]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/core.c
Rename "cr3" to "gpgdir" to avoid x86-specific naming.
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / core.c
CommitLineData
f938d2c8
RR
1/*P:400 This contains run_guest() which actually calls into the Host<->Guest
2 * Switcher and analyzes the return, such as determining if the Guest wants the
3 * Host to do something. This file also contains useful helper routines, and a
4 * couple of non-obvious setup and teardown pieces which were implemented after
5 * days of debugging pain. :*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
d7e28ffe 15#include <asm/paravirt.h>
d7e28ffe
RR
16#include <asm/pgtable.h>
17#include <asm/uaccess.h>
18#include <asm/poll.h>
d7e28ffe 19#include <asm/asm-offsets.h>
d7e28ffe
RR
20#include "lg.h"
21
d7e28ffe
RR
22
23static struct vm_struct *switcher_vma;
24static struct page **switcher_page;
25
d7e28ffe
RR
26/* This One Big lock protects all inter-guest data structures. */
27DEFINE_MUTEX(lguest_lock);
d7e28ffe 28
bff672e6
RR
29/*H:010 We need to set up the Switcher at a high virtual address. Remember the
30 * Switcher is a few hundred bytes of assembler code which actually changes the
31 * CPU to run the Guest, and then changes back to the Host when a trap or
32 * interrupt happens.
33 *
34 * The Switcher code must be at the same virtual address in the Guest as the
35 * Host since it will be running as the switchover occurs.
36 *
37 * Trying to map memory at a particular address is an unusual thing to do, so
625efab1 38 * it's not a simple one-liner. */
d7e28ffe
RR
39static __init int map_switcher(void)
40{
41 int i, err;
42 struct page **pagep;
43
bff672e6
RR
44 /*
45 * Map the Switcher in to high memory.
46 *
47 * It turns out that if we choose the address 0xFFC00000 (4MB under the
48 * top virtual address), it makes setting up the page tables really
49 * easy.
50 */
51
52 /* We allocate an array of "struct page"s. map_vm_area() wants the
53 * pages in this form, rather than just an array of pointers. */
d7e28ffe
RR
54 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
55 GFP_KERNEL);
56 if (!switcher_page) {
57 err = -ENOMEM;
58 goto out;
59 }
60
bff672e6
RR
61 /* Now we actually allocate the pages. The Guest will see these pages,
62 * so we make sure they're zeroed. */
d7e28ffe
RR
63 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
64 unsigned long addr = get_zeroed_page(GFP_KERNEL);
65 if (!addr) {
66 err = -ENOMEM;
67 goto free_some_pages;
68 }
69 switcher_page[i] = virt_to_page(addr);
70 }
71
bff672e6
RR
72 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
73 * (SWITCHER_ADDR). We might not get it in theory, but in practice
74 * it's worked so far. */
d7e28ffe
RR
75 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
76 VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
77 if (!switcher_vma) {
78 err = -ENOMEM;
79 printk("lguest: could not map switcher pages high\n");
80 goto free_pages;
81 }
82
bff672e6
RR
83 /* This code actually sets up the pages we've allocated to appear at
84 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
85 * kind of pages we're mapping (kernel pages), and a pointer to our
86 * array of struct pages. It increments that pointer, but we don't
87 * care. */
d7e28ffe
RR
88 pagep = switcher_page;
89 err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
90 if (err) {
91 printk("lguest: map_vm_area failed: %i\n", err);
92 goto free_vma;
93 }
bff672e6 94
625efab1
JS
95 /* Now the Switcher is mapped at the right address, we can't fail!
96 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
d7e28ffe
RR
97 memcpy(switcher_vma->addr, start_switcher_text,
98 end_switcher_text - start_switcher_text);
99
d7e28ffe
RR
100 printk(KERN_INFO "lguest: mapped switcher at %p\n",
101 switcher_vma->addr);
bff672e6 102 /* And we succeeded... */
d7e28ffe
RR
103 return 0;
104
105free_vma:
106 vunmap(switcher_vma->addr);
107free_pages:
108 i = TOTAL_SWITCHER_PAGES;
109free_some_pages:
110 for (--i; i >= 0; i--)
111 __free_pages(switcher_page[i], 0);
112 kfree(switcher_page);
113out:
114 return err;
115}
bff672e6 116/*:*/
d7e28ffe 117
bff672e6
RR
118/* Cleaning up the mapping when the module is unloaded is almost...
119 * too easy. */
d7e28ffe
RR
120static void unmap_switcher(void)
121{
122 unsigned int i;
123
bff672e6 124 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 125 vunmap(switcher_vma->addr);
bff672e6 126 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe
RR
127 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
128 __free_pages(switcher_page[i], 0);
129}
130
dde79789
RR
131/*L:305
132 * Dealing With Guest Memory.
133 *
134 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
135 * the normal copy_from_user() & copy_to_user() on the corresponding place in
136 * the memory region allocated by the Launcher.
dde79789
RR
137 *
138 * But we can't trust the Guest: it might be trying to access the Launcher
139 * code. We have to check that the range is below the pfn_limit the Launcher
140 * gave us. We have to make sure that addr + len doesn't give us a false
141 * positive by overflowing, too. */
d7e28ffe
RR
142int lguest_address_ok(const struct lguest *lg,
143 unsigned long addr, unsigned long len)
144{
145 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
146}
147
dde79789
RR
148/* This is a convenient routine to get a 32-bit value from the Guest (a very
149 * common operation). Here we can see how useful the kill_lguest() routine we
150 * met in the Launcher can be: we return a random value (0) instead of needing
151 * to return an error. */
d7e28ffe
RR
152u32 lgread_u32(struct lguest *lg, unsigned long addr)
153{
154 u32 val = 0;
155
dde79789 156 /* Don't let them access lguest binary. */
d7e28ffe 157 if (!lguest_address_ok(lg, addr, sizeof(val))
3c6b5bfa
RR
158 || get_user(val, (u32 *)(lg->mem_base + addr)) != 0)
159 kill_guest(lg, "bad read address %#lx: pfn_limit=%u membase=%p", addr, lg->pfn_limit, lg->mem_base);
d7e28ffe
RR
160 return val;
161}
162
dde79789 163/* Same thing for writing a value. */
d7e28ffe
RR
164void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
165{
166 if (!lguest_address_ok(lg, addr, sizeof(val))
3c6b5bfa 167 || put_user(val, (u32 *)(lg->mem_base + addr)) != 0)
d7e28ffe
RR
168 kill_guest(lg, "bad write address %#lx", addr);
169}
170
dde79789
RR
171/* This routine is more generic, and copies a range of Guest bytes into a
172 * buffer. If the copy_from_user() fails, we fill the buffer with zeroes, so
173 * the caller doesn't end up using uninitialized kernel memory. */
d7e28ffe
RR
174void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
175{
176 if (!lguest_address_ok(lg, addr, bytes)
3c6b5bfa 177 || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
178 /* copy_from_user should do this, but as we rely on it... */
179 memset(b, 0, bytes);
180 kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
181 }
182}
183
dde79789 184/* Similarly, our generic routine to copy into a range of Guest bytes. */
d7e28ffe
RR
185void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
186 unsigned bytes)
187{
188 if (!lguest_address_ok(lg, addr, bytes)
3c6b5bfa 189 || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
d7e28ffe
RR
190 kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
191}
dde79789 192/* (end of memory access helper routines) :*/
d7e28ffe 193
bff672e6
RR
194/*H:030 Let's jump straight to the the main loop which runs the Guest.
195 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
196 * going around and around until something interesting happens. */
d7e28ffe
RR
197int run_guest(struct lguest *lg, unsigned long __user *user)
198{
bff672e6 199 /* We stop running once the Guest is dead. */
d7e28ffe 200 while (!lg->dead) {
cc6d4fbc
RR
201 /* First we run any hypercalls the Guest wants done. */
202 if (lg->hcall)
203 do_hypercalls(lg);
204
bff672e6
RR
205 /* It's possible the Guest did a SEND_DMA hypercall to the
206 * Launcher, in which case we return from the read() now. */
d7e28ffe
RR
207 if (lg->dma_is_pending) {
208 if (put_user(lg->pending_dma, user) ||
209 put_user(lg->pending_key, user+1))
210 return -EFAULT;
211 return sizeof(unsigned long)*2;
212 }
213
bff672e6 214 /* Check for signals */
d7e28ffe
RR
215 if (signal_pending(current))
216 return -ERESTARTSYS;
217
218 /* If Waker set break_out, return to Launcher. */
219 if (lg->break_out)
220 return -EAGAIN;
221
bff672e6
RR
222 /* Check if there are any interrupts which can be delivered
223 * now: if so, this sets up the hander to be executed when we
224 * next run the Guest. */
d7e28ffe
RR
225 maybe_do_interrupt(lg);
226
bff672e6
RR
227 /* All long-lived kernel loops need to check with this horrible
228 * thing called the freezer. If the Host is trying to suspend,
229 * it stops us. */
d7e28ffe
RR
230 try_to_freeze();
231
bff672e6
RR
232 /* Just make absolutely sure the Guest is still alive. One of
233 * those hypercalls could have been fatal, for example. */
d7e28ffe
RR
234 if (lg->dead)
235 break;
236
bff672e6
RR
237 /* If the Guest asked to be stopped, we sleep. The Guest's
238 * clock timer or LHCALL_BREAK from the Waker will wake us. */
d7e28ffe
RR
239 if (lg->halted) {
240 set_current_state(TASK_INTERRUPTIBLE);
241 schedule();
242 continue;
243 }
244
bff672e6
RR
245 /* OK, now we're ready to jump into the Guest. First we put up
246 * the "Do Not Disturb" sign: */
d7e28ffe
RR
247 local_irq_disable();
248
625efab1
JS
249 /* Actually run the Guest until something happens. */
250 lguest_arch_run_guest(lg);
bff672e6
RR
251
252 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
253 local_irq_enable();
254
625efab1
JS
255 /* Now we deal with whatever happened to the Guest. */
256 lguest_arch_handle_trap(lg);
d7e28ffe 257 }
625efab1 258
bff672e6 259 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
260 return -ENOENT;
261}
262
bff672e6
RR
263/*H:000
264 * Welcome to the Host!
265 *
266 * By this point your brain has been tickled by the Guest code and numbed by
267 * the Launcher code; prepare for it to be stretched by the Host code. This is
268 * the heart. Let's begin at the initialization routine for the Host's lg
269 * module.
270 */
d7e28ffe
RR
271static int __init init(void)
272{
273 int err;
274
bff672e6 275 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
d7e28ffe 276 if (paravirt_enabled()) {
93b1eab3 277 printk("lguest is afraid of %s\n", pv_info.name);
d7e28ffe
RR
278 return -EPERM;
279 }
280
bff672e6 281 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
282 err = map_switcher();
283 if (err)
284 return err;
285
bff672e6 286 /* Now we set up the pagetable implementation for the Guests. */
d7e28ffe
RR
287 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
288 if (err) {
289 unmap_switcher();
290 return err;
291 }
bff672e6
RR
292
293 /* The I/O subsystem needs some things initialized. */
d7e28ffe
RR
294 lguest_io_init();
295
bff672e6 296 /* /dev/lguest needs to be registered. */
d7e28ffe
RR
297 err = lguest_device_init();
298 if (err) {
299 free_pagetables();
300 unmap_switcher();
301 return err;
302 }
bff672e6 303
625efab1
JS
304 /* Finally we do some architecture-specific setup. */
305 lguest_arch_host_init();
bff672e6
RR
306
307 /* All good! */
d7e28ffe
RR
308 return 0;
309}
310
bff672e6 311/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
312static void __exit fini(void)
313{
314 lguest_device_remove();
315 free_pagetables();
316 unmap_switcher();
bff672e6 317
625efab1 318 lguest_arch_host_fini();
d7e28ffe 319}
625efab1 320/*:*/
d7e28ffe 321
bff672e6
RR
322/* The Host side of lguest can be a module. This is a nice way for people to
323 * play with it. */
d7e28ffe
RR
324module_init(init);
325module_exit(fini);
326MODULE_LICENSE("GPL");
327MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");