]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/kvm/mmu.c
[PATCH] KVM: MMU: kvm_mmu_put_page() only removes one link to the page
[mirror_ubuntu-bionic-kernel.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
cea0f0e7
AK
29#define pgprintk(x...) do { printk(x); } while (0)
30#define rmap_printk(x...) do { printk(x); } while (0)
6aa8b732
AK
31
32#define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
cea0f0e7
AK
38#define PT64_PT_BITS 9
39#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40#define PT32_PT_BITS 10
41#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
42
43#define PT_WRITABLE_SHIFT 1
44
45#define PT_PRESENT_MASK (1ULL << 0)
46#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47#define PT_USER_MASK (1ULL << 2)
48#define PT_PWT_MASK (1ULL << 3)
49#define PT_PCD_MASK (1ULL << 4)
50#define PT_ACCESSED_MASK (1ULL << 5)
51#define PT_DIRTY_MASK (1ULL << 6)
52#define PT_PAGE_SIZE_MASK (1ULL << 7)
53#define PT_PAT_MASK (1ULL << 7)
54#define PT_GLOBAL_MASK (1ULL << 8)
55#define PT64_NX_MASK (1ULL << 63)
56
57#define PT_PAT_SHIFT 7
58#define PT_DIR_PAT_SHIFT 12
59#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61#define PT32_DIR_PSE36_SIZE 4
62#define PT32_DIR_PSE36_SHIFT 13
63#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66#define PT32_PTE_COPY_MASK \
8c7bb723 67 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 68
8c7bb723 69#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
70
71#define PT_FIRST_AVAIL_BITS_SHIFT 9
72#define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85#define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87#define PT64_LEVEL_BITS 9
88
89#define PT64_LEVEL_SHIFT(level) \
90 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92#define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104#define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120#define PFERR_PRESENT_MASK (1U << 0)
121#define PFERR_WRITE_MASK (1U << 1)
122#define PFERR_USER_MASK (1U << 2)
123
124#define PT64_ROOT_LEVEL 4
125#define PT32_ROOT_LEVEL 2
126#define PT32E_ROOT_LEVEL 3
127
128#define PT_DIRECTORY_LEVEL 2
129#define PT_PAGE_TABLE_LEVEL 1
130
cd4a4e53
AK
131#define RMAP_EXT 4
132
133struct kvm_rmap_desc {
134 u64 *shadow_ptes[RMAP_EXT];
135 struct kvm_rmap_desc *more;
136};
137
6aa8b732
AK
138static int is_write_protection(struct kvm_vcpu *vcpu)
139{
140 return vcpu->cr0 & CR0_WP_MASK;
141}
142
143static int is_cpuid_PSE36(void)
144{
145 return 1;
146}
147
148static int is_present_pte(unsigned long pte)
149{
150 return pte & PT_PRESENT_MASK;
151}
152
153static int is_writeble_pte(unsigned long pte)
154{
155 return pte & PT_WRITABLE_MASK;
156}
157
158static int is_io_pte(unsigned long pte)
159{
160 return pte & PT_SHADOW_IO_MARK;
161}
162
cd4a4e53
AK
163static int is_rmap_pte(u64 pte)
164{
165 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167}
168
169/*
170 * Reverse mapping data structures:
171 *
172 * If page->private bit zero is zero, then page->private points to the
173 * shadow page table entry that points to page_address(page).
174 *
175 * If page->private bit zero is one, (then page->private & ~1) points
176 * to a struct kvm_rmap_desc containing more mappings.
177 */
178static void rmap_add(struct kvm *kvm, u64 *spte)
179{
180 struct page *page;
181 struct kvm_rmap_desc *desc;
182 int i;
183
184 if (!is_rmap_pte(*spte))
185 return;
186 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187 if (!page->private) {
188 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189 page->private = (unsigned long)spte;
190 } else if (!(page->private & 1)) {
191 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193 if (!desc)
194 BUG(); /* FIXME: return error */
195 desc->shadow_ptes[0] = (u64 *)page->private;
196 desc->shadow_ptes[1] = spte;
197 page->private = (unsigned long)desc | 1;
198 } else {
199 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202 desc = desc->more;
203 if (desc->shadow_ptes[RMAP_EXT-1]) {
204 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205 if (!desc->more)
206 BUG(); /* FIXME: return error */
207 desc = desc->more;
208 }
209 for (i = 0; desc->shadow_ptes[i]; ++i)
210 ;
211 desc->shadow_ptes[i] = spte;
212 }
213}
214
215static void rmap_desc_remove_entry(struct page *page,
216 struct kvm_rmap_desc *desc,
217 int i,
218 struct kvm_rmap_desc *prev_desc)
219{
220 int j;
221
222 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223 ;
224 desc->shadow_ptes[i] = desc->shadow_ptes[j];
225 desc->shadow_ptes[j] = 0;
226 if (j != 0)
227 return;
228 if (!prev_desc && !desc->more)
229 page->private = (unsigned long)desc->shadow_ptes[0];
230 else
231 if (prev_desc)
232 prev_desc->more = desc->more;
233 else
234 page->private = (unsigned long)desc->more | 1;
235 kfree(desc);
236}
237
238static void rmap_remove(struct kvm *kvm, u64 *spte)
239{
240 struct page *page;
241 struct kvm_rmap_desc *desc;
242 struct kvm_rmap_desc *prev_desc;
243 int i;
244
245 if (!is_rmap_pte(*spte))
246 return;
247 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248 if (!page->private) {
249 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250 BUG();
251 } else if (!(page->private & 1)) {
252 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
253 if ((u64 *)page->private != spte) {
254 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
255 spte, *spte);
256 BUG();
257 }
258 page->private = 0;
259 } else {
260 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
261 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262 prev_desc = NULL;
263 while (desc) {
264 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265 if (desc->shadow_ptes[i] == spte) {
266 rmap_desc_remove_entry(page, desc, i,
267 prev_desc);
268 return;
269 }
270 prev_desc = desc;
271 desc = desc->more;
272 }
273 BUG();
274 }
275}
276
374cbac0
AK
277static void rmap_write_protect(struct kvm *kvm, u64 gfn)
278{
279 struct page *page;
280 struct kvm_memory_slot *slot;
281 struct kvm_rmap_desc *desc;
282 u64 *spte;
283
284 slot = gfn_to_memslot(kvm, gfn);
285 BUG_ON(!slot);
286 page = gfn_to_page(slot, gfn);
287
288 while (page->private) {
289 if (!(page->private & 1))
290 spte = (u64 *)page->private;
291 else {
292 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
293 spte = desc->shadow_ptes[0];
294 }
295 BUG_ON(!spte);
296 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
297 page_to_pfn(page) << PAGE_SHIFT);
298 BUG_ON(!(*spte & PT_PRESENT_MASK));
299 BUG_ON(!(*spte & PT_WRITABLE_MASK));
300 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
301 rmap_remove(kvm, spte);
302 *spte &= ~(u64)PT_WRITABLE_MASK;
303 }
304}
305
6aa8b732
AK
306static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
307{
308 struct kvm_mmu_page *page_head = page_header(page_hpa);
309
310 list_del(&page_head->link);
311 page_head->page_hpa = page_hpa;
312 list_add(&page_head->link, &vcpu->free_pages);
313}
314
315static int is_empty_shadow_page(hpa_t page_hpa)
316{
317 u32 *pos;
318 u32 *end;
319 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
320 pos != end; pos++)
321 if (*pos != 0)
322 return 0;
323 return 1;
324}
325
cea0f0e7
AK
326static unsigned kvm_page_table_hashfn(gfn_t gfn)
327{
328 return gfn;
329}
330
25c0de2c
AK
331static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
332 u64 *parent_pte)
6aa8b732
AK
333{
334 struct kvm_mmu_page *page;
335
336 if (list_empty(&vcpu->free_pages))
25c0de2c 337 return NULL;
6aa8b732
AK
338
339 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
340 list_del(&page->link);
341 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
342 ASSERT(is_empty_shadow_page(page->page_hpa));
343 page->slot_bitmap = 0;
344 page->global = 1;
cea0f0e7 345 page->multimapped = 0;
6aa8b732 346 page->parent_pte = parent_pte;
25c0de2c 347 return page;
6aa8b732
AK
348}
349
cea0f0e7
AK
350static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
351{
352 struct kvm_pte_chain *pte_chain;
353 struct hlist_node *node;
354 int i;
355
356 if (!parent_pte)
357 return;
358 if (!page->multimapped) {
359 u64 *old = page->parent_pte;
360
361 if (!old) {
362 page->parent_pte = parent_pte;
363 return;
364 }
365 page->multimapped = 1;
366 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
367 BUG_ON(!pte_chain);
368 INIT_HLIST_HEAD(&page->parent_ptes);
369 hlist_add_head(&pte_chain->link, &page->parent_ptes);
370 pte_chain->parent_ptes[0] = old;
371 }
372 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
373 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
374 continue;
375 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
376 if (!pte_chain->parent_ptes[i]) {
377 pte_chain->parent_ptes[i] = parent_pte;
378 return;
379 }
380 }
381 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
382 BUG_ON(!pte_chain);
383 hlist_add_head(&pte_chain->link, &page->parent_ptes);
384 pte_chain->parent_ptes[0] = parent_pte;
385}
386
387static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
388 u64 *parent_pte)
389{
390 struct kvm_pte_chain *pte_chain;
391 struct hlist_node *node;
392 int i;
393
394 if (!page->multimapped) {
395 BUG_ON(page->parent_pte != parent_pte);
396 page->parent_pte = NULL;
397 return;
398 }
399 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
400 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
401 if (!pte_chain->parent_ptes[i])
402 break;
403 if (pte_chain->parent_ptes[i] != parent_pte)
404 continue;
697fe2e2
AK
405 while (i + 1 < NR_PTE_CHAIN_ENTRIES
406 && pte_chain->parent_ptes[i + 1]) {
cea0f0e7
AK
407 pte_chain->parent_ptes[i]
408 = pte_chain->parent_ptes[i + 1];
409 ++i;
410 }
411 pte_chain->parent_ptes[i] = NULL;
697fe2e2
AK
412 if (i == 0) {
413 hlist_del(&pte_chain->link);
414 kfree(pte_chain);
415 if (hlist_empty(&page->parent_ptes)) {
416 page->multimapped = 0;
417 page->parent_pte = NULL;
418 }
419 }
cea0f0e7
AK
420 return;
421 }
422 BUG();
423}
424
425static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
426 gfn_t gfn)
427{
428 unsigned index;
429 struct hlist_head *bucket;
430 struct kvm_mmu_page *page;
431 struct hlist_node *node;
432
433 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
434 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
435 bucket = &vcpu->kvm->mmu_page_hash[index];
436 hlist_for_each_entry(page, node, bucket, hash_link)
437 if (page->gfn == gfn && !page->role.metaphysical) {
438 pgprintk("%s: found role %x\n",
439 __FUNCTION__, page->role.word);
440 return page;
441 }
442 return NULL;
443}
444
445static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
446 gfn_t gfn,
447 gva_t gaddr,
448 unsigned level,
449 int metaphysical,
450 u64 *parent_pte)
451{
452 union kvm_mmu_page_role role;
453 unsigned index;
454 unsigned quadrant;
455 struct hlist_head *bucket;
456 struct kvm_mmu_page *page;
457 struct hlist_node *node;
458
459 role.word = 0;
460 role.glevels = vcpu->mmu.root_level;
461 role.level = level;
462 role.metaphysical = metaphysical;
463 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
464 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
465 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
466 role.quadrant = quadrant;
467 }
468 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
469 gfn, role.word);
470 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
471 bucket = &vcpu->kvm->mmu_page_hash[index];
472 hlist_for_each_entry(page, node, bucket, hash_link)
473 if (page->gfn == gfn && page->role.word == role.word) {
474 mmu_page_add_parent_pte(page, parent_pte);
475 pgprintk("%s: found\n", __FUNCTION__);
476 return page;
477 }
478 page = kvm_mmu_alloc_page(vcpu, parent_pte);
479 if (!page)
480 return page;
481 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
482 page->gfn = gfn;
483 page->role = role;
484 hlist_add_head(&page->hash_link, bucket);
374cbac0
AK
485 if (!metaphysical)
486 rmap_write_protect(vcpu->kvm, gfn);
cea0f0e7
AK
487 return page;
488}
489
a436036b
AK
490static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
491 struct kvm_mmu_page *page)
492{
697fe2e2
AK
493 unsigned i;
494 u64 *pt;
495 u64 ent;
496
497 pt = __va(page->page_hpa);
498
499 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
500 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
501 if (pt[i] & PT_PRESENT_MASK)
502 rmap_remove(vcpu->kvm, &pt[i]);
503 pt[i] = 0;
504 }
505 return;
506 }
507
508 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
509 ent = pt[i];
510
511 pt[i] = 0;
512 if (!(ent & PT_PRESENT_MASK))
513 continue;
514 ent &= PT64_BASE_ADDR_MASK;
515 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
516 }
a436036b
AK
517}
518
cea0f0e7
AK
519static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
520 struct kvm_mmu_page *page,
521 u64 *parent_pte)
522{
523 mmu_page_remove_parent_pte(page, parent_pte);
a436036b
AK
524}
525
526static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
527 struct kvm_mmu_page *page)
528{
529 u64 *parent_pte;
530
531 while (page->multimapped || page->parent_pte) {
532 if (!page->multimapped)
533 parent_pte = page->parent_pte;
534 else {
535 struct kvm_pte_chain *chain;
536
537 chain = container_of(page->parent_ptes.first,
538 struct kvm_pte_chain, link);
539 parent_pte = chain->parent_ptes[0];
540 }
697fe2e2 541 BUG_ON(!parent_pte);
a436036b
AK
542 kvm_mmu_put_page(vcpu, page, parent_pte);
543 *parent_pte = 0;
544 }
cc4529ef
AK
545 kvm_mmu_page_unlink_children(vcpu, page);
546 hlist_del(&page->hash_link);
547 list_del(&page->link);
548 list_add(&page->link, &vcpu->free_pages);
a436036b
AK
549}
550
551static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
552{
553 unsigned index;
554 struct hlist_head *bucket;
555 struct kvm_mmu_page *page;
556 struct hlist_node *node, *n;
557 int r;
558
559 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
560 r = 0;
561 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
562 bucket = &vcpu->kvm->mmu_page_hash[index];
563 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
564 if (page->gfn == gfn && !page->role.metaphysical) {
697fe2e2
AK
565 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
566 page->role.word);
a436036b
AK
567 kvm_mmu_zap_page(vcpu, page);
568 r = 1;
569 }
570 return r;
cea0f0e7
AK
571}
572
6aa8b732
AK
573static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
574{
575 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
576 struct kvm_mmu_page *page_head = page_header(__pa(pte));
577
578 __set_bit(slot, &page_head->slot_bitmap);
579}
580
581hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
582{
583 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
584
585 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
586}
587
588hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
589{
590 struct kvm_memory_slot *slot;
591 struct page *page;
592
593 ASSERT((gpa & HPA_ERR_MASK) == 0);
594 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
595 if (!slot)
596 return gpa | HPA_ERR_MASK;
597 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
598 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
599 | (gpa & (PAGE_SIZE-1));
600}
601
602hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
603{
604 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
605
606 if (gpa == UNMAPPED_GVA)
607 return UNMAPPED_GVA;
608 return gpa_to_hpa(vcpu, gpa);
609}
610
611
612static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
613 int level)
614{
cd4a4e53
AK
615 u64 *pos;
616 u64 *end;
617
6aa8b732
AK
618 ASSERT(vcpu);
619 ASSERT(VALID_PAGE(page_hpa));
620 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
621
cd4a4e53
AK
622 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
623 pos != end; pos++) {
624 u64 current_ent = *pos;
6aa8b732 625
cd4a4e53
AK
626 if (is_present_pte(current_ent)) {
627 if (level != 1)
6aa8b732
AK
628 release_pt_page_64(vcpu,
629 current_ent &
630 PT64_BASE_ADDR_MASK,
631 level - 1);
cd4a4e53
AK
632 else
633 rmap_remove(vcpu->kvm, pos);
6aa8b732 634 }
cd4a4e53 635 *pos = 0;
6aa8b732
AK
636 }
637 kvm_mmu_free_page(vcpu, page_hpa);
638}
639
640static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
641{
642}
643
644static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
645{
646 int level = PT32E_ROOT_LEVEL;
647 hpa_t table_addr = vcpu->mmu.root_hpa;
648
649 for (; ; level--) {
650 u32 index = PT64_INDEX(v, level);
651 u64 *table;
cea0f0e7 652 u64 pte;
6aa8b732
AK
653
654 ASSERT(VALID_PAGE(table_addr));
655 table = __va(table_addr);
656
657 if (level == 1) {
cea0f0e7
AK
658 pte = table[index];
659 if (is_present_pte(pte) && is_writeble_pte(pte))
660 return 0;
6aa8b732
AK
661 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
662 page_header_update_slot(vcpu->kvm, table, v);
663 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
664 PT_USER_MASK;
cd4a4e53 665 rmap_add(vcpu->kvm, &table[index]);
6aa8b732
AK
666 return 0;
667 }
668
669 if (table[index] == 0) {
25c0de2c 670 struct kvm_mmu_page *new_table;
cea0f0e7 671 gfn_t pseudo_gfn;
6aa8b732 672
cea0f0e7
AK
673 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
674 >> PAGE_SHIFT;
675 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
676 v, level - 1,
677 1, &table[index]);
25c0de2c 678 if (!new_table) {
6aa8b732
AK
679 pgprintk("nonpaging_map: ENOMEM\n");
680 return -ENOMEM;
681 }
682
25c0de2c
AK
683 table[index] = new_table->page_hpa | PT_PRESENT_MASK
684 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
685 }
686 table_addr = table[index] & PT64_BASE_ADDR_MASK;
687 }
688}
689
17ac10ad
AK
690static void mmu_free_roots(struct kvm_vcpu *vcpu)
691{
692 int i;
693
694#ifdef CONFIG_X86_64
695 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
696 hpa_t root = vcpu->mmu.root_hpa;
697
698 ASSERT(VALID_PAGE(root));
17ac10ad
AK
699 vcpu->mmu.root_hpa = INVALID_PAGE;
700 return;
701 }
702#endif
703 for (i = 0; i < 4; ++i) {
704 hpa_t root = vcpu->mmu.pae_root[i];
705
706 ASSERT(VALID_PAGE(root));
707 root &= PT64_BASE_ADDR_MASK;
17ac10ad
AK
708 vcpu->mmu.pae_root[i] = INVALID_PAGE;
709 }
710 vcpu->mmu.root_hpa = INVALID_PAGE;
711}
712
713static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
714{
715 int i;
cea0f0e7
AK
716 gfn_t root_gfn;
717 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
718
719#ifdef CONFIG_X86_64
720 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
721 hpa_t root = vcpu->mmu.root_hpa;
722
723 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
724 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
725 PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
17ac10ad
AK
726 vcpu->mmu.root_hpa = root;
727 return;
728 }
729#endif
730 for (i = 0; i < 4; ++i) {
731 hpa_t root = vcpu->mmu.pae_root[i];
732
733 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
734 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
735 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
736 else if (vcpu->mmu.root_level == 0)
737 root_gfn = 0;
738 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
739 PT32_ROOT_LEVEL, !is_paging(vcpu),
740 NULL)->page_hpa;
17ac10ad
AK
741 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
742 }
743 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
744}
745
6aa8b732
AK
746static void nonpaging_flush(struct kvm_vcpu *vcpu)
747{
748 hpa_t root = vcpu->mmu.root_hpa;
749
750 ++kvm_stat.tlb_flush;
751 pgprintk("nonpaging_flush\n");
17ac10ad
AK
752 mmu_free_roots(vcpu);
753 mmu_alloc_roots(vcpu);
6aa8b732
AK
754 kvm_arch_ops->set_cr3(vcpu, root);
755 kvm_arch_ops->tlb_flush(vcpu);
756}
757
758static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
759{
760 return vaddr;
761}
762
763static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
764 u32 error_code)
765{
766 int ret;
767 gpa_t addr = gva;
768
769 ASSERT(vcpu);
770 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
771
772 for (;;) {
773 hpa_t paddr;
774
775 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
776
777 if (is_error_hpa(paddr))
778 return 1;
779
780 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
781 if (ret) {
782 nonpaging_flush(vcpu);
783 continue;
784 }
785 break;
786 }
787 return ret;
788}
789
790static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
791{
792}
793
794static void nonpaging_free(struct kvm_vcpu *vcpu)
795{
17ac10ad 796 mmu_free_roots(vcpu);
6aa8b732
AK
797}
798
799static int nonpaging_init_context(struct kvm_vcpu *vcpu)
800{
801 struct kvm_mmu *context = &vcpu->mmu;
802
803 context->new_cr3 = nonpaging_new_cr3;
804 context->page_fault = nonpaging_page_fault;
805 context->inval_page = nonpaging_inval_page;
806 context->gva_to_gpa = nonpaging_gva_to_gpa;
807 context->free = nonpaging_free;
cea0f0e7 808 context->root_level = 0;
6aa8b732 809 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 810 mmu_alloc_roots(vcpu);
6aa8b732
AK
811 ASSERT(VALID_PAGE(context->root_hpa));
812 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
813 return 0;
814}
815
6aa8b732
AK
816static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
817{
6aa8b732
AK
818 ++kvm_stat.tlb_flush;
819 kvm_arch_ops->tlb_flush(vcpu);
820}
821
822static void paging_new_cr3(struct kvm_vcpu *vcpu)
823{
374cbac0 824 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
cea0f0e7
AK
825 mmu_free_roots(vcpu);
826 mmu_alloc_roots(vcpu);
6aa8b732 827 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 828 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
829}
830
831static void mark_pagetable_nonglobal(void *shadow_pte)
832{
833 page_header(__pa(shadow_pte))->global = 0;
834}
835
836static inline void set_pte_common(struct kvm_vcpu *vcpu,
837 u64 *shadow_pte,
838 gpa_t gaddr,
839 int dirty,
815af8d4
AK
840 u64 access_bits,
841 gfn_t gfn)
6aa8b732
AK
842{
843 hpa_t paddr;
844
845 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
846 if (!dirty)
847 access_bits &= ~PT_WRITABLE_MASK;
cea0f0e7 848
374cbac0 849 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
6aa8b732
AK
850
851 *shadow_pte |= access_bits;
852
6aa8b732
AK
853 if (!(*shadow_pte & PT_GLOBAL_MASK))
854 mark_pagetable_nonglobal(shadow_pte);
855
856 if (is_error_hpa(paddr)) {
857 *shadow_pte |= gaddr;
858 *shadow_pte |= PT_SHADOW_IO_MARK;
859 *shadow_pte &= ~PT_PRESENT_MASK;
374cbac0 860 return;
6aa8b732 861 }
374cbac0
AK
862
863 *shadow_pte |= paddr;
864
865 if (access_bits & PT_WRITABLE_MASK) {
866 struct kvm_mmu_page *shadow;
867
815af8d4 868 shadow = kvm_mmu_lookup_page(vcpu, gfn);
374cbac0
AK
869 if (shadow) {
870 pgprintk("%s: found shadow page for %lx, marking ro\n",
815af8d4 871 __FUNCTION__, gfn);
374cbac0
AK
872 access_bits &= ~PT_WRITABLE_MASK;
873 *shadow_pte &= ~PT_WRITABLE_MASK;
874 }
875 }
876
877 if (access_bits & PT_WRITABLE_MASK)
878 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
879
880 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
881 rmap_add(vcpu->kvm, shadow_pte);
6aa8b732
AK
882}
883
884static void inject_page_fault(struct kvm_vcpu *vcpu,
885 u64 addr,
886 u32 err_code)
887{
888 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
889}
890
891static inline int fix_read_pf(u64 *shadow_ent)
892{
893 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
894 !(*shadow_ent & PT_USER_MASK)) {
895 /*
896 * If supervisor write protect is disabled, we shadow kernel
897 * pages as user pages so we can trap the write access.
898 */
899 *shadow_ent |= PT_USER_MASK;
900 *shadow_ent &= ~PT_WRITABLE_MASK;
901
902 return 1;
903
904 }
905 return 0;
906}
907
908static int may_access(u64 pte, int write, int user)
909{
910
911 if (user && !(pte & PT_USER_MASK))
912 return 0;
913 if (write && !(pte & PT_WRITABLE_MASK))
914 return 0;
915 return 1;
916}
917
918/*
919 * Remove a shadow pte.
920 */
921static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
922{
923 hpa_t page_addr = vcpu->mmu.root_hpa;
924 int level = vcpu->mmu.shadow_root_level;
925
926 ++kvm_stat.invlpg;
927
928 for (; ; level--) {
929 u32 index = PT64_INDEX(addr, level);
930 u64 *table = __va(page_addr);
931
932 if (level == PT_PAGE_TABLE_LEVEL ) {
cd4a4e53 933 rmap_remove(vcpu->kvm, &table[index]);
6aa8b732
AK
934 table[index] = 0;
935 return;
936 }
937
938 if (!is_present_pte(table[index]))
939 return;
940
941 page_addr = table[index] & PT64_BASE_ADDR_MASK;
942
943 if (level == PT_DIRECTORY_LEVEL &&
944 (table[index] & PT_SHADOW_PS_MARK)) {
945 table[index] = 0;
946 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
947
948 kvm_arch_ops->tlb_flush(vcpu);
949 return;
950 }
951 }
952}
953
954static void paging_free(struct kvm_vcpu *vcpu)
955{
956 nonpaging_free(vcpu);
957}
958
959#define PTTYPE 64
960#include "paging_tmpl.h"
961#undef PTTYPE
962
963#define PTTYPE 32
964#include "paging_tmpl.h"
965#undef PTTYPE
966
17ac10ad 967static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
968{
969 struct kvm_mmu *context = &vcpu->mmu;
970
971 ASSERT(is_pae(vcpu));
972 context->new_cr3 = paging_new_cr3;
973 context->page_fault = paging64_page_fault;
974 context->inval_page = paging_inval_page;
975 context->gva_to_gpa = paging64_gva_to_gpa;
976 context->free = paging_free;
17ac10ad
AK
977 context->root_level = level;
978 context->shadow_root_level = level;
979 mmu_alloc_roots(vcpu);
6aa8b732
AK
980 ASSERT(VALID_PAGE(context->root_hpa));
981 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
982 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
983 return 0;
984}
985
17ac10ad
AK
986static int paging64_init_context(struct kvm_vcpu *vcpu)
987{
988 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
989}
990
6aa8b732
AK
991static int paging32_init_context(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu *context = &vcpu->mmu;
994
995 context->new_cr3 = paging_new_cr3;
996 context->page_fault = paging32_page_fault;
997 context->inval_page = paging_inval_page;
998 context->gva_to_gpa = paging32_gva_to_gpa;
999 context->free = paging_free;
1000 context->root_level = PT32_ROOT_LEVEL;
1001 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 1002 mmu_alloc_roots(vcpu);
6aa8b732
AK
1003 ASSERT(VALID_PAGE(context->root_hpa));
1004 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1005 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1006 return 0;
1007}
1008
1009static int paging32E_init_context(struct kvm_vcpu *vcpu)
1010{
17ac10ad 1011 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
1012}
1013
1014static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1015{
1016 ASSERT(vcpu);
1017 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1018
1019 if (!is_paging(vcpu))
1020 return nonpaging_init_context(vcpu);
a9058ecd 1021 else if (is_long_mode(vcpu))
6aa8b732
AK
1022 return paging64_init_context(vcpu);
1023 else if (is_pae(vcpu))
1024 return paging32E_init_context(vcpu);
1025 else
1026 return paging32_init_context(vcpu);
1027}
1028
1029static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1030{
1031 ASSERT(vcpu);
1032 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1033 vcpu->mmu.free(vcpu);
1034 vcpu->mmu.root_hpa = INVALID_PAGE;
1035 }
1036}
1037
1038int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1039{
1040 destroy_kvm_mmu(vcpu);
1041 return init_kvm_mmu(vcpu);
1042}
1043
da4a00f0
AK
1044void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1045{
9b7a0325
AK
1046 gfn_t gfn = gpa >> PAGE_SHIFT;
1047 struct kvm_mmu_page *page;
1048 struct kvm_mmu_page *child;
1049 struct hlist_node *node;
1050 struct hlist_head *bucket;
1051 unsigned index;
1052 u64 *spte;
1053 u64 pte;
1054 unsigned offset = offset_in_page(gpa);
1055 unsigned page_offset;
1056 int level;
1057
da4a00f0 1058 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
9b7a0325
AK
1059 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1060 bucket = &vcpu->kvm->mmu_page_hash[index];
1061 hlist_for_each_entry(page, node, bucket, hash_link) {
1062 if (page->gfn != gfn || page->role.metaphysical)
1063 continue;
1064 page_offset = offset;
1065 level = page->role.level;
1066 if (page->role.glevels == PT32_ROOT_LEVEL) {
1067 page_offset <<= 1; /* 32->64 */
1068 page_offset &= ~PAGE_MASK;
1069 }
1070 spte = __va(page->page_hpa);
1071 spte += page_offset / sizeof(*spte);
1072 pte = *spte;
1073 if (is_present_pte(pte)) {
1074 if (level == PT_PAGE_TABLE_LEVEL)
1075 rmap_remove(vcpu->kvm, spte);
1076 else {
1077 child = page_header(pte & PT64_BASE_ADDR_MASK);
1078 mmu_page_remove_parent_pte(child, spte);
1079 }
1080 }
1081 *spte = 0;
1082 }
da4a00f0
AK
1083}
1084
1085void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1086{
1087}
1088
a436036b
AK
1089int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1090{
1091 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1092
1093 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1094}
1095
6aa8b732
AK
1096static void free_mmu_pages(struct kvm_vcpu *vcpu)
1097{
1098 while (!list_empty(&vcpu->free_pages)) {
1099 struct kvm_mmu_page *page;
1100
1101 page = list_entry(vcpu->free_pages.next,
1102 struct kvm_mmu_page, link);
1103 list_del(&page->link);
1104 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1105 page->page_hpa = INVALID_PAGE;
1106 }
17ac10ad 1107 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
1108}
1109
1110static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1111{
17ac10ad 1112 struct page *page;
6aa8b732
AK
1113 int i;
1114
1115 ASSERT(vcpu);
1116
1117 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
1118 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1119
1120 INIT_LIST_HEAD(&page_header->link);
17ac10ad 1121 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732
AK
1122 goto error_1;
1123 page->private = (unsigned long)page_header;
1124 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1125 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1126 list_add(&page_header->link, &vcpu->free_pages);
1127 }
17ac10ad
AK
1128
1129 /*
1130 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1131 * Therefore we need to allocate shadow page tables in the first
1132 * 4GB of memory, which happens to fit the DMA32 zone.
1133 */
1134 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1135 if (!page)
1136 goto error_1;
1137 vcpu->mmu.pae_root = page_address(page);
1138 for (i = 0; i < 4; ++i)
1139 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1140
6aa8b732
AK
1141 return 0;
1142
1143error_1:
1144 free_mmu_pages(vcpu);
1145 return -ENOMEM;
1146}
1147
8018c27b 1148int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 1149{
6aa8b732
AK
1150 ASSERT(vcpu);
1151 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1152 ASSERT(list_empty(&vcpu->free_pages));
1153
8018c27b
IM
1154 return alloc_mmu_pages(vcpu);
1155}
6aa8b732 1156
8018c27b
IM
1157int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1158{
1159 ASSERT(vcpu);
1160 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1161 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 1162
8018c27b 1163 return init_kvm_mmu(vcpu);
6aa8b732
AK
1164}
1165
1166void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1167{
1168 ASSERT(vcpu);
1169
1170 destroy_kvm_mmu(vcpu);
1171 free_mmu_pages(vcpu);
1172}
1173
1174void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1175{
1176 struct kvm_mmu_page *page;
1177
1178 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1179 int i;
1180 u64 *pt;
1181
1182 if (!test_bit(slot, &page->slot_bitmap))
1183 continue;
1184
1185 pt = __va(page->page_hpa);
1186 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1187 /* avoid RMW */
cd4a4e53
AK
1188 if (pt[i] & PT_WRITABLE_MASK) {
1189 rmap_remove(kvm, &pt[i]);
6aa8b732 1190 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1191 }
6aa8b732
AK
1192 }
1193}