]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/kvm/mmu.c
[PATCH] KVM: MMU: Make kvm_mmu_alloc_page() return a kvm_mmu_page pointer
[mirror_ubuntu-jammy-kernel.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
29#define pgprintk(x...) do { } while (0)
cd4a4e53 30#define rmap_printk(x...) do { } while (0)
6aa8b732
AK
31
32#define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
38#define PT64_ENT_PER_PAGE 512
39#define PT32_ENT_PER_PAGE 1024
40
41#define PT_WRITABLE_SHIFT 1
42
43#define PT_PRESENT_MASK (1ULL << 0)
44#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
45#define PT_USER_MASK (1ULL << 2)
46#define PT_PWT_MASK (1ULL << 3)
47#define PT_PCD_MASK (1ULL << 4)
48#define PT_ACCESSED_MASK (1ULL << 5)
49#define PT_DIRTY_MASK (1ULL << 6)
50#define PT_PAGE_SIZE_MASK (1ULL << 7)
51#define PT_PAT_MASK (1ULL << 7)
52#define PT_GLOBAL_MASK (1ULL << 8)
53#define PT64_NX_MASK (1ULL << 63)
54
55#define PT_PAT_SHIFT 7
56#define PT_DIR_PAT_SHIFT 12
57#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
58
59#define PT32_DIR_PSE36_SIZE 4
60#define PT32_DIR_PSE36_SHIFT 13
61#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
62
63
64#define PT32_PTE_COPY_MASK \
8c7bb723 65 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 66
8c7bb723 67#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
68
69#define PT_FIRST_AVAIL_BITS_SHIFT 9
70#define PT64_SECOND_AVAIL_BITS_SHIFT 52
71
72#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
73#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
74
75#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
76#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
77
78#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
79#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
80
81#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
82
83#define VALID_PAGE(x) ((x) != INVALID_PAGE)
84
85#define PT64_LEVEL_BITS 9
86
87#define PT64_LEVEL_SHIFT(level) \
88 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
89
90#define PT64_LEVEL_MASK(level) \
91 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
92
93#define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97#define PT32_LEVEL_BITS 10
98
99#define PT32_LEVEL_SHIFT(level) \
100 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
101
102#define PT32_LEVEL_MASK(level) \
103 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
104
105#define PT32_INDEX(address, level)\
106 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
107
108
109#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
110#define PT64_DIR_BASE_ADDR_MASK \
111 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112
113#define PT32_BASE_ADDR_MASK PAGE_MASK
114#define PT32_DIR_BASE_ADDR_MASK \
115 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
116
117
118#define PFERR_PRESENT_MASK (1U << 0)
119#define PFERR_WRITE_MASK (1U << 1)
120#define PFERR_USER_MASK (1U << 2)
121
122#define PT64_ROOT_LEVEL 4
123#define PT32_ROOT_LEVEL 2
124#define PT32E_ROOT_LEVEL 3
125
126#define PT_DIRECTORY_LEVEL 2
127#define PT_PAGE_TABLE_LEVEL 1
128
cd4a4e53
AK
129#define RMAP_EXT 4
130
131struct kvm_rmap_desc {
132 u64 *shadow_ptes[RMAP_EXT];
133 struct kvm_rmap_desc *more;
134};
135
6aa8b732
AK
136static int is_write_protection(struct kvm_vcpu *vcpu)
137{
138 return vcpu->cr0 & CR0_WP_MASK;
139}
140
141static int is_cpuid_PSE36(void)
142{
143 return 1;
144}
145
146static int is_present_pte(unsigned long pte)
147{
148 return pte & PT_PRESENT_MASK;
149}
150
151static int is_writeble_pte(unsigned long pte)
152{
153 return pte & PT_WRITABLE_MASK;
154}
155
156static int is_io_pte(unsigned long pte)
157{
158 return pte & PT_SHADOW_IO_MARK;
159}
160
cd4a4e53
AK
161static int is_rmap_pte(u64 pte)
162{
163 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
164 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
165}
166
167/*
168 * Reverse mapping data structures:
169 *
170 * If page->private bit zero is zero, then page->private points to the
171 * shadow page table entry that points to page_address(page).
172 *
173 * If page->private bit zero is one, (then page->private & ~1) points
174 * to a struct kvm_rmap_desc containing more mappings.
175 */
176static void rmap_add(struct kvm *kvm, u64 *spte)
177{
178 struct page *page;
179 struct kvm_rmap_desc *desc;
180 int i;
181
182 if (!is_rmap_pte(*spte))
183 return;
184 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
185 if (!page->private) {
186 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
187 page->private = (unsigned long)spte;
188 } else if (!(page->private & 1)) {
189 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
190 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
191 if (!desc)
192 BUG(); /* FIXME: return error */
193 desc->shadow_ptes[0] = (u64 *)page->private;
194 desc->shadow_ptes[1] = spte;
195 page->private = (unsigned long)desc | 1;
196 } else {
197 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
198 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
199 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
200 desc = desc->more;
201 if (desc->shadow_ptes[RMAP_EXT-1]) {
202 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
203 if (!desc->more)
204 BUG(); /* FIXME: return error */
205 desc = desc->more;
206 }
207 for (i = 0; desc->shadow_ptes[i]; ++i)
208 ;
209 desc->shadow_ptes[i] = spte;
210 }
211}
212
213static void rmap_desc_remove_entry(struct page *page,
214 struct kvm_rmap_desc *desc,
215 int i,
216 struct kvm_rmap_desc *prev_desc)
217{
218 int j;
219
220 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
221 ;
222 desc->shadow_ptes[i] = desc->shadow_ptes[j];
223 desc->shadow_ptes[j] = 0;
224 if (j != 0)
225 return;
226 if (!prev_desc && !desc->more)
227 page->private = (unsigned long)desc->shadow_ptes[0];
228 else
229 if (prev_desc)
230 prev_desc->more = desc->more;
231 else
232 page->private = (unsigned long)desc->more | 1;
233 kfree(desc);
234}
235
236static void rmap_remove(struct kvm *kvm, u64 *spte)
237{
238 struct page *page;
239 struct kvm_rmap_desc *desc;
240 struct kvm_rmap_desc *prev_desc;
241 int i;
242
243 if (!is_rmap_pte(*spte))
244 return;
245 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
246 if (!page->private) {
247 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
248 BUG();
249 } else if (!(page->private & 1)) {
250 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
251 if ((u64 *)page->private != spte) {
252 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
253 spte, *spte);
254 BUG();
255 }
256 page->private = 0;
257 } else {
258 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
259 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
260 prev_desc = NULL;
261 while (desc) {
262 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
263 if (desc->shadow_ptes[i] == spte) {
264 rmap_desc_remove_entry(page, desc, i,
265 prev_desc);
266 return;
267 }
268 prev_desc = desc;
269 desc = desc->more;
270 }
271 BUG();
272 }
273}
274
6aa8b732
AK
275static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
276{
277 struct kvm_mmu_page *page_head = page_header(page_hpa);
278
279 list_del(&page_head->link);
280 page_head->page_hpa = page_hpa;
281 list_add(&page_head->link, &vcpu->free_pages);
282}
283
284static int is_empty_shadow_page(hpa_t page_hpa)
285{
286 u32 *pos;
287 u32 *end;
288 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
289 pos != end; pos++)
290 if (*pos != 0)
291 return 0;
292 return 1;
293}
294
25c0de2c
AK
295static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
296 u64 *parent_pte)
6aa8b732
AK
297{
298 struct kvm_mmu_page *page;
299
300 if (list_empty(&vcpu->free_pages))
25c0de2c 301 return NULL;
6aa8b732
AK
302
303 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
304 list_del(&page->link);
305 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
306 ASSERT(is_empty_shadow_page(page->page_hpa));
307 page->slot_bitmap = 0;
308 page->global = 1;
309 page->parent_pte = parent_pte;
25c0de2c 310 return page;
6aa8b732
AK
311}
312
313static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
314{
315 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
316 struct kvm_mmu_page *page_head = page_header(__pa(pte));
317
318 __set_bit(slot, &page_head->slot_bitmap);
319}
320
321hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
322{
323 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
324
325 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
326}
327
328hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
329{
330 struct kvm_memory_slot *slot;
331 struct page *page;
332
333 ASSERT((gpa & HPA_ERR_MASK) == 0);
334 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
335 if (!slot)
336 return gpa | HPA_ERR_MASK;
337 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
338 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
339 | (gpa & (PAGE_SIZE-1));
340}
341
342hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
343{
344 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
345
346 if (gpa == UNMAPPED_GVA)
347 return UNMAPPED_GVA;
348 return gpa_to_hpa(vcpu, gpa);
349}
350
351
352static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
353 int level)
354{
cd4a4e53
AK
355 u64 *pos;
356 u64 *end;
357
6aa8b732
AK
358 ASSERT(vcpu);
359 ASSERT(VALID_PAGE(page_hpa));
360 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
361
cd4a4e53
AK
362 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
363 pos != end; pos++) {
364 u64 current_ent = *pos;
6aa8b732 365
cd4a4e53
AK
366 if (is_present_pte(current_ent)) {
367 if (level != 1)
6aa8b732
AK
368 release_pt_page_64(vcpu,
369 current_ent &
370 PT64_BASE_ADDR_MASK,
371 level - 1);
cd4a4e53
AK
372 else
373 rmap_remove(vcpu->kvm, pos);
6aa8b732 374 }
cd4a4e53 375 *pos = 0;
6aa8b732
AK
376 }
377 kvm_mmu_free_page(vcpu, page_hpa);
378}
379
380static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
381{
382}
383
384static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
385{
386 int level = PT32E_ROOT_LEVEL;
387 hpa_t table_addr = vcpu->mmu.root_hpa;
388
389 for (; ; level--) {
390 u32 index = PT64_INDEX(v, level);
391 u64 *table;
392
393 ASSERT(VALID_PAGE(table_addr));
394 table = __va(table_addr);
395
396 if (level == 1) {
397 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
398 page_header_update_slot(vcpu->kvm, table, v);
399 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
400 PT_USER_MASK;
cd4a4e53 401 rmap_add(vcpu->kvm, &table[index]);
6aa8b732
AK
402 return 0;
403 }
404
405 if (table[index] == 0) {
25c0de2c 406 struct kvm_mmu_page *new_table;
6aa8b732 407
25c0de2c
AK
408 new_table = kvm_mmu_alloc_page(vcpu, &table[index]);
409 if (!new_table) {
6aa8b732
AK
410 pgprintk("nonpaging_map: ENOMEM\n");
411 return -ENOMEM;
412 }
413
25c0de2c
AK
414 table[index] = new_table->page_hpa | PT_PRESENT_MASK
415 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
416 }
417 table_addr = table[index] & PT64_BASE_ADDR_MASK;
418 }
419}
420
17ac10ad
AK
421static void mmu_free_roots(struct kvm_vcpu *vcpu)
422{
423 int i;
424
425#ifdef CONFIG_X86_64
426 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
427 hpa_t root = vcpu->mmu.root_hpa;
428
429 ASSERT(VALID_PAGE(root));
430 release_pt_page_64(vcpu, root, PT64_ROOT_LEVEL);
431 vcpu->mmu.root_hpa = INVALID_PAGE;
432 return;
433 }
434#endif
435 for (i = 0; i < 4; ++i) {
436 hpa_t root = vcpu->mmu.pae_root[i];
437
438 ASSERT(VALID_PAGE(root));
439 root &= PT64_BASE_ADDR_MASK;
440 release_pt_page_64(vcpu, root, PT32E_ROOT_LEVEL - 1);
441 vcpu->mmu.pae_root[i] = INVALID_PAGE;
442 }
443 vcpu->mmu.root_hpa = INVALID_PAGE;
444}
445
446static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
447{
448 int i;
449
450#ifdef CONFIG_X86_64
451 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
452 hpa_t root = vcpu->mmu.root_hpa;
453
454 ASSERT(!VALID_PAGE(root));
25c0de2c 455 root = kvm_mmu_alloc_page(vcpu, NULL)->page_hpa;
17ac10ad
AK
456 vcpu->mmu.root_hpa = root;
457 return;
458 }
459#endif
460 for (i = 0; i < 4; ++i) {
461 hpa_t root = vcpu->mmu.pae_root[i];
462
463 ASSERT(!VALID_PAGE(root));
25c0de2c 464 root = kvm_mmu_alloc_page(vcpu, NULL)->page_hpa;
17ac10ad
AK
465 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
466 }
467 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
468}
469
6aa8b732
AK
470static void nonpaging_flush(struct kvm_vcpu *vcpu)
471{
472 hpa_t root = vcpu->mmu.root_hpa;
473
474 ++kvm_stat.tlb_flush;
475 pgprintk("nonpaging_flush\n");
17ac10ad
AK
476 mmu_free_roots(vcpu);
477 mmu_alloc_roots(vcpu);
6aa8b732
AK
478 kvm_arch_ops->set_cr3(vcpu, root);
479 kvm_arch_ops->tlb_flush(vcpu);
480}
481
482static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
483{
484 return vaddr;
485}
486
487static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
488 u32 error_code)
489{
490 int ret;
491 gpa_t addr = gva;
492
493 ASSERT(vcpu);
494 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
495
496 for (;;) {
497 hpa_t paddr;
498
499 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
500
501 if (is_error_hpa(paddr))
502 return 1;
503
504 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
505 if (ret) {
506 nonpaging_flush(vcpu);
507 continue;
508 }
509 break;
510 }
511 return ret;
512}
513
514static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
515{
516}
517
518static void nonpaging_free(struct kvm_vcpu *vcpu)
519{
17ac10ad 520 mmu_free_roots(vcpu);
6aa8b732
AK
521}
522
523static int nonpaging_init_context(struct kvm_vcpu *vcpu)
524{
525 struct kvm_mmu *context = &vcpu->mmu;
526
527 context->new_cr3 = nonpaging_new_cr3;
528 context->page_fault = nonpaging_page_fault;
529 context->inval_page = nonpaging_inval_page;
530 context->gva_to_gpa = nonpaging_gva_to_gpa;
531 context->free = nonpaging_free;
532 context->root_level = PT32E_ROOT_LEVEL;
533 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 534 mmu_alloc_roots(vcpu);
6aa8b732
AK
535 ASSERT(VALID_PAGE(context->root_hpa));
536 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
537 return 0;
538}
539
540
541static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
542{
543 struct kvm_mmu_page *page, *npage;
544
545 list_for_each_entry_safe(page, npage, &vcpu->kvm->active_mmu_pages,
546 link) {
547 if (page->global)
548 continue;
549
550 if (!page->parent_pte)
551 continue;
552
553 *page->parent_pte = 0;
554 release_pt_page_64(vcpu, page->page_hpa, 1);
555 }
556 ++kvm_stat.tlb_flush;
557 kvm_arch_ops->tlb_flush(vcpu);
558}
559
560static void paging_new_cr3(struct kvm_vcpu *vcpu)
561{
562 kvm_mmu_flush_tlb(vcpu);
563}
564
565static void mark_pagetable_nonglobal(void *shadow_pte)
566{
567 page_header(__pa(shadow_pte))->global = 0;
568}
569
570static inline void set_pte_common(struct kvm_vcpu *vcpu,
571 u64 *shadow_pte,
572 gpa_t gaddr,
573 int dirty,
574 u64 access_bits)
575{
576 hpa_t paddr;
577
578 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
579 if (!dirty)
580 access_bits &= ~PT_WRITABLE_MASK;
581
582 if (access_bits & PT_WRITABLE_MASK)
583 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
584
585 *shadow_pte |= access_bits;
586
587 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
588
589 if (!(*shadow_pte & PT_GLOBAL_MASK))
590 mark_pagetable_nonglobal(shadow_pte);
591
592 if (is_error_hpa(paddr)) {
593 *shadow_pte |= gaddr;
594 *shadow_pte |= PT_SHADOW_IO_MARK;
595 *shadow_pte &= ~PT_PRESENT_MASK;
596 } else {
597 *shadow_pte |= paddr;
598 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
cd4a4e53 599 rmap_add(vcpu->kvm, shadow_pte);
6aa8b732
AK
600 }
601}
602
603static void inject_page_fault(struct kvm_vcpu *vcpu,
604 u64 addr,
605 u32 err_code)
606{
607 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
608}
609
610static inline int fix_read_pf(u64 *shadow_ent)
611{
612 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
613 !(*shadow_ent & PT_USER_MASK)) {
614 /*
615 * If supervisor write protect is disabled, we shadow kernel
616 * pages as user pages so we can trap the write access.
617 */
618 *shadow_ent |= PT_USER_MASK;
619 *shadow_ent &= ~PT_WRITABLE_MASK;
620
621 return 1;
622
623 }
624 return 0;
625}
626
627static int may_access(u64 pte, int write, int user)
628{
629
630 if (user && !(pte & PT_USER_MASK))
631 return 0;
632 if (write && !(pte & PT_WRITABLE_MASK))
633 return 0;
634 return 1;
635}
636
637/*
638 * Remove a shadow pte.
639 */
640static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
641{
642 hpa_t page_addr = vcpu->mmu.root_hpa;
643 int level = vcpu->mmu.shadow_root_level;
644
645 ++kvm_stat.invlpg;
646
647 for (; ; level--) {
648 u32 index = PT64_INDEX(addr, level);
649 u64 *table = __va(page_addr);
650
651 if (level == PT_PAGE_TABLE_LEVEL ) {
cd4a4e53 652 rmap_remove(vcpu->kvm, &table[index]);
6aa8b732
AK
653 table[index] = 0;
654 return;
655 }
656
657 if (!is_present_pte(table[index]))
658 return;
659
660 page_addr = table[index] & PT64_BASE_ADDR_MASK;
661
662 if (level == PT_DIRECTORY_LEVEL &&
663 (table[index] & PT_SHADOW_PS_MARK)) {
664 table[index] = 0;
665 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
666
667 kvm_arch_ops->tlb_flush(vcpu);
668 return;
669 }
670 }
671}
672
673static void paging_free(struct kvm_vcpu *vcpu)
674{
675 nonpaging_free(vcpu);
676}
677
678#define PTTYPE 64
679#include "paging_tmpl.h"
680#undef PTTYPE
681
682#define PTTYPE 32
683#include "paging_tmpl.h"
684#undef PTTYPE
685
17ac10ad 686static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
687{
688 struct kvm_mmu *context = &vcpu->mmu;
689
690 ASSERT(is_pae(vcpu));
691 context->new_cr3 = paging_new_cr3;
692 context->page_fault = paging64_page_fault;
693 context->inval_page = paging_inval_page;
694 context->gva_to_gpa = paging64_gva_to_gpa;
695 context->free = paging_free;
17ac10ad
AK
696 context->root_level = level;
697 context->shadow_root_level = level;
698 mmu_alloc_roots(vcpu);
6aa8b732
AK
699 ASSERT(VALID_PAGE(context->root_hpa));
700 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
701 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
702 return 0;
703}
704
17ac10ad
AK
705static int paging64_init_context(struct kvm_vcpu *vcpu)
706{
707 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
708}
709
6aa8b732
AK
710static int paging32_init_context(struct kvm_vcpu *vcpu)
711{
712 struct kvm_mmu *context = &vcpu->mmu;
713
714 context->new_cr3 = paging_new_cr3;
715 context->page_fault = paging32_page_fault;
716 context->inval_page = paging_inval_page;
717 context->gva_to_gpa = paging32_gva_to_gpa;
718 context->free = paging_free;
719 context->root_level = PT32_ROOT_LEVEL;
720 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 721 mmu_alloc_roots(vcpu);
6aa8b732
AK
722 ASSERT(VALID_PAGE(context->root_hpa));
723 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
724 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
725 return 0;
726}
727
728static int paging32E_init_context(struct kvm_vcpu *vcpu)
729{
17ac10ad 730 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
731}
732
733static int init_kvm_mmu(struct kvm_vcpu *vcpu)
734{
735 ASSERT(vcpu);
736 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
737
738 if (!is_paging(vcpu))
739 return nonpaging_init_context(vcpu);
a9058ecd 740 else if (is_long_mode(vcpu))
6aa8b732
AK
741 return paging64_init_context(vcpu);
742 else if (is_pae(vcpu))
743 return paging32E_init_context(vcpu);
744 else
745 return paging32_init_context(vcpu);
746}
747
748static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
749{
750 ASSERT(vcpu);
751 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
752 vcpu->mmu.free(vcpu);
753 vcpu->mmu.root_hpa = INVALID_PAGE;
754 }
755}
756
757int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
758{
759 destroy_kvm_mmu(vcpu);
760 return init_kvm_mmu(vcpu);
761}
762
763static void free_mmu_pages(struct kvm_vcpu *vcpu)
764{
765 while (!list_empty(&vcpu->free_pages)) {
766 struct kvm_mmu_page *page;
767
768 page = list_entry(vcpu->free_pages.next,
769 struct kvm_mmu_page, link);
770 list_del(&page->link);
771 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
772 page->page_hpa = INVALID_PAGE;
773 }
17ac10ad 774 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
775}
776
777static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
778{
17ac10ad 779 struct page *page;
6aa8b732
AK
780 int i;
781
782 ASSERT(vcpu);
783
784 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
785 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
786
787 INIT_LIST_HEAD(&page_header->link);
17ac10ad 788 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732
AK
789 goto error_1;
790 page->private = (unsigned long)page_header;
791 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
792 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
793 list_add(&page_header->link, &vcpu->free_pages);
794 }
17ac10ad
AK
795
796 /*
797 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
798 * Therefore we need to allocate shadow page tables in the first
799 * 4GB of memory, which happens to fit the DMA32 zone.
800 */
801 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
802 if (!page)
803 goto error_1;
804 vcpu->mmu.pae_root = page_address(page);
805 for (i = 0; i < 4; ++i)
806 vcpu->mmu.pae_root[i] = INVALID_PAGE;
807
6aa8b732
AK
808 return 0;
809
810error_1:
811 free_mmu_pages(vcpu);
812 return -ENOMEM;
813}
814
8018c27b 815int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 816{
6aa8b732
AK
817 ASSERT(vcpu);
818 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
819 ASSERT(list_empty(&vcpu->free_pages));
820
8018c27b
IM
821 return alloc_mmu_pages(vcpu);
822}
6aa8b732 823
8018c27b
IM
824int kvm_mmu_setup(struct kvm_vcpu *vcpu)
825{
826 ASSERT(vcpu);
827 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
828 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 829
8018c27b 830 return init_kvm_mmu(vcpu);
6aa8b732
AK
831}
832
833void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
834{
835 ASSERT(vcpu);
836
837 destroy_kvm_mmu(vcpu);
838 free_mmu_pages(vcpu);
839}
840
841void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
842{
843 struct kvm_mmu_page *page;
844
845 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
846 int i;
847 u64 *pt;
848
849 if (!test_bit(slot, &page->slot_bitmap))
850 continue;
851
852 pt = __va(page->page_hpa);
853 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
854 /* avoid RMW */
cd4a4e53
AK
855 if (pt[i] & PT_WRITABLE_MASK) {
856 rmap_remove(kvm, &pt[i]);
6aa8b732 857 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 858 }
6aa8b732
AK
859 }
860}