]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/core.c
lguest: make write() operation smp aware
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / core.c
CommitLineData
f938d2c8
RR
1/*P:400 This contains run_guest() which actually calls into the Host<->Guest
2 * Switcher and analyzes the return, such as determining if the Guest wants the
3 * Host to do something. This file also contains useful helper routines, and a
4 * couple of non-obvious setup and teardown pieces which were implemented after
5 * days of debugging pain. :*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
d7e28ffe 15#include <asm/paravirt.h>
d7e28ffe
RR
16#include <asm/pgtable.h>
17#include <asm/uaccess.h>
18#include <asm/poll.h>
d7e28ffe 19#include <asm/asm-offsets.h>
d7e28ffe
RR
20#include "lg.h"
21
d7e28ffe
RR
22
23static struct vm_struct *switcher_vma;
24static struct page **switcher_page;
25
d7e28ffe
RR
26/* This One Big lock protects all inter-guest data structures. */
27DEFINE_MUTEX(lguest_lock);
d7e28ffe 28
bff672e6
RR
29/*H:010 We need to set up the Switcher at a high virtual address. Remember the
30 * Switcher is a few hundred bytes of assembler code which actually changes the
31 * CPU to run the Guest, and then changes back to the Host when a trap or
32 * interrupt happens.
33 *
34 * The Switcher code must be at the same virtual address in the Guest as the
35 * Host since it will be running as the switchover occurs.
36 *
37 * Trying to map memory at a particular address is an unusual thing to do, so
625efab1 38 * it's not a simple one-liner. */
d7e28ffe
RR
39static __init int map_switcher(void)
40{
41 int i, err;
42 struct page **pagep;
43
bff672e6
RR
44 /*
45 * Map the Switcher in to high memory.
46 *
47 * It turns out that if we choose the address 0xFFC00000 (4MB under the
48 * top virtual address), it makes setting up the page tables really
49 * easy.
50 */
51
52 /* We allocate an array of "struct page"s. map_vm_area() wants the
53 * pages in this form, rather than just an array of pointers. */
d7e28ffe
RR
54 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
55 GFP_KERNEL);
56 if (!switcher_page) {
57 err = -ENOMEM;
58 goto out;
59 }
60
bff672e6
RR
61 /* Now we actually allocate the pages. The Guest will see these pages,
62 * so we make sure they're zeroed. */
d7e28ffe
RR
63 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
64 unsigned long addr = get_zeroed_page(GFP_KERNEL);
65 if (!addr) {
66 err = -ENOMEM;
67 goto free_some_pages;
68 }
69 switcher_page[i] = virt_to_page(addr);
70 }
71
bff672e6
RR
72 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
73 * (SWITCHER_ADDR). We might not get it in theory, but in practice
74 * it's worked so far. */
d7e28ffe
RR
75 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
76 VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
77 if (!switcher_vma) {
78 err = -ENOMEM;
79 printk("lguest: could not map switcher pages high\n");
80 goto free_pages;
81 }
82
bff672e6
RR
83 /* This code actually sets up the pages we've allocated to appear at
84 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
85 * kind of pages we're mapping (kernel pages), and a pointer to our
86 * array of struct pages. It increments that pointer, but we don't
87 * care. */
d7e28ffe
RR
88 pagep = switcher_page;
89 err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
90 if (err) {
91 printk("lguest: map_vm_area failed: %i\n", err);
92 goto free_vma;
93 }
bff672e6 94
625efab1
JS
95 /* Now the Switcher is mapped at the right address, we can't fail!
96 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
d7e28ffe
RR
97 memcpy(switcher_vma->addr, start_switcher_text,
98 end_switcher_text - start_switcher_text);
99
d7e28ffe
RR
100 printk(KERN_INFO "lguest: mapped switcher at %p\n",
101 switcher_vma->addr);
bff672e6 102 /* And we succeeded... */
d7e28ffe
RR
103 return 0;
104
105free_vma:
106 vunmap(switcher_vma->addr);
107free_pages:
108 i = TOTAL_SWITCHER_PAGES;
109free_some_pages:
110 for (--i; i >= 0; i--)
111 __free_pages(switcher_page[i], 0);
112 kfree(switcher_page);
113out:
114 return err;
115}
bff672e6 116/*:*/
d7e28ffe 117
bff672e6
RR
118/* Cleaning up the mapping when the module is unloaded is almost...
119 * too easy. */
d7e28ffe
RR
120static void unmap_switcher(void)
121{
122 unsigned int i;
123
bff672e6 124 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 125 vunmap(switcher_vma->addr);
bff672e6 126 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe
RR
127 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
128 __free_pages(switcher_page[i], 0);
129}
130
e1e72965 131/*H:032
dde79789
RR
132 * Dealing With Guest Memory.
133 *
e1e72965
RR
134 * Before we go too much further into the Host, we need to grok the routines
135 * we use to deal with Guest memory.
136 *
dde79789 137 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
138 * the normal copy_from_user() & copy_to_user() on the corresponding place in
139 * the memory region allocated by the Launcher.
dde79789
RR
140 *
141 * But we can't trust the Guest: it might be trying to access the Launcher
142 * code. We have to check that the range is below the pfn_limit the Launcher
143 * gave us. We have to make sure that addr + len doesn't give us a false
144 * positive by overflowing, too. */
d7e28ffe
RR
145int lguest_address_ok(const struct lguest *lg,
146 unsigned long addr, unsigned long len)
147{
148 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
149}
150
2d37f94a
RR
151/* This routine copies memory from the Guest. Here we can see how useful the
152 * kill_lguest() routine we met in the Launcher can be: we return a random
153 * value (all zeroes) instead of needing to return an error. */
154void __lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
d7e28ffe
RR
155{
156 if (!lguest_address_ok(lg, addr, bytes)
3c6b5bfa 157 || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
158 /* copy_from_user should do this, but as we rely on it... */
159 memset(b, 0, bytes);
160 kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
161 }
162}
163
2d37f94a
RR
164/* This is the write (copy into guest) version. */
165void __lgwrite(struct lguest *lg, unsigned long addr, const void *b,
166 unsigned bytes)
d7e28ffe
RR
167{
168 if (!lguest_address_ok(lg, addr, bytes)
3c6b5bfa 169 || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
d7e28ffe
RR
170 kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
171}
2d37f94a 172/*:*/
d7e28ffe 173
bff672e6
RR
174/*H:030 Let's jump straight to the the main loop which runs the Guest.
175 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
176 * going around and around until something interesting happens. */
d0953d42 177int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 178{
d0953d42
GOC
179 struct lguest *lg = cpu->lg;
180
bff672e6 181 /* We stop running once the Guest is dead. */
d7e28ffe 182 while (!lg->dead) {
cc6d4fbc
RR
183 /* First we run any hypercalls the Guest wants done. */
184 if (lg->hcall)
185 do_hypercalls(lg);
186
15045275 187 /* It's possible the Guest did a NOTIFY hypercall to the
bff672e6 188 * Launcher, in which case we return from the read() now. */
15045275
RR
189 if (lg->pending_notify) {
190 if (put_user(lg->pending_notify, user))
d7e28ffe 191 return -EFAULT;
15045275 192 return sizeof(lg->pending_notify);
d7e28ffe
RR
193 }
194
bff672e6 195 /* Check for signals */
d7e28ffe
RR
196 if (signal_pending(current))
197 return -ERESTARTSYS;
198
199 /* If Waker set break_out, return to Launcher. */
200 if (lg->break_out)
201 return -EAGAIN;
202
bff672e6
RR
203 /* Check if there are any interrupts which can be delivered
204 * now: if so, this sets up the hander to be executed when we
205 * next run the Guest. */
d7e28ffe
RR
206 maybe_do_interrupt(lg);
207
bff672e6
RR
208 /* All long-lived kernel loops need to check with this horrible
209 * thing called the freezer. If the Host is trying to suspend,
210 * it stops us. */
d7e28ffe
RR
211 try_to_freeze();
212
bff672e6
RR
213 /* Just make absolutely sure the Guest is still alive. One of
214 * those hypercalls could have been fatal, for example. */
d7e28ffe
RR
215 if (lg->dead)
216 break;
217
bff672e6
RR
218 /* If the Guest asked to be stopped, we sleep. The Guest's
219 * clock timer or LHCALL_BREAK from the Waker will wake us. */
d7e28ffe
RR
220 if (lg->halted) {
221 set_current_state(TASK_INTERRUPTIBLE);
222 schedule();
223 continue;
224 }
225
bff672e6
RR
226 /* OK, now we're ready to jump into the Guest. First we put up
227 * the "Do Not Disturb" sign: */
d7e28ffe
RR
228 local_irq_disable();
229
625efab1 230 /* Actually run the Guest until something happens. */
d0953d42 231 lguest_arch_run_guest(cpu);
bff672e6
RR
232
233 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
234 local_irq_enable();
235
625efab1
JS
236 /* Now we deal with whatever happened to the Guest. */
237 lguest_arch_handle_trap(lg);
d7e28ffe 238 }
625efab1 239
ec04b13f
BR
240 if (lg->dead == ERR_PTR(-ERESTART))
241 return -ERESTART;
bff672e6 242 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
243 return -ENOENT;
244}
245
bff672e6
RR
246/*H:000
247 * Welcome to the Host!
248 *
249 * By this point your brain has been tickled by the Guest code and numbed by
250 * the Launcher code; prepare for it to be stretched by the Host code. This is
251 * the heart. Let's begin at the initialization routine for the Host's lg
252 * module.
253 */
d7e28ffe
RR
254static int __init init(void)
255{
256 int err;
257
bff672e6 258 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
d7e28ffe 259 if (paravirt_enabled()) {
5c55841d 260 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
261 return -EPERM;
262 }
263
bff672e6 264 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
265 err = map_switcher();
266 if (err)
c18acd73 267 goto out;
d7e28ffe 268
bff672e6 269 /* Now we set up the pagetable implementation for the Guests. */
d7e28ffe 270 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
c18acd73
RR
271 if (err)
272 goto unmap;
bff672e6 273
c18acd73
RR
274 /* We might need to reserve an interrupt vector. */
275 err = init_interrupts();
276 if (err)
277 goto free_pgtables;
278
bff672e6 279 /* /dev/lguest needs to be registered. */
d7e28ffe 280 err = lguest_device_init();
c18acd73
RR
281 if (err)
282 goto free_interrupts;
bff672e6 283
625efab1
JS
284 /* Finally we do some architecture-specific setup. */
285 lguest_arch_host_init();
bff672e6
RR
286
287 /* All good! */
d7e28ffe 288 return 0;
c18acd73
RR
289
290free_interrupts:
291 free_interrupts();
292free_pgtables:
293 free_pagetables();
294unmap:
295 unmap_switcher();
296out:
297 return err;
d7e28ffe
RR
298}
299
bff672e6 300/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
301static void __exit fini(void)
302{
303 lguest_device_remove();
c18acd73 304 free_interrupts();
d7e28ffe
RR
305 free_pagetables();
306 unmap_switcher();
bff672e6 307
625efab1 308 lguest_arch_host_fini();
d7e28ffe 309}
625efab1 310/*:*/
d7e28ffe 311
bff672e6
RR
312/* The Host side of lguest can be a module. This is a nice way for people to
313 * play with it. */
d7e28ffe
RR
314module_init(init);
315module_exit(fini);
316MODULE_LICENSE("GPL");
317MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");