]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/hypercalls.c
netfilter: conntrack: refine gc worker heuristics, redux
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / hypercalls.c
CommitLineData
2e04ef76
RR
1/*P:500
2 * Just as userspace programs request kernel operations through a system
f938d2c8
RR
3 * call, the Guest requests Host operations through a "hypercall". You might
4 * notice this nomenclature doesn't really follow any logic, but the name has
5 * been around for long enough that we're stuck with it. As you'd expect, this
2e04ef76
RR
6 * code is basically a one big switch statement.
7:*/
f938d2c8
RR
8
9/* Copyright (C) 2006 Rusty Russell IBM Corporation
d7e28ffe
RR
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24*/
25#include <linux/uaccess.h>
26#include <linux/syscalls.h>
27#include <linux/mm.h>
ca94f2bd 28#include <linux/ktime.h>
d7e28ffe
RR
29#include <asm/page.h>
30#include <asm/pgtable.h>
d7e28ffe
RR
31#include "lg.h"
32
2e04ef76
RR
33/*H:120
34 * This is the core hypercall routine: where the Guest gets what it wants.
35 * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both.
36 */
73044f05 37static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
d7e28ffe 38{
b410e7b1 39 switch (args->arg0) {
d7e28ffe 40 case LHCALL_FLUSH_ASYNC:
2e04ef76
RR
41 /*
42 * This call does nothing, except by breaking out of the Guest
43 * it makes us process all the asynchronous hypercalls.
44 */
d7e28ffe 45 break;
a32a8813 46 case LHCALL_SEND_INTERRUPTS:
2e04ef76
RR
47 /*
48 * This call does nothing too, but by breaking out of the Guest
49 * it makes us process any pending interrupts.
50 */
a32a8813 51 break;
d7e28ffe 52 case LHCALL_LGUEST_INIT:
2e04ef76
RR
53 /*
54 * You can't get here unless you're already initialized. Don't
55 * do that.
56 */
382ac6b3 57 kill_guest(cpu, "already have lguest_data");
d7e28ffe 58 break;
ec04b13f 59 case LHCALL_SHUTDOWN: {
d7e28ffe 60 char msg[128];
2e04ef76 61 /*
a91d74a3 62 * Shutdown is such a trivial hypercall that we do it in five
2e04ef76
RR
63 * lines right here.
64 *
65 * If the lgread fails, it will call kill_guest() itself; the
66 * kill_guest() with the message will be ignored.
67 */
382ac6b3 68 __lgread(cpu, msg, args->arg1, sizeof(msg));
d7e28ffe 69 msg[sizeof(msg)-1] = '\0';
382ac6b3 70 kill_guest(cpu, "CRASH: %s", msg);
ec04b13f 71 if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
382ac6b3 72 cpu->lg->dead = ERR_PTR(-ERESTART);
d7e28ffe
RR
73 break;
74 }
75 case LHCALL_FLUSH_TLB:
2e04ef76 76 /* FLUSH_TLB comes in two flavors, depending on the argument: */
b410e7b1 77 if (args->arg1)
4665ac8e 78 guest_pagetable_clear_all(cpu);
d7e28ffe 79 else
1713608f 80 guest_pagetable_flush_user(cpu);
d7e28ffe 81 break;
bff672e6 82
2e04ef76
RR
83 /*
84 * All these calls simply pass the arguments through to the right
85 * routines.
86 */
d7e28ffe 87 case LHCALL_NEW_PGTABLE:
4665ac8e 88 guest_new_pagetable(cpu, args->arg1);
d7e28ffe
RR
89 break;
90 case LHCALL_SET_STACK:
4665ac8e 91 guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
d7e28ffe
RR
92 break;
93 case LHCALL_SET_PTE:
acdd0b62
MZ
94#ifdef CONFIG_X86_PAE
95 guest_set_pte(cpu, args->arg1, args->arg2,
96 __pte(args->arg3 | (u64)args->arg4 << 32));
97#else
382ac6b3 98 guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
acdd0b62 99#endif
d7e28ffe 100 break;
ebe0ba84
MZ
101 case LHCALL_SET_PGD:
102 guest_set_pgd(cpu->lg, args->arg1, args->arg2);
d7e28ffe 103 break;
acdd0b62
MZ
104#ifdef CONFIG_X86_PAE
105 case LHCALL_SET_PMD:
106 guest_set_pmd(cpu->lg, args->arg1, args->arg2);
107 break;
108#endif
d7e28ffe 109 case LHCALL_SET_CLOCKEVENT:
ad8d8f3b 110 guest_set_clockevent(cpu, args->arg1);
d7e28ffe 111 break;
d7e28ffe 112 case LHCALL_HALT:
bff672e6 113 /* Similarly, this sets the halted flag for run_guest(). */
66686c2a 114 cpu->halted = 1;
d7e28ffe
RR
115 break;
116 default:
e1e72965 117 /* It should be an architecture-specific hypercall. */
73044f05 118 if (lguest_arch_do_hcall(cpu, args))
382ac6b3 119 kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
d7e28ffe
RR
120 }
121}
122
2e04ef76
RR
123/*H:124
124 * Asynchronous hypercalls are easy: we just look in the array in the
b410e7b1 125 * Guest's "struct lguest_data" to see if any new ones are marked "ready".
bff672e6
RR
126 *
127 * We are careful to do these in order: obviously we respect the order the
128 * Guest put them in the ring, but we also promise the Guest that they will
129 * happen before any normal hypercall (which is why we check this before
2e04ef76
RR
130 * checking for a normal hcall).
131 */
73044f05 132static void do_async_hcalls(struct lg_cpu *cpu)
d7e28ffe
RR
133{
134 unsigned int i;
135 u8 st[LHCALL_RING_SIZE];
136
bff672e6 137 /* For simplicity, we copy the entire call status array in at once. */
382ac6b3 138 if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
d7e28ffe
RR
139 return;
140
bff672e6 141 /* We process "struct lguest_data"s hcalls[] ring once. */
d7e28ffe 142 for (i = 0; i < ARRAY_SIZE(st); i++) {
b410e7b1 143 struct hcall_args args;
2e04ef76
RR
144 /*
145 * We remember where we were up to from last time. This makes
bff672e6 146 * sure that the hypercalls are done in the order the Guest
2e04ef76
RR
147 * places them in the ring.
148 */
73044f05 149 unsigned int n = cpu->next_hcall;
d7e28ffe 150
bff672e6 151 /* 0xFF means there's no call here (yet). */
d7e28ffe
RR
152 if (st[n] == 0xFF)
153 break;
154
2e04ef76
RR
155 /*
156 * OK, we have hypercall. Increment the "next_hcall" cursor,
157 * and wrap back to 0 if we reach the end.
158 */
73044f05
GOC
159 if (++cpu->next_hcall == LHCALL_RING_SIZE)
160 cpu->next_hcall = 0;
d7e28ffe 161
2e04ef76
RR
162 /*
163 * Copy the hypercall arguments into a local copy of the
164 * hcall_args struct.
165 */
382ac6b3 166 if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
b410e7b1 167 sizeof(struct hcall_args))) {
382ac6b3 168 kill_guest(cpu, "Fetching async hypercalls");
d7e28ffe
RR
169 break;
170 }
171
bff672e6 172 /* Do the hypercall, same as a normal one. */
73044f05 173 do_hcall(cpu, &args);
bff672e6
RR
174
175 /* Mark the hypercall done. */
382ac6b3
GOC
176 if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
177 kill_guest(cpu, "Writing result for async hypercall");
d7e28ffe
RR
178 break;
179 }
180
2e04ef76
RR
181 /*
182 * Stop doing hypercalls if they want to notify the Launcher:
183 * it needs to service this first.
184 */
69a09dc1 185 if (cpu->pending.trap)
d7e28ffe
RR
186 break;
187 }
188}
189
2e04ef76
RR
190/*
191 * Last of all, we look at what happens first of all. The very first time the
192 * Guest makes a hypercall, we end up here to set things up:
193 */
73044f05 194static void initialize(struct lg_cpu *cpu)
d7e28ffe 195{
2e04ef76
RR
196 /*
197 * You can't do anything until you're initialized. The Guest knows the
198 * rules, so we're unforgiving here.
199 */
73044f05 200 if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
382ac6b3 201 kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
d7e28ffe
RR
202 return;
203 }
204
73044f05 205 if (lguest_arch_init_hypercalls(cpu))
382ac6b3 206 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
3c6b5bfa 207
2e04ef76
RR
208 /*
209 * The Guest tells us where we're not to deliver interrupts by putting
2f921b5b 210 * the instruction address into "struct lguest_data".
2e04ef76 211 */
2f921b5b 212 if (get_user(cpu->lg->noirq_iret, &cpu->lg->lguest_data->noirq_iret))
382ac6b3 213 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
d7e28ffe 214
2e04ef76
RR
215 /*
216 * We write the current time into the Guest's data page once so it can
217 * set its clock.
218 */
382ac6b3 219 write_timestamp(cpu);
6c8dca5d 220
47436aa4 221 /* page_tables.c will also do some setup. */
382ac6b3 222 page_table_guest_data_init(cpu);
47436aa4 223
2e04ef76
RR
224 /*
225 * This is the one case where the above accesses might have been the
bff672e6 226 * first write to a Guest page. This may have caused a copy-on-write
e1e72965 227 * fault, but the old page might be (read-only) in the Guest
2e04ef76
RR
228 * pagetable.
229 */
4665ac8e 230 guest_pagetable_clear_all(cpu);
d7e28ffe 231}
a6bd8e13
RR
232/*:*/
233
2e04ef76
RR
234/*M:013
235 * If a Guest reads from a page (so creates a mapping) that it has never
a6bd8e13
RR
236 * written to, and then the Launcher writes to it (ie. the output of a virtual
237 * device), the Guest will still see the old page. In practice, this never
238 * happens: why would the Guest read a page which it has never written to? But
2e04ef76 239 * a similar scenario might one day bite us, so it's worth mentioning.
a91d74a3
RR
240 *
241 * Note that if we used a shared anonymous mapping in the Launcher instead of
242 * mapping /dev/zero private, we wouldn't worry about cop-on-write. And we
243 * need that to switch the Launcher to processes (away from threads) anyway.
2e04ef76 244:*/
d7e28ffe 245
bff672e6
RR
246/*H:100
247 * Hypercalls
248 *
249 * Remember from the Guest, hypercalls come in two flavors: normal and
250 * asynchronous. This file handles both of types.
251 */
73044f05 252void do_hypercalls(struct lg_cpu *cpu)
d7e28ffe 253{
cc6d4fbc 254 /* Not initialized yet? This hypercall must do it. */
73044f05 255 if (unlikely(!cpu->lg->lguest_data)) {
cc6d4fbc 256 /* Set up the "struct lguest_data" */
73044f05 257 initialize(cpu);
cc6d4fbc 258 /* Hcall is done. */
73044f05 259 cpu->hcall = NULL;
d7e28ffe
RR
260 return;
261 }
262
2e04ef76
RR
263 /*
264 * The Guest has initialized.
bff672e6 265 *
2e04ef76
RR
266 * Look in the hypercall ring for the async hypercalls:
267 */
73044f05 268 do_async_hcalls(cpu);
bff672e6 269
2e04ef76
RR
270 /*
271 * If we stopped reading the hypercall ring because the Guest did a
15045275 272 * NOTIFY to the Launcher, we want to return now. Otherwise we do
2e04ef76
RR
273 * the hypercall.
274 */
69a09dc1 275 if (!cpu->pending.trap) {
73044f05 276 do_hcall(cpu, cpu->hcall);
2e04ef76
RR
277 /*
278 * Tricky point: we reset the hcall pointer to mark the
cc6d4fbc
RR
279 * hypercall as "done". We use the hcall pointer rather than
280 * the trap number to indicate a hypercall is pending.
281 * Normally it doesn't matter: the Guest will run again and
282 * update the trap number before we come back here.
283 *
e1e72965 284 * However, if we are signalled or the Guest sends I/O to the
cc6d4fbc
RR
285 * Launcher, the run_guest() loop will exit without running the
286 * Guest. When it comes back it would try to re-run the
2e04ef76
RR
287 * hypercall. Finding that bug sucked.
288 */
73044f05 289 cpu->hcall = NULL;
d7e28ffe
RR
290 }
291}
6c8dca5d 292
2e04ef76
RR
293/*
294 * This routine supplies the Guest with time: it's used for wallclock time at
295 * initial boot and as a rough time source if the TSC isn't available.
296 */
382ac6b3 297void write_timestamp(struct lg_cpu *cpu)
6c8dca5d
RR
298{
299 struct timespec now;
300 ktime_get_real_ts(&now);
382ac6b3
GOC
301 if (copy_to_user(&cpu->lg->lguest_data->time,
302 &now, sizeof(struct timespec)))
303 kill_guest(cpu, "Writing timestamp");
6c8dca5d 304}