]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/core.c
netfilter: conntrack: refine gc worker heuristics, redux
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe 17#include <asm/pgtable.h>
7c0f6ba6 18#include <linux/uaccess.h>
d7e28ffe 19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
f1f394b1 24struct page **lg_switcher_pages;
e27d90e8
RR
25static struct vm_struct *switcher_text_vma;
26static struct vm_struct *switcher_stacks_vma;
d7e28ffe 27
d7e28ffe
RR
28/* This One Big lock protects all inter-guest data structures. */
29DEFINE_MUTEX(lguest_lock);
d7e28ffe 30
2e04ef76
RR
31/*H:010
32 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
33 * Switcher is a few hundred bytes of assembler code which actually changes the
34 * CPU to run the Guest, and then changes back to the Host when a trap or
35 * interrupt happens.
36 *
37 * The Switcher code must be at the same virtual address in the Guest as the
38 * Host since it will be running as the switchover occurs.
39 *
40 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
41 * it's not a simple one-liner.
42 */
d7e28ffe
RR
43static __init int map_switcher(void)
44{
45 int i, err;
d7e28ffe 46
bff672e6
RR
47 /*
48 * Map the Switcher in to high memory.
49 *
50 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 * top virtual address), it makes setting up the page tables really
52 * easy.
53 */
54
93a2cdff
RR
55 /* We assume Switcher text fits into a single page. */
56 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
57 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
58 end_switcher_text - start_switcher_text);
59 return -EINVAL;
60 }
61
2e04ef76
RR
62 /*
63 * We allocate an array of struct page pointers. map_vm_area() wants
64 * this, rather than just an array of pages.
65 */
f1f394b1
RR
66 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
67 * TOTAL_SWITCHER_PAGES,
68 GFP_KERNEL);
69 if (!lg_switcher_pages) {
d7e28ffe
RR
70 err = -ENOMEM;
71 goto out;
72 }
73
2e04ef76
RR
74 /*
75 * Now we actually allocate the pages. The Guest will see these pages,
76 * so we make sure they're zeroed.
77 */
d7e28ffe 78 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
f1f394b1
RR
79 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
80 if (!lg_switcher_pages[i]) {
d7e28ffe
RR
81 err = -ENOMEM;
82 goto free_some_pages;
83 }
d7e28ffe
RR
84 }
85
e27d90e8
RR
86 /*
87 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
88 * It goes in the first page, which we map in momentarily.
89 */
90 memcpy(kmap(lg_switcher_pages[0]), start_switcher_text,
91 end_switcher_text - start_switcher_text);
92 kunmap(lg_switcher_pages[0]);
93
2e04ef76 94 /*
6b392717
RR
95 * We place the Switcher underneath the fixmap area, which is the
96 * highest virtual address we can get. This is important, since we
97 * tell the Guest it can't access this memory, so we want its ceiling
98 * as high as possible.
2e04ef76 99 */
e27d90e8 100 switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE;
f14ae652 101
2e04ef76 102 /*
e27d90e8
RR
103 * Now we reserve the "virtual memory area"s we want. We might
104 * not get them in theory, but in practice it's worked so far.
105 *
106 * We want the switcher text to be read-only and executable, and
107 * the stacks to be read-write and non-executable.
2e04ef76 108 */
e27d90e8
RR
109 switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD,
110 switcher_addr,
111 switcher_addr + PAGE_SIZE);
112
113 if (!switcher_text_vma) {
d7e28ffe
RR
114 err = -ENOMEM;
115 printk("lguest: could not map switcher pages high\n");
116 goto free_pages;
117 }
118
e27d90e8
RR
119 switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE,
120 VM_ALLOC|VM_NO_GUARD,
121 switcher_addr + PAGE_SIZE,
122 switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE);
123 if (!switcher_stacks_vma) {
124 err = -ENOMEM;
125 printk("lguest: could not map switcher pages high\n");
126 goto free_text_vma;
127 }
128
2e04ef76
RR
129 /*
130 * This code actually sets up the pages we've allocated to appear at
406a590b 131 * switcher_addr. map_vm_area() takes the vma we allocated above, the
e27d90e8
RR
132 * kind of pages we're mapping (kernel text pages and kernel writable
133 * pages respectively), and a pointer to our array of struct pages.
2e04ef76 134 */
e27d90e8
RR
135 err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages);
136 if (err) {
137 printk("lguest: text map_vm_area failed: %i\n", err);
138 goto free_vmas;
139 }
140
141 err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL,
142 lg_switcher_pages + SWITCHER_TEXT_PAGES);
d7e28ffe 143 if (err) {
e27d90e8
RR
144 printk("lguest: stacks map_vm_area failed: %i\n", err);
145 goto free_vmas;
d7e28ffe 146 }
bff672e6 147
2e04ef76
RR
148 /*
149 * Now the Switcher is mapped at the right address, we can't fail!
2e04ef76 150 */
d7e28ffe 151 printk(KERN_INFO "lguest: mapped switcher at %p\n",
e27d90e8 152 switcher_text_vma->addr);
bff672e6 153 /* And we succeeded... */
d7e28ffe
RR
154 return 0;
155
e27d90e8
RR
156free_vmas:
157 /* Undoes map_vm_area and __get_vm_area */
158 vunmap(switcher_stacks_vma->addr);
159free_text_vma:
160 vunmap(switcher_text_vma->addr);
d7e28ffe
RR
161free_pages:
162 i = TOTAL_SWITCHER_PAGES;
163free_some_pages:
164 for (--i; i >= 0; i--)
f1f394b1
RR
165 __free_pages(lg_switcher_pages[i], 0);
166 kfree(lg_switcher_pages);
d7e28ffe
RR
167out:
168 return err;
169}
bff672e6 170/*:*/
d7e28ffe 171
2e04ef76 172/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
173static void unmap_switcher(void)
174{
175 unsigned int i;
176
bff672e6 177 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
e27d90e8
RR
178 vunmap(switcher_text_vma->addr);
179 vunmap(switcher_stacks_vma->addr);
bff672e6 180 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 181 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
f1f394b1
RR
182 __free_pages(lg_switcher_pages[i], 0);
183 kfree(lg_switcher_pages);
d7e28ffe
RR
184}
185
e1e72965 186/*H:032
dde79789
RR
187 * Dealing With Guest Memory.
188 *
e1e72965
RR
189 * Before we go too much further into the Host, we need to grok the routines
190 * we use to deal with Guest memory.
191 *
dde79789 192 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
193 * the normal copy_from_user() & copy_to_user() on the corresponding place in
194 * the memory region allocated by the Launcher.
dde79789
RR
195 *
196 * But we can't trust the Guest: it might be trying to access the Launcher
197 * code. We have to check that the range is below the pfn_limit the Launcher
198 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
199 * positive by overflowing, too.
200 */
df1693ab
MZ
201bool lguest_address_ok(const struct lguest *lg,
202 unsigned long addr, unsigned long len)
d7e28ffe 203{
83a35114 204 return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
d7e28ffe
RR
205}
206
2e04ef76
RR
207/*
208 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 209 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
210 * value (all zeroes) instead of needing to return an error.
211 */
382ac6b3 212void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 213{
382ac6b3
GOC
214 if (!lguest_address_ok(cpu->lg, addr, bytes)
215 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
216 /* copy_from_user should do this, but as we rely on it... */
217 memset(b, 0, bytes);
382ac6b3 218 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
219 }
220}
221
a6bd8e13 222/* This is the write (copy into Guest) version. */
382ac6b3 223void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 224 unsigned bytes)
d7e28ffe 225{
382ac6b3
GOC
226 if (!lguest_address_ok(cpu->lg, addr, bytes)
227 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
228 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 229}
2d37f94a 230/*:*/
d7e28ffe 231
2e04ef76
RR
232/*H:030
233 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 234 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
235 * going around and around until something interesting happens.
236 */
d0953d42 237int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 238{
18c13737
RR
239 /* If the launcher asked for a register with LHREQ_GETREG */
240 if (cpu->reg_read) {
241 if (put_user(*cpu->reg_read, user))
242 return -EFAULT;
243 cpu->reg_read = NULL;
244 return sizeof(*cpu->reg_read);
245 }
246
bff672e6 247 /* We stop running once the Guest is dead. */
382ac6b3 248 while (!cpu->lg->dead) {
abd41f03 249 unsigned int irq;
a32a8813 250 bool more;
abd41f03 251
cc6d4fbc 252 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
253 if (cpu->hcall)
254 do_hypercalls(cpu);
cc6d4fbc 255
d9bab50a 256 /* Do we have to tell the Launcher about a trap? */
69a09dc1 257 if (cpu->pending.trap) {
d9bab50a
RR
258 if (copy_to_user(user, &cpu->pending,
259 sizeof(cpu->pending)))
260 return -EFAULT;
261 return sizeof(cpu->pending);
d7e28ffe
RR
262 }
263
0acf0001
MH
264 /*
265 * All long-lived kernel loops need to check with this horrible
266 * thing called the freezer. If the Host is trying to suspend,
267 * it stops us.
268 */
269 try_to_freeze();
270
bff672e6 271 /* Check for signals */
d7e28ffe
RR
272 if (signal_pending(current))
273 return -ERESTARTSYS;
274
2e04ef76
RR
275 /*
276 * Check if there are any interrupts which can be delivered now:
a6bd8e13 277 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
278 * run the Guest.
279 */
a32a8813 280 irq = interrupt_pending(cpu, &more);
abd41f03 281 if (irq < LGUEST_IRQS)
a32a8813 282 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 283
2e04ef76
RR
284 /*
285 * Just make absolutely sure the Guest is still alive. One of
286 * those hypercalls could have been fatal, for example.
287 */
382ac6b3 288 if (cpu->lg->dead)
d7e28ffe
RR
289 break;
290
2e04ef76
RR
291 /*
292 * If the Guest asked to be stopped, we sleep. The Guest's
293 * clock timer will wake us.
294 */
66686c2a 295 if (cpu->halted) {
d7e28ffe 296 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
297 /*
298 * Just before we sleep, make sure no interrupt snuck in
299 * which we should be doing.
300 */
5dac051b 301 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
302 set_current_state(TASK_RUNNING);
303 else
304 schedule();
d7e28ffe
RR
305 continue;
306 }
307
2e04ef76
RR
308 /*
309 * OK, now we're ready to jump into the Guest. First we put up
310 * the "Do Not Disturb" sign:
311 */
d7e28ffe
RR
312 local_irq_disable();
313
625efab1 314 /* Actually run the Guest until something happens. */
d0953d42 315 lguest_arch_run_guest(cpu);
bff672e6
RR
316
317 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
318 local_irq_enable();
319
625efab1 320 /* Now we deal with whatever happened to the Guest. */
73044f05 321 lguest_arch_handle_trap(cpu);
d7e28ffe 322 }
625efab1 323
a6bd8e13 324 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 325 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 326 return -ERESTART;
a6bd8e13 327
bff672e6 328 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
329 return -ENOENT;
330}
331
bff672e6
RR
332/*H:000
333 * Welcome to the Host!
334 *
335 * By this point your brain has been tickled by the Guest code and numbed by
336 * the Launcher code; prepare for it to be stretched by the Host code. This is
337 * the heart. Let's begin at the initialization routine for the Host's lg
338 * module.
339 */
d7e28ffe
RR
340static int __init init(void)
341{
342 int err;
343
bff672e6 344 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 345 if (get_kernel_rpl() != 0) {
5c55841d 346 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
347 return -EPERM;
348 }
349
bff672e6 350 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
351 err = map_switcher();
352 if (err)
c18acd73 353 goto out;
d7e28ffe 354
c18acd73
RR
355 /* We might need to reserve an interrupt vector. */
356 err = init_interrupts();
357 if (err)
3412b6ae 358 goto unmap;
c18acd73 359
bff672e6 360 /* /dev/lguest needs to be registered. */
d7e28ffe 361 err = lguest_device_init();
c18acd73
RR
362 if (err)
363 goto free_interrupts;
bff672e6 364
625efab1
JS
365 /* Finally we do some architecture-specific setup. */
366 lguest_arch_host_init();
bff672e6
RR
367
368 /* All good! */
d7e28ffe 369 return 0;
c18acd73
RR
370
371free_interrupts:
372 free_interrupts();
c18acd73
RR
373unmap:
374 unmap_switcher();
375out:
376 return err;
d7e28ffe
RR
377}
378
bff672e6 379/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
380static void __exit fini(void)
381{
382 lguest_device_remove();
c18acd73 383 free_interrupts();
d7e28ffe 384 unmap_switcher();
bff672e6 385
625efab1 386 lguest_arch_host_fini();
d7e28ffe 387}
625efab1 388/*:*/
d7e28ffe 389
2e04ef76
RR
390/*
391 * The Host side of lguest can be a module. This is a nice way for people to
392 * play with it.
393 */
d7e28ffe
RR
394module_init(init);
395module_exit(fini);
396MODULE_LICENSE("GPL");
397MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");