]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - drivers/lguest/page_tables.c
lguest: Add to maintainers file.
[mirror_ubuntu-kernels.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
47436aa4 16#include <asm/uaccess.h>
d7e28ffe
RR
17#include "lg.h"
18
f56a384e
RR
19/*M:008 We hold reference to pages, which prevents them from being swapped.
20 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
21 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
22 * could probably consider launching Guests as non-root. :*/
23
bff672e6
RR
24/*H:300
25 * The Page Table Code
26 *
27 * We use two-level page tables for the Guest. If you're not entirely
28 * comfortable with virtual addresses, physical addresses and page tables then
29 * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
30 *
31 * The Guest keeps page tables, but we maintain the actual ones here: these are
32 * called "shadow" page tables. Which is a very Guest-centric name: these are
33 * the real page tables the CPU uses, although we keep them up to date to
34 * reflect the Guest's. (See what I mean about weird naming? Since when do
35 * shadows reflect anything?)
36 *
37 * Anyway, this is the most complicated part of the Host code. There are seven
38 * parts to this:
39 * (i) Setting up a page table entry for the Guest when it faults,
40 * (ii) Setting up the page table entry for the Guest stack,
41 * (iii) Setting up a page table entry when the Guest tells us it has changed,
42 * (iv) Switching page tables,
43 * (v) Flushing (thowing away) page tables,
44 * (vi) Mapping the Switcher when the Guest is about to run,
45 * (vii) Setting up the page tables initially.
46 :*/
47
bff672e6
RR
48
49/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
50 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
51 * page. */
df29f43e 52#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 53
bff672e6
RR
54/* We actually need a separate PTE page for each CPU. Remember that after the
55 * Switcher code itself comes two pages for each CPU, and we don't want this
56 * CPU's guest to see the pages of any other CPU. */
df29f43e 57static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
58#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
59
bff672e6
RR
60/*H:320 With our shadow and Guest types established, we need to deal with
61 * them: the page table code is curly enough to need helper functions to keep
62 * it clear and clean.
63 *
df29f43e 64 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
65 * page tables.
66 *
67 * spgd_addr() takes the virtual address and returns a pointer to the top-level
68 * page directory entry for that address. Since we keep track of several page
69 * tables, the "i" argument tells us which one we're interested in (it's
70 * usually the current one). */
df29f43e 71static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
d7e28ffe 72{
df29f43e 73 unsigned int index = pgd_index(vaddr);
d7e28ffe 74
bff672e6 75 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe
RR
76 if (index >= SWITCHER_PGD_INDEX) {
77 kill_guest(lg, "attempt to access switcher pages");
78 index = 0;
79 }
bff672e6 80 /* Return a pointer index'th pgd entry for the i'th page table. */
d7e28ffe
RR
81 return &lg->pgdirs[i].pgdir[index];
82}
83
bff672e6
RR
84/* This routine then takes the PGD entry given above, which contains the
85 * address of the PTE page. It then returns a pointer to the PTE entry for the
86 * given address. */
df29f43e 87static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
d7e28ffe 88{
df29f43e 89 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 90 /* You should never call this if the PGD entry wasn't valid */
df29f43e
MZ
91 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
92 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
d7e28ffe
RR
93}
94
bff672e6
RR
95/* These two functions just like the above two, except they access the Guest
96 * page tables. Hence they return a Guest address. */
d7e28ffe
RR
97static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
98{
df29f43e 99 unsigned int index = vaddr >> (PGDIR_SHIFT);
ee3db0f2 100 return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
101}
102
103static unsigned long gpte_addr(struct lguest *lg,
df29f43e 104 pgd_t gpgd, unsigned long vaddr)
d7e28ffe 105{
df29f43e
MZ
106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
108 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
d7e28ffe
RR
109}
110
bff672e6
RR
111/*H:350 This routine takes a page number given by the Guest and converts it to
112 * an actual, physical page number. It can fail for several reasons: the
113 * virtual address might not be mapped by the Launcher, the write flag is set
114 * and the page is read-only, or the write flag was set and the page was
115 * shared so had to be copied, but we ran out of memory.
116 *
117 * This holds a reference to the page, so release_pte() is careful to
118 * put that back. */
d7e28ffe
RR
119static unsigned long get_pfn(unsigned long virtpfn, int write)
120{
121 struct page *page;
bff672e6 122 /* This value indicates failure. */
d7e28ffe
RR
123 unsigned long ret = -1UL;
124
bff672e6
RR
125 /* get_user_pages() is a complex interface: it gets the "struct
126 * vm_area_struct" and "struct page" assocated with a range of pages.
127 * It also needs the task's mmap_sem held, and is not very quick.
128 * It returns the number of pages it got. */
d7e28ffe
RR
129 down_read(&current->mm->mmap_sem);
130 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
131 1, write, 1, &page, NULL) == 1)
132 ret = page_to_pfn(page);
133 up_read(&current->mm->mmap_sem);
134 return ret;
135}
136
bff672e6
RR
137/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
138 * entry can be a little tricky. The flags are (almost) the same, but the
139 * Guest PTE contains a virtual page number: the CPU needs the real page
140 * number. */
df29f43e 141static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
d7e28ffe 142{
df29f43e 143 unsigned long pfn, base, flags;
d7e28ffe 144
bff672e6
RR
145 /* The Guest sets the global flag, because it thinks that it is using
146 * PGE. We only told it to use PGE so it would tell us whether it was
147 * flushing a kernel mapping or a userspace mapping. We don't actually
148 * use the global bit, so throw it away. */
df29f43e 149 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 150
3c6b5bfa
RR
151 /* The Guest's pages are offset inside the Launcher. */
152 base = (unsigned long)lg->mem_base / PAGE_SIZE;
153
bff672e6
RR
154 /* We need a temporary "unsigned long" variable to hold the answer from
155 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
156 * fit in spte.pfn. get_pfn() finds the real physical number of the
157 * page, given the virtual number. */
df29f43e 158 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 159 if (pfn == -1UL) {
df29f43e 160 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
bff672e6
RR
161 /* When we destroy the Guest, we'll go through the shadow page
162 * tables and release_pte() them. Make sure we don't think
163 * this one is valid! */
df29f43e 164 flags = 0;
d7e28ffe 165 }
df29f43e
MZ
166 /* Now we assemble our shadow PTE from the page number and flags. */
167 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
168}
169
bff672e6 170/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 171static void release_pte(pte_t pte)
d7e28ffe 172{
bff672e6
RR
173 /* Remember that get_user_pages() took a reference to the page, in
174 * get_pfn()? We have to put it back now. */
df29f43e
MZ
175 if (pte_flags(pte) & _PAGE_PRESENT)
176 put_page(pfn_to_page(pte_pfn(pte)));
d7e28ffe 177}
bff672e6 178/*:*/
d7e28ffe 179
df29f43e 180static void check_gpte(struct lguest *lg, pte_t gpte)
d7e28ffe 181{
df29f43e
MZ
182 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
183 || pte_pfn(gpte) >= lg->pfn_limit)
d7e28ffe
RR
184 kill_guest(lg, "bad page table entry");
185}
186
df29f43e 187static void check_gpgd(struct lguest *lg, pgd_t gpgd)
d7e28ffe 188{
df29f43e 189 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
d7e28ffe
RR
190 kill_guest(lg, "bad page directory entry");
191}
192
bff672e6
RR
193/*H:330
194 * (i) Setting up a page table entry for the Guest when it faults
195 *
196 * We saw this call in run_guest(): when we see a page fault in the Guest, we
197 * come here. That's because we only set up the shadow page tables lazily as
198 * they're needed, so we get page faults all the time and quietly fix them up
199 * and return to the Guest without it knowing.
200 *
201 * If we fixed up the fault (ie. we mapped the address), this routine returns
202 * true. */
d7e28ffe
RR
203int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
204{
df29f43e
MZ
205 pgd_t gpgd;
206 pgd_t *spgd;
d7e28ffe 207 unsigned long gpte_ptr;
df29f43e
MZ
208 pte_t gpte;
209 pte_t *spte;
d7e28ffe 210
bff672e6 211 /* First step: get the top-level Guest page table entry. */
2d37f94a 212 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
bff672e6 213 /* Toplevel not present? We can't map it in. */
df29f43e 214 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
d7e28ffe
RR
215 return 0;
216
bff672e6 217 /* Now look at the matching shadow entry. */
d7e28ffe 218 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
df29f43e 219 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 220 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 221 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
222 /* This is not really the Guest's fault, but killing it is
223 * simple for this corner case. */
d7e28ffe
RR
224 if (!ptepage) {
225 kill_guest(lg, "out of memory allocating pte page");
226 return 0;
227 }
bff672e6 228 /* We check that the Guest pgd is OK. */
d7e28ffe 229 check_gpgd(lg, gpgd);
bff672e6
RR
230 /* And we copy the flags to the shadow PGD entry. The page
231 * number in the shadow PGD is the page we just allocated. */
df29f43e 232 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
d7e28ffe
RR
233 }
234
bff672e6
RR
235 /* OK, now we look at the lower level in the Guest page table: keep its
236 * address, because we might update it later. */
d7e28ffe 237 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
2d37f94a 238 gpte = lgread(lg, gpte_ptr, pte_t);
d7e28ffe 239
bff672e6 240 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 241 if (!(pte_flags(gpte) & _PAGE_PRESENT))
d7e28ffe
RR
242 return 0;
243
bff672e6
RR
244 /* Check they're not trying to write to a page the Guest wants
245 * read-only (bit 2 of errcode == write). */
df29f43e 246 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
d7e28ffe
RR
247 return 0;
248
bff672e6 249 /* User access to a kernel page? (bit 3 == user access) */
df29f43e 250 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
d7e28ffe
RR
251 return 0;
252
bff672e6
RR
253 /* Check that the Guest PTE flags are OK, and the page number is below
254 * the pfn_limit (ie. not mapping the Launcher binary). */
d7e28ffe 255 check_gpte(lg, gpte);
bff672e6 256 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e
MZ
257 gpte = pte_mkyoung(gpte);
258
d7e28ffe 259 if (errcode & 2)
df29f43e 260 gpte = pte_mkdirty(gpte);
d7e28ffe 261
bff672e6 262 /* Get the pointer to the shadow PTE entry we're going to set. */
d7e28ffe 263 spte = spte_addr(lg, *spgd, vaddr);
bff672e6
RR
264 /* If there was a valid shadow PTE entry here before, we release it.
265 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
266 release_pte(*spte);
267
bff672e6
RR
268 /* If this is a write, we insist that the Guest page is writable (the
269 * final arg to gpte_to_spte()). */
df29f43e 270 if (pte_dirty(gpte))
d7e28ffe 271 *spte = gpte_to_spte(lg, gpte, 1);
df29f43e 272 else
bff672e6
RR
273 /* If this is a read, don't set the "writable" bit in the page
274 * table entry, even if the Guest says it's writable. That way
275 * we come back here when a write does actually ocur, so we can
276 * update the Guest's _PAGE_DIRTY flag. */
df29f43e 277 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
d7e28ffe 278
bff672e6
RR
279 /* Finally, we write the Guest PTE entry back: we've set the
280 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
2d37f94a 281 lgwrite(lg, gpte_ptr, pte_t, gpte);
bff672e6
RR
282
283 /* We succeeded in mapping the page! */
d7e28ffe
RR
284 return 1;
285}
286
bff672e6
RR
287/*H:360 (ii) Setting up the page table entry for the Guest stack.
288 *
289 * Remember pin_stack_pages() which makes sure the stack is mapped? It could
290 * simply call demand_page(), but as we've seen that logic is quite long, and
291 * usually the stack pages are already mapped anyway, so it's not required.
292 *
293 * This is a quick version which answers the question: is this virtual address
294 * mapped by the shadow page tables, and is it writable? */
d7e28ffe
RR
295static int page_writable(struct lguest *lg, unsigned long vaddr)
296{
df29f43e 297 pgd_t *spgd;
d7e28ffe
RR
298 unsigned long flags;
299
bff672e6 300 /* Look at the top level entry: is it present? */
d7e28ffe 301 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
df29f43e 302 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
d7e28ffe
RR
303 return 0;
304
bff672e6
RR
305 /* Check the flags on the pte entry itself: it must be present and
306 * writable. */
df29f43e
MZ
307 flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
308
d7e28ffe
RR
309 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
310}
311
bff672e6
RR
312/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
313 * in the page tables, and if not, we call demand_page() with error code 2
314 * (meaning "write"). */
d7e28ffe
RR
315void pin_page(struct lguest *lg, unsigned long vaddr)
316{
317 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
318 kill_guest(lg, "bad stack page %#lx", vaddr);
319}
320
bff672e6 321/*H:450 If we chase down the release_pgd() code, it looks like this: */
df29f43e 322static void release_pgd(struct lguest *lg, pgd_t *spgd)
d7e28ffe 323{
bff672e6 324 /* If the entry's not present, there's nothing to release. */
df29f43e 325 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 326 unsigned int i;
bff672e6
RR
327 /* Converting the pfn to find the actual PTE page is easy: turn
328 * the page number into a physical address, then convert to a
329 * virtual address (easy for kernel pages like this one). */
df29f43e 330 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 331 /* For each entry in the page, we might need to release it. */
df29f43e 332 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 333 release_pte(ptepage[i]);
bff672e6 334 /* Now we can free the page of PTEs */
d7e28ffe 335 free_page((long)ptepage);
bff672e6 336 /* And zero out the PGD entry we we never release it twice. */
df29f43e 337 *spgd = __pgd(0);
d7e28ffe
RR
338 }
339}
340
bff672e6
RR
341/*H:440 (v) Flushing (thowing away) page tables,
342 *
343 * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
344 * It simply releases every PTE page from 0 up to the kernel address. */
d7e28ffe
RR
345static void flush_user_mappings(struct lguest *lg, int idx)
346{
347 unsigned int i;
bff672e6 348 /* Release every pgd entry up to the kernel's address. */
47436aa4 349 for (i = 0; i < pgd_index(lg->kernel_address); i++)
d7e28ffe
RR
350 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
351}
352
bff672e6
RR
353/* The Guest also has a hypercall to do this manually: it's used when a large
354 * number of mappings have been changed. */
d7e28ffe
RR
355void guest_pagetable_flush_user(struct lguest *lg)
356{
bff672e6 357 /* Drop the userspace part of the current page table. */
d7e28ffe
RR
358 flush_user_mappings(lg, lg->pgdidx);
359}
bff672e6 360/*:*/
d7e28ffe 361
47436aa4
RR
362/* We walk down the guest page tables to get a guest-physical address */
363unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
364{
365 pgd_t gpgd;
366 pte_t gpte;
367
368 /* First step: get the top-level Guest page table entry. */
2d37f94a 369 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
47436aa4
RR
370 /* Toplevel not present? We can't map it in. */
371 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
372 kill_guest(lg, "Bad address %#lx", vaddr);
373
2d37f94a 374 gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
47436aa4
RR
375 if (!(pte_flags(gpte) & _PAGE_PRESENT))
376 kill_guest(lg, "Bad address %#lx", vaddr);
377
378 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
379}
380
bff672e6
RR
381/* We keep several page tables. This is a simple routine to find the page
382 * table (if any) corresponding to this top-level address the Guest has given
383 * us. */
d7e28ffe
RR
384static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
385{
386 unsigned int i;
387 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
ee3db0f2 388 if (lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
389 break;
390 return i;
391}
392
bff672e6
RR
393/*H:435 And this is us, creating the new page directory. If we really do
394 * allocate a new one (and so the kernel parts are not there), we set
395 * blank_pgdir. */
d7e28ffe 396static unsigned int new_pgdir(struct lguest *lg,
ee3db0f2 397 unsigned long gpgdir,
d7e28ffe
RR
398 int *blank_pgdir)
399{
400 unsigned int next;
401
bff672e6
RR
402 /* We pick one entry at random to throw out. Choosing the Least
403 * Recently Used might be better, but this is easy. */
d7e28ffe 404 next = random32() % ARRAY_SIZE(lg->pgdirs);
bff672e6 405 /* If it's never been allocated at all before, try now. */
d7e28ffe 406 if (!lg->pgdirs[next].pgdir) {
df29f43e 407 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 408 /* If the allocation fails, just keep using the one we have */
d7e28ffe
RR
409 if (!lg->pgdirs[next].pgdir)
410 next = lg->pgdidx;
411 else
bff672e6
RR
412 /* This is a blank page, so there are no kernel
413 * mappings: caller must map the stack! */
d7e28ffe
RR
414 *blank_pgdir = 1;
415 }
bff672e6 416 /* Record which Guest toplevel this shadows. */
ee3db0f2 417 lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe
RR
418 /* Release all the non-kernel mappings. */
419 flush_user_mappings(lg, next);
420
421 return next;
422}
423
bff672e6
RR
424/*H:430 (iv) Switching page tables
425 *
426 * This is what happens when the Guest changes page tables (ie. changes the
427 * top-level pgdir). This happens on almost every context switch. */
d7e28ffe
RR
428void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
429{
430 int newpgdir, repin = 0;
431
bff672e6 432 /* Look to see if we have this one already. */
d7e28ffe 433 newpgdir = find_pgdir(lg, pgtable);
bff672e6
RR
434 /* If not, we allocate or mug an existing one: if it's a fresh one,
435 * repin gets set to 1. */
d7e28ffe
RR
436 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
437 newpgdir = new_pgdir(lg, pgtable, &repin);
bff672e6 438 /* Change the current pgd index to the new one. */
d7e28ffe 439 lg->pgdidx = newpgdir;
bff672e6 440 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe
RR
441 if (repin)
442 pin_stack_pages(lg);
443}
444
bff672e6
RR
445/*H:470 Finally, a routine which throws away everything: all PGD entries in all
446 * the shadow page tables. This is used when we destroy the Guest. */
d7e28ffe
RR
447static void release_all_pagetables(struct lguest *lg)
448{
449 unsigned int i, j;
450
bff672e6 451 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
452 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
453 if (lg->pgdirs[i].pgdir)
bff672e6 454 /* Every PGD entry except the Switcher at the top */
d7e28ffe
RR
455 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
456 release_pgd(lg, lg->pgdirs[i].pgdir + j);
457}
458
bff672e6
RR
459/* We also throw away everything when a Guest tells us it's changed a kernel
460 * mapping. Since kernel mappings are in every page table, it's easiest to
461 * throw them all away. This is amazingly slow, but thankfully rare. */
d7e28ffe
RR
462void guest_pagetable_clear_all(struct lguest *lg)
463{
464 release_all_pagetables(lg);
bff672e6 465 /* We need the Guest kernel stack mapped again. */
d7e28ffe
RR
466 pin_stack_pages(lg);
467}
468
bff672e6
RR
469/*H:420 This is the routine which actually sets the page table entry for then
470 * "idx"'th shadow page table.
471 *
472 * Normally, we can just throw out the old entry and replace it with 0: if they
473 * use it demand_page() will put the new entry in. We need to do this anyway:
474 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
475 * is read from, and _PAGE_DIRTY when it's written to.
476 *
477 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
478 * these bits on PTEs immediately anyway. This is done to save the CPU from
479 * having to update them, but it helps us the same way: if they set
480 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
481 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
482 */
d7e28ffe 483static void do_set_pte(struct lguest *lg, int idx,
df29f43e 484 unsigned long vaddr, pte_t gpte)
d7e28ffe 485{
bff672e6 486 /* Look up the matching shadow page directot entry. */
df29f43e 487 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
bff672e6
RR
488
489 /* If the top level isn't present, there's no entry to update. */
df29f43e 490 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
bff672e6 491 /* Otherwise, we start by releasing the existing entry. */
df29f43e 492 pte_t *spte = spte_addr(lg, *spgd, vaddr);
d7e28ffe 493 release_pte(*spte);
bff672e6
RR
494
495 /* If they're setting this entry as dirty or accessed, we might
496 * as well put that entry they've given us in now. This shaves
497 * 10% off a copy-on-write micro-benchmark. */
df29f43e 498 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
d7e28ffe 499 check_gpte(lg, gpte);
df29f43e
MZ
500 *spte = gpte_to_spte(lg, gpte,
501 pte_flags(gpte) & _PAGE_DIRTY);
d7e28ffe 502 } else
bff672e6 503 /* Otherwise we can demand_page() it in later. */
df29f43e 504 *spte = __pte(0);
d7e28ffe
RR
505 }
506}
507
bff672e6
RR
508/*H:410 Updating a PTE entry is a little trickier.
509 *
510 * We keep track of several different page tables (the Guest uses one for each
511 * process, so it makes sense to cache at least a few). Each of these have
512 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
513 * all processes. So when the page table above that address changes, we update
514 * all the page tables, not just the current one. This is rare.
515 *
516 * The benefit is that when we have to track a new page table, we can copy keep
517 * all the kernel mappings. This speeds up context switch immensely. */
d7e28ffe 518void guest_set_pte(struct lguest *lg,
ee3db0f2 519 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 520{
bff672e6
RR
521 /* Kernel mappings must be changed on all top levels. Slow, but
522 * doesn't happen often. */
47436aa4 523 if (vaddr >= lg->kernel_address) {
d7e28ffe
RR
524 unsigned int i;
525 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
526 if (lg->pgdirs[i].pgdir)
527 do_set_pte(lg, i, vaddr, gpte);
528 } else {
bff672e6 529 /* Is this page table one we have a shadow for? */
ee3db0f2 530 int pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 531 if (pgdir != ARRAY_SIZE(lg->pgdirs))
bff672e6 532 /* If so, do the update. */
d7e28ffe
RR
533 do_set_pte(lg, pgdir, vaddr, gpte);
534 }
535}
536
bff672e6
RR
537/*H:400
538 * (iii) Setting up a page table entry when the Guest tells us it has changed.
539 *
540 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
541 * with the other side of page tables while we're here: what happens when the
542 * Guest asks for a page table to be updated?
543 *
544 * We already saw that demand_page() will fill in the shadow page tables when
545 * needed, so we can simply remove shadow page table entries whenever the Guest
546 * tells us they've changed. When the Guest tries to use the new entry it will
547 * fault and demand_page() will fix it up.
548 *
549 * So with that in mind here's our code to to update a (top-level) PGD entry:
550 */
ee3db0f2 551void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
552{
553 int pgdir;
554
bff672e6
RR
555 /* The kernel seems to try to initialize this early on: we ignore its
556 * attempts to map over the Switcher. */
d7e28ffe
RR
557 if (idx >= SWITCHER_PGD_INDEX)
558 return;
559
bff672e6 560 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 561 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 562 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 563 /* ... throw it away. */
d7e28ffe
RR
564 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
565}
566
bff672e6
RR
567/*H:500 (vii) Setting up the page tables initially.
568 *
569 * When a Guest is first created, the Launcher tells us where the toplevel of
570 * its first page table is. We set some things up here: */
d7e28ffe
RR
571int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
572{
bff672e6
RR
573 /* We start on the first shadow page table, and give it a blank PGD
574 * page. */
d7e28ffe 575 lg->pgdidx = 0;
ee3db0f2 576 lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
df29f43e 577 lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
578 if (!lg->pgdirs[lg->pgdidx].pgdir)
579 return -ENOMEM;
580 return 0;
581}
582
47436aa4
RR
583/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
584void page_table_guest_data_init(struct lguest *lg)
585{
586 /* We get the kernel address: above this is all kernel memory. */
587 if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
588 /* We tell the Guest that it can't use the top 4MB of virtual
589 * addresses used by the Switcher. */
590 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
591 || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
592 kill_guest(lg, "bad guest page %p", lg->lguest_data);
593
594 /* In flush_user_mappings() we loop from 0 to
595 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
596 * Switcher mappings, so check that now. */
597 if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
598 kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
599}
600
bff672e6 601/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
602void free_guest_pagetable(struct lguest *lg)
603{
604 unsigned int i;
605
bff672e6 606 /* Throw away all page table pages. */
d7e28ffe 607 release_all_pagetables(lg);
bff672e6 608 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
609 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
610 free_page((long)lg->pgdirs[i].pgdir);
611}
612
bff672e6
RR
613/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
614 *
615 * The Switcher and the two pages for this CPU need to be available to the
616 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
617 * for each CPU already set up, we just need to hook them in. */
d7e28ffe
RR
618void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
619{
df29f43e
MZ
620 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
621 pgd_t switcher_pgd;
622 pte_t regs_pte;
d7e28ffe 623
bff672e6
RR
624 /* Make the last PGD entry for this Guest point to the Switcher's PTE
625 * page for this CPU (with appropriate flags). */
df29f43e
MZ
626 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
627
d7e28ffe
RR
628 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
629
bff672e6
RR
630 /* We also change the Switcher PTE page. When we're running the Guest,
631 * we want the Guest's "regs" page to appear where the first Switcher
632 * page for this CPU is. This is an optimization: when the Switcher
633 * saves the Guest registers, it saves them into the first page of this
634 * CPU's "struct lguest_pages": if we make sure the Guest's register
635 * page is already mapped there, we don't have to copy them out
636 * again. */
df29f43e
MZ
637 regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
638 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
d7e28ffe 639}
bff672e6 640/*:*/
d7e28ffe
RR
641
642static void free_switcher_pte_pages(void)
643{
644 unsigned int i;
645
646 for_each_possible_cpu(i)
647 free_page((long)switcher_pte_page(i));
648}
649
bff672e6
RR
650/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
651 * the CPU number and the "struct page"s for the Switcher code itself.
652 *
653 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
654static __init void populate_switcher_pte_page(unsigned int cpu,
655 struct page *switcher_page[],
656 unsigned int pages)
657{
658 unsigned int i;
df29f43e 659 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 660
bff672e6 661 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 662 for (i = 0; i < pages; i++) {
df29f43e
MZ
663 pte[i] = mk_pte(switcher_page[i],
664 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
665 }
666
bff672e6 667 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
668 i = pages + cpu*2;
669
bff672e6 670 /* First page (Guest registers) is writable from the Guest */
df29f43e
MZ
671 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
672 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
673
bff672e6
RR
674 /* The second page contains the "struct lguest_ro_state", and is
675 * read-only. */
df29f43e
MZ
676 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
677 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
678}
679
bff672e6
RR
680/*H:510 At boot or module load time, init_pagetables() allocates and populates
681 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
682__init int init_pagetables(struct page **switcher_page, unsigned int pages)
683{
684 unsigned int i;
685
686 for_each_possible_cpu(i) {
df29f43e 687 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
688 if (!switcher_pte_page(i)) {
689 free_switcher_pte_pages();
690 return -ENOMEM;
691 }
692 populate_switcher_pte_page(i, switcher_page, pages);
693 }
694 return 0;
695}
bff672e6 696/*:*/
d7e28ffe 697
bff672e6 698/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
699void free_pagetables(void)
700{
701 free_switcher_pte_pages();
702}