]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/lguest/core.c
lguest: add operations to get/set a register from the Launcher.
[mirror_ubuntu-zesty-kernel.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe
RR
17#include <asm/pgtable.h>
18#include <asm/uaccess.h>
19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
f1f394b1 24struct page **lg_switcher_pages;
d7e28ffe 25static struct vm_struct *switcher_vma;
d7e28ffe 26
d7e28ffe
RR
27/* This One Big lock protects all inter-guest data structures. */
28DEFINE_MUTEX(lguest_lock);
d7e28ffe 29
2e04ef76
RR
30/*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
40 * it's not a simple one-liner.
41 */
d7e28ffe
RR
42static __init int map_switcher(void)
43{
44 int i, err;
d7e28ffe 45
bff672e6
RR
46 /*
47 * Map the Switcher in to high memory.
48 *
49 * It turns out that if we choose the address 0xFFC00000 (4MB under the
50 * top virtual address), it makes setting up the page tables really
51 * easy.
52 */
53
93a2cdff
RR
54 /* We assume Switcher text fits into a single page. */
55 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
56 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
57 end_switcher_text - start_switcher_text);
58 return -EINVAL;
59 }
60
2e04ef76
RR
61 /*
62 * We allocate an array of struct page pointers. map_vm_area() wants
63 * this, rather than just an array of pages.
64 */
f1f394b1
RR
65 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
66 * TOTAL_SWITCHER_PAGES,
67 GFP_KERNEL);
68 if (!lg_switcher_pages) {
d7e28ffe
RR
69 err = -ENOMEM;
70 goto out;
71 }
72
2e04ef76
RR
73 /*
74 * Now we actually allocate the pages. The Guest will see these pages,
75 * so we make sure they're zeroed.
76 */
d7e28ffe 77 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
f1f394b1
RR
78 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
79 if (!lg_switcher_pages[i]) {
d7e28ffe
RR
80 err = -ENOMEM;
81 goto free_some_pages;
82 }
d7e28ffe
RR
83 }
84
2e04ef76 85 /*
6b392717
RR
86 * We place the Switcher underneath the fixmap area, which is the
87 * highest virtual address we can get. This is important, since we
88 * tell the Guest it can't access this memory, so we want its ceiling
89 * as high as possible.
2e04ef76 90 */
6b392717 91 switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
f14ae652 92
2e04ef76 93 /*
406a590b
RR
94 * Now we reserve the "virtual memory area" we want. We might
95 * not get it in theory, but in practice it's worked so far.
96 * The end address needs +1 because __get_vm_area allocates an
97 * extra guard page, so we need space for that.
2e04ef76 98 */
d7e28ffe 99 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
406a590b 100 VM_ALLOC, switcher_addr, switcher_addr
f14ae652 101 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
102 if (!switcher_vma) {
103 err = -ENOMEM;
104 printk("lguest: could not map switcher pages high\n");
105 goto free_pages;
106 }
107
2e04ef76
RR
108 /*
109 * This code actually sets up the pages we've allocated to appear at
406a590b 110 * switcher_addr. map_vm_area() takes the vma we allocated above, the
bff672e6 111 * kind of pages we're mapping (kernel pages), and a pointer to our
f6f8ed47 112 * array of struct pages.
2e04ef76 113 */
f6f8ed47 114 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, lg_switcher_pages);
d7e28ffe
RR
115 if (err) {
116 printk("lguest: map_vm_area failed: %i\n", err);
117 goto free_vma;
118 }
bff672e6 119
2e04ef76
RR
120 /*
121 * Now the Switcher is mapped at the right address, we can't fail!
9f54288d 122 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
2e04ef76 123 */
d7e28ffe
RR
124 memcpy(switcher_vma->addr, start_switcher_text,
125 end_switcher_text - start_switcher_text);
126
d7e28ffe
RR
127 printk(KERN_INFO "lguest: mapped switcher at %p\n",
128 switcher_vma->addr);
bff672e6 129 /* And we succeeded... */
d7e28ffe
RR
130 return 0;
131
132free_vma:
133 vunmap(switcher_vma->addr);
134free_pages:
135 i = TOTAL_SWITCHER_PAGES;
136free_some_pages:
137 for (--i; i >= 0; i--)
f1f394b1
RR
138 __free_pages(lg_switcher_pages[i], 0);
139 kfree(lg_switcher_pages);
d7e28ffe
RR
140out:
141 return err;
142}
bff672e6 143/*:*/
d7e28ffe 144
2e04ef76 145/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
146static void unmap_switcher(void)
147{
148 unsigned int i;
149
bff672e6 150 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 151 vunmap(switcher_vma->addr);
bff672e6 152 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 153 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
f1f394b1
RR
154 __free_pages(lg_switcher_pages[i], 0);
155 kfree(lg_switcher_pages);
d7e28ffe
RR
156}
157
e1e72965 158/*H:032
dde79789
RR
159 * Dealing With Guest Memory.
160 *
e1e72965
RR
161 * Before we go too much further into the Host, we need to grok the routines
162 * we use to deal with Guest memory.
163 *
dde79789 164 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
165 * the normal copy_from_user() & copy_to_user() on the corresponding place in
166 * the memory region allocated by the Launcher.
dde79789
RR
167 *
168 * But we can't trust the Guest: it might be trying to access the Launcher
169 * code. We have to check that the range is below the pfn_limit the Launcher
170 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
171 * positive by overflowing, too.
172 */
df1693ab
MZ
173bool lguest_address_ok(const struct lguest *lg,
174 unsigned long addr, unsigned long len)
d7e28ffe
RR
175{
176 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
177}
178
2e04ef76
RR
179/*
180 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 181 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
182 * value (all zeroes) instead of needing to return an error.
183 */
382ac6b3 184void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 185{
382ac6b3
GOC
186 if (!lguest_address_ok(cpu->lg, addr, bytes)
187 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
188 /* copy_from_user should do this, but as we rely on it... */
189 memset(b, 0, bytes);
382ac6b3 190 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
191 }
192}
193
a6bd8e13 194/* This is the write (copy into Guest) version. */
382ac6b3 195void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 196 unsigned bytes)
d7e28ffe 197{
382ac6b3
GOC
198 if (!lguest_address_ok(cpu->lg, addr, bytes)
199 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
200 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 201}
2d37f94a 202/*:*/
d7e28ffe 203
2e04ef76
RR
204/*H:030
205 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 206 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
207 * going around and around until something interesting happens.
208 */
d0953d42 209int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 210{
18c13737
RR
211 /* If the launcher asked for a register with LHREQ_GETREG */
212 if (cpu->reg_read) {
213 if (put_user(*cpu->reg_read, user))
214 return -EFAULT;
215 cpu->reg_read = NULL;
216 return sizeof(*cpu->reg_read);
217 }
218
bff672e6 219 /* We stop running once the Guest is dead. */
382ac6b3 220 while (!cpu->lg->dead) {
abd41f03 221 unsigned int irq;
a32a8813 222 bool more;
abd41f03 223
cc6d4fbc 224 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
225 if (cpu->hcall)
226 do_hypercalls(cpu);
cc6d4fbc 227
2e04ef76
RR
228 /*
229 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 230 * Launcher.
2e04ef76 231 */
5e232f4f 232 if (cpu->pending_notify) {
a91d74a3
RR
233 /*
234 * Does it just needs to write to a registered
235 * eventfd (ie. the appropriate virtqueue thread)?
236 */
df60aeef 237 if (!send_notify_to_eventfd(cpu)) {
681f2066 238 /* OK, we tell the main Launcher. */
df60aeef
RR
239 if (put_user(cpu->pending_notify, user))
240 return -EFAULT;
241 return sizeof(cpu->pending_notify);
242 }
d7e28ffe
RR
243 }
244
0acf0001
MH
245 /*
246 * All long-lived kernel loops need to check with this horrible
247 * thing called the freezer. If the Host is trying to suspend,
248 * it stops us.
249 */
250 try_to_freeze();
251
bff672e6 252 /* Check for signals */
d7e28ffe
RR
253 if (signal_pending(current))
254 return -ERESTARTSYS;
255
2e04ef76
RR
256 /*
257 * Check if there are any interrupts which can be delivered now:
a6bd8e13 258 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
259 * run the Guest.
260 */
a32a8813 261 irq = interrupt_pending(cpu, &more);
abd41f03 262 if (irq < LGUEST_IRQS)
a32a8813 263 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 264
2e04ef76
RR
265 /*
266 * Just make absolutely sure the Guest is still alive. One of
267 * those hypercalls could have been fatal, for example.
268 */
382ac6b3 269 if (cpu->lg->dead)
d7e28ffe
RR
270 break;
271
2e04ef76
RR
272 /*
273 * If the Guest asked to be stopped, we sleep. The Guest's
274 * clock timer will wake us.
275 */
66686c2a 276 if (cpu->halted) {
d7e28ffe 277 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
278 /*
279 * Just before we sleep, make sure no interrupt snuck in
280 * which we should be doing.
281 */
5dac051b 282 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
283 set_current_state(TASK_RUNNING);
284 else
285 schedule();
d7e28ffe
RR
286 continue;
287 }
288
2e04ef76
RR
289 /*
290 * OK, now we're ready to jump into the Guest. First we put up
291 * the "Do Not Disturb" sign:
292 */
d7e28ffe
RR
293 local_irq_disable();
294
625efab1 295 /* Actually run the Guest until something happens. */
d0953d42 296 lguest_arch_run_guest(cpu);
bff672e6
RR
297
298 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
299 local_irq_enable();
300
625efab1 301 /* Now we deal with whatever happened to the Guest. */
73044f05 302 lguest_arch_handle_trap(cpu);
d7e28ffe 303 }
625efab1 304
a6bd8e13 305 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 306 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 307 return -ERESTART;
a6bd8e13 308
bff672e6 309 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
310 return -ENOENT;
311}
312
bff672e6
RR
313/*H:000
314 * Welcome to the Host!
315 *
316 * By this point your brain has been tickled by the Guest code and numbed by
317 * the Launcher code; prepare for it to be stretched by the Host code. This is
318 * the heart. Let's begin at the initialization routine for the Host's lg
319 * module.
320 */
d7e28ffe
RR
321static int __init init(void)
322{
323 int err;
324
bff672e6 325 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 326 if (get_kernel_rpl() != 0) {
5c55841d 327 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
328 return -EPERM;
329 }
330
bff672e6 331 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
332 err = map_switcher();
333 if (err)
c18acd73 334 goto out;
d7e28ffe 335
c18acd73
RR
336 /* We might need to reserve an interrupt vector. */
337 err = init_interrupts();
338 if (err)
3412b6ae 339 goto unmap;
c18acd73 340
bff672e6 341 /* /dev/lguest needs to be registered. */
d7e28ffe 342 err = lguest_device_init();
c18acd73
RR
343 if (err)
344 goto free_interrupts;
bff672e6 345
625efab1
JS
346 /* Finally we do some architecture-specific setup. */
347 lguest_arch_host_init();
bff672e6
RR
348
349 /* All good! */
d7e28ffe 350 return 0;
c18acd73
RR
351
352free_interrupts:
353 free_interrupts();
c18acd73
RR
354unmap:
355 unmap_switcher();
356out:
357 return err;
d7e28ffe
RR
358}
359
bff672e6 360/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
361static void __exit fini(void)
362{
363 lguest_device_remove();
c18acd73 364 free_interrupts();
d7e28ffe 365 unmap_switcher();
bff672e6 366
625efab1 367 lguest_arch_host_fini();
d7e28ffe 368}
625efab1 369/*:*/
d7e28ffe 370
2e04ef76
RR
371/*
372 * The Host side of lguest can be a module. This is a nice way for people to
373 * play with it.
374 */
d7e28ffe
RR
375module_init(init);
376module_exit(fini);
377MODULE_LICENSE("GPL");
378MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");