]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/lightnvm/pblk-rb.c
lightnvm: pblk: use vmalloc for GC data buffer
[mirror_ubuntu-artful-kernel.git] / drivers / lightnvm / pblk-rb.c
CommitLineData
a4bd217b
JG
1/*
2 * Copyright (C) 2016 CNEX Labs
3 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
4 *
5 * Based upon the circular ringbuffer.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * pblk-rb.c - pblk's write buffer
17 */
18
19#include <linux/circ_buf.h>
20
21#include "pblk.h"
22
23static DECLARE_RWSEM(pblk_rb_lock);
24
25void pblk_rb_data_free(struct pblk_rb *rb)
26{
27 struct pblk_rb_pages *p, *t;
28
29 down_write(&pblk_rb_lock);
30 list_for_each_entry_safe(p, t, &rb->pages, list) {
31 free_pages((unsigned long)page_address(p->pages), p->order);
32 list_del(&p->list);
33 kfree(p);
34 }
35 up_write(&pblk_rb_lock);
36}
37
38/*
39 * Initialize ring buffer. The data and metadata buffers must be previously
40 * allocated and their size must be a power of two
41 * (Documentation/circular-buffers.txt)
42 */
43int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
44 unsigned int power_size, unsigned int power_seg_sz)
45{
46 struct pblk *pblk = container_of(rb, struct pblk, rwb);
47 unsigned int init_entry = 0;
48 unsigned int alloc_order = power_size;
49 unsigned int max_order = MAX_ORDER - 1;
50 unsigned int order, iter;
51
52 down_write(&pblk_rb_lock);
53 rb->entries = rb_entry_base;
54 rb->seg_size = (1 << power_seg_sz);
55 rb->nr_entries = (1 << power_size);
56 rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
57 rb->sync_point = EMPTY_ENTRY;
58
59 spin_lock_init(&rb->w_lock);
60 spin_lock_init(&rb->s_lock);
61
62 INIT_LIST_HEAD(&rb->pages);
63
64 if (alloc_order >= max_order) {
65 order = max_order;
66 iter = (1 << (alloc_order - max_order));
67 } else {
68 order = alloc_order;
69 iter = 1;
70 }
71
72 do {
73 struct pblk_rb_entry *entry;
74 struct pblk_rb_pages *page_set;
75 void *kaddr;
76 unsigned long set_size;
77 int i;
78
79 page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
80 if (!page_set) {
81 up_write(&pblk_rb_lock);
82 return -ENOMEM;
83 }
84
85 page_set->order = order;
86 page_set->pages = alloc_pages(GFP_KERNEL, order);
87 if (!page_set->pages) {
88 kfree(page_set);
89 pblk_rb_data_free(rb);
90 up_write(&pblk_rb_lock);
91 return -ENOMEM;
92 }
93 kaddr = page_address(page_set->pages);
94
95 entry = &rb->entries[init_entry];
96 entry->data = kaddr;
97 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
98 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
99
100 set_size = (1 << order);
101 for (i = 1; i < set_size; i++) {
102 entry = &rb->entries[init_entry];
103 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104 entry->data = kaddr + (i * rb->seg_size);
105 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106 bio_list_init(&entry->w_ctx.bios);
107 }
108
109 list_add_tail(&page_set->list, &rb->pages);
110 iter--;
111 } while (iter > 0);
112 up_write(&pblk_rb_lock);
113
114#ifdef CONFIG_NVM_DEBUG
115 atomic_set(&rb->inflight_sync_point, 0);
116#endif
117
118 /*
119 * Initialize rate-limiter, which controls access to the write buffer
120 * but user and GC I/O
121 */
122 pblk_rl_init(&pblk->rl, rb->nr_entries);
123
124 return 0;
125}
126
127/*
128 * pblk_rb_calculate_size -- calculate the size of the write buffer
129 */
130unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
131{
132 /* Alloc a write buffer that can at least fit 128 entries */
133 return (1 << max(get_count_order(nr_entries), 7));
134}
135
136void *pblk_rb_entries_ref(struct pblk_rb *rb)
137{
138 return rb->entries;
139}
140
141static void clean_wctx(struct pblk_w_ctx *w_ctx)
142{
143 int flags;
144
145try:
146 flags = READ_ONCE(w_ctx->flags);
147 if (!(flags & PBLK_SUBMITTED_ENTRY))
148 goto try;
149
150 /* Release flags on context. Protect from writes and reads */
151 smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
152 pblk_ppa_set_empty(&w_ctx->ppa);
153}
154
155#define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
156#define pblk_rb_ring_space(rb, head, tail, size) \
157 (CIRC_SPACE(head, tail, size))
158
159/*
160 * Buffer space is calculated with respect to the back pointer signaling
161 * synchronized entries to the media.
162 */
163static unsigned int pblk_rb_space(struct pblk_rb *rb)
164{
165 unsigned int mem = READ_ONCE(rb->mem);
166 unsigned int sync = READ_ONCE(rb->sync);
167
168 return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
169}
170
171/*
172 * Buffer count is calculated with respect to the submission entry signaling the
173 * entries that are available to send to the media
174 */
175unsigned int pblk_rb_read_count(struct pblk_rb *rb)
176{
177 unsigned int mem = READ_ONCE(rb->mem);
178 unsigned int subm = READ_ONCE(rb->subm);
179
180 return pblk_rb_ring_count(mem, subm, rb->nr_entries);
181}
182
183unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
184{
185 unsigned int subm;
186
187 subm = READ_ONCE(rb->subm);
188 /* Commit read means updating submission pointer */
189 smp_store_release(&rb->subm,
190 (subm + nr_entries) & (rb->nr_entries - 1));
191
192 return subm;
193}
194
195static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int *l2p_upd,
196 unsigned int to_update)
197{
198 struct pblk *pblk = container_of(rb, struct pblk, rwb);
199 struct pblk_line *line;
200 struct pblk_rb_entry *entry;
201 struct pblk_w_ctx *w_ctx;
b20ba1bc 202 unsigned int user_io = 0, gc_io = 0;
a4bd217b 203 unsigned int i;
b20ba1bc 204 int flags;
a4bd217b
JG
205
206 for (i = 0; i < to_update; i++) {
207 entry = &rb->entries[*l2p_upd];
208 w_ctx = &entry->w_ctx;
209
b20ba1bc
JG
210 flags = READ_ONCE(entry->w_ctx.flags);
211 if (flags & PBLK_IOTYPE_USER)
212 user_io++;
213 else if (flags & PBLK_IOTYPE_GC)
214 gc_io++;
215 else
216 WARN(1, "pblk: unknown IO type\n");
217
a4bd217b
JG
218 pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
219 entry->cacheline);
220
221 line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)];
222 kref_put(&line->ref, pblk_line_put);
223 clean_wctx(w_ctx);
224 *l2p_upd = (*l2p_upd + 1) & (rb->nr_entries - 1);
225 }
226
b20ba1bc
JG
227 pblk_rl_out(&pblk->rl, user_io, gc_io);
228
a4bd217b
JG
229 return 0;
230}
231
232/*
233 * When we move the l2p_update pointer, we update the l2p table - lookups will
234 * point to the physical address instead of to the cacheline in the write buffer
235 * from this moment on.
236 */
237static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
238 unsigned int mem, unsigned int sync)
239{
240 unsigned int space, count;
241 int ret = 0;
242
243 lockdep_assert_held(&rb->w_lock);
244
245 /* Update l2p only as buffer entries are being overwritten */
246 space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
247 if (space > nr_entries)
248 goto out;
249
250 count = nr_entries - space;
251 /* l2p_update used exclusively under rb->w_lock */
252 ret = __pblk_rb_update_l2p(rb, &rb->l2p_update, count);
253
254out:
255 return ret;
256}
257
258/*
259 * Update the l2p entry for all sectors stored on the write buffer. This means
260 * that all future lookups to the l2p table will point to a device address, not
261 * to the cacheline in the write buffer.
262 */
263void pblk_rb_sync_l2p(struct pblk_rb *rb)
264{
265 unsigned int sync;
266 unsigned int to_update;
267
268 spin_lock(&rb->w_lock);
269
270 /* Protect from reads and writes */
271 sync = smp_load_acquire(&rb->sync);
272
273 to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
274 __pblk_rb_update_l2p(rb, &rb->l2p_update, to_update);
275
276 spin_unlock(&rb->w_lock);
277}
278
279/*
280 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
281 * Typically, 4KB data chunks coming from a bio will be copied to the ring
282 * buffer, thus the write will fail if not all incoming data can be copied.
283 *
284 */
285static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
286 struct pblk_w_ctx w_ctx,
287 struct pblk_rb_entry *entry)
288{
289 memcpy(entry->data, data, rb->seg_size);
290
291 entry->w_ctx.lba = w_ctx.lba;
292 entry->w_ctx.ppa = w_ctx.ppa;
293}
294
295void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
296 struct pblk_w_ctx w_ctx, unsigned int ring_pos)
297{
298 struct pblk *pblk = container_of(rb, struct pblk, rwb);
299 struct pblk_rb_entry *entry;
300 int flags;
301
302 entry = &rb->entries[ring_pos];
303 flags = READ_ONCE(entry->w_ctx.flags);
304#ifdef CONFIG_NVM_DEBUG
305 /* Caller must guarantee that the entry is free */
306 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
307#endif
308
309 __pblk_rb_write_entry(rb, data, w_ctx, entry);
310
311 pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
312 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
313
314 /* Release flags on write context. Protect from writes */
315 smp_store_release(&entry->w_ctx.flags, flags);
316}
317
318void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
319 struct pblk_w_ctx w_ctx, struct pblk_line *gc_line,
320 unsigned int ring_pos)
321{
322 struct pblk *pblk = container_of(rb, struct pblk, rwb);
323 struct pblk_rb_entry *entry;
324 int flags;
325
326 entry = &rb->entries[ring_pos];
327 flags = READ_ONCE(entry->w_ctx.flags);
328#ifdef CONFIG_NVM_DEBUG
329 /* Caller must guarantee that the entry is free */
330 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
331#endif
332
333 __pblk_rb_write_entry(rb, data, w_ctx, entry);
334
335 if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, gc_line))
336 entry->w_ctx.lba = ADDR_EMPTY;
337
338 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
339
340 /* Release flags on write context. Protect from writes */
341 smp_store_release(&entry->w_ctx.flags, flags);
342}
343
344static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio,
345 unsigned int pos)
346{
347 struct pblk_rb_entry *entry;
348 unsigned int subm, sync_point;
349 int flags;
350
351 subm = READ_ONCE(rb->subm);
352
353#ifdef CONFIG_NVM_DEBUG
354 atomic_inc(&rb->inflight_sync_point);
355#endif
356
357 if (pos == subm)
358 return 0;
359
360 sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
361 entry = &rb->entries[sync_point];
362
363 flags = READ_ONCE(entry->w_ctx.flags);
364 flags |= PBLK_FLUSH_ENTRY;
365
366 /* Release flags on context. Protect from writes */
367 smp_store_release(&entry->w_ctx.flags, flags);
368
369 /* Protect syncs */
370 smp_store_release(&rb->sync_point, sync_point);
371
588726d3
JG
372 if (!bio)
373 return 0;
374
a4bd217b
JG
375 spin_lock_irq(&rb->s_lock);
376 bio_list_add(&entry->w_ctx.bios, bio);
377 spin_unlock_irq(&rb->s_lock);
378
379 return 1;
380}
381
382static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
383 unsigned int *pos)
384{
385 unsigned int mem;
386 unsigned int sync;
387
388 sync = READ_ONCE(rb->sync);
389 mem = READ_ONCE(rb->mem);
390
391 if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
392 return 0;
393
394 if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
395 return 0;
396
397 *pos = mem;
398
399 return 1;
400}
401
402static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
403 unsigned int *pos)
404{
405 if (!__pblk_rb_may_write(rb, nr_entries, pos))
406 return 0;
407
408 /* Protect from read count */
409 smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
410 return 1;
411}
412
588726d3
JG
413void pblk_rb_flush(struct pblk_rb *rb)
414{
415 struct pblk *pblk = container_of(rb, struct pblk, rwb);
416 unsigned int mem = READ_ONCE(rb->mem);
417
418 if (pblk_rb_sync_point_set(rb, NULL, mem))
419 return;
420
421 pblk_write_should_kick(pblk);
422}
423
a4bd217b
JG
424static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
425 unsigned int *pos, struct bio *bio,
426 int *io_ret)
427{
428 unsigned int mem;
429
430 if (!__pblk_rb_may_write(rb, nr_entries, pos))
431 return 0;
432
433 mem = (*pos + nr_entries) & (rb->nr_entries - 1);
434 *io_ret = NVM_IO_DONE;
435
436 if (bio->bi_opf & REQ_PREFLUSH) {
437 struct pblk *pblk = container_of(rb, struct pblk, rwb);
438
439#ifdef CONFIG_NVM_DEBUG
440 atomic_long_inc(&pblk->nr_flush);
441#endif
442 if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem))
443 *io_ret = NVM_IO_OK;
444 }
445
446 /* Protect from read count */
447 smp_store_release(&rb->mem, mem);
448 return 1;
449}
450
451/*
452 * Atomically check that (i) there is space on the write buffer for the
453 * incoming I/O, and (ii) the current I/O type has enough budget in the write
454 * buffer (rate-limiter).
455 */
456int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
457 unsigned int nr_entries, unsigned int *pos)
458{
459 struct pblk *pblk = container_of(rb, struct pblk, rwb);
588726d3 460 int io_ret;
a4bd217b
JG
461
462 spin_lock(&rb->w_lock);
588726d3
JG
463 io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
464 if (io_ret) {
a4bd217b 465 spin_unlock(&rb->w_lock);
588726d3 466 return io_ret;
a4bd217b
JG
467 }
468
588726d3 469 if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
a4bd217b
JG
470 spin_unlock(&rb->w_lock);
471 return NVM_IO_REQUEUE;
472 }
473
474 pblk_rl_user_in(&pblk->rl, nr_entries);
475 spin_unlock(&rb->w_lock);
476
588726d3 477 return io_ret;
a4bd217b
JG
478}
479
480/*
481 * Look at pblk_rb_may_write_user comment
482 */
483int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
484 unsigned int *pos)
485{
486 struct pblk *pblk = container_of(rb, struct pblk, rwb);
487
488 spin_lock(&rb->w_lock);
489 if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
490 spin_unlock(&rb->w_lock);
491 return 0;
492 }
493
494 if (!pblk_rb_may_write(rb, nr_entries, pos)) {
495 spin_unlock(&rb->w_lock);
496 return 0;
497 }
498
499 pblk_rl_gc_in(&pblk->rl, nr_entries);
500 spin_unlock(&rb->w_lock);
501
502 return 1;
503}
504
505/*
506 * The caller of this function must ensure that the backpointer will not
507 * overwrite the entries passed on the list.
508 */
509unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
510 struct list_head *list,
511 unsigned int max)
512{
513 struct pblk_rb_entry *entry, *tentry;
514 struct page *page;
515 unsigned int read = 0;
516 int ret;
517
518 list_for_each_entry_safe(entry, tentry, list, index) {
519 if (read > max) {
520 pr_err("pblk: too many entries on list\n");
521 goto out;
522 }
523
524 page = virt_to_page(entry->data);
525 if (!page) {
526 pr_err("pblk: could not allocate write bio page\n");
527 goto out;
528 }
529
530 ret = bio_add_page(bio, page, rb->seg_size, 0);
531 if (ret != rb->seg_size) {
532 pr_err("pblk: could not add page to write bio\n");
533 goto out;
534 }
535
536 list_del(&entry->index);
537 read++;
538 }
539
540out:
541 return read;
542}
543
544/*
545 * Read available entries on rb and add them to the given bio. To avoid a memory
546 * copy, a page reference to the write buffer is used to be added to the bio.
547 *
548 * This function is used by the write thread to form the write bio that will
549 * persist data on the write buffer to the media.
550 */
d624f371
JG
551unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
552 struct bio *bio, unsigned int pos,
553 unsigned int nr_entries, unsigned int count)
a4bd217b
JG
554{
555 struct pblk *pblk = container_of(rb, struct pblk, rwb);
d624f371
JG
556 struct request_queue *q = pblk->dev->q;
557 struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
a4bd217b
JG
558 struct pblk_rb_entry *entry;
559 struct page *page;
d624f371 560 unsigned int pad = 0, to_read = nr_entries;
a4bd217b
JG
561 unsigned int i;
562 int flags;
a4bd217b
JG
563
564 if (count < nr_entries) {
565 pad = nr_entries - count;
566 to_read = count;
567 }
568
569 c_ctx->sentry = pos;
570 c_ctx->nr_valid = to_read;
571 c_ctx->nr_padded = pad;
572
573 for (i = 0; i < to_read; i++) {
574 entry = &rb->entries[pos];
575
576 /* A write has been allowed into the buffer, but data is still
577 * being copied to it. It is ok to busy wait.
578 */
579try:
580 flags = READ_ONCE(entry->w_ctx.flags);
10888129
JG
581 if (!(flags & PBLK_WRITTEN_DATA)) {
582 io_schedule();
a4bd217b 583 goto try;
10888129 584 }
a4bd217b 585
a4bd217b
JG
586 page = virt_to_page(entry->data);
587 if (!page) {
588 pr_err("pblk: could not allocate write bio page\n");
589 flags &= ~PBLK_WRITTEN_DATA;
590 flags |= PBLK_SUBMITTED_ENTRY;
591 /* Release flags on context. Protect from writes */
592 smp_store_release(&entry->w_ctx.flags, flags);
d624f371 593 return NVM_IO_ERR;
a4bd217b
JG
594 }
595
d624f371
JG
596 if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
597 rb->seg_size) {
a4bd217b
JG
598 pr_err("pblk: could not add page to write bio\n");
599 flags &= ~PBLK_WRITTEN_DATA;
600 flags |= PBLK_SUBMITTED_ENTRY;
601 /* Release flags on context. Protect from writes */
602 smp_store_release(&entry->w_ctx.flags, flags);
d624f371 603 return NVM_IO_ERR;
a4bd217b
JG
604 }
605
606 if (flags & PBLK_FLUSH_ENTRY) {
607 unsigned int sync_point;
608
609 sync_point = READ_ONCE(rb->sync_point);
610 if (sync_point == pos) {
611 /* Protect syncs */
612 smp_store_release(&rb->sync_point, EMPTY_ENTRY);
613 }
614
615 flags &= ~PBLK_FLUSH_ENTRY;
616#ifdef CONFIG_NVM_DEBUG
617 atomic_dec(&rb->inflight_sync_point);
618#endif
619 }
620
621 flags &= ~PBLK_WRITTEN_DATA;
622 flags |= PBLK_SUBMITTED_ENTRY;
623
624 /* Release flags on context. Protect from writes */
625 smp_store_release(&entry->w_ctx.flags, flags);
626
627 pos = (pos + 1) & (rb->nr_entries - 1);
628 }
629
d624f371
JG
630 if (pad) {
631 if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
632 pr_err("pblk: could not pad page in write bio\n");
633 return NVM_IO_ERR;
634 }
635 }
636
a4bd217b
JG
637#ifdef CONFIG_NVM_DEBUG
638 atomic_long_add(pad, &((struct pblk *)
639 (container_of(rb, struct pblk, rwb)))->padded_writes);
640#endif
d624f371
JG
641
642 return NVM_IO_OK;
a4bd217b
JG
643}
644
645/*
646 * Copy to bio only if the lba matches the one on the given cache entry.
647 * Otherwise, it means that the entry has been overwritten, and the bio should
648 * be directed to disk.
649 */
650int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
651 u64 pos, int bio_iter)
652{
653 struct pblk_rb_entry *entry;
654 struct pblk_w_ctx *w_ctx;
655 void *data;
656 int flags;
657 int ret = 1;
658
659 spin_lock(&rb->w_lock);
660
661#ifdef CONFIG_NVM_DEBUG
662 /* Caller must ensure that the access will not cause an overflow */
663 BUG_ON(pos >= rb->nr_entries);
664#endif
665 entry = &rb->entries[pos];
666 w_ctx = &entry->w_ctx;
667 flags = READ_ONCE(w_ctx->flags);
668
669 /* Check if the entry has been overwritten or is scheduled to be */
670 if (w_ctx->lba != lba || flags & PBLK_WRITABLE_ENTRY) {
671 ret = 0;
672 goto out;
673 }
674
675 /* Only advance the bio if it hasn't been advanced already. If advanced,
676 * this bio is at least a partial bio (i.e., it has partially been
677 * filled with data from the cache). If part of the data resides on the
678 * media, we will read later on
679 */
680 if (unlikely(!bio->bi_iter.bi_idx))
681 bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
682
683 data = bio_data(bio);
684 memcpy(data, entry->data, rb->seg_size);
685
686out:
687 spin_unlock(&rb->w_lock);
688 return ret;
689}
690
691struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
692{
693 unsigned int entry = pos & (rb->nr_entries - 1);
694
695 return &rb->entries[entry].w_ctx;
696}
697
698unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
699 __acquires(&rb->s_lock)
700{
701 if (flags)
702 spin_lock_irqsave(&rb->s_lock, *flags);
703 else
704 spin_lock_irq(&rb->s_lock);
705
706 return rb->sync;
707}
708
709void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
710 __releases(&rb->s_lock)
711{
712 lockdep_assert_held(&rb->s_lock);
713
714 if (flags)
715 spin_unlock_irqrestore(&rb->s_lock, *flags);
716 else
717 spin_unlock_irq(&rb->s_lock);
718}
719
720unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
721{
722 unsigned int sync;
723 unsigned int i;
724
725 lockdep_assert_held(&rb->s_lock);
726
727 sync = READ_ONCE(rb->sync);
728
729 for (i = 0; i < nr_entries; i++)
730 sync = (sync + 1) & (rb->nr_entries - 1);
731
732 /* Protect from counts */
733 smp_store_release(&rb->sync, sync);
734
735 return sync;
736}
737
738unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb)
739{
740 unsigned int subm, sync_point;
741 unsigned int count;
742
743 /* Protect syncs */
744 sync_point = smp_load_acquire(&rb->sync_point);
745 if (sync_point == EMPTY_ENTRY)
746 return 0;
747
748 subm = READ_ONCE(rb->subm);
749
750 /* The sync point itself counts as a sector to sync */
751 count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1;
752
753 return count;
754}
755
756/*
757 * Scan from the current position of the sync pointer to find the entry that
758 * corresponds to the given ppa. This is necessary since write requests can be
759 * completed out of order. The assumption is that the ppa is close to the sync
760 * pointer thus the search will not take long.
761 *
762 * The caller of this function must guarantee that the sync pointer will no
763 * reach the entry while it is using the metadata associated with it. With this
764 * assumption in mind, there is no need to take the sync lock.
765 */
766struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
767 struct ppa_addr *ppa)
768{
769 unsigned int sync, subm, count;
770 unsigned int i;
771
772 sync = READ_ONCE(rb->sync);
773 subm = READ_ONCE(rb->subm);
774 count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
775
776 for (i = 0; i < count; i++)
777 sync = (sync + 1) & (rb->nr_entries - 1);
778
779 return NULL;
780}
781
782int pblk_rb_tear_down_check(struct pblk_rb *rb)
783{
784 struct pblk_rb_entry *entry;
785 int i;
786 int ret = 0;
787
788 spin_lock(&rb->w_lock);
789 spin_lock_irq(&rb->s_lock);
790
791 if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
792 (rb->sync == rb->l2p_update) &&
793 (rb->sync_point == EMPTY_ENTRY)) {
794 goto out;
795 }
796
797 if (!rb->entries) {
798 ret = 1;
799 goto out;
800 }
801
802 for (i = 0; i < rb->nr_entries; i++) {
803 entry = &rb->entries[i];
804
805 if (!entry->data) {
806 ret = 1;
807 goto out;
808 }
809 }
810
811out:
812 spin_unlock(&rb->w_lock);
813 spin_unlock_irq(&rb->s_lock);
814
815 return ret;
816}
817
818unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
819{
820 return (pos & (rb->nr_entries - 1));
821}
822
823int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
824{
825 return (pos >= rb->nr_entries);
826}
827
828ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
829{
830 struct pblk *pblk = container_of(rb, struct pblk, rwb);
831 struct pblk_c_ctx *c;
832 ssize_t offset;
833 int queued_entries = 0;
834
835 spin_lock_irq(&rb->s_lock);
836 list_for_each_entry(c, &pblk->compl_list, list)
837 queued_entries++;
838 spin_unlock_irq(&rb->s_lock);
839
840 if (rb->sync_point != EMPTY_ENTRY)
841 offset = scnprintf(buf, PAGE_SIZE,
842 "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
843 rb->nr_entries,
844 rb->mem,
845 rb->subm,
846 rb->sync,
847 rb->l2p_update,
848#ifdef CONFIG_NVM_DEBUG
849 atomic_read(&rb->inflight_sync_point),
850#else
851 0,
852#endif
853 rb->sync_point,
854 pblk_rb_read_count(rb),
855 pblk_rb_space(rb),
856 pblk_rb_sync_point_count(rb),
857 queued_entries);
858 else
859 offset = scnprintf(buf, PAGE_SIZE,
860 "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
861 rb->nr_entries,
862 rb->mem,
863 rb->subm,
864 rb->sync,
865 rb->l2p_update,
866#ifdef CONFIG_NVM_DEBUG
867 atomic_read(&rb->inflight_sync_point),
868#else
869 0,
870#endif
871 pblk_rb_read_count(rb),
872 pblk_rb_space(rb),
873 pblk_rb_sync_point_count(rb),
874 queued_entries);
875
876 return offset;
877}