]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/hypercalls.c
lguest: use native_set_* macros, which properly handle 64-bit entries when PAE is...
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / hypercalls.c
CommitLineData
f938d2c8
RR
1/*P:500 Just as userspace programs request kernel operations through a system
2 * call, the Guest requests Host operations through a "hypercall". You might
3 * notice this nomenclature doesn't really follow any logic, but the name has
4 * been around for long enough that we're stuck with it. As you'd expect, this
5 * code is basically a one big switch statement. :*/
6
7/* Copyright (C) 2006 Rusty Russell IBM Corporation
d7e28ffe
RR
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22*/
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/mm.h>
ca94f2bd 26#include <linux/ktime.h>
d7e28ffe
RR
27#include <asm/page.h>
28#include <asm/pgtable.h>
d7e28ffe
RR
29#include "lg.h"
30
b410e7b1 31/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
a6bd8e13 32 * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both. */
73044f05 33static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
d7e28ffe 34{
b410e7b1 35 switch (args->arg0) {
d7e28ffe 36 case LHCALL_FLUSH_ASYNC:
bff672e6
RR
37 /* This call does nothing, except by breaking out of the Guest
38 * it makes us process all the asynchronous hypercalls. */
d7e28ffe 39 break;
a32a8813
RR
40 case LHCALL_SEND_INTERRUPTS:
41 /* This call does nothing too, but by breaking out of the Guest
42 * it makes us process any pending interrupts. */
43 break;
d7e28ffe 44 case LHCALL_LGUEST_INIT:
bff672e6
RR
45 /* You can't get here unless you're already initialized. Don't
46 * do that. */
382ac6b3 47 kill_guest(cpu, "already have lguest_data");
d7e28ffe 48 break;
ec04b13f
BR
49 case LHCALL_SHUTDOWN: {
50 /* Shutdown is such a trivial hypercall that we do it in four
bff672e6 51 * lines right here. */
d7e28ffe 52 char msg[128];
bff672e6
RR
53 /* If the lgread fails, it will call kill_guest() itself; the
54 * kill_guest() with the message will be ignored. */
382ac6b3 55 __lgread(cpu, msg, args->arg1, sizeof(msg));
d7e28ffe 56 msg[sizeof(msg)-1] = '\0';
382ac6b3 57 kill_guest(cpu, "CRASH: %s", msg);
ec04b13f 58 if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
382ac6b3 59 cpu->lg->dead = ERR_PTR(-ERESTART);
d7e28ffe
RR
60 break;
61 }
62 case LHCALL_FLUSH_TLB:
bff672e6
RR
63 /* FLUSH_TLB comes in two flavors, depending on the
64 * argument: */
b410e7b1 65 if (args->arg1)
4665ac8e 66 guest_pagetable_clear_all(cpu);
d7e28ffe 67 else
1713608f 68 guest_pagetable_flush_user(cpu);
d7e28ffe 69 break;
bff672e6
RR
70
71 /* All these calls simply pass the arguments through to the right
72 * routines. */
d7e28ffe 73 case LHCALL_NEW_PGTABLE:
4665ac8e 74 guest_new_pagetable(cpu, args->arg1);
d7e28ffe
RR
75 break;
76 case LHCALL_SET_STACK:
4665ac8e 77 guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
d7e28ffe
RR
78 break;
79 case LHCALL_SET_PTE:
382ac6b3 80 guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
d7e28ffe
RR
81 break;
82 case LHCALL_SET_PMD:
382ac6b3 83 guest_set_pmd(cpu->lg, args->arg1, args->arg2);
d7e28ffe
RR
84 break;
85 case LHCALL_SET_CLOCKEVENT:
ad8d8f3b 86 guest_set_clockevent(cpu, args->arg1);
d7e28ffe
RR
87 break;
88 case LHCALL_TS:
bff672e6 89 /* This sets the TS flag, as we saw used in run_guest(). */
4665ac8e 90 cpu->ts = args->arg1;
d7e28ffe
RR
91 break;
92 case LHCALL_HALT:
bff672e6 93 /* Similarly, this sets the halted flag for run_guest(). */
66686c2a 94 cpu->halted = 1;
d7e28ffe 95 break;
15045275 96 case LHCALL_NOTIFY:
5e232f4f 97 cpu->pending_notify = args->arg1;
15045275 98 break;
d7e28ffe 99 default:
e1e72965 100 /* It should be an architecture-specific hypercall. */
73044f05 101 if (lguest_arch_do_hcall(cpu, args))
382ac6b3 102 kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
d7e28ffe
RR
103 }
104}
b410e7b1 105/*:*/
d7e28ffe 106
b410e7b1
JS
107/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
108 * Guest's "struct lguest_data" to see if any new ones are marked "ready".
bff672e6
RR
109 *
110 * We are careful to do these in order: obviously we respect the order the
111 * Guest put them in the ring, but we also promise the Guest that they will
112 * happen before any normal hypercall (which is why we check this before
113 * checking for a normal hcall). */
73044f05 114static void do_async_hcalls(struct lg_cpu *cpu)
d7e28ffe
RR
115{
116 unsigned int i;
117 u8 st[LHCALL_RING_SIZE];
118
bff672e6 119 /* For simplicity, we copy the entire call status array in at once. */
382ac6b3 120 if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
d7e28ffe
RR
121 return;
122
bff672e6 123 /* We process "struct lguest_data"s hcalls[] ring once. */
d7e28ffe 124 for (i = 0; i < ARRAY_SIZE(st); i++) {
b410e7b1 125 struct hcall_args args;
bff672e6
RR
126 /* We remember where we were up to from last time. This makes
127 * sure that the hypercalls are done in the order the Guest
128 * places them in the ring. */
73044f05 129 unsigned int n = cpu->next_hcall;
d7e28ffe 130
bff672e6 131 /* 0xFF means there's no call here (yet). */
d7e28ffe
RR
132 if (st[n] == 0xFF)
133 break;
134
bff672e6
RR
135 /* OK, we have hypercall. Increment the "next_hcall" cursor,
136 * and wrap back to 0 if we reach the end. */
73044f05
GOC
137 if (++cpu->next_hcall == LHCALL_RING_SIZE)
138 cpu->next_hcall = 0;
d7e28ffe 139
b410e7b1
JS
140 /* Copy the hypercall arguments into a local copy of
141 * the hcall_args struct. */
382ac6b3 142 if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
b410e7b1 143 sizeof(struct hcall_args))) {
382ac6b3 144 kill_guest(cpu, "Fetching async hypercalls");
d7e28ffe
RR
145 break;
146 }
147
bff672e6 148 /* Do the hypercall, same as a normal one. */
73044f05 149 do_hcall(cpu, &args);
bff672e6
RR
150
151 /* Mark the hypercall done. */
382ac6b3
GOC
152 if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
153 kill_guest(cpu, "Writing result for async hypercall");
d7e28ffe
RR
154 break;
155 }
156
15045275
RR
157 /* Stop doing hypercalls if they want to notify the Launcher:
158 * it needs to service this first. */
5e232f4f 159 if (cpu->pending_notify)
d7e28ffe
RR
160 break;
161 }
162}
163
bff672e6
RR
164/* Last of all, we look at what happens first of all. The very first time the
165 * Guest makes a hypercall, we end up here to set things up: */
73044f05 166static void initialize(struct lg_cpu *cpu)
d7e28ffe 167{
bff672e6
RR
168 /* You can't do anything until you're initialized. The Guest knows the
169 * rules, so we're unforgiving here. */
73044f05 170 if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
382ac6b3 171 kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
d7e28ffe
RR
172 return;
173 }
174
73044f05 175 if (lguest_arch_init_hypercalls(cpu))
382ac6b3 176 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
3c6b5bfa 177
bff672e6
RR
178 /* The Guest tells us where we're not to deliver interrupts by putting
179 * the range of addresses into "struct lguest_data". */
382ac6b3
GOC
180 if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
181 || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
182 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
d7e28ffe 183
e1e72965
RR
184 /* We write the current time into the Guest's data page once so it can
185 * set its clock. */
382ac6b3 186 write_timestamp(cpu);
6c8dca5d 187
47436aa4 188 /* page_tables.c will also do some setup. */
382ac6b3 189 page_table_guest_data_init(cpu);
47436aa4 190
bff672e6
RR
191 /* This is the one case where the above accesses might have been the
192 * first write to a Guest page. This may have caused a copy-on-write
e1e72965
RR
193 * fault, but the old page might be (read-only) in the Guest
194 * pagetable. */
4665ac8e 195 guest_pagetable_clear_all(cpu);
d7e28ffe 196}
a6bd8e13
RR
197/*:*/
198
199/*M:013 If a Guest reads from a page (so creates a mapping) that it has never
200 * written to, and then the Launcher writes to it (ie. the output of a virtual
201 * device), the Guest will still see the old page. In practice, this never
202 * happens: why would the Guest read a page which it has never written to? But
203 * a similar scenario might one day bite us, so it's worth mentioning. :*/
d7e28ffe 204
bff672e6
RR
205/*H:100
206 * Hypercalls
207 *
208 * Remember from the Guest, hypercalls come in two flavors: normal and
209 * asynchronous. This file handles both of types.
210 */
73044f05 211void do_hypercalls(struct lg_cpu *cpu)
d7e28ffe 212{
cc6d4fbc 213 /* Not initialized yet? This hypercall must do it. */
73044f05 214 if (unlikely(!cpu->lg->lguest_data)) {
cc6d4fbc 215 /* Set up the "struct lguest_data" */
73044f05 216 initialize(cpu);
cc6d4fbc 217 /* Hcall is done. */
73044f05 218 cpu->hcall = NULL;
d7e28ffe
RR
219 return;
220 }
221
bff672e6
RR
222 /* The Guest has initialized.
223 *
224 * Look in the hypercall ring for the async hypercalls: */
73044f05 225 do_async_hcalls(cpu);
bff672e6
RR
226
227 /* If we stopped reading the hypercall ring because the Guest did a
15045275 228 * NOTIFY to the Launcher, we want to return now. Otherwise we do
cc6d4fbc 229 * the hypercall. */
5e232f4f 230 if (!cpu->pending_notify) {
73044f05 231 do_hcall(cpu, cpu->hcall);
cc6d4fbc
RR
232 /* Tricky point: we reset the hcall pointer to mark the
233 * hypercall as "done". We use the hcall pointer rather than
234 * the trap number to indicate a hypercall is pending.
235 * Normally it doesn't matter: the Guest will run again and
236 * update the trap number before we come back here.
237 *
e1e72965 238 * However, if we are signalled or the Guest sends I/O to the
cc6d4fbc
RR
239 * Launcher, the run_guest() loop will exit without running the
240 * Guest. When it comes back it would try to re-run the
a6bd8e13 241 * hypercall. Finding that bug sucked. */
73044f05 242 cpu->hcall = NULL;
d7e28ffe
RR
243 }
244}
6c8dca5d
RR
245
246/* This routine supplies the Guest with time: it's used for wallclock time at
247 * initial boot and as a rough time source if the TSC isn't available. */
382ac6b3 248void write_timestamp(struct lg_cpu *cpu)
6c8dca5d
RR
249{
250 struct timespec now;
251 ktime_get_real_ts(&now);
382ac6b3
GOC
252 if (copy_to_user(&cpu->lg->lguest_data->time,
253 &now, sizeof(struct timespec)))
254 kill_guest(cpu, "Writing timestamp");
6c8dca5d 255}