]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/lguest/hypercalls.c
lguest: Add to maintainers file.
[mirror_ubuntu-zesty-kernel.git] / drivers / lguest / hypercalls.c
CommitLineData
f938d2c8
RR
1/*P:500 Just as userspace programs request kernel operations through a system
2 * call, the Guest requests Host operations through a "hypercall". You might
3 * notice this nomenclature doesn't really follow any logic, but the name has
4 * been around for long enough that we're stuck with it. As you'd expect, this
5 * code is basically a one big switch statement. :*/
6
7/* Copyright (C) 2006 Rusty Russell IBM Corporation
d7e28ffe
RR
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22*/
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/mm.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
d7e28ffe
RR
28#include "lg.h"
29
b410e7b1
JS
30/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
31 * Or gets killed. Or, in the case of LHCALL_CRASH, both. */
32static void do_hcall(struct lguest *lg, struct hcall_args *args)
d7e28ffe 33{
b410e7b1 34 switch (args->arg0) {
d7e28ffe 35 case LHCALL_FLUSH_ASYNC:
bff672e6
RR
36 /* This call does nothing, except by breaking out of the Guest
37 * it makes us process all the asynchronous hypercalls. */
d7e28ffe
RR
38 break;
39 case LHCALL_LGUEST_INIT:
bff672e6
RR
40 /* You can't get here unless you're already initialized. Don't
41 * do that. */
d7e28ffe
RR
42 kill_guest(lg, "already have lguest_data");
43 break;
44 case LHCALL_CRASH: {
bff672e6
RR
45 /* Crash is such a trivial hypercall that we do it in four
46 * lines right here. */
d7e28ffe 47 char msg[128];
bff672e6
RR
48 /* If the lgread fails, it will call kill_guest() itself; the
49 * kill_guest() with the message will be ignored. */
2d37f94a 50 __lgread(lg, msg, args->arg1, sizeof(msg));
d7e28ffe
RR
51 msg[sizeof(msg)-1] = '\0';
52 kill_guest(lg, "CRASH: %s", msg);
53 break;
54 }
55 case LHCALL_FLUSH_TLB:
bff672e6
RR
56 /* FLUSH_TLB comes in two flavors, depending on the
57 * argument: */
b410e7b1 58 if (args->arg1)
d7e28ffe
RR
59 guest_pagetable_clear_all(lg);
60 else
61 guest_pagetable_flush_user(lg);
62 break;
bff672e6
RR
63
64 /* All these calls simply pass the arguments through to the right
65 * routines. */
d7e28ffe 66 case LHCALL_NEW_PGTABLE:
b410e7b1 67 guest_new_pagetable(lg, args->arg1);
d7e28ffe
RR
68 break;
69 case LHCALL_SET_STACK:
b410e7b1 70 guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
d7e28ffe
RR
71 break;
72 case LHCALL_SET_PTE:
df29f43e 73 guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
d7e28ffe
RR
74 break;
75 case LHCALL_SET_PMD:
b410e7b1 76 guest_set_pmd(lg, args->arg1, args->arg2);
d7e28ffe
RR
77 break;
78 case LHCALL_SET_CLOCKEVENT:
b410e7b1 79 guest_set_clockevent(lg, args->arg1);
d7e28ffe
RR
80 break;
81 case LHCALL_TS:
bff672e6 82 /* This sets the TS flag, as we saw used in run_guest(). */
b410e7b1 83 lg->ts = args->arg1;
d7e28ffe
RR
84 break;
85 case LHCALL_HALT:
bff672e6 86 /* Similarly, this sets the halted flag for run_guest(). */
d7e28ffe
RR
87 lg->halted = 1;
88 break;
15045275
RR
89 case LHCALL_NOTIFY:
90 lg->pending_notify = args->arg1;
91 break;
d7e28ffe 92 default:
b410e7b1
JS
93 if (lguest_arch_do_hcall(lg, args))
94 kill_guest(lg, "Bad hypercall %li\n", args->arg0);
d7e28ffe
RR
95 }
96}
b410e7b1 97/*:*/
d7e28ffe 98
b410e7b1
JS
99/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
100 * Guest's "struct lguest_data" to see if any new ones are marked "ready".
bff672e6
RR
101 *
102 * We are careful to do these in order: obviously we respect the order the
103 * Guest put them in the ring, but we also promise the Guest that they will
104 * happen before any normal hypercall (which is why we check this before
105 * checking for a normal hcall). */
d7e28ffe
RR
106static void do_async_hcalls(struct lguest *lg)
107{
108 unsigned int i;
109 u8 st[LHCALL_RING_SIZE];
110
bff672e6 111 /* For simplicity, we copy the entire call status array in at once. */
d7e28ffe
RR
112 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
113 return;
114
bff672e6 115 /* We process "struct lguest_data"s hcalls[] ring once. */
d7e28ffe 116 for (i = 0; i < ARRAY_SIZE(st); i++) {
b410e7b1 117 struct hcall_args args;
bff672e6
RR
118 /* We remember where we were up to from last time. This makes
119 * sure that the hypercalls are done in the order the Guest
120 * places them in the ring. */
d7e28ffe
RR
121 unsigned int n = lg->next_hcall;
122
bff672e6 123 /* 0xFF means there's no call here (yet). */
d7e28ffe
RR
124 if (st[n] == 0xFF)
125 break;
126
bff672e6
RR
127 /* OK, we have hypercall. Increment the "next_hcall" cursor,
128 * and wrap back to 0 if we reach the end. */
d7e28ffe
RR
129 if (++lg->next_hcall == LHCALL_RING_SIZE)
130 lg->next_hcall = 0;
131
b410e7b1
JS
132 /* Copy the hypercall arguments into a local copy of
133 * the hcall_args struct. */
134 if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
135 sizeof(struct hcall_args))) {
d7e28ffe
RR
136 kill_guest(lg, "Fetching async hypercalls");
137 break;
138 }
139
bff672e6 140 /* Do the hypercall, same as a normal one. */
b410e7b1 141 do_hcall(lg, &args);
bff672e6
RR
142
143 /* Mark the hypercall done. */
d7e28ffe
RR
144 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
145 kill_guest(lg, "Writing result for async hypercall");
146 break;
147 }
148
15045275
RR
149 /* Stop doing hypercalls if they want to notify the Launcher:
150 * it needs to service this first. */
151 if (lg->pending_notify)
d7e28ffe
RR
152 break;
153 }
154}
155
bff672e6
RR
156/* Last of all, we look at what happens first of all. The very first time the
157 * Guest makes a hypercall, we end up here to set things up: */
d7e28ffe
RR
158static void initialize(struct lguest *lg)
159{
d7e28ffe 160
bff672e6
RR
161 /* You can't do anything until you're initialized. The Guest knows the
162 * rules, so we're unforgiving here. */
b410e7b1
JS
163 if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
164 kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
d7e28ffe
RR
165 return;
166 }
167
b410e7b1 168 if (lguest_arch_init_hypercalls(lg))
d7e28ffe 169 kill_guest(lg, "bad guest page %p", lg->lguest_data);
3c6b5bfa 170
bff672e6
RR
171 /* The Guest tells us where we're not to deliver interrupts by putting
172 * the range of addresses into "struct lguest_data". */
d7e28ffe 173 if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
47436aa4 174 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end))
d7e28ffe
RR
175 kill_guest(lg, "bad guest page %p", lg->lguest_data);
176
6c8dca5d
RR
177 /* We write the current time into the Guest's data page once now. */
178 write_timestamp(lg);
179
47436aa4
RR
180 /* page_tables.c will also do some setup. */
181 page_table_guest_data_init(lg);
182
bff672e6
RR
183 /* This is the one case where the above accesses might have been the
184 * first write to a Guest page. This may have caused a copy-on-write
185 * fault, but the Guest might be referring to the old (read-only)
186 * page. */
d7e28ffe
RR
187 guest_pagetable_clear_all(lg);
188}
189
bff672e6
RR
190/*H:100
191 * Hypercalls
192 *
193 * Remember from the Guest, hypercalls come in two flavors: normal and
194 * asynchronous. This file handles both of types.
195 */
d7e28ffe
RR
196void do_hypercalls(struct lguest *lg)
197{
cc6d4fbc 198 /* Not initialized yet? This hypercall must do it. */
d7e28ffe 199 if (unlikely(!lg->lguest_data)) {
cc6d4fbc
RR
200 /* Set up the "struct lguest_data" */
201 initialize(lg);
202 /* Hcall is done. */
203 lg->hcall = NULL;
d7e28ffe
RR
204 return;
205 }
206
bff672e6
RR
207 /* The Guest has initialized.
208 *
209 * Look in the hypercall ring for the async hypercalls: */
d7e28ffe 210 do_async_hcalls(lg);
bff672e6
RR
211
212 /* If we stopped reading the hypercall ring because the Guest did a
15045275 213 * NOTIFY to the Launcher, we want to return now. Otherwise we do
cc6d4fbc 214 * the hypercall. */
15045275 215 if (!lg->pending_notify) {
cc6d4fbc
RR
216 do_hcall(lg, lg->hcall);
217 /* Tricky point: we reset the hcall pointer to mark the
218 * hypercall as "done". We use the hcall pointer rather than
219 * the trap number to indicate a hypercall is pending.
220 * Normally it doesn't matter: the Guest will run again and
221 * update the trap number before we come back here.
222 *
223 * However, if we are signalled or the Guest sends DMA to the
224 * Launcher, the run_guest() loop will exit without running the
225 * Guest. When it comes back it would try to re-run the
226 * hypercall. */
227 lg->hcall = NULL;
d7e28ffe
RR
228 }
229}
6c8dca5d
RR
230
231/* This routine supplies the Guest with time: it's used for wallclock time at
232 * initial boot and as a rough time source if the TSC isn't available. */
233void write_timestamp(struct lguest *lg)
234{
235 struct timespec now;
236 ktime_get_real_ts(&now);
891ff65f 237 if (copy_to_user(&lg->lguest_data->time, &now, sizeof(struct timespec)))
6c8dca5d
RR
238 kill_guest(lg, "Writing timestamp");
239}