]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/core.c
lguest: extract shadow PTE walking / allocating.
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe
RR
17#include <asm/pgtable.h>
18#include <asm/uaccess.h>
19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
d7e28ffe 24static struct vm_struct *switcher_vma;
856c6088 25static struct page **switcher_pages;
d7e28ffe 26
d7e28ffe
RR
27/* This One Big lock protects all inter-guest data structures. */
28DEFINE_MUTEX(lguest_lock);
d7e28ffe 29
2e04ef76
RR
30/*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
40 * it's not a simple one-liner.
41 */
d7e28ffe
RR
42static __init int map_switcher(void)
43{
44 int i, err;
45 struct page **pagep;
46
bff672e6
RR
47 /*
48 * Map the Switcher in to high memory.
49 *
50 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 * top virtual address), it makes setting up the page tables really
52 * easy.
53 */
54
93a2cdff
RR
55 /* We assume Switcher text fits into a single page. */
56 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
57 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
58 end_switcher_text - start_switcher_text);
59 return -EINVAL;
60 }
61
2e04ef76
RR
62 /*
63 * We allocate an array of struct page pointers. map_vm_area() wants
64 * this, rather than just an array of pages.
65 */
856c6088
RR
66 switcher_pages = kmalloc(sizeof(switcher_pages[0])*TOTAL_SWITCHER_PAGES,
67 GFP_KERNEL);
68 if (!switcher_pages) {
d7e28ffe
RR
69 err = -ENOMEM;
70 goto out;
71 }
72
2e04ef76
RR
73 /*
74 * Now we actually allocate the pages. The Guest will see these pages,
75 * so we make sure they're zeroed.
76 */
d7e28ffe 77 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
856c6088
RR
78 switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
79 if (!switcher_pages[i]) {
d7e28ffe
RR
80 err = -ENOMEM;
81 goto free_some_pages;
82 }
d7e28ffe
RR
83 }
84
406a590b
RR
85 switcher_addr = SWITCHER_ADDR;
86
2e04ef76
RR
87 /*
88 * First we check that the Switcher won't overlap the fixmap area at
f14ae652 89 * the top of memory. It's currently nowhere near, but it could have
2e04ef76
RR
90 * very strange effects if it ever happened.
91 */
406a590b 92 if (switcher_addr + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
f14ae652
RR
93 err = -ENOMEM;
94 printk("lguest: mapping switcher would thwack fixmap\n");
95 goto free_pages;
96 }
97
2e04ef76 98 /*
406a590b
RR
99 * Now we reserve the "virtual memory area" we want. We might
100 * not get it in theory, but in practice it's worked so far.
101 * The end address needs +1 because __get_vm_area allocates an
102 * extra guard page, so we need space for that.
2e04ef76 103 */
d7e28ffe 104 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
406a590b 105 VM_ALLOC, switcher_addr, switcher_addr
f14ae652 106 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
107 if (!switcher_vma) {
108 err = -ENOMEM;
109 printk("lguest: could not map switcher pages high\n");
110 goto free_pages;
111 }
112
2e04ef76
RR
113 /*
114 * This code actually sets up the pages we've allocated to appear at
406a590b 115 * switcher_addr. map_vm_area() takes the vma we allocated above, the
bff672e6
RR
116 * kind of pages we're mapping (kernel pages), and a pointer to our
117 * array of struct pages. It increments that pointer, but we don't
2e04ef76
RR
118 * care.
119 */
856c6088 120 pagep = switcher_pages;
ed1dc778 121 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
122 if (err) {
123 printk("lguest: map_vm_area failed: %i\n", err);
124 goto free_vma;
125 }
bff672e6 126
2e04ef76
RR
127 /*
128 * Now the Switcher is mapped at the right address, we can't fail!
9f54288d 129 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
2e04ef76 130 */
d7e28ffe
RR
131 memcpy(switcher_vma->addr, start_switcher_text,
132 end_switcher_text - start_switcher_text);
133
d7e28ffe
RR
134 printk(KERN_INFO "lguest: mapped switcher at %p\n",
135 switcher_vma->addr);
bff672e6 136 /* And we succeeded... */
d7e28ffe
RR
137 return 0;
138
139free_vma:
140 vunmap(switcher_vma->addr);
141free_pages:
142 i = TOTAL_SWITCHER_PAGES;
143free_some_pages:
144 for (--i; i >= 0; i--)
856c6088
RR
145 __free_pages(switcher_pages[i], 0);
146 kfree(switcher_pages);
d7e28ffe
RR
147out:
148 return err;
149}
bff672e6 150/*:*/
d7e28ffe 151
2e04ef76 152/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
153static void unmap_switcher(void)
154{
155 unsigned int i;
156
bff672e6 157 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 158 vunmap(switcher_vma->addr);
bff672e6 159 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 160 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
856c6088
RR
161 __free_pages(switcher_pages[i], 0);
162 kfree(switcher_pages);
d7e28ffe
RR
163}
164
e1e72965 165/*H:032
dde79789
RR
166 * Dealing With Guest Memory.
167 *
e1e72965
RR
168 * Before we go too much further into the Host, we need to grok the routines
169 * we use to deal with Guest memory.
170 *
dde79789 171 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
172 * the normal copy_from_user() & copy_to_user() on the corresponding place in
173 * the memory region allocated by the Launcher.
dde79789
RR
174 *
175 * But we can't trust the Guest: it might be trying to access the Launcher
176 * code. We have to check that the range is below the pfn_limit the Launcher
177 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
178 * positive by overflowing, too.
179 */
df1693ab
MZ
180bool lguest_address_ok(const struct lguest *lg,
181 unsigned long addr, unsigned long len)
d7e28ffe
RR
182{
183 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
184}
185
2e04ef76
RR
186/*
187 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 188 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
189 * value (all zeroes) instead of needing to return an error.
190 */
382ac6b3 191void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 192{
382ac6b3
GOC
193 if (!lguest_address_ok(cpu->lg, addr, bytes)
194 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
195 /* copy_from_user should do this, but as we rely on it... */
196 memset(b, 0, bytes);
382ac6b3 197 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
198 }
199}
200
a6bd8e13 201/* This is the write (copy into Guest) version. */
382ac6b3 202void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 203 unsigned bytes)
d7e28ffe 204{
382ac6b3
GOC
205 if (!lguest_address_ok(cpu->lg, addr, bytes)
206 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
207 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 208}
2d37f94a 209/*:*/
d7e28ffe 210
2e04ef76
RR
211/*H:030
212 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 213 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
214 * going around and around until something interesting happens.
215 */
d0953d42 216int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 217{
bff672e6 218 /* We stop running once the Guest is dead. */
382ac6b3 219 while (!cpu->lg->dead) {
abd41f03 220 unsigned int irq;
a32a8813 221 bool more;
abd41f03 222
cc6d4fbc 223 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
224 if (cpu->hcall)
225 do_hypercalls(cpu);
cc6d4fbc 226
2e04ef76
RR
227 /*
228 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 229 * Launcher.
2e04ef76 230 */
5e232f4f 231 if (cpu->pending_notify) {
a91d74a3
RR
232 /*
233 * Does it just needs to write to a registered
234 * eventfd (ie. the appropriate virtqueue thread)?
235 */
df60aeef 236 if (!send_notify_to_eventfd(cpu)) {
681f2066 237 /* OK, we tell the main Launcher. */
df60aeef
RR
238 if (put_user(cpu->pending_notify, user))
239 return -EFAULT;
240 return sizeof(cpu->pending_notify);
241 }
d7e28ffe
RR
242 }
243
0acf0001
MH
244 /*
245 * All long-lived kernel loops need to check with this horrible
246 * thing called the freezer. If the Host is trying to suspend,
247 * it stops us.
248 */
249 try_to_freeze();
250
bff672e6 251 /* Check for signals */
d7e28ffe
RR
252 if (signal_pending(current))
253 return -ERESTARTSYS;
254
2e04ef76
RR
255 /*
256 * Check if there are any interrupts which can be delivered now:
a6bd8e13 257 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
258 * run the Guest.
259 */
a32a8813 260 irq = interrupt_pending(cpu, &more);
abd41f03 261 if (irq < LGUEST_IRQS)
a32a8813 262 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 263
2e04ef76
RR
264 /*
265 * Just make absolutely sure the Guest is still alive. One of
266 * those hypercalls could have been fatal, for example.
267 */
382ac6b3 268 if (cpu->lg->dead)
d7e28ffe
RR
269 break;
270
2e04ef76
RR
271 /*
272 * If the Guest asked to be stopped, we sleep. The Guest's
273 * clock timer will wake us.
274 */
66686c2a 275 if (cpu->halted) {
d7e28ffe 276 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
277 /*
278 * Just before we sleep, make sure no interrupt snuck in
279 * which we should be doing.
280 */
5dac051b 281 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
282 set_current_state(TASK_RUNNING);
283 else
284 schedule();
d7e28ffe
RR
285 continue;
286 }
287
2e04ef76
RR
288 /*
289 * OK, now we're ready to jump into the Guest. First we put up
290 * the "Do Not Disturb" sign:
291 */
d7e28ffe
RR
292 local_irq_disable();
293
625efab1 294 /* Actually run the Guest until something happens. */
d0953d42 295 lguest_arch_run_guest(cpu);
bff672e6
RR
296
297 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
298 local_irq_enable();
299
625efab1 300 /* Now we deal with whatever happened to the Guest. */
73044f05 301 lguest_arch_handle_trap(cpu);
d7e28ffe 302 }
625efab1 303
a6bd8e13 304 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 305 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 306 return -ERESTART;
a6bd8e13 307
bff672e6 308 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
309 return -ENOENT;
310}
311
bff672e6
RR
312/*H:000
313 * Welcome to the Host!
314 *
315 * By this point your brain has been tickled by the Guest code and numbed by
316 * the Launcher code; prepare for it to be stretched by the Host code. This is
317 * the heart. Let's begin at the initialization routine for the Host's lg
318 * module.
319 */
d7e28ffe
RR
320static int __init init(void)
321{
322 int err;
323
bff672e6 324 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 325 if (get_kernel_rpl() != 0) {
5c55841d 326 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
327 return -EPERM;
328 }
329
bff672e6 330 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
331 err = map_switcher();
332 if (err)
c18acd73 333 goto out;
d7e28ffe 334
bff672e6 335 /* Now we set up the pagetable implementation for the Guests. */
93a2cdff 336 err = init_pagetables(switcher_pages);
c18acd73
RR
337 if (err)
338 goto unmap;
bff672e6 339
c18acd73
RR
340 /* We might need to reserve an interrupt vector. */
341 err = init_interrupts();
342 if (err)
343 goto free_pgtables;
344
bff672e6 345 /* /dev/lguest needs to be registered. */
d7e28ffe 346 err = lguest_device_init();
c18acd73
RR
347 if (err)
348 goto free_interrupts;
bff672e6 349
625efab1
JS
350 /* Finally we do some architecture-specific setup. */
351 lguest_arch_host_init();
bff672e6
RR
352
353 /* All good! */
d7e28ffe 354 return 0;
c18acd73
RR
355
356free_interrupts:
357 free_interrupts();
358free_pgtables:
359 free_pagetables();
360unmap:
361 unmap_switcher();
362out:
363 return err;
d7e28ffe
RR
364}
365
bff672e6 366/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
367static void __exit fini(void)
368{
369 lguest_device_remove();
c18acd73 370 free_interrupts();
d7e28ffe
RR
371 free_pagetables();
372 unmap_switcher();
bff672e6 373
625efab1 374 lguest_arch_host_fini();
d7e28ffe 375}
625efab1 376/*:*/
d7e28ffe 377
2e04ef76
RR
378/*
379 * The Host side of lguest can be a module. This is a nice way for people to
380 * play with it.
381 */
d7e28ffe
RR
382module_init(init);
383module_exit(fini);
384MODULE_LICENSE("GPL");
385MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");