]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lguest/page_tables.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / lguest / page_tables.c
CommitLineData
2e04ef76
RR
1/*P:700
2 * The pagetable code, on the other hand, still shows the scars of
f938d2c8
RR
3 * previous encounters. It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
a6bd8e13 6 * it nor use it: we verify and convert it here then point the CPU to the
2e04ef76
RR
7 * converted Guest pages when running the Guest.
8:*/
f938d2c8
RR
9
10/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
11 * GPL v2 and any later version */
12#include <linux/mm.h>
5a0e3ad6 13#include <linux/gfp.h>
d7e28ffe
RR
14#include <linux/types.h>
15#include <linux/spinlock.h>
16#include <linux/random.h>
17#include <linux/percpu.h>
18#include <asm/tlbflush.h>
47436aa4 19#include <asm/uaccess.h>
58a24566 20#include <asm/bootparam.h>
d7e28ffe
RR
21#include "lg.h"
22
2e04ef76
RR
23/*M:008
24 * We hold reference to pages, which prevents them from being swapped.
f56a384e
RR
25 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
26 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
2e04ef76
RR
27 * could probably consider launching Guests as non-root.
28:*/
f56a384e 29
bff672e6
RR
30/*H:300
31 * The Page Table Code
32 *
a91d74a3
RR
33 * We use two-level page tables for the Guest, or three-level with PAE. If
34 * you're not entirely comfortable with virtual addresses, physical addresses
35 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
36 * Table Handling" (with diagrams!).
bff672e6
RR
37 *
38 * The Guest keeps page tables, but we maintain the actual ones here: these are
39 * called "shadow" page tables. Which is a very Guest-centric name: these are
40 * the real page tables the CPU uses, although we keep them up to date to
41 * reflect the Guest's. (See what I mean about weird naming? Since when do
42 * shadows reflect anything?)
43 *
44 * Anyway, this is the most complicated part of the Host code. There are seven
45 * parts to this:
e1e72965
RR
46 * (i) Looking up a page table entry when the Guest faults,
47 * (ii) Making sure the Guest stack is mapped,
48 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 49 * (iv) Switching page tables,
e1e72965 50 * (v) Flushing (throwing away) page tables,
bff672e6
RR
51 * (vi) Mapping the Switcher when the Guest is about to run,
52 * (vii) Setting up the page tables initially.
2e04ef76 53:*/
bff672e6 54
2e04ef76 55/*
a91d74a3
RR
56 * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
57 * or 512 PTE entries with PAE (2MB).
2e04ef76 58 */
df29f43e 59#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 60
2e04ef76
RR
61/*
62 * For PAE we need the PMD index as well. We use the last 2MB, so we
63 * will need the last pmd entry of the last pmd page.
64 */
acdd0b62
MZ
65#ifdef CONFIG_X86_PAE
66#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
67#define RESERVE_MEM 2U
68#define CHECK_GPGD_MASK _PAGE_PRESENT
69#else
70#define RESERVE_MEM 4U
71#define CHECK_GPGD_MASK _PAGE_TABLE
72#endif
73
2e04ef76
RR
74/*
75 * We actually need a separate PTE page for each CPU. Remember that after the
bff672e6 76 * Switcher code itself comes two pages for each CPU, and we don't want this
2e04ef76
RR
77 * CPU's guest to see the pages of any other CPU.
78 */
df29f43e 79static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
80#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
81
2e04ef76
RR
82/*H:320
83 * The page table code is curly enough to need helper functions to keep it
a91d74a3
RR
84 * clear and clean. The kernel itself provides many of them; one advantage
85 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
bff672e6 86 *
df29f43e 87 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
88 * page tables.
89 *
90 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
91 * page directory entry (PGD) for that address. Since we keep track of several
92 * page tables, the "i" argument tells us which one we're interested in (it's
2e04ef76
RR
93 * usually the current one).
94 */
382ac6b3 95static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
d7e28ffe 96{
df29f43e 97 unsigned int index = pgd_index(vaddr);
d7e28ffe 98
acdd0b62 99#ifndef CONFIG_X86_PAE
bff672e6 100 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe 101 if (index >= SWITCHER_PGD_INDEX) {
382ac6b3 102 kill_guest(cpu, "attempt to access switcher pages");
d7e28ffe
RR
103 index = 0;
104 }
acdd0b62 105#endif
bff672e6 106 /* Return a pointer index'th pgd entry for the i'th page table. */
382ac6b3 107 return &cpu->lg->pgdirs[i].pgdir[index];
d7e28ffe
RR
108}
109
acdd0b62 110#ifdef CONFIG_X86_PAE
2e04ef76
RR
111/*
112 * This routine then takes the PGD entry given above, which contains the
acdd0b62 113 * address of the PMD page. It then returns a pointer to the PMD entry for the
2e04ef76
RR
114 * given address.
115 */
acdd0b62
MZ
116static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
117{
118 unsigned int index = pmd_index(vaddr);
119 pmd_t *page;
120
121 /* We kill any Guest trying to touch the Switcher addresses. */
122 if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
123 index >= SWITCHER_PMD_INDEX) {
124 kill_guest(cpu, "attempt to access switcher pages");
125 index = 0;
126 }
127
128 /* You should never call this if the PGD entry wasn't valid */
129 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
130 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
131
132 return &page[index];
133}
134#endif
135
2e04ef76
RR
136/*
137 * This routine then takes the page directory entry returned above, which
e1e72965 138 * contains the address of the page table entry (PTE) page. It then returns a
2e04ef76
RR
139 * pointer to the PTE entry for the given address.
140 */
acdd0b62 141static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
d7e28ffe 142{
acdd0b62
MZ
143#ifdef CONFIG_X86_PAE
144 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
145 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
146
147 /* You should never call this if the PMD entry wasn't valid */
148 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
149#else
df29f43e 150 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 151 /* You should never call this if the PGD entry wasn't valid */
df29f43e 152 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
acdd0b62
MZ
153#endif
154
90603d15 155 return &page[pte_index(vaddr)];
d7e28ffe
RR
156}
157
2e04ef76 158/*
a91d74a3 159 * These functions are just like the above two, except they access the Guest
2e04ef76
RR
160 * page tables. Hence they return a Guest address.
161 */
1713608f 162static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 163{
df29f43e 164 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 165 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
166}
167
acdd0b62 168#ifdef CONFIG_X86_PAE
a91d74a3 169/* Follow the PGD to the PMD. */
acdd0b62 170static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
d7e28ffe 171{
df29f43e
MZ
172 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
173 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
acdd0b62
MZ
174 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
175}
acdd0b62 176
a91d74a3 177/* Follow the PMD to the PTE. */
acdd0b62 178static unsigned long gpte_addr(struct lg_cpu *cpu,
92b4d8df 179 pmd_t gpmd, unsigned long vaddr)
acdd0b62 180{
92b4d8df 181 unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
acdd0b62 182
acdd0b62 183 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
92b4d8df
RR
184 return gpage + pte_index(vaddr) * sizeof(pte_t);
185}
acdd0b62 186#else
a91d74a3 187/* Follow the PGD to the PTE (no mid-level for !PAE). */
92b4d8df
RR
188static unsigned long gpte_addr(struct lg_cpu *cpu,
189 pgd_t gpgd, unsigned long vaddr)
190{
191 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
192
193 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
90603d15 194 return gpage + pte_index(vaddr) * sizeof(pte_t);
d7e28ffe 195}
92b4d8df 196#endif
a6bd8e13
RR
197/*:*/
198
2e04ef76
RR
199/*M:014
200 * get_pfn is slow: we could probably try to grab batches of pages here as
201 * an optimization (ie. pre-faulting).
202:*/
d7e28ffe 203
2e04ef76
RR
204/*H:350
205 * This routine takes a page number given by the Guest and converts it to
bff672e6
RR
206 * an actual, physical page number. It can fail for several reasons: the
207 * virtual address might not be mapped by the Launcher, the write flag is set
208 * and the page is read-only, or the write flag was set and the page was
209 * shared so had to be copied, but we ran out of memory.
210 *
a6bd8e13 211 * This holds a reference to the page, so release_pte() is careful to put that
2e04ef76
RR
212 * back.
213 */
d7e28ffe
RR
214static unsigned long get_pfn(unsigned long virtpfn, int write)
215{
216 struct page *page;
71a3f4ed
RR
217
218 /* gup me one page at this address please! */
219 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
220 return page_to_pfn(page);
221
bff672e6 222 /* This value indicates failure. */
71a3f4ed 223 return -1UL;
d7e28ffe
RR
224}
225
2e04ef76
RR
226/*H:340
227 * Converting a Guest page table entry to a shadow (ie. real) page table
bff672e6
RR
228 * entry can be a little tricky. The flags are (almost) the same, but the
229 * Guest PTE contains a virtual page number: the CPU needs the real page
2e04ef76
RR
230 * number.
231 */
382ac6b3 232static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
d7e28ffe 233{
df29f43e 234 unsigned long pfn, base, flags;
d7e28ffe 235
2e04ef76
RR
236 /*
237 * The Guest sets the global flag, because it thinks that it is using
bff672e6
RR
238 * PGE. We only told it to use PGE so it would tell us whether it was
239 * flushing a kernel mapping or a userspace mapping. We don't actually
2e04ef76
RR
240 * use the global bit, so throw it away.
241 */
df29f43e 242 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 243
3c6b5bfa 244 /* The Guest's pages are offset inside the Launcher. */
382ac6b3 245 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
3c6b5bfa 246
2e04ef76
RR
247 /*
248 * We need a temporary "unsigned long" variable to hold the answer from
bff672e6
RR
249 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
250 * fit in spte.pfn. get_pfn() finds the real physical number of the
2e04ef76
RR
251 * page, given the virtual number.
252 */
df29f43e 253 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 254 if (pfn == -1UL) {
382ac6b3 255 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
2e04ef76
RR
256 /*
257 * When we destroy the Guest, we'll go through the shadow page
bff672e6 258 * tables and release_pte() them. Make sure we don't think
2e04ef76
RR
259 * this one is valid!
260 */
df29f43e 261 flags = 0;
d7e28ffe 262 }
df29f43e
MZ
263 /* Now we assemble our shadow PTE from the page number and flags. */
264 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
265}
266
bff672e6 267/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 268static void release_pte(pte_t pte)
d7e28ffe 269{
2e04ef76
RR
270 /*
271 * Remember that get_user_pages_fast() took a reference to the page, in
272 * get_pfn()? We have to put it back now.
273 */
df29f43e 274 if (pte_flags(pte) & _PAGE_PRESENT)
90603d15 275 put_page(pte_page(pte));
d7e28ffe 276}
bff672e6 277/*:*/
d7e28ffe 278
382ac6b3 279static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
d7e28ffe 280{
31f4b46e
AD
281 if ((pte_flags(gpte) & _PAGE_PSE) ||
282 pte_pfn(gpte) >= cpu->lg->pfn_limit)
382ac6b3 283 kill_guest(cpu, "bad page table entry");
d7e28ffe
RR
284}
285
382ac6b3 286static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
d7e28ffe 287{
acdd0b62 288 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
382ac6b3
GOC
289 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
290 kill_guest(cpu, "bad page directory entry");
d7e28ffe
RR
291}
292
acdd0b62
MZ
293#ifdef CONFIG_X86_PAE
294static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
295{
296 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
297 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
298 kill_guest(cpu, "bad page middle directory entry");
299}
300#endif
301
bff672e6 302/*H:330
e1e72965 303 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
304 *
305 * We saw this call in run_guest(): when we see a page fault in the Guest, we
306 * come here. That's because we only set up the shadow page tables lazily as
307 * they're needed, so we get page faults all the time and quietly fix them up
308 * and return to the Guest without it knowing.
309 *
310 * If we fixed up the fault (ie. we mapped the address), this routine returns
2e04ef76
RR
311 * true. Otherwise, it was a real fault and we need to tell the Guest.
312 */
df1693ab 313bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 314{
df29f43e
MZ
315 pgd_t gpgd;
316 pgd_t *spgd;
d7e28ffe 317 unsigned long gpte_ptr;
df29f43e
MZ
318 pte_t gpte;
319 pte_t *spte;
d7e28ffe 320
a91d74a3 321 /* Mid level for PAE. */
acdd0b62
MZ
322#ifdef CONFIG_X86_PAE
323 pmd_t *spmd;
324 pmd_t gpmd;
325#endif
326
bff672e6 327 /* First step: get the top-level Guest page table entry. */
382ac6b3 328 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
bff672e6 329 /* Toplevel not present? We can't map it in. */
df29f43e 330 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
df1693ab 331 return false;
d7e28ffe 332
bff672e6 333 /* Now look at the matching shadow entry. */
382ac6b3 334 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 335 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 336 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 337 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
2e04ef76
RR
338 /*
339 * This is not really the Guest's fault, but killing it is
340 * simple for this corner case.
341 */
d7e28ffe 342 if (!ptepage) {
382ac6b3 343 kill_guest(cpu, "out of memory allocating pte page");
df1693ab 344 return false;
d7e28ffe 345 }
bff672e6 346 /* We check that the Guest pgd is OK. */
382ac6b3 347 check_gpgd(cpu, gpgd);
2e04ef76
RR
348 /*
349 * And we copy the flags to the shadow PGD entry. The page
350 * number in the shadow PGD is the page we just allocated.
351 */
acdd0b62 352 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
d7e28ffe
RR
353 }
354
acdd0b62
MZ
355#ifdef CONFIG_X86_PAE
356 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
2e04ef76 357 /* Middle level not present? We can't map it in. */
acdd0b62
MZ
358 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
359 return false;
360
361 /* Now look at the matching shadow entry. */
362 spmd = spmd_addr(cpu, *spgd, vaddr);
363
364 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
365 /* No shadow entry: allocate a new shadow PTE page. */
366 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
367
2e04ef76
RR
368 /*
369 * This is not really the Guest's fault, but killing it is
370 * simple for this corner case.
371 */
acdd0b62
MZ
372 if (!ptepage) {
373 kill_guest(cpu, "out of memory allocating pte page");
374 return false;
375 }
376
377 /* We check that the Guest pmd is OK. */
378 check_gpmd(cpu, gpmd);
379
2e04ef76
RR
380 /*
381 * And we copy the flags to the shadow PMD entry. The page
382 * number in the shadow PMD is the page we just allocated.
383 */
4c1ea3dd 384 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
acdd0b62 385 }
92b4d8df 386
2e04ef76
RR
387 /*
388 * OK, now we look at the lower level in the Guest page table: keep its
389 * address, because we might update it later.
390 */
92b4d8df
RR
391 gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
392#else
2e04ef76
RR
393 /*
394 * OK, now we look at the lower level in the Guest page table: keep its
395 * address, because we might update it later.
396 */
acdd0b62 397 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
92b4d8df 398#endif
a91d74a3
RR
399
400 /* Read the actual PTE value. */
382ac6b3 401 gpte = lgread(cpu, gpte_ptr, pte_t);
d7e28ffe 402
bff672e6 403 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 404 if (!(pte_flags(gpte) & _PAGE_PRESENT))
df1693ab 405 return false;
d7e28ffe 406
2e04ef76
RR
407 /*
408 * Check they're not trying to write to a page the Guest wants
409 * read-only (bit 2 of errcode == write).
410 */
df29f43e 411 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
df1693ab 412 return false;
d7e28ffe 413
e1e72965 414 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 415 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
df1693ab 416 return false;
d7e28ffe 417
2e04ef76
RR
418 /*
419 * Check that the Guest PTE flags are OK, and the page number is below
420 * the pfn_limit (ie. not mapping the Launcher binary).
421 */
382ac6b3 422 check_gpte(cpu, gpte);
e1e72965 423
bff672e6 424 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 425 gpte = pte_mkyoung(gpte);
d7e28ffe 426 if (errcode & 2)
df29f43e 427 gpte = pte_mkdirty(gpte);
d7e28ffe 428
bff672e6 429 /* Get the pointer to the shadow PTE entry we're going to set. */
acdd0b62 430 spte = spte_addr(cpu, *spgd, vaddr);
2e04ef76
RR
431
432 /*
433 * If there was a valid shadow PTE entry here before, we release it.
434 * This can happen with a write to a previously read-only entry.
435 */
d7e28ffe
RR
436 release_pte(*spte);
437
2e04ef76
RR
438 /*
439 * If this is a write, we insist that the Guest page is writable (the
440 * final arg to gpte_to_spte()).
441 */
df29f43e 442 if (pte_dirty(gpte))
382ac6b3 443 *spte = gpte_to_spte(cpu, gpte, 1);
df29f43e 444 else
2e04ef76
RR
445 /*
446 * If this is a read, don't set the "writable" bit in the page
bff672e6 447 * table entry, even if the Guest says it's writable. That way
e1e72965 448 * we will come back here when a write does actually occur, so
2e04ef76
RR
449 * we can update the Guest's _PAGE_DIRTY flag.
450 */
4c1ea3dd 451 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
d7e28ffe 452
2e04ef76
RR
453 /*
454 * Finally, we write the Guest PTE entry back: we've set the
455 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
456 */
382ac6b3 457 lgwrite(cpu, gpte_ptr, pte_t, gpte);
bff672e6 458
2e04ef76
RR
459 /*
460 * The fault is fixed, the page table is populated, the mapping
e1e72965
RR
461 * manipulated, the result returned and the code complete. A small
462 * delay and a trace of alliteration are the only indications the Guest
2e04ef76
RR
463 * has that a page fault occurred at all.
464 */
df1693ab 465 return true;
d7e28ffe
RR
466}
467
e1e72965
RR
468/*H:360
469 * (ii) Making sure the Guest stack is mapped.
bff672e6 470 *
e1e72965
RR
471 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
472 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
473 * we've seen that logic is quite long, and usually the stack pages are already
474 * mapped, so it's overkill.
bff672e6
RR
475 *
476 * This is a quick version which answers the question: is this virtual address
2e04ef76
RR
477 * mapped by the shadow page tables, and is it writable?
478 */
df1693ab 479static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 480{
df29f43e 481 pgd_t *spgd;
d7e28ffe
RR
482 unsigned long flags;
483
acdd0b62
MZ
484#ifdef CONFIG_X86_PAE
485 pmd_t *spmd;
486#endif
e1e72965 487 /* Look at the current top level entry: is it present? */
382ac6b3 488 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 489 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
df1693ab 490 return false;
d7e28ffe 491
acdd0b62
MZ
492#ifdef CONFIG_X86_PAE
493 spmd = spmd_addr(cpu, *spgd, vaddr);
494 if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
495 return false;
496#endif
497
2e04ef76
RR
498 /*
499 * Check the flags on the pte entry itself: it must be present and
500 * writable.
501 */
acdd0b62 502 flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
df29f43e 503
d7e28ffe
RR
504 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
505}
506
2e04ef76
RR
507/*
508 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
bff672e6 509 * in the page tables, and if not, we call demand_page() with error code 2
2e04ef76
RR
510 * (meaning "write").
511 */
1713608f 512void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 513{
1713608f 514 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
382ac6b3 515 kill_guest(cpu, "bad stack page %#lx", vaddr);
d7e28ffe 516}
a91d74a3 517/*:*/
d7e28ffe 518
acdd0b62
MZ
519#ifdef CONFIG_X86_PAE
520static void release_pmd(pmd_t *spmd)
521{
522 /* If the entry's not present, there's nothing to release. */
523 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
524 unsigned int i;
525 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
526 /* For each entry in the page, we might need to release it. */
527 for (i = 0; i < PTRS_PER_PTE; i++)
528 release_pte(ptepage[i]);
529 /* Now we can free the page of PTEs */
530 free_page((long)ptepage);
531 /* And zero out the PMD entry so we never release it twice. */
4c1ea3dd 532 set_pmd(spmd, __pmd(0));
acdd0b62
MZ
533 }
534}
535
536static void release_pgd(pgd_t *spgd)
537{
538 /* If the entry's not present, there's nothing to release. */
539 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
540 unsigned int i;
541 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
542
543 for (i = 0; i < PTRS_PER_PMD; i++)
544 release_pmd(&pmdpage[i]);
545
546 /* Now we can free the page of PMDs */
547 free_page((long)pmdpage);
548 /* And zero out the PGD entry so we never release it twice. */
549 set_pgd(spgd, __pgd(0));
550 }
551}
552
553#else /* !CONFIG_X86_PAE */
a91d74a3
RR
554/*H:450
555 * If we chase down the release_pgd() code, the non-PAE version looks like
556 * this. The PAE version is almost identical, but instead of calling
557 * release_pte it calls release_pmd(), which looks much like this.
558 */
90603d15 559static void release_pgd(pgd_t *spgd)
d7e28ffe 560{
bff672e6 561 /* If the entry's not present, there's nothing to release. */
df29f43e 562 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 563 unsigned int i;
2e04ef76
RR
564 /*
565 * Converting the pfn to find the actual PTE page is easy: turn
bff672e6 566 * the page number into a physical address, then convert to a
2e04ef76
RR
567 * virtual address (easy for kernel pages like this one).
568 */
df29f43e 569 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 570 /* For each entry in the page, we might need to release it. */
df29f43e 571 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 572 release_pte(ptepage[i]);
bff672e6 573 /* Now we can free the page of PTEs */
d7e28ffe 574 free_page((long)ptepage);
e1e72965 575 /* And zero out the PGD entry so we never release it twice. */
df29f43e 576 *spgd = __pgd(0);
d7e28ffe
RR
577 }
578}
acdd0b62 579#endif
2e04ef76
RR
580
581/*H:445
582 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
e1e72965 583 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
2e04ef76
RR
584 * It simply releases every PTE page from 0 up to the Guest's kernel address.
585 */
d7e28ffe
RR
586static void flush_user_mappings(struct lguest *lg, int idx)
587{
588 unsigned int i;
bff672e6 589 /* Release every pgd entry up to the kernel's address. */
47436aa4 590 for (i = 0; i < pgd_index(lg->kernel_address); i++)
90603d15 591 release_pgd(lg->pgdirs[idx].pgdir + i);
d7e28ffe
RR
592}
593
2e04ef76
RR
594/*H:440
595 * (v) Flushing (throwing away) page tables,
e1e72965
RR
596 *
597 * The Guest has a hypercall to throw away the page tables: it's used when a
2e04ef76
RR
598 * large number of mappings have been changed.
599 */
1713608f 600void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 601{
bff672e6 602 /* Drop the userspace part of the current page table. */
1713608f 603 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 604}
bff672e6 605/*:*/
d7e28ffe 606
47436aa4 607/* We walk down the guest page tables to get a guest-physical address */
1713608f 608unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
609{
610 pgd_t gpgd;
611 pte_t gpte;
acdd0b62
MZ
612#ifdef CONFIG_X86_PAE
613 pmd_t gpmd;
614#endif
47436aa4 615 /* First step: get the top-level Guest page table entry. */
382ac6b3 616 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4 617 /* Toplevel not present? We can't map it in. */
6afbdd05 618 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
382ac6b3 619 kill_guest(cpu, "Bad address %#lx", vaddr);
6afbdd05
RR
620 return -1UL;
621 }
47436aa4 622
acdd0b62
MZ
623#ifdef CONFIG_X86_PAE
624 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
625 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
626 kill_guest(cpu, "Bad address %#lx", vaddr);
92b4d8df
RR
627 gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
628#else
acdd0b62 629 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
92b4d8df 630#endif
47436aa4 631 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382ac6b3 632 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4
RR
633
634 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
635}
636
2e04ef76
RR
637/*
638 * We keep several page tables. This is a simple routine to find the page
bff672e6 639 * table (if any) corresponding to this top-level address the Guest has given
2e04ef76
RR
640 * us.
641 */
d7e28ffe
RR
642static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
643{
644 unsigned int i;
645 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
4357bd94 646 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
647 break;
648 return i;
649}
650
2e04ef76
RR
651/*H:435
652 * And this is us, creating the new page directory. If we really do
bff672e6 653 * allocate a new one (and so the kernel parts are not there), we set
2e04ef76
RR
654 * blank_pgdir.
655 */
1713608f 656static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 657 unsigned long gpgdir,
d7e28ffe
RR
658 int *blank_pgdir)
659{
660 unsigned int next;
acdd0b62
MZ
661#ifdef CONFIG_X86_PAE
662 pmd_t *pmd_table;
663#endif
d7e28ffe 664
2e04ef76
RR
665 /*
666 * We pick one entry at random to throw out. Choosing the Least
667 * Recently Used might be better, but this is easy.
668 */
382ac6b3 669 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
bff672e6 670 /* If it's never been allocated at all before, try now. */
382ac6b3
GOC
671 if (!cpu->lg->pgdirs[next].pgdir) {
672 cpu->lg->pgdirs[next].pgdir =
673 (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 674 /* If the allocation fails, just keep using the one we have */
382ac6b3 675 if (!cpu->lg->pgdirs[next].pgdir)
1713608f 676 next = cpu->cpu_pgd;
acdd0b62
MZ
677 else {
678#ifdef CONFIG_X86_PAE
2e04ef76
RR
679 /*
680 * In PAE mode, allocate a pmd page and populate the
681 * last pgd entry.
682 */
acdd0b62
MZ
683 pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
684 if (!pmd_table) {
685 free_page((long)cpu->lg->pgdirs[next].pgdir);
686 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
687 next = cpu->cpu_pgd;
688 } else {
689 set_pgd(cpu->lg->pgdirs[next].pgdir +
690 SWITCHER_PGD_INDEX,
691 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
2e04ef76
RR
692 /*
693 * This is a blank page, so there are no kernel
694 * mappings: caller must map the stack!
695 */
acdd0b62
MZ
696 *blank_pgdir = 1;
697 }
698#else
d7e28ffe 699 *blank_pgdir = 1;
acdd0b62
MZ
700#endif
701 }
d7e28ffe 702 }
bff672e6 703 /* Record which Guest toplevel this shadows. */
382ac6b3 704 cpu->lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe 705 /* Release all the non-kernel mappings. */
382ac6b3 706 flush_user_mappings(cpu->lg, next);
d7e28ffe
RR
707
708 return next;
709}
710
2e04ef76
RR
711/*H:430
712 * (iv) Switching page tables
bff672e6 713 *
90603d15 714 * Now we've seen all the page table setting and manipulation, let's see
e1e72965 715 * what happens when the Guest changes page tables (ie. changes the top-level
2e04ef76
RR
716 * pgdir). This occurs on almost every context switch.
717 */
4665ac8e 718void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
d7e28ffe
RR
719{
720 int newpgdir, repin = 0;
721
bff672e6 722 /* Look to see if we have this one already. */
382ac6b3 723 newpgdir = find_pgdir(cpu->lg, pgtable);
2e04ef76
RR
724 /*
725 * If not, we allocate or mug an existing one: if it's a fresh one,
726 * repin gets set to 1.
727 */
382ac6b3 728 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
1713608f 729 newpgdir = new_pgdir(cpu, pgtable, &repin);
bff672e6 730 /* Change the current pgd index to the new one. */
1713608f 731 cpu->cpu_pgd = newpgdir;
bff672e6 732 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe 733 if (repin)
4665ac8e 734 pin_stack_pages(cpu);
d7e28ffe
RR
735}
736
2e04ef76
RR
737/*H:470
738 * Finally, a routine which throws away everything: all PGD entries in all
e1e72965 739 * the shadow page tables, including the Guest's kernel mappings. This is used
2e04ef76
RR
740 * when we destroy the Guest.
741 */
d7e28ffe
RR
742static void release_all_pagetables(struct lguest *lg)
743{
744 unsigned int i, j;
745
bff672e6 746 /* Every shadow pagetable this Guest has */
d7e28ffe 747 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
acdd0b62
MZ
748 if (lg->pgdirs[i].pgdir) {
749#ifdef CONFIG_X86_PAE
750 pgd_t *spgd;
751 pmd_t *pmdpage;
752 unsigned int k;
753
754 /* Get the last pmd page. */
755 spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
756 pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
757
2e04ef76
RR
758 /*
759 * And release the pmd entries of that pmd page,
760 * except for the switcher pmd.
761 */
acdd0b62
MZ
762 for (k = 0; k < SWITCHER_PMD_INDEX; k++)
763 release_pmd(&pmdpage[k]);
764#endif
bff672e6 765 /* Every PGD entry except the Switcher at the top */
d7e28ffe 766 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
90603d15 767 release_pgd(lg->pgdirs[i].pgdir + j);
acdd0b62 768 }
d7e28ffe
RR
769}
770
2e04ef76
RR
771/*
772 * We also throw away everything when a Guest tells us it's changed a kernel
bff672e6 773 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965 774 * throw them all away. This traps the Guest in amber for a while as
2e04ef76
RR
775 * everything faults back in, but it's rare.
776 */
4665ac8e 777void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 778{
4665ac8e 779 release_all_pagetables(cpu->lg);
bff672e6 780 /* We need the Guest kernel stack mapped again. */
4665ac8e 781 pin_stack_pages(cpu);
d7e28ffe 782}
e1e72965 783/*:*/
2e04ef76
RR
784
785/*M:009
786 * Since we throw away all mappings when a kernel mapping changes, our
e1e72965
RR
787 * performance sucks for guests using highmem. In fact, a guest with
788 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
789 * usually slower than a Guest with less memory.
790 *
791 * This, of course, cannot be fixed. It would take some kind of... well, I
2e04ef76
RR
792 * don't know, but the term "puissant code-fu" comes to mind.
793:*/
d7e28ffe 794
2e04ef76
RR
795/*H:420
796 * This is the routine which actually sets the page table entry for then
bff672e6
RR
797 * "idx"'th shadow page table.
798 *
799 * Normally, we can just throw out the old entry and replace it with 0: if they
800 * use it demand_page() will put the new entry in. We need to do this anyway:
801 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
802 * is read from, and _PAGE_DIRTY when it's written to.
803 *
804 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
805 * these bits on PTEs immediately anyway. This is done to save the CPU from
806 * having to update them, but it helps us the same way: if they set
807 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
808 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
809 */
382ac6b3 810static void do_set_pte(struct lg_cpu *cpu, int idx,
df29f43e 811 unsigned long vaddr, pte_t gpte)
d7e28ffe 812{
e1e72965 813 /* Look up the matching shadow page directory entry. */
382ac6b3 814 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
acdd0b62
MZ
815#ifdef CONFIG_X86_PAE
816 pmd_t *spmd;
817#endif
bff672e6
RR
818
819 /* If the top level isn't present, there's no entry to update. */
df29f43e 820 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
acdd0b62
MZ
821#ifdef CONFIG_X86_PAE
822 spmd = spmd_addr(cpu, *spgd, vaddr);
823 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
824#endif
2e04ef76 825 /* Otherwise, start by releasing the existing entry. */
acdd0b62
MZ
826 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
827 release_pte(*spte);
828
2e04ef76
RR
829 /*
830 * If they're setting this entry as dirty or accessed,
831 * we might as well put that entry they've given us in
832 * now. This shaves 10% off a copy-on-write
833 * micro-benchmark.
834 */
acdd0b62
MZ
835 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
836 check_gpte(cpu, gpte);
4c1ea3dd
RR
837 set_pte(spte,
838 gpte_to_spte(cpu, gpte,
acdd0b62 839 pte_flags(gpte) & _PAGE_DIRTY));
2e04ef76
RR
840 } else {
841 /*
842 * Otherwise kill it and we can demand_page()
843 * it in later.
844 */
4c1ea3dd 845 set_pte(spte, __pte(0));
2e04ef76 846 }
acdd0b62
MZ
847#ifdef CONFIG_X86_PAE
848 }
849#endif
d7e28ffe
RR
850 }
851}
852
2e04ef76
RR
853/*H:410
854 * Updating a PTE entry is a little trickier.
bff672e6
RR
855 *
856 * We keep track of several different page tables (the Guest uses one for each
857 * process, so it makes sense to cache at least a few). Each of these have
858 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
859 * all processes. So when the page table above that address changes, we update
860 * all the page tables, not just the current one. This is rare.
861 *
a6bd8e13 862 * The benefit is that when we have to track a new page table, we can keep all
2e04ef76
RR
863 * the kernel mappings. This speeds up context switch immensely.
864 */
382ac6b3 865void guest_set_pte(struct lg_cpu *cpu,
ee3db0f2 866 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 867{
2e04ef76
RR
868 /*
869 * Kernel mappings must be changed on all top levels. Slow, but doesn't
870 * happen often.
871 */
382ac6b3 872 if (vaddr >= cpu->lg->kernel_address) {
d7e28ffe 873 unsigned int i;
382ac6b3
GOC
874 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
875 if (cpu->lg->pgdirs[i].pgdir)
876 do_set_pte(cpu, i, vaddr, gpte);
d7e28ffe 877 } else {
bff672e6 878 /* Is this page table one we have a shadow for? */
382ac6b3
GOC
879 int pgdir = find_pgdir(cpu->lg, gpgdir);
880 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
bff672e6 881 /* If so, do the update. */
382ac6b3 882 do_set_pte(cpu, pgdir, vaddr, gpte);
d7e28ffe
RR
883 }
884}
885
bff672e6 886/*H:400
e1e72965 887 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
888 *
889 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
890 * with the other side of page tables while we're here: what happens when the
891 * Guest asks for a page table to be updated?
892 *
893 * We already saw that demand_page() will fill in the shadow page tables when
894 * needed, so we can simply remove shadow page table entries whenever the Guest
895 * tells us they've changed. When the Guest tries to use the new entry it will
896 * fault and demand_page() will fix it up.
897 *
fd589a8f 898 * So with that in mind here's our code to update a (top-level) PGD entry:
bff672e6 899 */
ebe0ba84 900void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
901{
902 int pgdir;
903
904 if (idx >= SWITCHER_PGD_INDEX)
905 return;
906
bff672e6 907 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 908 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 909 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 910 /* ... throw it away. */
90603d15 911 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
d7e28ffe 912}
a91d74a3 913
acdd0b62 914#ifdef CONFIG_X86_PAE
a91d74a3 915/* For setting a mid-level, we just throw everything away. It's easy. */
acdd0b62
MZ
916void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
917{
918 guest_pagetable_clear_all(&lg->cpus[0]);
919}
920#endif
d7e28ffe 921
a91d74a3
RR
922/*H:505
923 * To get through boot, we construct simple identity page mappings (which
2e04ef76 924 * set virtual == physical) and linear mappings which will get the Guest far
a91d74a3
RR
925 * enough into the boot to create its own. The linear mapping means we
926 * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
927 * as you'll see.
58a24566
MZ
928 *
929 * We lay them out of the way, just below the initrd (which is why we need to
2e04ef76
RR
930 * know its size here).
931 */
58a24566
MZ
932static unsigned long setup_pagetables(struct lguest *lg,
933 unsigned long mem,
934 unsigned long initrd_size)
935{
936 pgd_t __user *pgdir;
937 pte_t __user *linear;
58a24566 938 unsigned long mem_base = (unsigned long)lg->mem_base;
acdd0b62
MZ
939 unsigned int mapped_pages, i, linear_pages;
940#ifdef CONFIG_X86_PAE
941 pmd_t __user *pmds;
942 unsigned int j;
943 pgd_t pgd;
944 pmd_t pmd;
945#else
946 unsigned int phys_linear;
947#endif
58a24566 948
2e04ef76
RR
949 /*
950 * We have mapped_pages frames to map, so we need linear_pages page
951 * tables to map them.
952 */
58a24566
MZ
953 mapped_pages = mem / PAGE_SIZE;
954 linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
955
956 /* We put the toplevel page directory page at the top of memory. */
957 pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
958
959 /* Now we use the next linear_pages pages as pte pages */
960 linear = (void *)pgdir - linear_pages * PAGE_SIZE;
961
acdd0b62 962#ifdef CONFIG_X86_PAE
a91d74a3
RR
963 /*
964 * And the single mid page goes below that. We only use one, but
965 * that's enough to map 1G, which definitely gets us through boot.
966 */
acdd0b62
MZ
967 pmds = (void *)linear - PAGE_SIZE;
968#endif
2e04ef76
RR
969 /*
970 * Linear mapping is easy: put every page's address into the
971 * mapping in order.
972 */
58a24566
MZ
973 for (i = 0; i < mapped_pages; i++) {
974 pte_t pte;
975 pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
976 if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
977 return -EFAULT;
978 }
979
a91d74a3 980#ifdef CONFIG_X86_PAE
2e04ef76 981 /*
a91d74a3
RR
982 * Make the Guest PMD entries point to the corresponding place in the
983 * linear mapping (up to one page worth of PMD).
2e04ef76 984 */
92b4d8df 985 for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
acdd0b62 986 i += PTRS_PER_PTE, j++) {
4c1ea3dd
RR
987 pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
988 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
acdd0b62
MZ
989
990 if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
991 return -EFAULT;
992 }
993
a91d74a3 994 /* One PGD entry, pointing to that PMD page. */
4c1ea3dd 995 pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
a91d74a3 996 /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
acdd0b62
MZ
997 if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
998 return -EFAULT;
a91d74a3 999 /*
fb100d78 1000 * And the other PGD entry to make the linear mapping at PAGE_OFFSET
a91d74a3 1001 */
fb100d78 1002 if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
acdd0b62
MZ
1003 return -EFAULT;
1004#else
a91d74a3
RR
1005 /*
1006 * The top level points to the linear page table pages above.
1007 * We setup the identity and linear mappings here.
1008 */
58a24566
MZ
1009 phys_linear = (unsigned long)linear - mem_base;
1010 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1011 pgd_t pgd;
a91d74a3
RR
1012 /*
1013 * Create a PGD entry which points to the right part of the
1014 * linear PTE pages.
1015 */
58a24566
MZ
1016 pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1017 (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1018
a91d74a3
RR
1019 /*
1020 * Copy it into the PGD page at 0 and PAGE_OFFSET.
1021 */
58a24566
MZ
1022 if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1023 || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1024 + i / PTRS_PER_PTE],
1025 &pgd, sizeof(pgd)))
1026 return -EFAULT;
1027 }
acdd0b62 1028#endif
58a24566 1029
2e04ef76 1030 /*
a91d74a3
RR
1031 * We return the top level (guest-physical) address: we remember where
1032 * this is to write it into lguest_data when the Guest initializes.
2e04ef76 1033 */
58a24566
MZ
1034 return (unsigned long)pgdir - mem_base;
1035}
1036
2e04ef76
RR
1037/*H:500
1038 * (vii) Setting up the page tables initially.
bff672e6
RR
1039 *
1040 * When a Guest is first created, the Launcher tells us where the toplevel of
2e04ef76
RR
1041 * its first page table is. We set some things up here:
1042 */
58a24566 1043int init_guest_pagetable(struct lguest *lg)
d7e28ffe 1044{
58a24566
MZ
1045 u64 mem;
1046 u32 initrd_size;
1047 struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
acdd0b62
MZ
1048#ifdef CONFIG_X86_PAE
1049 pgd_t *pgd;
1050 pmd_t *pmd_table;
1051#endif
2e04ef76
RR
1052 /*
1053 * Get the Guest memory size and the ramdisk size from the boot header
1054 * located at lg->mem_base (Guest address 0).
1055 */
58a24566
MZ
1056 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1057 || get_user(initrd_size, &boot->hdr.ramdisk_size))
1058 return -EFAULT;
1059
2e04ef76
RR
1060 /*
1061 * We start on the first shadow page table, and give it a blank PGD
1062 * page.
1063 */
58a24566
MZ
1064 lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1065 if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1066 return lg->pgdirs[0].gpgdir;
1713608f
GOC
1067 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1068 if (!lg->pgdirs[0].pgdir)
d7e28ffe 1069 return -ENOMEM;
a91d74a3 1070
acdd0b62 1071#ifdef CONFIG_X86_PAE
a91d74a3 1072 /* For PAE, we also create the initial mid-level. */
acdd0b62
MZ
1073 pgd = lg->pgdirs[0].pgdir;
1074 pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1075 if (!pmd_table)
1076 return -ENOMEM;
1077
1078 set_pgd(pgd + SWITCHER_PGD_INDEX,
1079 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
1080#endif
a91d74a3
RR
1081
1082 /* This is the current page table. */
1713608f 1083 lg->cpus[0].cpu_pgd = 0;
d7e28ffe
RR
1084 return 0;
1085}
1086
a91d74a3 1087/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
382ac6b3 1088void page_table_guest_data_init(struct lg_cpu *cpu)
47436aa4
RR
1089{
1090 /* We get the kernel address: above this is all kernel memory. */
382ac6b3 1091 if (get_user(cpu->lg->kernel_address,
acdd0b62 1092 &cpu->lg->lguest_data->kernel_address)
2e04ef76
RR
1093 /*
1094 * We tell the Guest that it can't use the top 2 or 4 MB
1095 * of virtual addresses used by the Switcher.
1096 */
acdd0b62
MZ
1097 || put_user(RESERVE_MEM * 1024 * 1024,
1098 &cpu->lg->lguest_data->reserve_mem)
1099 || put_user(cpu->lg->pgdirs[0].gpgdir,
1100 &cpu->lg->lguest_data->pgdir))
382ac6b3 1101 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
47436aa4 1102
2e04ef76
RR
1103 /*
1104 * In flush_user_mappings() we loop from 0 to
47436aa4 1105 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
2e04ef76
RR
1106 * Switcher mappings, so check that now.
1107 */
acdd0b62
MZ
1108#ifdef CONFIG_X86_PAE
1109 if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1110 pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1111#else
382ac6b3 1112 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
acdd0b62 1113#endif
382ac6b3
GOC
1114 kill_guest(cpu, "bad kernel address %#lx",
1115 cpu->lg->kernel_address);
47436aa4
RR
1116}
1117
bff672e6 1118/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
1119void free_guest_pagetable(struct lguest *lg)
1120{
1121 unsigned int i;
1122
bff672e6 1123 /* Throw away all page table pages. */
d7e28ffe 1124 release_all_pagetables(lg);
bff672e6 1125 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
1126 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1127 free_page((long)lg->pgdirs[i].pgdir);
1128}
1129
2e04ef76
RR
1130/*H:480
1131 * (vi) Mapping the Switcher when the Guest is about to run.
bff672e6 1132 *
e1e72965 1133 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 1134 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965 1135 * for each CPU already set up, we just need to hook them in now we know which
2e04ef76
RR
1136 * Guest is about to run on this CPU.
1137 */
0c78441c 1138void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 1139{
df29f43e 1140 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
df29f43e 1141 pte_t regs_pte;
d7e28ffe 1142
acdd0b62
MZ
1143#ifdef CONFIG_X86_PAE
1144 pmd_t switcher_pmd;
1145 pmd_t *pmd_table;
1146
4c1ea3dd
RR
1147 switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1148 PAGE_KERNEL_EXEC);
acdd0b62 1149
a91d74a3
RR
1150 /* Figure out where the pmd page is, by reading the PGD, and converting
1151 * it to a virtual address. */
acdd0b62
MZ
1152 pmd_table = __va(pgd_pfn(cpu->lg->
1153 pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1154 << PAGE_SHIFT);
a91d74a3 1155 /* Now write it into the shadow page table. */
4c1ea3dd 1156 set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
acdd0b62
MZ
1157#else
1158 pgd_t switcher_pgd;
1159
2e04ef76
RR
1160 /*
1161 * Make the last PGD entry for this Guest point to the Switcher's PTE
1162 * page for this CPU (with appropriate flags).
1163 */
ed1dc778 1164 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
df29f43e 1165
1713608f 1166 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
d7e28ffe 1167
acdd0b62 1168#endif
2e04ef76
RR
1169 /*
1170 * We also change the Switcher PTE page. When we're running the Guest,
bff672e6
RR
1171 * we want the Guest's "regs" page to appear where the first Switcher
1172 * page for this CPU is. This is an optimization: when the Switcher
1173 * saves the Guest registers, it saves them into the first page of this
1174 * CPU's "struct lguest_pages": if we make sure the Guest's register
1175 * page is already mapped there, we don't have to copy them out
2e04ef76
RR
1176 * again.
1177 */
4c1ea3dd
RR
1178 regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1179 set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
d7e28ffe 1180}
bff672e6 1181/*:*/
d7e28ffe
RR
1182
1183static void free_switcher_pte_pages(void)
1184{
1185 unsigned int i;
1186
1187 for_each_possible_cpu(i)
1188 free_page((long)switcher_pte_page(i));
1189}
1190
2e04ef76
RR
1191/*H:520
1192 * Setting up the Switcher PTE page for given CPU is fairly easy, given
bff672e6
RR
1193 * the CPU number and the "struct page"s for the Switcher code itself.
1194 *
2e04ef76
RR
1195 * Currently the Switcher is less than a page long, so "pages" is always 1.
1196 */
d7e28ffe
RR
1197static __init void populate_switcher_pte_page(unsigned int cpu,
1198 struct page *switcher_page[],
1199 unsigned int pages)
1200{
1201 unsigned int i;
df29f43e 1202 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 1203
bff672e6 1204 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 1205 for (i = 0; i < pages; i++) {
4c1ea3dd 1206 set_pte(&pte[i], mk_pte(switcher_page[i],
90603d15 1207 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe
RR
1208 }
1209
bff672e6 1210 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
1211 i = pages + cpu*2;
1212
bff672e6 1213 /* First page (Guest registers) is writable from the Guest */
4c1ea3dd 1214 set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
90603d15 1215 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
df29f43e 1216
2e04ef76
RR
1217 /*
1218 * The second page contains the "struct lguest_ro_state", and is
1219 * read-only.
1220 */
4c1ea3dd 1221 set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
90603d15 1222 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe
RR
1223}
1224
2e04ef76
RR
1225/*
1226 * We've made it through the page table code. Perhaps our tired brains are
e1e72965
RR
1227 * still processing the details, or perhaps we're simply glad it's over.
1228 *
a6bd8e13
RR
1229 * If nothing else, note that all this complexity in juggling shadow page tables
1230 * in sync with the Guest's page tables is for one reason: for most Guests this
1231 * page table dance determines how bad performance will be. This is why Xen
1232 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1233 * have implemented shadow page table support directly into hardware.
e1e72965 1234 *
2e04ef76
RR
1235 * There is just one file remaining in the Host.
1236 */
e1e72965 1237
2e04ef76
RR
1238/*H:510
1239 * At boot or module load time, init_pagetables() allocates and populates
1240 * the Switcher PTE page for each CPU.
1241 */
d7e28ffe
RR
1242__init int init_pagetables(struct page **switcher_page, unsigned int pages)
1243{
1244 unsigned int i;
1245
1246 for_each_possible_cpu(i) {
df29f43e 1247 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
1248 if (!switcher_pte_page(i)) {
1249 free_switcher_pte_pages();
1250 return -ENOMEM;
1251 }
1252 populate_switcher_pte_page(i, switcher_page, pages);
1253 }
1254 return 0;
1255}
bff672e6 1256/*:*/
d7e28ffe 1257
bff672e6 1258/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
1259void free_pagetables(void)
1260{
1261 free_switcher_pte_pages();
1262}