]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/lguest/core.c
lguest: rename switcher_page to switcher_pages.
[mirror_ubuntu-bionic-kernel.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe
RR
17#include <asm/pgtable.h>
18#include <asm/uaccess.h>
19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
d7e28ffe 24static struct vm_struct *switcher_vma;
856c6088 25static struct page **switcher_pages;
d7e28ffe 26
d7e28ffe
RR
27/* This One Big lock protects all inter-guest data structures. */
28DEFINE_MUTEX(lguest_lock);
d7e28ffe 29
2e04ef76
RR
30/*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
40 * it's not a simple one-liner.
41 */
d7e28ffe
RR
42static __init int map_switcher(void)
43{
44 int i, err;
45 struct page **pagep;
46
bff672e6
RR
47 /*
48 * Map the Switcher in to high memory.
49 *
50 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 * top virtual address), it makes setting up the page tables really
52 * easy.
53 */
54
2e04ef76
RR
55 /*
56 * We allocate an array of struct page pointers. map_vm_area() wants
57 * this, rather than just an array of pages.
58 */
856c6088
RR
59 switcher_pages = kmalloc(sizeof(switcher_pages[0])*TOTAL_SWITCHER_PAGES,
60 GFP_KERNEL);
61 if (!switcher_pages) {
d7e28ffe
RR
62 err = -ENOMEM;
63 goto out;
64 }
65
2e04ef76
RR
66 /*
67 * Now we actually allocate the pages. The Guest will see these pages,
68 * so we make sure they're zeroed.
69 */
d7e28ffe 70 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
856c6088
RR
71 switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
72 if (!switcher_pages[i]) {
d7e28ffe
RR
73 err = -ENOMEM;
74 goto free_some_pages;
75 }
d7e28ffe
RR
76 }
77
406a590b
RR
78 switcher_addr = SWITCHER_ADDR;
79
2e04ef76
RR
80 /*
81 * First we check that the Switcher won't overlap the fixmap area at
f14ae652 82 * the top of memory. It's currently nowhere near, but it could have
2e04ef76
RR
83 * very strange effects if it ever happened.
84 */
406a590b 85 if (switcher_addr + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
f14ae652
RR
86 err = -ENOMEM;
87 printk("lguest: mapping switcher would thwack fixmap\n");
88 goto free_pages;
89 }
90
2e04ef76 91 /*
406a590b
RR
92 * Now we reserve the "virtual memory area" we want. We might
93 * not get it in theory, but in practice it's worked so far.
94 * The end address needs +1 because __get_vm_area allocates an
95 * extra guard page, so we need space for that.
2e04ef76 96 */
d7e28ffe 97 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
406a590b 98 VM_ALLOC, switcher_addr, switcher_addr
f14ae652 99 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
100 if (!switcher_vma) {
101 err = -ENOMEM;
102 printk("lguest: could not map switcher pages high\n");
103 goto free_pages;
104 }
105
2e04ef76
RR
106 /*
107 * This code actually sets up the pages we've allocated to appear at
406a590b 108 * switcher_addr. map_vm_area() takes the vma we allocated above, the
bff672e6
RR
109 * kind of pages we're mapping (kernel pages), and a pointer to our
110 * array of struct pages. It increments that pointer, but we don't
2e04ef76
RR
111 * care.
112 */
856c6088 113 pagep = switcher_pages;
ed1dc778 114 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
115 if (err) {
116 printk("lguest: map_vm_area failed: %i\n", err);
117 goto free_vma;
118 }
bff672e6 119
2e04ef76
RR
120 /*
121 * Now the Switcher is mapped at the right address, we can't fail!
9f54288d 122 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
2e04ef76 123 */
d7e28ffe
RR
124 memcpy(switcher_vma->addr, start_switcher_text,
125 end_switcher_text - start_switcher_text);
126
d7e28ffe
RR
127 printk(KERN_INFO "lguest: mapped switcher at %p\n",
128 switcher_vma->addr);
bff672e6 129 /* And we succeeded... */
d7e28ffe
RR
130 return 0;
131
132free_vma:
133 vunmap(switcher_vma->addr);
134free_pages:
135 i = TOTAL_SWITCHER_PAGES;
136free_some_pages:
137 for (--i; i >= 0; i--)
856c6088
RR
138 __free_pages(switcher_pages[i], 0);
139 kfree(switcher_pages);
d7e28ffe
RR
140out:
141 return err;
142}
bff672e6 143/*:*/
d7e28ffe 144
2e04ef76 145/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
146static void unmap_switcher(void)
147{
148 unsigned int i;
149
bff672e6 150 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 151 vunmap(switcher_vma->addr);
bff672e6 152 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 153 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
856c6088
RR
154 __free_pages(switcher_pages[i], 0);
155 kfree(switcher_pages);
d7e28ffe
RR
156}
157
e1e72965 158/*H:032
dde79789
RR
159 * Dealing With Guest Memory.
160 *
e1e72965
RR
161 * Before we go too much further into the Host, we need to grok the routines
162 * we use to deal with Guest memory.
163 *
dde79789 164 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
165 * the normal copy_from_user() & copy_to_user() on the corresponding place in
166 * the memory region allocated by the Launcher.
dde79789
RR
167 *
168 * But we can't trust the Guest: it might be trying to access the Launcher
169 * code. We have to check that the range is below the pfn_limit the Launcher
170 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
171 * positive by overflowing, too.
172 */
df1693ab
MZ
173bool lguest_address_ok(const struct lguest *lg,
174 unsigned long addr, unsigned long len)
d7e28ffe
RR
175{
176 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
177}
178
2e04ef76
RR
179/*
180 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 181 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
182 * value (all zeroes) instead of needing to return an error.
183 */
382ac6b3 184void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 185{
382ac6b3
GOC
186 if (!lguest_address_ok(cpu->lg, addr, bytes)
187 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
188 /* copy_from_user should do this, but as we rely on it... */
189 memset(b, 0, bytes);
382ac6b3 190 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
191 }
192}
193
a6bd8e13 194/* This is the write (copy into Guest) version. */
382ac6b3 195void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 196 unsigned bytes)
d7e28ffe 197{
382ac6b3
GOC
198 if (!lguest_address_ok(cpu->lg, addr, bytes)
199 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
200 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 201}
2d37f94a 202/*:*/
d7e28ffe 203
2e04ef76
RR
204/*H:030
205 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 206 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
207 * going around and around until something interesting happens.
208 */
d0953d42 209int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 210{
bff672e6 211 /* We stop running once the Guest is dead. */
382ac6b3 212 while (!cpu->lg->dead) {
abd41f03 213 unsigned int irq;
a32a8813 214 bool more;
abd41f03 215
cc6d4fbc 216 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
217 if (cpu->hcall)
218 do_hypercalls(cpu);
cc6d4fbc 219
2e04ef76
RR
220 /*
221 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 222 * Launcher.
2e04ef76 223 */
5e232f4f 224 if (cpu->pending_notify) {
a91d74a3
RR
225 /*
226 * Does it just needs to write to a registered
227 * eventfd (ie. the appropriate virtqueue thread)?
228 */
df60aeef 229 if (!send_notify_to_eventfd(cpu)) {
681f2066 230 /* OK, we tell the main Launcher. */
df60aeef
RR
231 if (put_user(cpu->pending_notify, user))
232 return -EFAULT;
233 return sizeof(cpu->pending_notify);
234 }
d7e28ffe
RR
235 }
236
0acf0001
MH
237 /*
238 * All long-lived kernel loops need to check with this horrible
239 * thing called the freezer. If the Host is trying to suspend,
240 * it stops us.
241 */
242 try_to_freeze();
243
bff672e6 244 /* Check for signals */
d7e28ffe
RR
245 if (signal_pending(current))
246 return -ERESTARTSYS;
247
2e04ef76
RR
248 /*
249 * Check if there are any interrupts which can be delivered now:
a6bd8e13 250 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
251 * run the Guest.
252 */
a32a8813 253 irq = interrupt_pending(cpu, &more);
abd41f03 254 if (irq < LGUEST_IRQS)
a32a8813 255 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 256
2e04ef76
RR
257 /*
258 * Just make absolutely sure the Guest is still alive. One of
259 * those hypercalls could have been fatal, for example.
260 */
382ac6b3 261 if (cpu->lg->dead)
d7e28ffe
RR
262 break;
263
2e04ef76
RR
264 /*
265 * If the Guest asked to be stopped, we sleep. The Guest's
266 * clock timer will wake us.
267 */
66686c2a 268 if (cpu->halted) {
d7e28ffe 269 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
270 /*
271 * Just before we sleep, make sure no interrupt snuck in
272 * which we should be doing.
273 */
5dac051b 274 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
275 set_current_state(TASK_RUNNING);
276 else
277 schedule();
d7e28ffe
RR
278 continue;
279 }
280
2e04ef76
RR
281 /*
282 * OK, now we're ready to jump into the Guest. First we put up
283 * the "Do Not Disturb" sign:
284 */
d7e28ffe
RR
285 local_irq_disable();
286
625efab1 287 /* Actually run the Guest until something happens. */
d0953d42 288 lguest_arch_run_guest(cpu);
bff672e6
RR
289
290 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
291 local_irq_enable();
292
625efab1 293 /* Now we deal with whatever happened to the Guest. */
73044f05 294 lguest_arch_handle_trap(cpu);
d7e28ffe 295 }
625efab1 296
a6bd8e13 297 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 298 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 299 return -ERESTART;
a6bd8e13 300
bff672e6 301 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
302 return -ENOENT;
303}
304
bff672e6
RR
305/*H:000
306 * Welcome to the Host!
307 *
308 * By this point your brain has been tickled by the Guest code and numbed by
309 * the Launcher code; prepare for it to be stretched by the Host code. This is
310 * the heart. Let's begin at the initialization routine for the Host's lg
311 * module.
312 */
d7e28ffe
RR
313static int __init init(void)
314{
315 int err;
316
bff672e6 317 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 318 if (get_kernel_rpl() != 0) {
5c55841d 319 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
320 return -EPERM;
321 }
322
bff672e6 323 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
324 err = map_switcher();
325 if (err)
c18acd73 326 goto out;
d7e28ffe 327
bff672e6 328 /* Now we set up the pagetable implementation for the Guests. */
856c6088 329 err = init_pagetables(switcher_pages, SHARED_SWITCHER_PAGES);
c18acd73
RR
330 if (err)
331 goto unmap;
bff672e6 332
c18acd73
RR
333 /* We might need to reserve an interrupt vector. */
334 err = init_interrupts();
335 if (err)
336 goto free_pgtables;
337
bff672e6 338 /* /dev/lguest needs to be registered. */
d7e28ffe 339 err = lguest_device_init();
c18acd73
RR
340 if (err)
341 goto free_interrupts;
bff672e6 342
625efab1
JS
343 /* Finally we do some architecture-specific setup. */
344 lguest_arch_host_init();
bff672e6
RR
345
346 /* All good! */
d7e28ffe 347 return 0;
c18acd73
RR
348
349free_interrupts:
350 free_interrupts();
351free_pgtables:
352 free_pagetables();
353unmap:
354 unmap_switcher();
355out:
356 return err;
d7e28ffe
RR
357}
358
bff672e6 359/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
360static void __exit fini(void)
361{
362 lguest_device_remove();
c18acd73 363 free_interrupts();
d7e28ffe
RR
364 free_pagetables();
365 unmap_switcher();
bff672e6 366
625efab1 367 lguest_arch_host_fini();
d7e28ffe 368}
625efab1 369/*:*/
d7e28ffe 370
2e04ef76
RR
371/*
372 * The Host side of lguest can be a module. This is a nice way for people to
373 * play with it.
374 */
d7e28ffe
RR
375module_init(init);
376module_exit(fini);
377MODULE_LICENSE("GPL");
378MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");