]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/kvm/paging_tmpl.h
KVM: MMU: Simplify fetch() a little bit
[mirror_ubuntu-zesty-kernel.git] / drivers / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20/*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25#if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
cea0f0e7
AK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
6aa8b732
AK
40#elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
cea0f0e7 50 #define PT_MAX_FULL_LEVELS 2
6aa8b732
AK
51#else
52 #error Invalid PTTYPE value
53#endif
54
55/*
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
58 */
59struct guest_walker {
60 int level;
cea0f0e7 61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
6aa8b732 62 pt_element_t *table;
ac79c978 63 pt_element_t *ptep;
6aa8b732 64 pt_element_t inherited_ar;
815af8d4 65 gfn_t gfn;
7993ba43 66 u32 error_code;
6aa8b732
AK
67};
68
ac79c978
AK
69/*
70 * Fetch a guest pte for a guest virtual address
71 */
7993ba43
AK
72static int FNAME(walk_addr)(struct guest_walker *walker,
73 struct kvm_vcpu *vcpu, gva_t addr,
73b1087e 74 int write_fault, int user_fault, int fetch_fault)
6aa8b732
AK
75{
76 hpa_t hpa;
77 struct kvm_memory_slot *slot;
ac79c978 78 pt_element_t *ptep;
1b0973bd 79 pt_element_t root;
cea0f0e7 80 gfn_t table_gfn;
6aa8b732 81
cea0f0e7 82 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
6aa8b732 83 walker->level = vcpu->mmu.root_level;
1b0973bd
AK
84 walker->table = NULL;
85 root = vcpu->cr3;
86#if PTTYPE == 64
87 if (!is_long_mode(vcpu)) {
88 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89 root = *walker->ptep;
90 if (!(root & PT_PRESENT_MASK))
7993ba43 91 goto not_present;
1b0973bd
AK
92 --walker->level;
93 }
94#endif
cea0f0e7
AK
95 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96 walker->table_gfn[walker->level - 1] = table_gfn;
97 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98 walker->level - 1, table_gfn);
99 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
1b0973bd 100 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
6aa8b732
AK
101 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
102
a9058ecd 103 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
6aa8b732
AK
104 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
105
6aa8b732 106 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
ac79c978
AK
107
108 for (;;) {
109 int index = PT_INDEX(addr, walker->level);
110 hpa_t paddr;
111
112 ptep = &walker->table[index];
113 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114 ((unsigned long)ptep & PAGE_MASK));
115
815af8d4 116 if (!is_present_pte(*ptep))
7993ba43
AK
117 goto not_present;
118
119 if (write_fault && !is_writeble_pte(*ptep))
120 if (user_fault || is_write_protection(vcpu))
121 goto access_error;
122
123 if (user_fault && !(*ptep & PT_USER_MASK))
124 goto access_error;
125
73b1087e
AK
126#if PTTYPE == 64
127 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128 goto access_error;
129#endif
130
bf3f8e86
AK
131 if (!(*ptep & PT_ACCESSED_MASK)) {
132 mark_page_dirty(vcpu->kvm, table_gfn);
133 *ptep |= PT_ACCESSED_MASK;
134 }
815af8d4
AK
135
136 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138 >> PAGE_SHIFT;
139 break;
140 }
141
142 if (walker->level == PT_DIRECTORY_LEVEL
143 && (*ptep & PT_PAGE_SIZE_MASK)
144 && (PTTYPE == 64 || is_pse(vcpu))) {
145 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146 >> PAGE_SHIFT;
147 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
ac79c978 148 break;
815af8d4 149 }
ac79c978 150
ca5aac1f 151 walker->inherited_ar &= walker->table[index];
cea0f0e7 152 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
ac79c978
AK
153 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154 kunmap_atomic(walker->table, KM_USER0);
155 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156 KM_USER0);
157 --walker->level;
cea0f0e7
AK
158 walker->table_gfn[walker->level - 1 ] = table_gfn;
159 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160 walker->level - 1, table_gfn);
ac79c978
AK
161 }
162 walker->ptep = ptep;
374cbac0 163 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
7993ba43
AK
164 return 1;
165
166not_present:
167 walker->error_code = 0;
168 goto err;
169
170access_error:
171 walker->error_code = PFERR_PRESENT_MASK;
172
173err:
174 if (write_fault)
175 walker->error_code |= PFERR_WRITE_MASK;
176 if (user_fault)
177 walker->error_code |= PFERR_USER_MASK;
73b1087e
AK
178 if (fetch_fault)
179 walker->error_code |= PFERR_FETCH_MASK;
7993ba43 180 return 0;
6aa8b732
AK
181}
182
183static void FNAME(release_walker)(struct guest_walker *walker)
184{
1b0973bd
AK
185 if (walker->table)
186 kunmap_atomic(walker->table, KM_USER0);
6aa8b732
AK
187}
188
bf3f8e86
AK
189static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190 struct guest_walker *walker)
191{
192 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193}
194
6aa8b732 195static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
815af8d4 196 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
6aa8b732
AK
197{
198 ASSERT(*shadow_pte == 0);
199 access_bits &= guest_pte;
200 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
201 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
815af8d4 202 guest_pte & PT_DIRTY_MASK, access_bits, gfn);
6aa8b732
AK
203}
204
0028425f
AK
205static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
206 u64 *spte, const void *pte, int bytes)
207{
208 pt_element_t gpte;
209
210 if (bytes < sizeof(pt_element_t))
211 return;
212 gpte = *(const pt_element_t *)pte;
213 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
214 return;
215 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
8d728203 216 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK,
0028425f
AK
217 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
218}
219
6aa8b732 220static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
815af8d4 221 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
6aa8b732
AK
222{
223 gpa_t gaddr;
224
225 ASSERT(*shadow_pte == 0);
226 access_bits &= guest_pde;
815af8d4 227 gaddr = (gpa_t)gfn << PAGE_SHIFT;
6aa8b732
AK
228 if (PTTYPE == 32 && is_cpuid_PSE36())
229 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
230 (32 - PT32_DIR_PSE36_SHIFT);
8c7bb723 231 *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
6aa8b732 232 set_pte_common(vcpu, shadow_pte, gaddr,
815af8d4 233 guest_pde & PT_DIRTY_MASK, access_bits, gfn);
6aa8b732
AK
234}
235
6aa8b732
AK
236/*
237 * Fetch a shadow pte for a specific level in the paging hierarchy.
238 */
239static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
240 struct guest_walker *walker)
241{
242 hpa_t shadow_addr;
243 int level;
ef0197e8 244 u64 *shadow_ent;
6aa8b732 245 u64 *prev_shadow_ent = NULL;
ac79c978
AK
246 pt_element_t *guest_ent = walker->ptep;
247
248 if (!is_present_pte(*guest_ent))
249 return NULL;
6aa8b732
AK
250
251 shadow_addr = vcpu->mmu.root_hpa;
252 level = vcpu->mmu.shadow_root_level;
aef3d3fe
AK
253 if (level == PT32E_ROOT_LEVEL) {
254 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
255 shadow_addr &= PT64_BASE_ADDR_MASK;
256 --level;
257 }
6aa8b732
AK
258
259 for (; ; level--) {
260 u32 index = SHADOW_PT_INDEX(addr, level);
25c0de2c 261 struct kvm_mmu_page *shadow_page;
8c7bb723 262 u64 shadow_pte;
cea0f0e7
AK
263 int metaphysical;
264 gfn_t table_gfn;
d28c6cfb 265 unsigned hugepage_access = 0;
6aa8b732 266
ef0197e8 267 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
6aa8b732
AK
268 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
269 if (level == PT_PAGE_TABLE_LEVEL)
270 return shadow_ent;
271 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
272 prev_shadow_ent = shadow_ent;
273 continue;
274 }
275
ef0197e8
AK
276 if (level == PT_PAGE_TABLE_LEVEL)
277 break;
6aa8b732 278
cea0f0e7
AK
279 if (level - 1 == PT_PAGE_TABLE_LEVEL
280 && walker->level == PT_DIRECTORY_LEVEL) {
281 metaphysical = 1;
d28c6cfb
AK
282 hugepage_access = *guest_ent;
283 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
284 hugepage_access >>= PT_WRITABLE_SHIFT;
cea0f0e7
AK
285 table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
286 >> PAGE_SHIFT;
287 } else {
288 metaphysical = 0;
289 table_gfn = walker->table_gfn[level - 2];
290 }
291 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
d28c6cfb
AK
292 metaphysical, hugepage_access,
293 shadow_ent);
47ad8e68 294 shadow_addr = __pa(shadow_page->spt);
aef3d3fe
AK
295 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
296 | PT_WRITABLE_MASK | PT_USER_MASK;
8c7bb723 297 *shadow_ent = shadow_pte;
6aa8b732
AK
298 prev_shadow_ent = shadow_ent;
299 }
ef0197e8
AK
300
301 if (walker->level == PT_DIRECTORY_LEVEL) {
302 if (prev_shadow_ent)
303 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
304 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
305 walker->inherited_ar, walker->gfn);
306 } else {
307 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
308 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
309 walker->inherited_ar,
310 walker->gfn);
311 }
312 return shadow_ent;
6aa8b732
AK
313}
314
315/*
316 * The guest faulted for write. We need to
317 *
318 * - check write permissions
319 * - update the guest pte dirty bit
320 * - update our own dirty page tracking structures
321 */
322static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
323 u64 *shadow_ent,
324 struct guest_walker *walker,
325 gva_t addr,
cea0f0e7
AK
326 int user,
327 int *write_pt)
6aa8b732
AK
328{
329 pt_element_t *guest_ent;
330 int writable_shadow;
331 gfn_t gfn;
14364656 332 struct kvm_mmu_page *page;
6aa8b732
AK
333
334 if (is_writeble_pte(*shadow_ent))
fc3dffe1 335 return !user || (*shadow_ent & PT_USER_MASK);
6aa8b732
AK
336
337 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
338 if (user) {
339 /*
340 * User mode access. Fail if it's a kernel page or a read-only
341 * page.
342 */
343 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
344 return 0;
345 ASSERT(*shadow_ent & PT_USER_MASK);
346 } else
347 /*
348 * Kernel mode access. Fail if it's a read-only page and
349 * supervisor write protection is enabled.
350 */
351 if (!writable_shadow) {
352 if (is_write_protection(vcpu))
353 return 0;
354 *shadow_ent &= ~PT_USER_MASK;
355 }
356
ac79c978 357 guest_ent = walker->ptep;
6aa8b732
AK
358
359 if (!is_present_pte(*guest_ent)) {
360 *shadow_ent = 0;
361 return 0;
362 }
363
815af8d4 364 gfn = walker->gfn;
14364656
AK
365
366 if (user) {
367 /*
368 * Usermode page faults won't be for page table updates.
369 */
370 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
371 pgprintk("%s: zap %lx %x\n",
372 __FUNCTION__, gfn, page->role.word);
373 kvm_mmu_zap_page(vcpu, page);
374 }
375 } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
cea0f0e7
AK
376 pgprintk("%s: found shadow page for %lx, marking ro\n",
377 __FUNCTION__, gfn);
bf3f8e86
AK
378 mark_page_dirty(vcpu->kvm, gfn);
379 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
760db773 380 *guest_ent |= PT_DIRTY_MASK;
cea0f0e7
AK
381 *write_pt = 1;
382 return 0;
383 }
6aa8b732
AK
384 mark_page_dirty(vcpu->kvm, gfn);
385 *shadow_ent |= PT_WRITABLE_MASK;
bf3f8e86 386 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
6aa8b732 387 *guest_ent |= PT_DIRTY_MASK;
714b93da 388 rmap_add(vcpu, shadow_ent);
6aa8b732
AK
389
390 return 1;
391}
392
393/*
394 * Page fault handler. There are several causes for a page fault:
395 * - there is no shadow pte for the guest pte
396 * - write access through a shadow pte marked read only so that we can set
397 * the dirty bit
398 * - write access to a shadow pte marked read only so we can update the page
399 * dirty bitmap, when userspace requests it
400 * - mmio access; in this case we will never install a present shadow pte
401 * - normal guest page fault due to the guest pte marked not present, not
402 * writable, or not executable
403 *
e2dec939
AK
404 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
405 * a negative value on error.
6aa8b732
AK
406 */
407static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
408 u32 error_code)
409{
410 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732 411 int user_fault = error_code & PFERR_USER_MASK;
73b1087e 412 int fetch_fault = error_code & PFERR_FETCH_MASK;
6aa8b732
AK
413 struct guest_walker walker;
414 u64 *shadow_pte;
415 int fixed;
cea0f0e7 416 int write_pt = 0;
e2dec939 417 int r;
6aa8b732 418
cea0f0e7 419 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
37a7d8b0 420 kvm_mmu_audit(vcpu, "pre page fault");
714b93da 421
e2dec939
AK
422 r = mmu_topup_memory_caches(vcpu);
423 if (r)
424 return r;
714b93da 425
6aa8b732
AK
426 /*
427 * Look up the shadow pte for the faulting address.
428 */
73b1087e
AK
429 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
430 fetch_fault);
6aa8b732
AK
431
432 /*
433 * The page is not mapped by the guest. Let the guest handle it.
434 */
7993ba43
AK
435 if (!r) {
436 pgprintk("%s: guest page fault\n", __FUNCTION__);
437 inject_page_fault(vcpu, addr, walker.error_code);
6aa8b732 438 FNAME(release_walker)(&walker);
a25f7e1f 439 vcpu->last_pt_write_count = 0; /* reset fork detector */
6aa8b732
AK
440 return 0;
441 }
442
7993ba43 443 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
cea0f0e7
AK
444 pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
445 shadow_pte, *shadow_pte);
446
6aa8b732
AK
447 /*
448 * Update the shadow pte.
449 */
450 if (write_fault)
451 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
cea0f0e7 452 user_fault, &write_pt);
6aa8b732
AK
453 else
454 fixed = fix_read_pf(shadow_pte);
455
cea0f0e7
AK
456 pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
457 shadow_pte, *shadow_pte);
458
6aa8b732
AK
459 FNAME(release_walker)(&walker);
460
a25f7e1f
AK
461 if (!write_pt)
462 vcpu->last_pt_write_count = 0; /* reset fork detector */
463
6aa8b732
AK
464 /*
465 * mmio: emulate if accessible, otherwise its a guest fault.
466 */
d27d4aca 467 if (is_io_pte(*shadow_pte))
7993ba43 468 return 1;
6aa8b732 469
1165f5fe 470 ++vcpu->stat.pf_fixed;
37a7d8b0 471 kvm_mmu_audit(vcpu, "post page fault (fixed)");
6aa8b732 472
cea0f0e7 473 return write_pt;
6aa8b732
AK
474}
475
476static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
477{
478 struct guest_walker walker;
e119d117
AK
479 gpa_t gpa = UNMAPPED_GVA;
480 int r;
6aa8b732 481
e119d117 482 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
6aa8b732 483
e119d117
AK
484 if (r) {
485 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
486 gpa |= vaddr & ~PAGE_MASK;
6aa8b732
AK
487 }
488
e119d117 489 FNAME(release_walker)(&walker);
6aa8b732
AK
490 return gpa;
491}
492
493#undef pt_element_t
494#undef guest_walker
495#undef FNAME
496#undef PT_BASE_ADDR_MASK
497#undef PT_INDEX
498#undef SHADOW_PT_INDEX
499#undef PT_LEVEL_MASK
500#undef PT_PTE_COPY_MASK
501#undef PT_NON_PTE_COPY_MASK
502#undef PT_DIR_BASE_ADDR_MASK
cea0f0e7 503#undef PT_MAX_FULL_LEVELS