore(&hc->lock, flags);
3489 if (!ret)
3490 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3491 GFP_KERNEL);
3492 break;
3493 case PH_CONTROL_REQ:
3494 spin_lock_irqsave(&hc->lock, flags);
3495 switch (hh->id) {
3496 case HFC_SPL_LOOP_ON: /* set sample loop */
3497 if (debug & DEBUG_HFCMULTI_MSG)
eac74af9
KK
3498 printk(KERN_DEBUG
3499 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3500 __func__, skb->len);
af69fb3a
KK
3501 ret = 0;
3502 break;
3503 case HFC_SPL_LOOP_OFF: /* set silence */
3504 if (debug & DEBUG_HFCMULTI_MSG)
3505 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3506 __func__);
3507 ret = 0;
3508 break;
3509 default:
3510 printk(KERN_ERR
3511 "%s: unknown PH_CONTROL_REQ info %x\n",
3512 __func__, hh->id);
3513 ret = -EINVAL;
3514 }
3515 spin_unlock_irqrestore(&hc->lock, flags);
3516 break;
3517 case PH_DEACTIVATE_REQ:
3518 deactivate_bchannel(bch); /* locked there */
3519 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3520 GFP_KERNEL);
3521 ret = 0;
3522 break;
3523 }
3524 if (!ret)
3525 dev_kfree_skb(skb);
3526 return ret;
3527}
3528
3529/*
3530 * bchannel control function
3531 */
3532static int
3533channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3534{
3535 int ret = 0;
3536 struct dsp_features *features =
3537 (struct dsp_features *)(*((u_long *)&cq->p1));
3538 struct hfc_multi *hc = bch->hw;
3539 int slot_tx;
3540 int bank_tx;
3541 int slot_rx;
3542 int bank_rx;
3543 int num;
3544
3545 switch (cq->op) {
3546 case MISDN_CTRL_GETOP:
3547 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
8dd2f36f 3548 | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
af69fb3a
KK
3549 break;
3550 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3551 hc->chan[bch->slot].rx_off = !!cq->p1;
3552 if (!hc->chan[bch->slot].rx_off) {
3553 /* reset fifo on rx on */
3554 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3555 HFC_wait_nodebug(hc);
3556 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3557 HFC_wait_nodebug(hc);
3558 }
3559 if (debug & DEBUG_HFCMULTI_MSG)
3560 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3561 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3562 break;
8dd2f36f
AE
3563 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3564 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3565 if (debug & DEBUG_HFCMULTI_MSG)
3566 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3567 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3568 break;
af69fb3a
KK
3569 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3570 if (debug & DEBUG_HFCMULTI_MSG)
3571 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3572 __func__);
3573 /* create confirm */
3574 features->hfc_id = hc->id;
3575 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3576 features->hfc_dtmf = 1;
db9bb63a
KK
3577 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3578 features->hfc_conf = 1;
af69fb3a
KK
3579 features->hfc_loops = 0;
3580 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3581 features->hfc_echocanhw = 1;
3582 } else {
3583 features->pcm_id = hc->pcm;
3584 features->pcm_slots = hc->slots;
3585 features->pcm_banks = 2;
3586 }
3587 break;
3588 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3589 slot_tx = cq->p1 & 0xff;
3590 bank_tx = cq->p1 >> 8;
3591 slot_rx = cq->p2 & 0xff;
3592 bank_rx = cq->p2 >> 8;
3593 if (debug & DEBUG_HFCMULTI_MSG)
3594 printk(KERN_DEBUG
3595 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3596 "slot %d bank %d (RX)\n",
3597 __func__, slot_tx, bank_tx,
3598 slot_rx, bank_rx);
3599 if (slot_tx < hc->slots && bank_tx <= 2 &&
3600 slot_rx < hc->slots && bank_rx <= 2)
3601 hfcmulti_pcm(hc, bch->slot,
3602 slot_tx, bank_tx, slot_rx, bank_rx);
3603 else {
3604 printk(KERN_WARNING
3605 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3606 "slot %d bank %d (RX) out of range\n",
3607 __func__, slot_tx, bank_tx,
3608 slot_rx, bank_rx);
3609 ret = -EINVAL;
3610 }
3611 break;
3612 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3613 if (debug & DEBUG_HFCMULTI_MSG)
3614 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3615 __func__);
3616 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3617 break;
3618 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3619 num = cq->p1 & 0xff;
3620 if (debug & DEBUG_HFCMULTI_MSG)
3621 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3622 __func__, num);
3623 if (num <= 7)
3624 hfcmulti_conf(hc, bch->slot, num);
3625 else {
3626 printk(KERN_WARNING
3627 "%s: HW_CONF_JOIN conf %d out of range\n",
3628 __func__, num);
3629 ret = -EINVAL;
3630 }
3631 break;
3632 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3633 if (debug & DEBUG_HFCMULTI_MSG)
3634 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3635 hfcmulti_conf(hc, bch->slot, -1);
3636 break;
3637 case MISDN_CTRL_HFC_ECHOCAN_ON:
3638 if (debug & DEBUG_HFCMULTI_MSG)
3639 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3640 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3641 vpm_echocan_on(hc, bch->slot, cq->p1);
3642 else
3643 ret = -EINVAL;
3644 break;
3645
3646 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3647 if (debug & DEBUG_HFCMULTI_MSG)
3648 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3649 __func__);
3650 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3651 vpm_echocan_off(hc, bch->slot);
3652 else
3653 ret = -EINVAL;
3654 break;
3655 default:
3656 printk(KERN_WARNING "%s: unknown Op %x\n",
3657 __func__, cq->op);
3658 ret = -EINVAL;
3659 break;
3660 }
3661 return ret;
3662}
3663
3664static int
3665hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3666{
3667 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3668 struct hfc_multi *hc = bch->hw;
3669 int err = -EINVAL;
3670 u_long flags;
3671
3672 if (bch->debug & DEBUG_HW)
3673 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3674 __func__, cmd, arg);
3675 switch (cmd) {
3676 case CLOSE_CHANNEL:
3677 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3678 if (test_bit(FLG_ACTIVE, &bch->Flags))
3679 deactivate_bchannel(bch); /* locked there */
3680 ch->protocol = ISDN_P_NONE;
3681 ch->peer = NULL;
3682 module_put(THIS_MODULE);
3683 err = 0;
3684 break;
3685 case CONTROL_CHANNEL:
3686 spin_lock_irqsave(&hc->lock, flags);
3687 err = channel_bctrl(bch, arg);
3688 spin_unlock_irqrestore(&hc->lock, flags);
3689 break;
3690 default:
3691 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3692 __func__, cmd);
3693 }
3694 return err;
3695}
3696
3697/*
3698 * handle D-channel events
3699 *
3700 * handle state change event
3701 */
3702static void
3703ph_state_change(struct dchannel *dch)
3704{
20b78804 3705 struct hfc_multi *hc;
af69fb3a
KK
3706 int ch, i;
3707
3708 if (!dch) {
eac74af9 3709 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
af69fb3a
KK
3710 return;
3711 }
20b78804 3712 hc = dch->hw;
af69fb3a
KK
3713 ch = dch->slot;
3714
db9bb63a 3715 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3716 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3717 if (debug & DEBUG_HFCMULTI_STATE)
3718 printk(KERN_DEBUG
3719 "%s: E1 TE (id=%d) newstate %x\n",
3720 __func__, hc->id, dch->state);
3721 } else {
3722 if (debug & DEBUG_HFCMULTI_STATE)
3723 printk(KERN_DEBUG
3724 "%s: E1 NT (id=%d) newstate %x\n",
3725 __func__, hc->id, dch->state);
3726 }
3727 switch (dch->state) {
3728 case (1):
3729 if (hc->e1_state != 1) {
eac74af9
KK
3730 for (i = 1; i <= 31; i++) {
3731 /* reset fifos on e1 activation */
3732 HFC_outb_nodebug(hc, R_FIFO,
3733 (i << 1) | 1);
3734 HFC_wait_nodebug(hc);
3735 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3736 V_RES_F);
3737 HFC_wait_nodebug(hc);
3738 }
af69fb3a
KK
3739 }
3740 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3741 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3742 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3743 break;
3744
3745 default:
3746 if (hc->e1_state != 1)
3747 return;
3748 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3749 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3750 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3751 }
3752 hc->e1_state = dch->state;
3753 } else {
3754 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3755 if (debug & DEBUG_HFCMULTI_STATE)
3756 printk(KERN_DEBUG
3757 "%s: S/T TE newstate %x\n",
3758 __func__, dch->state);
3759 switch (dch->state) {
3760 case (0):
3761 l1_event(dch->l1, HW_RESET_IND);
3762 break;
3763 case (3):
3764 l1_event(dch->l1, HW_DEACT_IND);
3765 break;
3766 case (5):
3767 case (8):
3768 l1_event(dch->l1, ANYSIGNAL);
3769 break;
3770 case (6):
3771 l1_event(dch->l1, INFO2);
3772 break;
3773 case (7):
3774 l1_event(dch->l1, INFO4_P8);
3775 break;
3776 }
3777 } else {
3778 if (debug & DEBUG_HFCMULTI_STATE)
3779 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3780 __func__, dch->state);
3781 switch (dch->state) {
3782 case (2):
3783 if (hc->chan[ch].nt_timer == 0) {
3784 hc->chan[ch].nt_timer = -1;
3785 HFC_outb(hc, R_ST_SEL,
3786 hc->chan[ch].port);
3787 /* undocumented: delay after R_ST_SEL */
3788 udelay(1);
3789 HFC_outb(hc, A_ST_WR_STATE, 4 |
3790 V_ST_LD_STA); /* G4 */
3791 udelay(6); /* wait at least 5,21us */
3792 HFC_outb(hc, A_ST_WR_STATE, 4);
3793 dch->state = 4;
3794 } else {
3795 /* one extra count for the next event */
3796 hc->chan[ch].nt_timer =
3797 nt_t1_count[poll_timer] + 1;
3798 HFC_outb(hc, R_ST_SEL,
3799 hc->chan[ch].port);
3800 /* undocumented: delay after R_ST_SEL */
3801 udelay(1);
3802 /* allow G2 -> G3 transition */
3803 HFC_outb(hc, A_ST_WR_STATE, 2 |
3804 V_SET_G2_G3);
3805 }
3806 break;
3807 case (1):
3808 hc->chan[ch].nt_timer = -1;
3809 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3810 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3811 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3812 break;
3813 case (4):
3814 hc->chan[ch].nt_timer = -1;
3815 break;
3816 case (3):
3817 hc->chan[ch].nt_timer = -1;
3818 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3819 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3820 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3821 break;
3822 }
3823 }
3824 }
3825}
3826
3827/*
3828 * called for card mode init message
3829 */
3830
3831static void
3832hfcmulti_initmode(struct dchannel *dch)
3833{
3834 struct hfc_multi *hc = dch->hw;
3835 u_char a_st_wr_state, r_e1_wr_sta;
3836 int i, pt;
3837
3838 if (debug & DEBUG_HFCMULTI_INIT)
3839 printk(KERN_DEBUG "%s: entered\n", __func__);
3840
db9bb63a 3841 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
3842 hc->chan[hc->dslot].slot_tx = -1;
3843 hc->chan[hc->dslot].slot_rx = -1;
3844 hc->chan[hc->dslot].conf = -1;
3845 if (hc->dslot) {
3846 mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3847 -1, 0, -1, 0);
3848 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3849 dch->timer.data = (long) dch;
3850 init_timer(&dch->timer);
3851 }
3852 for (i = 1; i <= 31; i++) {
3853 if (i == hc->dslot)
3854 continue;
3855 hc->chan[i].slot_tx = -1;
3856 hc->chan[i].slot_rx = -1;
3857 hc->chan[i].conf = -1;
3858 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3859 }
3860 /* E1 */
3861 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3862 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3863 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3864 }
3865 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3866 HFC_outb(hc, R_RX0, 0);
3867 hc->hw.r_tx0 = 0 | V_OUT_EN;
3868 } else {
3869 HFC_outb(hc, R_RX0, 1);
3870 hc->hw.r_tx0 = 1 | V_OUT_EN;
3871 }
3872 hc->hw.r_tx1 = V_ATX | V_NTRI;
3873 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3874 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3875 HFC_outb(hc, R_TX_FR0, 0x00);
3876 HFC_outb(hc, R_TX_FR1, 0xf8);
3877
3878 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3879 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3880
3881 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3882
3883 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3884 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3885
3886 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3887 if (debug & DEBUG_HFCMULTI_INIT)
3888 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3889 __func__);
3890 r_e1_wr_sta = 0; /* G0 */
3891 hc->e1_getclock = 0;
3892 } else {
3893 if (debug & DEBUG_HFCMULTI_INIT)
3894 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3895 __func__);
3896 r_e1_wr_sta = 0; /* F0 */
3897 hc->e1_getclock = 1;
3898 }
3899 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3900 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3901 else
3902 HFC_outb(hc, R_SYNC_OUT, 0);
3903 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3904 hc->e1_getclock = 1;
3905 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3906 hc->e1_getclock = 0;
3907 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3908 /* SLAVE (clock master) */
3909 if (debug & DEBUG_HFCMULTI_INIT)
3910 printk(KERN_DEBUG
3911 "%s: E1 port is clock master "
3912 "(clock from PCM)\n", __func__);
3913 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3914 } else {
3915 if (hc->e1_getclock) {
3916 /* MASTER (clock slave) */
3917 if (debug & DEBUG_HFCMULTI_INIT)
3918 printk(KERN_DEBUG
3919 "%s: E1 port is clock slave "
3920 "(clock to PCM)\n", __func__);
3921 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3922 } else {
3923 /* MASTER (clock master) */
3924 if (debug & DEBUG_HFCMULTI_INIT)
3925 printk(KERN_DEBUG "%s: E1 port is "
3926 "clock master "
3927 "(clock from QUARTZ)\n",
3928 __func__);
3929 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3930 V_PCM_SYNC | V_JATT_OFF);
3931 HFC_outb(hc, R_SYNC_OUT, 0);
3932 }
3933 }
3934 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3935 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3936 HFC_outb(hc, R_PWM0, 0x50);
3937 HFC_outb(hc, R_PWM1, 0xff);
3938 /* state machine setup */
3939 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3940 udelay(6); /* wait at least 5,21us */
3941 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3942 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3943 hc->syncronized = 0;
3944 plxsd_checksync(hc, 0);
3945 }
3946 } else {
3947 i = dch->slot;
3948 hc->chan[i].slot_tx = -1;
3949 hc->chan[i].slot_rx = -1;
3950 hc->chan[i].conf = -1;
3951 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3952 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3953 dch->timer.data = (long) dch;
3954 init_timer(&dch->timer);
3955 hc->chan[i - 2].slot_tx = -1;
3956 hc->chan[i - 2].slot_rx = -1;
3957 hc->chan[i - 2].conf = -1;
3958 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3959 hc->chan[i - 1].slot_tx = -1;
3960 hc->chan[i - 1].slot_rx = -1;
3961 hc->chan[i - 1].conf = -1;
3962 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3963 /* ST */
3964 pt = hc->chan[i].port;
3965 /* select interface */
3966 HFC_outb(hc, R_ST_SEL, pt);
3967 /* undocumented: delay after R_ST_SEL */
3968 udelay(1);
3969 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3970 if (debug & DEBUG_HFCMULTI_INIT)
3971 printk(KERN_DEBUG
3972 "%s: ST port %d is NT-mode\n",
3973 __func__, pt);
3974 /* clock delay */
3975 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3976 a_st_wr_state = 1; /* G1 */
3977 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3978 } else {
3979 if (debug & DEBUG_HFCMULTI_INIT)
3980 printk(KERN_DEBUG
3981 "%s: ST port %d is TE-mode\n",
3982 __func__, pt);
3983 /* clock delay */
3984 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3985 a_st_wr_state = 2; /* F2 */
3986 hc->hw.a_st_ctrl0[pt] = 0;
3987 }
3988 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3989 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
db9bb63a
KK
3990 if (hc->ctype == HFC_TYPE_XHFC) {
3991 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3992 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3993 0x7c << 1 /* V_ST_PULSE */);
3994 }
af69fb3a
KK
3995 /* line setup */
3996 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3997 /* disable E-channel */
3998 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3999 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4000 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4001 else
4002 HFC_outb(hc, A_ST_CTRL1, 0);
4003 /* enable B-channel receive */
4004 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
4005 /* state machine setup */
4006 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4007 udelay(6); /* wait at least 5,21us */
4008 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4009 hc->hw.r_sci_msk |= 1 << pt;
4010 /* state machine interrupts */
4011 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4012 /* unset sync on port */
4013 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4014 hc->syncronized &=
4015 ~(1 << hc->chan[dch->slot].port);
4016 plxsd_checksync(hc, 0);
4017 }
4018 }
4019 if (debug & DEBUG_HFCMULTI_INIT)
4020 printk("%s: done\n", __func__);
4021}
4022
4023
4024static int
4025open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4026 struct channel_req *rq)
4027{
4028 int err = 0;
4029 u_long flags;
4030
4031 if (debug & DEBUG_HW_OPEN)
4032 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4033 dch->dev.id, __builtin_return_address(0));
4034 if (rq->protocol == ISDN_P_NONE)
4035 return -EINVAL;
4036 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4037 (dch->dev.D.protocol != rq->protocol)) {
eac74af9
KK
4038 if (debug & DEBUG_HFCMULTI_MODE)
4039 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4040 __func__, dch->dev.D.protocol, rq->protocol);
af69fb3a 4041 }
eac74af9
KK
4042 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4043 (rq->protocol != ISDN_P_TE_S0))
af69fb3a
KK
4044 l1_event(dch->l1, CLOSE_CHANNEL);
4045 if (dch->dev.D.protocol != rq->protocol) {
4046 if (rq->protocol == ISDN_P_TE_S0) {
4047 err = create_l1(dch, hfcm_l1callback);
4048 if (err)
4049 return err;
4050 }
4051 dch->dev.D.protocol = rq->protocol;
4052 spin_lock_irqsave(&hc->lock, flags);
4053 hfcmulti_initmode(dch);
4054 spin_unlock_irqrestore(&hc->lock, flags);
4055 }
4056
4057 if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
4058 ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
4059 ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
4060 ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
4061 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4062 0, NULL, GFP_KERNEL);
4063 }
4064 rq->ch = &dch->dev.D;
4065 if (!try_module_get(THIS_MODULE))
4066 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4067 return 0;
4068}
4069
4070static int
4071open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4072 struct channel_req *rq)
4073{
4074 struct bchannel *bch;
4075 int ch;
4076
ff4cc1de 4077 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
af69fb3a
KK
4078 return -EINVAL;
4079 if (rq->protocol == ISDN_P_NONE)
4080 return -EINVAL;
db9bb63a 4081 if (hc->ctype == HFC_TYPE_E1)
af69fb3a
KK
4082 ch = rq->adr.channel;
4083 else
4084 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4085 bch = hc->chan[ch].bch;
4086 if (!bch) {
4087 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4088 __func__, ch);
4089 return -EINVAL;
4090 }
4091 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4092 return -EBUSY; /* b-channel can be only open once */
8dd2f36f 4093 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
af69fb3a
KK
4094 bch->ch.protocol = rq->protocol;
4095 hc->chan[ch].rx_off = 0;
4096 rq->ch = &bch->ch;
4097 if (!try_module_get(THIS_MODULE))
4098 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4099 return 0;
4100}
4101
4102/*
4103 * device control function
4104 */
4105static int
4106channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4107{
7df3bb8f 4108 struct hfc_multi *hc = dch->hw;
af69fb3a 4109 int ret = 0;
7df3bb8f 4110 int wd_mode, wd_cnt;
af69fb3a
KK
4111
4112 switch (cq->op) {
4113 case MISDN_CTRL_GETOP:
7df3bb8f
AE
4114 cq->op = MISDN_CTRL_HFC_OP;
4115 break;
4116 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4117 wd_cnt = cq->p1 & 0xf;
4118 wd_mode = !!(cq->p1 >> 4);
4119 if (debug & DEBUG_HFCMULTI_MSG)
eac74af9
KK
4120 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4121 ", counter 0x%x\n", __func__,
4122 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
7df3bb8f
AE
4123 /* set the watchdog timer */
4124 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4125 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4126 if (hc->ctype == HFC_TYPE_XHFC)
4127 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4128 /* init the watchdog register and reset the counter */
4129 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4130 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4131 /* enable the watchdog output for Speech-Design */
eac74af9
KK
4132 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4133 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
7df3bb8f
AE
4134 HFC_outb(hc, R_GPIO_OUT1, 0);
4135 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4136 }
4137 break;
4138 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4139 if (debug & DEBUG_HFCMULTI_MSG)
4140 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4141 __func__);
4142 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
af69fb3a
KK
4143 break;
4144 default:
4145 printk(KERN_WARNING "%s: unknown Op %x\n",
4146 __func__, cq->op);
4147 ret = -EINVAL;
4148 break;
4149 }
4150 return ret;
4151}
4152
4153static int
4154hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4155{
4156 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4157 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4158 struct hfc_multi *hc = dch->hw;
4159 struct channel_req *rq;
4160 int err = 0;
4161 u_long flags;
4162
4163 if (dch->debug & DEBUG_HW)
4164 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4165 __func__, cmd, arg);
4166 switch (cmd) {
4167 case OPEN_CHANNEL:
4168 rq = arg;
4169 switch (rq->protocol) {
4170 case ISDN_P_TE_S0:
4171 case ISDN_P_NT_S0:
db9bb63a 4172 if (hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
4173 err = -EINVAL;
4174 break;
4175 }
4176 err = open_dchannel(hc, dch, rq); /* locked there */
4177 break;
4178 case ISDN_P_TE_E1:
4179 case ISDN_P_NT_E1:
db9bb63a 4180 if (hc->ctype != HFC_TYPE_E1) {
af69fb3a
KK
4181 err = -EINVAL;
4182 break;
4183 }
4184 err = open_dchannel(hc, dch, rq); /* locked there */
4185 break;
4186 default:
4187 spin_lock_irqsave(&hc->lock, flags);
4188 err = open_bchannel(hc, dch, rq);
4189 spin_unlock_irqrestore(&hc->lock, flags);
4190 }
4191 break;
4192 case CLOSE_CHANNEL:
4193 if (debug & DEBUG_HW_OPEN)
4194 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4195 __func__, dch->dev.id,
4196 __builtin_return_address(0));
4197 module_put(THIS_MODULE);
4198 break;
4199 case CONTROL_CHANNEL:
4200 spin_lock_irqsave(&hc->lock, flags);
4201 err = channel_dctrl(dch, arg);
4202 spin_unlock_irqrestore(&hc->lock, flags);
4203 break;
4204 default:
4205 if (dch->debug & DEBUG_HW)
4206 printk(KERN_DEBUG "%s: unknown command %x\n",
4207 __func__, cmd);
4208 err = -EINVAL;
4209 }
4210 return err;
4211}
4212
3bd69ad1
AE
4213static int
4214clockctl(void *priv, int enable)
4215{
4216 struct hfc_multi *hc = priv;
4217
4218 hc->iclock_on = enable;
4219 return 0;
4220}
4221
af69fb3a
KK
4222/*
4223 * initialize the card
4224 */
4225
4226/*
4227 * start timer irq, wait some time and check if we have interrupts.
4228 * if not, reset chip and try again.
4229 */
4230static int
4231init_card(struct hfc_multi *hc)
4232{
4233 int err = -EIO;
4234 u_long flags;
c31655fc 4235 void __iomem *plx_acc;
af69fb3a
KK
4236 u_long plx_flags;
4237
4238 if (debug & DEBUG_HFCMULTI_INIT)
4239 printk(KERN_DEBUG "%s: entered\n", __func__);
4240
4241 spin_lock_irqsave(&hc->lock, flags);
4242 /* set interrupts but leave global interrupt disabled */
4243 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4244 disable_hwirq(hc);
4245 spin_unlock_irqrestore(&hc->lock, flags);
4246
db9bb63a 4247 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
af69fb3a
KK
4248 "HFC-multi", hc)) {
4249 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
db9bb63a
KK
4250 hc->irq);
4251 hc->irq = 0;
af69fb3a
KK
4252 return -EIO;
4253 }
af69fb3a
KK
4254
4255 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4256 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 4257 plx_acc = hc->plx_membase + PLX_INTCSR;
af69fb3a
KK
4258 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4259 plx_acc); /* enable PCI & LINT1 irq */
4260 spin_unlock_irqrestore(&plx_lock, plx_flags);
4261 }
4262
4263 if (debug & DEBUG_HFCMULTI_INIT)
4264 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4265 __func__, hc->irq, hc->irqcnt);
4266 err = init_chip(hc);
4267 if (err)
4268 goto error;
4269 /*
4270 * Finally enable IRQ output
698f9315 4271 * this is only allowed, if an IRQ routine is already
af69fb3a
KK
4272 * established for this HFC, so don't do that earlier
4273 */
4274 spin_lock_irqsave(&hc->lock, flags);
4275 enable_hwirq(hc);
4276 spin_unlock_irqrestore(&hc->lock, flags);
4277 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4278 set_current_state(TASK_UNINTERRUPTIBLE);
4279 schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4280 /* turn IRQ off until chip is completely initialized */
4281 spin_lock_irqsave(&hc->lock, flags);
4282 disable_hwirq(hc);
4283 spin_unlock_irqrestore(&hc->lock, flags);
4284 if (debug & DEBUG_HFCMULTI_INIT)
4285 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4286 __func__, hc->irq, hc->irqcnt);
4287 if (hc->irqcnt) {
4288 if (debug & DEBUG_HFCMULTI_INIT)
4289 printk(KERN_DEBUG "%s: done\n", __func__);
4290
4291 return 0;
4292 }
4293 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4294 printk(KERN_INFO "ignoring missing interrupts\n");
4295 return 0;
4296 }
4297
4298 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4299 hc->irq);
4300
4301 err = -EIO;
4302
4303error:
4304 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4305 spin_lock_irqsave(&plx_lock, plx_flags);
c31655fc 4306 plx_acc = hc->plx_membase + PLX_INTCSR;
af69fb3a
KK
4307 writew(0x00, plx_acc); /*disable IRQs*/
4308 spin_unlock_irqrestore(&plx_lock, plx_flags);
4309 }
4310
4311 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4312 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
af69fb3a
KK
4313 if (hc->irq) {
4314 free_irq(hc->irq, hc);
4315 hc->irq = 0;
4316 }
4317
4318 if (debug & DEBUG_HFCMULTI_INIT)
4319 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4320 return err;
4321}
4322
4323/*
4324 * find pci device and set it up
4325 */
4326
4327static int
4328setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4329 const struct pci_device_id *ent)
4330{
4331 struct hm_map *m = (struct hm_map *)ent->driver_data;
4332
4333 printk(KERN_INFO
4334 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4335 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4336
4337 hc->pci_dev = pdev;
4338 if (m->clock2)
4339 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4340
4341 if (ent->device == 0xB410) {
4342 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4343 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4344 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4345 hc->slots = 32;
4346 }
4347
4348 if (hc->pci_dev->irq <= 0) {
4349 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4350 return -EIO;
4351 }
4352 if (pci_enable_device(hc->pci_dev)) {
4353 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4354 return -EIO;
4355 }
4356 hc->leds = m->leds;
4357 hc->ledstate = 0xAFFEAFFE;
4358 hc->opticalsupport = m->opticalsupport;
4359
db9bb63a
KK
4360 hc->pci_iobase = 0;
4361 hc->pci_membase = NULL;
4362 hc->plx_membase = NULL;
4363
af69fb3a
KK
4364 /* set memory access methods */
4365 if (m->io_mode) /* use mode from card config */
4366 hc->io_mode = m->io_mode;
4367 switch (hc->io_mode) {
4368 case HFC_IO_MODE_PLXSD:
4369 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4370 hc->slots = 128; /* required */
af69fb3a
KK
4371 hc->HFC_outb = HFC_outb_pcimem;
4372 hc->HFC_inb = HFC_inb_pcimem;
4373 hc->HFC_inw = HFC_inw_pcimem;
4374 hc->HFC_wait = HFC_wait_pcimem;
4375 hc->read_fifo = read_fifo_pcimem;
4376 hc->write_fifo = write_fifo_pcimem;
af69fb3a
KK
4377 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4378 /* MEMBASE 1 is PLX PCI Bridge */
4379
4380 if (!hc->plx_origmembase) {
4381 printk(KERN_WARNING
4382 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4383 pci_disable_device(hc->pci_dev);
4384 return -EIO;
4385 }
4386
4387 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4388 if (!hc->plx_membase) {
4389 printk(KERN_WARNING
4390 "HFC-multi: failed to remap plx address space. "
4391 "(internal error)\n");
4392 pci_disable_device(hc->pci_dev);
4393 return -EIO;
4394 }
4395 printk(KERN_INFO
4396 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4397 (u_long)hc->plx_membase, hc->plx_origmembase);
4398
4399 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4400 /* MEMBASE 1 is PLX PCI Bridge */
4401 if (!hc->pci_origmembase) {
4402 printk(KERN_WARNING
4403 "HFC-multi: No IO-Memory for PCI card found\n");
4404 pci_disable_device(hc->pci_dev);
4405 return -EIO;
4406 }
4407
4408 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4409 if (!hc->pci_membase) {
4410 printk(KERN_WARNING "HFC-multi: failed to remap io "
4411 "address space. (internal error)\n");
4412 pci_disable_device(hc->pci_dev);
4413 return -EIO;
4414 }
4415
4416 printk(KERN_INFO
4417 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4418 "leds-type %d\n",
4419 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4420 hc->pci_dev->irq, HZ, hc->leds);
4421 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4422 break;
4423 case HFC_IO_MODE_PCIMEM:
db9bb63a
KK
4424 hc->HFC_outb = HFC_outb_pcimem;
4425 hc->HFC_inb = HFC_inb_pcimem;
4426 hc->HFC_inw = HFC_inw_pcimem;
4427 hc->HFC_wait = HFC_wait_pcimem;
4428 hc->read_fifo = read_fifo_pcimem;
4429 hc->write_fifo = write_fifo_pcimem;
af69fb3a
KK
4430 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4431 if (!hc->pci_origmembase) {
4432 printk(KERN_WARNING
4433 "HFC-multi: No IO-Memory for PCI card found\n");
4434 pci_disable_device(hc->pci_dev);
4435 return -EIO;
4436 }
4437
4438 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4439 if (!hc->pci_membase) {
4440 printk(KERN_WARNING
4441 "HFC-multi: failed to remap io address space. "
4442 "(internal error)\n");
4443 pci_disable_device(hc->pci_dev);
4444 return -EIO;
4445 }
db9bb63a
KK
4446 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4447 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
af69fb3a
KK
4448 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4449 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4450 break;
4451 case HFC_IO_MODE_REGIO:
db9bb63a
KK
4452 hc->HFC_outb = HFC_outb_regio;
4453 hc->HFC_inb = HFC_inb_regio;
4454 hc->HFC_inw = HFC_inw_regio;
4455 hc->HFC_wait = HFC_wait_regio;
4456 hc->read_fifo = read_fifo_regio;
4457 hc->write_fifo = write_fifo_regio;
af69fb3a
KK
4458 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4459 if (!hc->pci_iobase) {
4460 printk(KERN_WARNING
4461 "HFC-multi: No IO for PCI card found\n");
4462 pci_disable_device(hc->pci_dev);
4463 return -EIO;
4464 }
4465
4466 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4467 printk(KERN_WARNING "HFC-multi: failed to request "
4468 "address space at 0x%08lx (internal error)\n",
4469 hc->pci_iobase);
4470 pci_disable_device(hc->pci_dev);
4471 return -EIO;
4472 }
4473
4474 printk(KERN_INFO
4475 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4476 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4477 hc->pci_dev->irq, HZ, hc->leds);
4478 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4479 break;
4480 default:
4481 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4482 pci_disable_device(hc->pci_dev);
4483 return -EIO;
4484 }
4485
4486 pci_set_drvdata(hc->pci_dev, hc);
4487
4488 /* At this point the needed PCI config is done */
4489 /* fifos are still not enabled */
4490 return 0;
4491}
4492
4493
4494/*
4495 * remove port
4496 */
4497
4498static void
4499release_port(struct hfc_multi *hc, struct dchannel *dch)
4500{
4501 int pt, ci, i = 0;
4502 u_long flags;
4503 struct bchannel *pb;
4504
4505 ci = dch->slot;
4506 pt = hc->chan[ci].port;
4507
4508 if (debug & DEBUG_HFCMULTI_INIT)
4509 printk(KERN_DEBUG "%s: entered for port %d\n",
4510 __func__, pt + 1);
4511
4512 if (pt >= hc->ports) {
4513 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4514 __func__, pt + 1);
4515 return;
4516 }
4517
4518 if (debug & DEBUG_HFCMULTI_INIT)
4519 printk(KERN_DEBUG "%s: releasing port=%d\n",
4520 __func__, pt + 1);
4521
4522 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4523 l1_event(dch->l1, CLOSE_CHANNEL);
4524
4525 hc->chan[ci].dch = NULL;
4526
4527 if (hc->created[pt]) {
4528 hc->created[pt] = 0;
4529 mISDN_unregister_device(&dch->dev);
4530 }
4531
4532 spin_lock_irqsave(&hc->lock, flags);
4533
4534 if (dch->timer.function) {
4535 del_timer(&dch->timer);
4536 dch->timer.function = NULL;
4537 }
4538
db9bb63a 4539 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
af69fb3a
KK
4540 /* remove sync */
4541 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4542 hc->syncronized = 0;
4543 plxsd_checksync(hc, 1);
4544 }
4545 /* free channels */
4546 for (i = 0; i <= 31; i++) {
4547 if (hc->chan[i].bch) {
4548 if (debug & DEBUG_HFCMULTI_INIT)
4549 printk(KERN_DEBUG
4550 "%s: free port %d channel %d\n",
4551 __func__, hc->chan[i].port+1, i);
4552 pb = hc->chan[i].bch;
4553 hc->chan[i].bch = NULL;
4554 spin_unlock_irqrestore(&hc->lock, flags);
4555 mISDN_freebchannel(pb);
4556 kfree(pb);
4557 kfree(hc->chan[i].coeff);
4558 spin_lock_irqsave(&hc->lock, flags);
4559 }
4560 }
4561 } else {
4562 /* remove sync */
4563 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4564 hc->syncronized &=
4565 ~(1 << hc->chan[ci].port);
4566 plxsd_checksync(hc, 1);
4567 }
4568 /* free channels */
4569 if (hc->chan[ci - 2].bch) {
4570 if (debug & DEBUG_HFCMULTI_INIT)
4571 printk(KERN_DEBUG
4572 "%s: free port %d channel %d\n",
4573 __func__, hc->chan[ci - 2].port+1,
4574 ci - 2);
4575 pb = hc->chan[ci - 2].bch;
4576 hc->chan[ci - 2].bch = NULL;
4577 spin_unlock_irqrestore(&hc->lock, flags);
4578 mISDN_freebchannel(pb);
4579 kfree(pb);
4580 kfree(hc->chan[ci - 2].coeff);
4581 spin_lock_irqsave(&hc->lock, flags);
4582 }
4583 if (hc->chan[ci - 1].bch) {
4584 if (debug & DEBUG_HFCMULTI_INIT)
4585 printk(KERN_DEBUG
4586 "%s: free port %d channel %d\n",
4587 __func__, hc->chan[ci - 1].port+1,
4588 ci - 1);
4589 pb = hc->chan[ci - 1].bch;
4590 hc->chan[ci - 1].bch = NULL;
4591 spin_unlock_irqrestore(&hc->lock, flags);
4592 mISDN_freebchannel(pb);
4593 kfree(pb);
4594 kfree(hc->chan[ci - 1].coeff);
4595 spin_lock_irqsave(&hc->lock, flags);
4596 }
4597 }
4598
4599 spin_unlock_irqrestore(&hc->lock, flags);
4600
4601 if (debug & DEBUG_HFCMULTI_INIT)
4602 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4603 mISDN_freedchannel(dch);
4604 kfree(dch);
4605
4606 if (debug & DEBUG_HFCMULTI_INIT)
4607 printk(KERN_DEBUG "%s: done!\n", __func__);
4608}
4609
4610static void
4611release_card(struct hfc_multi *hc)
4612{
4613 u_long flags;
4614 int ch;
4615
4616 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4617 printk(KERN_DEBUG "%s: release card (%d) entered\n",
af69fb3a
KK
4618 __func__, hc->id);
4619
3bd69ad1
AE
4620 /* unregister clock source */
4621 if (hc->iclock)
4622 mISDN_unregister_clock(hc->iclock);
4623
4624 /* disable irq */
af69fb3a
KK
4625 spin_lock_irqsave(&hc->lock, flags);
4626 disable_hwirq(hc);
4627 spin_unlock_irqrestore(&hc->lock, flags);
af69fb3a
KK
4628 udelay(1000);
4629
4630 /* dimm leds */
4631 if (hc->leds)
4632 hfcmulti_leds(hc);
4633
4634 /* disable D-channels & B-channels */
4635 if (debug & DEBUG_HFCMULTI_INIT)
4636 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4637 __func__);
4638 for (ch = 0; ch <= 31; ch++) {
4639 if (hc->chan[ch].dch)
4640 release_port(hc, hc->chan[ch].dch);
4641 }
4642
4643 /* release hardware & irq */
4644 if (hc->irq) {
4645 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4646 printk(KERN_DEBUG "%s: free irq %d\n",
af69fb3a
KK
4647 __func__, hc->irq);
4648 free_irq(hc->irq, hc);
4649 hc->irq = 0;
4650
4651 }
4652 release_io_hfcmulti(hc);
4653
4654 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4655 printk(KERN_DEBUG "%s: remove instance from list\n",
af69fb3a
KK
4656 __func__);
4657 list_del(&hc->list);
4658
4659 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4660 printk(KERN_DEBUG "%s: delete instance\n", __func__);
af69fb3a
KK
4661 if (hc == syncmaster)
4662 syncmaster = NULL;
4663 kfree(hc);
4664 if (debug & DEBUG_HFCMULTI_INIT)
eac74af9 4665 printk(KERN_DEBUG "%s: card successfully removed\n",
af69fb3a
KK
4666 __func__);
4667}
4668
4669static int
4670init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4671{
4672 struct dchannel *dch;
4673 struct bchannel *bch;
4674 int ch, ret = 0;
4675 char name[MISDN_MAX_IDLEN];
4676
4677 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4678 if (!dch)
4679 return -ENOMEM;
4680 dch->debug = debug;
4681 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4682 dch->hw = hc;
4683 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4684 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4685 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4686 dch->dev.D.send = handle_dmsg;
4687 dch->dev.D.ctrl = hfcm_dctrl;
eac74af9 4688 dch->dev.nrbchan = (hc->dslot) ? 30 : 31;
af69fb3a
KK
4689 dch->slot = hc->dslot;
4690 hc->chan[hc->dslot].dch = dch;
4691 hc->chan[hc->dslot].port = 0;
4692 hc->chan[hc->dslot].nt_timer = -1;
4693 for (ch = 1; ch <= 31; ch++) {
4694 if (ch == hc->dslot) /* skip dchannel */
4695 continue;
4696 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4697 if (!bch) {
4698 printk(KERN_ERR "%s: no memory for bchannel\n",
4699 __func__);
4700 ret = -ENOMEM;
4701 goto free_chan;
4702 }
4703 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4704 if (!hc->chan[ch].coeff) {
4705 printk(KERN_ERR "%s: no memory for coeffs\n",
4706 __func__);
4707 ret = -ENOMEM;
23b904f3 4708 kfree(bch);
af69fb3a
KK
4709 goto free_chan;
4710 }
4711 bch->nr = ch;
4712 bch->slot = ch;
4713 bch->debug = debug;
4714 mISDN_initbchannel(bch, MAX_DATA_MEM);
4715 bch->hw = hc;
4716 bch->ch.send = handle_bmsg;
4717 bch->ch.ctrl = hfcm_bctrl;
4718 bch->ch.nr = ch;
4719 list_add(&bch->ch.list, &dch->dev.bchannels);
4720 hc->chan[ch].bch = bch;
4721 hc->chan[ch].port = 0;
ff4cc1de 4722 set_channelmap(bch->nr, dch->dev.channelmap);
af69fb3a
KK
4723 }
4724 /* set optical line type */
4725 if (port[Port_cnt] & 0x001) {
4726 if (!m->opticalsupport) {
4727 printk(KERN_INFO
4728 "This board has no optical "
4729 "support\n");
4730 } else {
4731 if (debug & DEBUG_HFCMULTI_INIT)
4732 printk(KERN_DEBUG
4733 "%s: PORT set optical "
4734 "interfacs: card(%d) "
4735 "port(%d)\n",
4736 __func__,
4737 HFC_cnt + 1, 1);
4738 test_and_set_bit(HFC_CFG_OPTICAL,
4739 &hc->chan[hc->dslot].cfg);
4740 }
4741 }
4742 /* set LOS report */
4743 if (port[Port_cnt] & 0x004) {
4744 if (debug & DEBUG_HFCMULTI_INIT)
4745 printk(KERN_DEBUG "%s: PORT set "
4746 "LOS report: card(%d) port(%d)\n",
4747 __func__, HFC_cnt + 1, 1);
4748 test_and_set_bit(HFC_CFG_REPORT_LOS,
4749 &hc->chan[hc->dslot].cfg);
4750 }
4751 /* set AIS report */
4752 if (port[Port_cnt] & 0x008) {
4753 if (debug & DEBUG_HFCMULTI_INIT)
4754 printk(KERN_DEBUG "%s: PORT set "
4755 "AIS report: card(%d) port(%d)\n",
4756 __func__, HFC_cnt + 1, 1);
4757 test_and_set_bit(HFC_CFG_REPORT_AIS,
4758 &hc->chan[hc->dslot].cfg);
4759 }
4760 /* set SLIP report */
4761 if (port[Port_cnt] & 0x010) {
4762 if (debug & DEBUG_HFCMULTI_INIT)
4763 printk(KERN_DEBUG
4764 "%s: PORT set SLIP report: "
4765 "card(%d) port(%d)\n",
4766 __func__, HFC_cnt + 1, 1);
4767 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4768 &hc->chan[hc->dslot].cfg);
4769 }
4770 /* set RDI report */
4771 if (port[Port_cnt] & 0x020) {
4772 if (debug & DEBUG_HFCMULTI_INIT)
4773 printk(KERN_DEBUG
4774 "%s: PORT set RDI report: "
4775 "card(%d) port(%d)\n",
4776 __func__, HFC_cnt + 1, 1);
4777 test_and_set_bit(HFC_CFG_REPORT_RDI,
4778 &hc->chan[hc->dslot].cfg);
4779 }
4780 /* set CRC-4 Mode */
4781 if (!(port[Port_cnt] & 0x100)) {
4782 if (debug & DEBUG_HFCMULTI_INIT)
4783 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4784 " card(%d) port(%d)\n",
4785 __func__, HFC_cnt + 1, 1);
4786 test_and_set_bit(HFC_CFG_CRC4,
4787 &hc->chan[hc->dslot].cfg);
4788 } else {
4789 if (debug & DEBUG_HFCMULTI_INIT)
4790 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4791 " report: card(%d) port(%d)\n",
4792 __func__, HFC_cnt + 1, 1);
4793 }
4794 /* set forced clock */
4795 if (port[Port_cnt] & 0x0200) {
4796 if (debug & DEBUG_HFCMULTI_INIT)
4797 printk(KERN_DEBUG "%s: PORT force getting clock from "
4798 "E1: card(%d) port(%d)\n",
4799 __func__, HFC_cnt + 1, 1);
4800 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4801 } else
4802 if (port[Port_cnt] & 0x0400) {
4803 if (debug & DEBUG_HFCMULTI_INIT)
4804 printk(KERN_DEBUG "%s: PORT force putting clock to "
4805 "E1: card(%d) port(%d)\n",
4806 __func__, HFC_cnt + 1, 1);
4807 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4808 }
4809 /* set JATT PLL */
4810 if (port[Port_cnt] & 0x0800) {
4811 if (debug & DEBUG_HFCMULTI_INIT)
4812 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4813 "E1: card(%d) port(%d)\n",
4814 __func__, HFC_cnt + 1, 1);
4815 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4816 }
4817 /* set elastic jitter buffer */
4818 if (port[Port_cnt] & 0x3000) {
4819 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4820 if (debug & DEBUG_HFCMULTI_INIT)
4821 printk(KERN_DEBUG
4822 "%s: PORT set elastic "
4823 "buffer to %d: card(%d) port(%d)\n",
4824 __func__, hc->chan[hc->dslot].jitter,
4825 HFC_cnt + 1, 1);
4826 } else
4827 hc->chan[hc->dslot].jitter = 2; /* default */
4828 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
b36b654a 4829 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
af69fb3a
KK
4830 if (ret)
4831 goto free_chan;
4832 hc->created[0] = 1;
4833 return ret;
4834free_chan:
4835 release_port(hc, dch);
4836 return ret;
4837}
4838
4839static int
4840init_multi_port(struct hfc_multi *hc, int pt)
4841{
4842 struct dchannel *dch;
4843 struct bchannel *bch;
4844 int ch, i, ret = 0;
4845 char name[MISDN_MAX_IDLEN];
4846
4847 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4848 if (!dch)
4849 return -ENOMEM;
4850 dch->debug = debug;
4851 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4852 dch->hw = hc;
4853 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4854 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4855 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4856 dch->dev.D.send = handle_dmsg;
4857 dch->dev.D.ctrl = hfcm_dctrl;
4858 dch->dev.nrbchan = 2;
4859 i = pt << 2;
4860 dch->slot = i + 2;
4861 hc->chan[i + 2].dch = dch;
4862 hc->chan[i + 2].port = pt;
4863 hc->chan[i + 2].nt_timer = -1;
4864 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4865 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4866 if (!bch) {
4867 printk(KERN_ERR "%s: no memory for bchannel\n",
4868 __func__);
4869 ret = -ENOMEM;
4870 goto free_chan;
4871 }
4872 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4873 if (!hc->chan[i + ch].coeff) {
4874 printk(KERN_ERR "%s: no memory for coeffs\n",
4875 __func__);
4876 ret = -ENOMEM;
23b904f3 4877 kfree(bch);
af69fb3a
KK
4878 goto free_chan;
4879 }
4880 bch->nr = ch + 1;
4881 bch->slot = i + ch;
4882 bch->debug = debug;
4883 mISDN_initbchannel(bch, MAX_DATA_MEM);
4884 bch->hw = hc;
4885 bch->ch.send = handle_bmsg;
4886 bch->ch.ctrl = hfcm_bctrl;
4887 bch->ch.nr = ch + 1;
4888 list_add(&bch->ch.list, &dch->dev.bchannels);
4889 hc->chan[i + ch].bch = bch;
4890 hc->chan[i + ch].port = pt;
ff4cc1de 4891 set_channelmap(bch->nr, dch->dev.channelmap);
af69fb3a
KK
4892 }
4893 /* set master clock */
4894 if (port[Port_cnt] & 0x001) {
4895 if (debug & DEBUG_HFCMULTI_INIT)
4896 printk(KERN_DEBUG
4897 "%s: PROTOCOL set master clock: "
4898 "card(%d) port(%d)\n",
4899 __func__, HFC_cnt + 1, pt + 1);
4900 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4901 printk(KERN_ERR "Error: Master clock "
4902 "for port(%d) of card(%d) is only"
4903 " possible with TE-mode\n",
4904 pt + 1, HFC_cnt + 1);
4905 ret = -EINVAL;
4906 goto free_chan;
4907 }
4908 if (hc->masterclk >= 0) {
4909 printk(KERN_ERR "Error: Master clock "
4910 "for port(%d) of card(%d) already "
4911 "defined for port(%d)\n",
4912 pt + 1, HFC_cnt + 1, hc->masterclk+1);
4913 ret = -EINVAL;
4914 goto free_chan;
4915 }
4916 hc->masterclk = pt;
4917 }
4918 /* set transmitter line to non capacitive */
4919 if (port[Port_cnt] & 0x002) {
4920 if (debug & DEBUG_HFCMULTI_INIT)
4921 printk(KERN_DEBUG
4922 "%s: PROTOCOL set non capacitive "
4923 "transmitter: card(%d) port(%d)\n",
4924 __func__, HFC_cnt + 1, pt + 1);
4925 test_and_set_bit(HFC_CFG_NONCAP_TX,
4926 &hc->chan[i + 2].cfg);
4927 }
4928 /* disable E-channel */
4929 if (port[Port_cnt] & 0x004) {
eac74af9 4930 if (debug & DEBUG_HFCMULTI_INIT)
af69fb3a
KK
4931 printk(KERN_DEBUG
4932 "%s: PROTOCOL disable E-channel: "
4933 "card(%d) port(%d)\n",
4934 __func__, HFC_cnt + 1, pt + 1);
4935 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4936 &hc->chan[i + 2].cfg);
4937 }
db9bb63a
KK
4938 if (hc->ctype == HFC_TYPE_XHFC) {
4939 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4940 HFC_cnt + 1, pt + 1);
4941 ret = mISDN_register_device(&dch->dev, NULL, name);
4942 } else {
4943 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4944 hc->ctype, HFC_cnt + 1, pt + 1);
4945 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4946 }
af69fb3a
KK
4947 if (ret)
4948 goto free_chan;
4949 hc->created[pt] = 1;
4950 return ret;
4951free_chan:
4952 release_port(hc, dch);
4953 return ret;
4954}
4955
4956static int
db9bb63a
KK
4957hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4958 const struct pci_device_id *ent)
af69fb3a 4959{
af69fb3a
KK
4960 int ret_err = 0;
4961 int pt;
4962 struct hfc_multi *hc;
4963 u_long flags;
4964 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
8dd2f36f 4965 int i;
af69fb3a
KK
4966
4967 if (HFC_cnt >= MAX_CARDS) {
4968 printk(KERN_ERR "too many cards (max=%d).\n",
4969 MAX_CARDS);
4970 return -EINVAL;
4971 }
4972 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4973 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4974 "type[%d] %d was supplied as module parameter\n",
4975 m->vendor_name, m->card_name, m->type, HFC_cnt,
4976 type[HFC_cnt] & 0xff);
4977 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4978 "first, to see cards and their types.");
4979 return -EINVAL;
4980 }
4981 if (debug & DEBUG_HFCMULTI_INIT)
4982 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4983 __func__, m->vendor_name, m->card_name, m->type,
4984 type[HFC_cnt]);
4985
4986 /* allocate card+fifo structure */
4987 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4988 if (!hc) {
4989 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4990 return -ENOMEM;
4991 }
4992 spin_lock_init(&hc->lock);
4993 hc->mtyp = m;
db9bb63a 4994 hc->ctype = m->type;
af69fb3a
KK
4995 hc->ports = m->ports;
4996 hc->id = HFC_cnt;
4997 hc->pcm = pcm[HFC_cnt];
4998 hc->io_mode = iomode[HFC_cnt];
db9bb63a 4999 if (dslot[HFC_cnt] < 0 && hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
5000 hc->dslot = 0;
5001 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
5002 "31 B-channels\n");
db9bb63a
KK
5003 }
5004 if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32
5005 && hc->ctype == HFC_TYPE_E1) {
af69fb3a
KK
5006 hc->dslot = dslot[HFC_cnt];
5007 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
5008 "time slot %d\n", dslot[HFC_cnt]);
5009 } else
5010 hc->dslot = 16;
5011
5012 /* set chip specific features */
5013 hc->masterclk = -1;
5014 if (type[HFC_cnt] & 0x100) {
5015 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
8dd2f36f 5016 hc->silence = 0xff; /* ulaw silence */
af69fb3a 5017 } else
8dd2f36f
AE
5018 hc->silence = 0x2a; /* alaw silence */
5019 if ((poll >> 1) > sizeof(hc->silence_data)) {
5020 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5021 "please fix\n");
5022 return -EINVAL;
5023 }
5024 for (i = 0; i < (poll >> 1); i++)
5025 hc->silence_data[i] = hc->silence;
5026
db9bb63a
KK
5027 if (hc->ctype != HFC_TYPE_XHFC) {
5028 if (!(type[HFC_cnt] & 0x200))
5029 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5030 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5031 }
af69fb3a
KK
5032
5033 if (type[HFC_cnt] & 0x800)
5034 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5035 if (type[HFC_cnt] & 0x1000) {
5036 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5037 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5038 }
5039 if (type[HFC_cnt] & 0x4000)
5040 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5041 if (type[HFC_cnt] & 0x8000)
5042 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5043 hc->slots = 32;
5044 if (type[HFC_cnt] & 0x10000)
5045 hc->slots = 64;
5046 if (type[HFC_cnt] & 0x20000)
5047 hc->slots = 128;
5048 if (type[HFC_cnt] & 0x80000) {
5049 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5050 hc->wdcount = 0;
5051 hc->wdbyte = V_GPIO_OUT2;
5052 printk(KERN_NOTICE "Watchdog enabled\n");
5053 }
5054
db9bb63a
KK
5055 if (pdev && ent)
5056 /* setup pci, hc->slots may change due to PLXSD */
5057 ret_err = setup_pci(hc, pdev, ent);
5058 else
5059#ifdef CONFIG_MISDN_HFCMULTI_8xx
5060 ret_err = setup_embedded(hc, m);
5061#else
5062 {
5063 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5064 ret_err = -EIO;
5065 }
5066#endif
af69fb3a
KK
5067 if (ret_err) {
5068 if (hc == syncmaster)
5069 syncmaster = NULL;
5070 kfree(hc);
5071 return ret_err;
5072 }
5073
db9bb63a
KK
5074 hc->HFC_outb_nodebug = hc->HFC_outb;
5075 hc->HFC_inb_nodebug = hc->HFC_inb;
5076 hc->HFC_inw_nodebug = hc->HFC_inw;
5077 hc->HFC_wait_nodebug = hc->HFC_wait;
5078#ifdef HFC_REGISTER_DEBUG
5079 hc->HFC_outb = HFC_outb_debug;
5080 hc->HFC_inb = HFC_inb_debug;
5081 hc->HFC_inw = HFC_inw_debug;
5082 hc->HFC_wait = HFC_wait_debug;
5083#endif
5084 /* create channels */
af69fb3a
KK
5085 for (pt = 0; pt < hc->ports; pt++) {
5086 if (Port_cnt >= MAX_PORTS) {
5087 printk(KERN_ERR "too many ports (max=%d).\n",
5088 MAX_PORTS);
5089 ret_err = -EINVAL;
5090 goto free_card;
5091 }
db9bb63a 5092 if (hc->ctype == HFC_TYPE_E1)
af69fb3a
KK
5093 ret_err = init_e1_port(hc, m);
5094 else
5095 ret_err = init_multi_port(hc, pt);
5096 if (debug & DEBUG_HFCMULTI_INIT)
5097 printk(KERN_DEBUG
5098 "%s: Registering D-channel, card(%d) port(%d)"
5099 "result %d\n",
5100 __func__, HFC_cnt + 1, pt, ret_err);
5101
5102 if (ret_err) {
5103 while (pt) { /* release already registered ports */
5104 pt--;
5105 release_port(hc, hc->chan[(pt << 2) + 2].dch);
5106 }
5107 goto free_card;
5108 }
5109 Port_cnt++;
5110 }
5111
5112 /* disp switches */
5113 switch (m->dip_type) {
5114 case DIP_4S:
5115 /*
69e656cc 5116 * Get DIP setting for beroNet 1S/2S/4S cards
af69fb3a
KK
5117 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5118 * GPI 19/23 (R_GPI_IN2))
5119 */
5120 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5121 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5122 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5123
5124 /* Port mode (TE/NT) jumpers */
5125 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5126
5127 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5128 pmj = ~pmj & 0xf;
5129
5130 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5131 m->vendor_name, m->card_name, dips, pmj);
5132 break;
5133 case DIP_8S:
5134 /*
69e656cc
KK
5135 * Get DIP Setting for beroNet 8S0+ cards
5136 * Enable PCI auxbridge function
af69fb3a
KK
5137 */
5138 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5139 /* prepare access to auxport */
5140 outw(0x4000, hc->pci_iobase + 4);
5141 /*
5142 * some dummy reads are required to
5143 * read valid DIP switch data
5144 */
5145 dips = inb(hc->pci_iobase);
5146 dips = inb(hc->pci_iobase);
5147 dips = inb(hc->pci_iobase);
5148 dips = ~inb(hc->pci_iobase) & 0x3F;
5149 outw(0x0, hc->pci_iobase + 4);
5150 /* disable PCI auxbridge function */
5151 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5152 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5153 m->vendor_name, m->card_name, dips);
5154 break;
5155 case DIP_E1:
5156 /*
5157 * get DIP Setting for beroNet E1 cards
5158 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5159 */
5160 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5161 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5162 m->vendor_name, m->card_name, dips);
5163 break;
5164 }
5165
5166 /* add to list */
5167 spin_lock_irqsave(&HFClock, flags);
5168 list_add_tail(&hc->list, &HFClist);
5169 spin_unlock_irqrestore(&HFClock, flags);
5170
3bd69ad1
AE
5171 /* use as clock source */
5172 if (clock == HFC_cnt + 1)
5173 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5174
af69fb3a 5175 /* initialize hardware */
db9bb63a 5176 hc->irq = (m->irq) ? : hc->pci_dev->irq;
af69fb3a
KK
5177 ret_err = init_card(hc);
5178 if (ret_err) {
5179 printk(KERN_ERR "init card returns %d\n", ret_err);
5180 release_card(hc);
5181 return ret_err;
5182 }
5183
5184 /* start IRQ and return */
5185 spin_lock_irqsave(&hc->lock, flags);
5186 enable_hwirq(hc);
5187 spin_unlock_irqrestore(&hc->lock, flags);
5188 return 0;
5189
5190free_card:
5191 release_io_hfcmulti(hc);
5192 if (hc == syncmaster)
5193 syncmaster = NULL;
5194 kfree(hc);
5195 return ret_err;
5196}
5197
5198static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5199{
5200 struct hfc_multi *card = pci_get_drvdata(pdev);
5201 u_long flags;
5202
5203 if (debug)
5204 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5205 "device:%x subvendor:%x subdevice:%x\n",
5206 pdev->vendor, pdev->device,
5207 pdev->subsystem_vendor, pdev->subsystem_device);
5208
5209 if (card) {
5210 spin_lock_irqsave(&HFClock, flags);
5211 release_card(card);
5212 spin_unlock_irqrestore(&HFClock, flags);
5213 } else {
5214 if (debug)
698f9315 5215 printk(KERN_DEBUG "%s: drvdata already removed\n",
af69fb3a
KK
5216 __func__);
5217 }
5218}
5219
5220#define VENDOR_CCD "Cologne Chip AG"
5221#define VENDOR_BN "beroNet GmbH"
5222#define VENDOR_DIG "Digium Inc."
5223#define VENDOR_JH "Junghanns.NET GmbH"
5224#define VENDOR_PRIM "PrimuX"
5225
5226static const struct hm_map hfcm_map[] = {
db9bb63a
KK
5227/*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5228/*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5229/*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5230/*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5231/*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5232/*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5233/*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5234/*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5235/*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5236/*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5237/*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5238/*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5239
5240/*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
af69fb3a 5241/*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
db9bb63a
KK
5242 HFC_IO_MODE_REGIO, 0},
5243/*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5244/*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
af69fb3a 5245
db9bb63a
KK
5246/*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5247/*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5248/*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
af69fb3a 5249
db9bb63a
KK
5250/*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5251/*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5252/*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5253/*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
af69fb3a 5254
db9bb63a
KK
5255/*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5256/*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5257/*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
af69fb3a
KK
5258
5259/*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
db9bb63a 5260 HFC_IO_MODE_PLXSD, 0},
af69fb3a 5261/*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
db9bb63a
KK
5262 HFC_IO_MODE_PLXSD, 0},
5263/*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5264/*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5265/*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5266/*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5267 HFC_IO_MODE_EMBSD, XHFC_IRQ},
7245a2fe 5268/*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
d00561a2
LE
5269/*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5270/*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
af69fb3a
KK
5271};
5272
5273#undef H
5274#define H(x) ((unsigned long)&hfcm_map[x])
5275static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5276
5277 /* Cards with HFC-4S Chip */
5278 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5279 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5280 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5281 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5282 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5283 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5284 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5285 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5286 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5287 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5288 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5289 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5290 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5291 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5292 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5293 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5294 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5295 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5296 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5297 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5298 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5299 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5300 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5301 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5302 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5303 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5304 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5305 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
d00561a2
LE
5306 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5307 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5308 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5309 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
af69fb3a
KK
5310
5311 /* Cards with HFC-8S Chip */
5312 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5313 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5314 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5315 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5316 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5317 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5318 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
69e656cc 5319 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
af69fb3a
KK
5320 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5321 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5322 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5323 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5324 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5325 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5326 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5327 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
7245a2fe
AE
5328 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5329 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
af69fb3a
KK
5330
5331
5332 /* Cards with HFC-E1 Chip */
5333 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5334 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5335 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5336 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5337 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5338 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5339 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5340 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5341
5342 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5343 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5344 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5345 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5346 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5347 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5348
5349 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5350 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5351 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5352 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
daebafed
AE
5353
5354 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5355 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5356
9db9f279
PH
5357 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5358 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5359 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
af69fb3a
KK
5360 {0, }
5361};
5362#undef H
5363
5364MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5365
5366static int
5367hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5368{
5369 struct hm_map *m = (struct hm_map *)ent->driver_data;
5370 int ret;
5371
69e656cc
KK
5372 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5373 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5374 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5375 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5376 printk(KERN_ERR
f70e75e1
KK
5377 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5378 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5379 pdev->device, pdev->subsystem_vendor,
5380 pdev->subsystem_device);
69e656cc
KK
5381 printk(KERN_ERR
5382 "Please contact the driver maintainer for support.\n");
af69fb3a
KK
5383 return -ENODEV;
5384 }
db9bb63a 5385 ret = hfcmulti_init(m, pdev, ent);
af69fb3a
KK
5386 if (ret)
5387 return ret;
5388 HFC_cnt++;
5389 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5390 return 0;
5391}
5392
5393static struct pci_driver hfcmultipci_driver = {
5394 .name = "hfc_multi",
5395 .probe = hfcmulti_probe,
5396 .remove = __devexit_p(hfc_remove_pci),
5397 .id_table = hfmultipci_ids,
5398};
5399
5400static void __exit
5401HFCmulti_cleanup(void)
5402{
5403 struct hfc_multi *card, *next;
5404
69e656cc 5405 /* get rid of all devices of this driver */
af69fb3a
KK
5406 list_for_each_entry_safe(card, next, &HFClist, list)
5407 release_card(card);
af69fb3a
KK
5408 pci_unregister_driver(&hfcmultipci_driver);
5409}
5410
5411static int __init
5412HFCmulti_init(void)
5413{
5414 int err;
db9bb63a
KK
5415 int i, xhfc = 0;
5416 struct hm_map m;
af69fb3a 5417
69e656cc
KK
5418 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5419
af69fb3a 5420#ifdef IRQ_DEBUG
69e656cc 5421 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
af69fb3a
KK
5422#endif
5423
5424 spin_lock_init(&HFClock);
5425 spin_lock_init(&plx_lock);
5426
5427 if (debug & DEBUG_HFCMULTI_INIT)
5428 printk(KERN_DEBUG "%s: init entered\n", __func__);
5429
af69fb3a
KK
5430 switch (poll) {
5431 case 0:
5432 poll_timer = 6;
5433 poll = 128;
5434 break;
af69fb3a
KK
5435 case 8:
5436 poll_timer = 2;
5437 break;
5438 case 16:
5439 poll_timer = 3;
5440 break;
5441 case 32:
5442 poll_timer = 4;
5443 break;
5444 case 64:
5445 poll_timer = 5;
5446 break;
5447 case 128:
5448 poll_timer = 6;
5449 break;
5450 case 256:
5451 poll_timer = 7;
5452 break;
5453 default:
5454 printk(KERN_ERR
5455 "%s: Wrong poll value (%d).\n", __func__, poll);
5456 err = -EINVAL;
5457 return err;
5458
5459 }
5460
3bd69ad1
AE
5461 if (!clock)
5462 clock = 1;
5463
db9bb63a
KK
5464 /* Register the embedded devices.
5465 * This should be done before the PCI cards registration */
5466 switch (hwid) {
5467 case HWID_MINIP4:
5468 xhfc = 1;
5469 m = hfcm_map[31];
5470 break;
5471 case HWID_MINIP8:
5472 xhfc = 2;
5473 m = hfcm_map[31];
5474 break;
5475 case HWID_MINIP16:
5476 xhfc = 4;
5477 m = hfcm_map[31];
5478 break;
5479 default:
5480 xhfc = 0;
5481 }
5482
5483 for (i = 0; i < xhfc; ++i) {
5484 err = hfcmulti_init(&m, NULL, NULL);
5485 if (err) {
5486 printk(KERN_ERR "error registering embedded driver: "
5487 "%x\n", err);
2c554e10 5488 return err;
db9bb63a
KK
5489 }
5490 HFC_cnt++;
5491 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5492 }
5493
5494 /* Register the PCI cards */
af69fb3a
KK
5495 err = pci_register_driver(&hfcmultipci_driver);
5496 if (err < 0) {
5497 printk(KERN_ERR "error registering pci driver: %x\n", err);
af69fb3a
KK
5498 return err;
5499 }
db9bb63a 5500
af69fb3a
KK
5501 return 0;
5502}
5503
5504
5505module_init(HFCmulti_init);
5506module_exit(HFCmulti_cleanup);