]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/lightnvm/rrpc.c
lightnvm: fix incorrect nr_free_blocks stat
[mirror_ubuntu-zesty-kernel.git] / drivers / lightnvm / rrpc.c
CommitLineData
ae1519ec
MB
1/*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17#include "rrpc.h"
18
19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20static DECLARE_RWSEM(rrpc_lock);
21
22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25#define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30{
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48}
49
50static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52{
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63}
64
65static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67{
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82}
83
84static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85{
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91}
92
93static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94{
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112}
113
114static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115{
116 return (rblk->next_page == rrpc->dev->pgs_per_blk);
117}
118
b7ceb7d5 119static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec
MB
120{
121 struct nvm_block *blk = rblk->parent;
122
123 return blk->id * rrpc->dev->pgs_per_blk;
124}
125
7386af27
MB
126static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 struct ppa_addr r)
128{
129 struct ppa_addr l;
130 int secs, pgs, blks, luns;
131 sector_t ppa = r.ppa;
132
133 l.ppa = 0;
134
135 div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 l.g.sec = secs;
137
138 sector_div(ppa, dev->sec_per_pg);
139 div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 l.g.pg = pgs;
141
142 sector_div(ppa, dev->pgs_per_blk);
143 div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 l.g.blk = blks;
145
146 sector_div(ppa, dev->blks_per_lun);
147 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 l.g.lun = luns;
149
150 sector_div(ppa, dev->luns_per_chnl);
151 l.g.ch = ppa;
152
153 return l;
154}
155
b7ceb7d5 156static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
ae1519ec
MB
157{
158 struct ppa_addr paddr;
159
160 paddr.ppa = addr;
7386af27 161 return linear_to_generic_addr(dev, paddr);
ae1519ec
MB
162}
163
164/* requires lun->lock taken */
165static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166{
167 struct rrpc *rrpc = rlun->rrpc;
168
169 BUG_ON(!rblk);
170
171 if (rlun->cur) {
172 spin_lock(&rlun->cur->lock);
173 WARN_ON(!block_is_full(rrpc, rlun->cur));
174 spin_unlock(&rlun->cur->lock);
175 }
176 rlun->cur = rblk;
177}
178
179static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 unsigned long flags)
181{
182 struct nvm_block *blk;
183 struct rrpc_block *rblk;
184
f27a6299 185 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
ae1519ec
MB
186 if (!blk)
187 return NULL;
188
189 rblk = &rlun->blocks[blk->id];
190 blk->priv = rblk;
191
192 bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193 rblk->next_page = 0;
194 rblk->nr_invalid_pages = 0;
195 atomic_set(&rblk->data_cmnt_size, 0);
196
197 return rblk;
198}
199
200static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201{
202 nvm_put_blk(rrpc->dev, rblk->parent);
203}
204
d3d1a438
WT
205static void rrpc_put_blks(struct rrpc *rrpc)
206{
207 struct rrpc_lun *rlun;
208 int i;
209
210 for (i = 0; i < rrpc->nr_luns; i++) {
211 rlun = &rrpc->luns[i];
212 if (rlun->cur)
213 rrpc_put_blk(rrpc, rlun->cur);
214 if (rlun->gc_cur)
215 rrpc_put_blk(rrpc, rlun->gc_cur);
216 }
217}
218
ae1519ec
MB
219static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
220{
221 int next = atomic_inc_return(&rrpc->next_lun);
222
223 return &rrpc->luns[next % rrpc->nr_luns];
224}
225
226static void rrpc_gc_kick(struct rrpc *rrpc)
227{
228 struct rrpc_lun *rlun;
229 unsigned int i;
230
231 for (i = 0; i < rrpc->nr_luns; i++) {
232 rlun = &rrpc->luns[i];
233 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
234 }
235}
236
237/*
238 * timed GC every interval.
239 */
240static void rrpc_gc_timer(unsigned long data)
241{
242 struct rrpc *rrpc = (struct rrpc *)data;
243
244 rrpc_gc_kick(rrpc);
245 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
246}
247
248static void rrpc_end_sync_bio(struct bio *bio)
249{
250 struct completion *waiting = bio->bi_private;
251
252 if (bio->bi_error)
253 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
254
255 complete(waiting);
256}
257
258/*
259 * rrpc_move_valid_pages -- migrate live data off the block
260 * @rrpc: the 'rrpc' structure
261 * @block: the block from which to migrate live pages
262 *
263 * Description:
264 * GC algorithms may call this function to migrate remaining live
265 * pages off the block prior to erasing it. This function blocks
266 * further execution until the operation is complete.
267 */
268static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
269{
270 struct request_queue *q = rrpc->dev->q;
271 struct rrpc_rev_addr *rev;
272 struct nvm_rq *rqd;
273 struct bio *bio;
274 struct page *page;
275 int slot;
276 int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
b7ceb7d5 277 u64 phys_addr;
ae1519ec
MB
278 DECLARE_COMPLETION_ONSTACK(wait);
279
280 if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
281 return 0;
282
283 bio = bio_alloc(GFP_NOIO, 1);
284 if (!bio) {
285 pr_err("nvm: could not alloc bio to gc\n");
286 return -ENOMEM;
287 }
288
289 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
290
291 while ((slot = find_first_zero_bit(rblk->invalid_pages,
292 nr_pgs_per_blk)) < nr_pgs_per_blk) {
293
294 /* Lock laddr */
295 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
296
297try:
298 spin_lock(&rrpc->rev_lock);
299 /* Get logical address from physical to logical table */
300 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
301 /* already updated by previous regular write */
302 if (rev->addr == ADDR_EMPTY) {
303 spin_unlock(&rrpc->rev_lock);
304 continue;
305 }
306
307 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
308 if (IS_ERR_OR_NULL(rqd)) {
309 spin_unlock(&rrpc->rev_lock);
310 schedule();
311 goto try;
312 }
313
314 spin_unlock(&rrpc->rev_lock);
315
316 /* Perform read to do GC */
317 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
318 bio->bi_rw = READ;
319 bio->bi_private = &wait;
320 bio->bi_end_io = rrpc_end_sync_bio;
321
322 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
323 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
324
325 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
326 pr_err("rrpc: gc read failed.\n");
327 rrpc_inflight_laddr_release(rrpc, rqd);
328 goto finished;
329 }
330 wait_for_completion_io(&wait);
331
332 bio_reset(bio);
333 reinit_completion(&wait);
334
335 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
336 bio->bi_rw = WRITE;
337 bio->bi_private = &wait;
338 bio->bi_end_io = rrpc_end_sync_bio;
339
340 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341
342 /* turn the command around and write the data back to a new
343 * address
344 */
345 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
346 pr_err("rrpc: gc write failed.\n");
347 rrpc_inflight_laddr_release(rrpc, rqd);
348 goto finished;
349 }
350 wait_for_completion_io(&wait);
351
352 rrpc_inflight_laddr_release(rrpc, rqd);
353
354 bio_reset(bio);
355 }
356
357finished:
358 mempool_free(page, rrpc->page_pool);
359 bio_put(bio);
360
361 if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
362 pr_err("nvm: failed to garbage collect block\n");
363 return -EIO;
364 }
365
366 return 0;
367}
368
369static void rrpc_block_gc(struct work_struct *work)
370{
371 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
372 ws_gc);
373 struct rrpc *rrpc = gcb->rrpc;
374 struct rrpc_block *rblk = gcb->rblk;
375 struct nvm_dev *dev = rrpc->dev;
376
377 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
378
379 if (rrpc_move_valid_pages(rrpc, rblk))
380 goto done;
381
382 nvm_erase_blk(dev, rblk->parent);
383 rrpc_put_blk(rrpc, rblk);
384done:
385 mempool_free(gcb, rrpc->gcb_pool);
386}
387
388/* the block with highest number of invalid pages, will be in the beginning
389 * of the list
390 */
391static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
392 struct rrpc_block *rb)
393{
394 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
395 return ra;
396
397 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
398}
399
400/* linearly find the block with highest number of invalid pages
401 * requires lun->lock
402 */
403static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
404{
405 struct list_head *prio_list = &rlun->prio_list;
406 struct rrpc_block *rblock, *max;
407
408 BUG_ON(list_empty(prio_list));
409
410 max = list_first_entry(prio_list, struct rrpc_block, prio);
411 list_for_each_entry(rblock, prio_list, prio)
412 max = rblock_max_invalid(max, rblock);
413
414 return max;
415}
416
417static void rrpc_lun_gc(struct work_struct *work)
418{
419 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
420 struct rrpc *rrpc = rlun->rrpc;
421 struct nvm_lun *lun = rlun->parent;
422 struct rrpc_block_gc *gcb;
423 unsigned int nr_blocks_need;
424
425 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
426
427 if (nr_blocks_need < rrpc->nr_luns)
428 nr_blocks_need = rrpc->nr_luns;
429
430 spin_lock(&lun->lock);
431 while (nr_blocks_need > lun->nr_free_blocks &&
432 !list_empty(&rlun->prio_list)) {
433 struct rrpc_block *rblock = block_prio_find_max(rlun);
434 struct nvm_block *block = rblock->parent;
435
436 if (!rblock->nr_invalid_pages)
437 break;
438
439 list_del_init(&rblock->prio);
440
441 BUG_ON(!block_is_full(rrpc, rblock));
442
443 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
444
445 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
446 if (!gcb)
447 break;
448
449 gcb->rrpc = rrpc;
450 gcb->rblk = rblock;
451 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
452
453 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
454
455 nr_blocks_need--;
456 }
457 spin_unlock(&lun->lock);
458
459 /* TODO: Hint that request queue can be started again */
460}
461
462static void rrpc_gc_queue(struct work_struct *work)
463{
464 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
465 ws_gc);
466 struct rrpc *rrpc = gcb->rrpc;
467 struct rrpc_block *rblk = gcb->rblk;
468 struct nvm_lun *lun = rblk->parent->lun;
469 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
470
471 spin_lock(&rlun->lock);
472 list_add_tail(&rblk->prio, &rlun->prio_list);
473 spin_unlock(&rlun->lock);
474
475 mempool_free(gcb, rrpc->gcb_pool);
476 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
477 rblk->parent->id);
478}
479
480static const struct block_device_operations rrpc_fops = {
481 .owner = THIS_MODULE,
482};
483
484static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
485{
486 unsigned int i;
487 struct rrpc_lun *rlun, *max_free;
488
489 if (!is_gc)
490 return get_next_lun(rrpc);
491
492 /* during GC, we don't care about RR, instead we want to make
493 * sure that we maintain evenness between the block luns.
494 */
495 max_free = &rrpc->luns[0];
496 /* prevent GC-ing lun from devouring pages of a lun with
497 * little free blocks. We don't take the lock as we only need an
498 * estimate.
499 */
500 rrpc_for_each_lun(rrpc, rlun, i) {
501 if (rlun->parent->nr_free_blocks >
502 max_free->parent->nr_free_blocks)
503 max_free = rlun;
504 }
505
506 return max_free;
507}
508
509static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
b7ceb7d5 510 struct rrpc_block *rblk, u64 paddr)
ae1519ec
MB
511{
512 struct rrpc_addr *gp;
513 struct rrpc_rev_addr *rev;
514
515 BUG_ON(laddr >= rrpc->nr_pages);
516
517 gp = &rrpc->trans_map[laddr];
518 spin_lock(&rrpc->rev_lock);
519 if (gp->rblk)
520 rrpc_page_invalidate(rrpc, gp);
521
522 gp->addr = paddr;
523 gp->rblk = rblk;
524
525 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
526 rev->addr = laddr;
527 spin_unlock(&rrpc->rev_lock);
528
529 return gp;
530}
531
b7ceb7d5 532static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec 533{
b7ceb7d5 534 u64 addr = ADDR_EMPTY;
ae1519ec
MB
535
536 spin_lock(&rblk->lock);
537 if (block_is_full(rrpc, rblk))
538 goto out;
539
540 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
541
542 rblk->next_page++;
543out:
544 spin_unlock(&rblk->lock);
545 return addr;
546}
547
548/* Simple round-robin Logical to physical address translation.
549 *
550 * Retrieve the mapping using the active append point. Then update the ap for
551 * the next write to the disk.
552 *
553 * Returns rrpc_addr with the physical address and block. Remember to return to
554 * rrpc->addr_cache when request is finished.
555 */
556static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
557 int is_gc)
558{
559 struct rrpc_lun *rlun;
560 struct rrpc_block *rblk;
561 struct nvm_lun *lun;
b7ceb7d5 562 u64 paddr;
ae1519ec
MB
563
564 rlun = rrpc_get_lun_rr(rrpc, is_gc);
565 lun = rlun->parent;
566
567 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
568 return NULL;
569
570 spin_lock(&rlun->lock);
571
572 rblk = rlun->cur;
573retry:
574 paddr = rrpc_alloc_addr(rrpc, rblk);
575
576 if (paddr == ADDR_EMPTY) {
577 rblk = rrpc_get_blk(rrpc, rlun, 0);
578 if (rblk) {
579 rrpc_set_lun_cur(rlun, rblk);
580 goto retry;
581 }
582
583 if (is_gc) {
584 /* retry from emergency gc block */
585 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
586 if (paddr == ADDR_EMPTY) {
587 rblk = rrpc_get_blk(rrpc, rlun, 1);
588 if (!rblk) {
589 pr_err("rrpc: no more blocks");
590 goto err;
591 }
592
593 rlun->gc_cur = rblk;
594 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
595 }
596 rblk = rlun->gc_cur;
597 }
598 }
599
600 spin_unlock(&rlun->lock);
601 return rrpc_update_map(rrpc, laddr, rblk, paddr);
602err:
603 spin_unlock(&rlun->lock);
604 return NULL;
605}
606
607static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
608{
609 struct rrpc_block_gc *gcb;
610
611 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
612 if (!gcb) {
613 pr_err("rrpc: unable to queue block for gc.");
614 return;
615 }
616
617 gcb->rrpc = rrpc;
618 gcb->rblk = rblk;
619
620 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
621 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
622}
623
624static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
625 sector_t laddr, uint8_t npages)
626{
627 struct rrpc_addr *p;
628 struct rrpc_block *rblk;
629 struct nvm_lun *lun;
630 int cmnt_size, i;
631
632 for (i = 0; i < npages; i++) {
633 p = &rrpc->trans_map[laddr + i];
634 rblk = p->rblk;
635 lun = rblk->parent->lun;
636
637 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
638 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
639 rrpc_run_gc(rrpc, rblk);
640 }
641}
642
643static int rrpc_end_io(struct nvm_rq *rqd, int error)
644{
645 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
646 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
647 uint8_t npages = rqd->nr_pages;
648 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
649
650 if (bio_data_dir(rqd->bio) == WRITE)
651 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
652
3cd485b1
WT
653 bio_put(rqd->bio);
654
ae1519ec
MB
655 if (rrqd->flags & NVM_IOTYPE_GC)
656 return 0;
657
658 rrpc_unlock_rq(rrpc, rqd);
ae1519ec
MB
659
660 if (npages > 1)
661 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
662 if (rqd->metadata)
663 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
664
665 mempool_free(rqd, rrpc->rq_pool);
666
667 return 0;
668}
669
670static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
671 struct nvm_rq *rqd, unsigned long flags, int npages)
672{
673 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
674 struct rrpc_addr *gp;
675 sector_t laddr = rrpc_get_laddr(bio);
676 int is_gc = flags & NVM_IOTYPE_GC;
677 int i;
678
679 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
680 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
681 return NVM_IO_REQUEUE;
682 }
683
684 for (i = 0; i < npages; i++) {
685 /* We assume that mapping occurs at 4KB granularity */
686 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
687 gp = &rrpc->trans_map[laddr + i];
688
689 if (gp->rblk) {
690 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
691 gp->addr);
692 } else {
693 BUG_ON(is_gc);
694 rrpc_unlock_laddr(rrpc, r);
695 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
696 rqd->dma_ppa_list);
697 return NVM_IO_DONE;
698 }
699 }
700
701 rqd->opcode = NVM_OP_HBREAD;
702
703 return NVM_IO_OK;
704}
705
706static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
707 unsigned long flags)
708{
709 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
710 int is_gc = flags & NVM_IOTYPE_GC;
711 sector_t laddr = rrpc_get_laddr(bio);
712 struct rrpc_addr *gp;
713
714 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
715 return NVM_IO_REQUEUE;
716
717 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
718 gp = &rrpc->trans_map[laddr];
719
720 if (gp->rblk) {
721 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
722 } else {
723 BUG_ON(is_gc);
724 rrpc_unlock_rq(rrpc, rqd);
725 return NVM_IO_DONE;
726 }
727
728 rqd->opcode = NVM_OP_HBREAD;
729 rrqd->addr = gp;
730
731 return NVM_IO_OK;
732}
733
734static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
735 struct nvm_rq *rqd, unsigned long flags, int npages)
736{
737 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
738 struct rrpc_addr *p;
739 sector_t laddr = rrpc_get_laddr(bio);
740 int is_gc = flags & NVM_IOTYPE_GC;
741 int i;
742
743 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
744 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
745 return NVM_IO_REQUEUE;
746 }
747
748 for (i = 0; i < npages; i++) {
749 /* We assume that mapping occurs at 4KB granularity */
750 p = rrpc_map_page(rrpc, laddr + i, is_gc);
751 if (!p) {
752 BUG_ON(is_gc);
753 rrpc_unlock_laddr(rrpc, r);
754 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
755 rqd->dma_ppa_list);
756 rrpc_gc_kick(rrpc);
757 return NVM_IO_REQUEUE;
758 }
759
760 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
761 p->addr);
762 }
763
764 rqd->opcode = NVM_OP_HBWRITE;
765
766 return NVM_IO_OK;
767}
768
769static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
770 struct nvm_rq *rqd, unsigned long flags)
771{
772 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
773 struct rrpc_addr *p;
774 int is_gc = flags & NVM_IOTYPE_GC;
775 sector_t laddr = rrpc_get_laddr(bio);
776
777 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
778 return NVM_IO_REQUEUE;
779
780 p = rrpc_map_page(rrpc, laddr, is_gc);
781 if (!p) {
782 BUG_ON(is_gc);
783 rrpc_unlock_rq(rrpc, rqd);
784 rrpc_gc_kick(rrpc);
785 return NVM_IO_REQUEUE;
786 }
787
788 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
789 rqd->opcode = NVM_OP_HBWRITE;
790 rrqd->addr = p;
791
792 return NVM_IO_OK;
793}
794
795static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
796 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
797{
798 if (npages > 1) {
799 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
800 &rqd->dma_ppa_list);
801 if (!rqd->ppa_list) {
802 pr_err("rrpc: not able to allocate ppa list\n");
803 return NVM_IO_ERR;
804 }
805
806 if (bio_rw(bio) == WRITE)
807 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
808 npages);
809
810 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
811 }
812
813 if (bio_rw(bio) == WRITE)
814 return rrpc_write_rq(rrpc, bio, rqd, flags);
815
816 return rrpc_read_rq(rrpc, bio, rqd, flags);
817}
818
819static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
820 struct nvm_rq *rqd, unsigned long flags)
821{
822 int err;
823 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
824 uint8_t nr_pages = rrpc_get_pages(bio);
825 int bio_size = bio_sectors(bio) << 9;
826
827 if (bio_size < rrpc->dev->sec_size)
828 return NVM_IO_ERR;
829 else if (bio_size > rrpc->dev->max_rq_size)
830 return NVM_IO_ERR;
831
832 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
833 if (err)
834 return err;
835
836 bio_get(bio);
837 rqd->bio = bio;
838 rqd->ins = &rrpc->instance;
839 rqd->nr_pages = nr_pages;
840 rrq->flags = flags;
841
842 err = nvm_submit_io(rrpc->dev, rqd);
843 if (err) {
844 pr_err("rrpc: I/O submission failed: %d\n", err);
3cd485b1 845 bio_put(bio);
ae1519ec
MB
846 return NVM_IO_ERR;
847 }
848
849 return NVM_IO_OK;
850}
851
dece1635 852static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
ae1519ec
MB
853{
854 struct rrpc *rrpc = q->queuedata;
855 struct nvm_rq *rqd;
856 int err;
857
858 if (bio->bi_rw & REQ_DISCARD) {
859 rrpc_discard(rrpc, bio);
dece1635 860 return BLK_QC_T_NONE;
ae1519ec
MB
861 }
862
863 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
864 if (!rqd) {
865 pr_err_ratelimited("rrpc: not able to queue bio.");
866 bio_io_error(bio);
dece1635 867 return BLK_QC_T_NONE;
ae1519ec
MB
868 }
869 memset(rqd, 0, sizeof(struct nvm_rq));
870
871 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
872 switch (err) {
873 case NVM_IO_OK:
dece1635 874 return BLK_QC_T_NONE;
ae1519ec
MB
875 case NVM_IO_ERR:
876 bio_io_error(bio);
877 break;
878 case NVM_IO_DONE:
879 bio_endio(bio);
880 break;
881 case NVM_IO_REQUEUE:
882 spin_lock(&rrpc->bio_lock);
883 bio_list_add(&rrpc->requeue_bios, bio);
884 spin_unlock(&rrpc->bio_lock);
885 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
886 break;
887 }
888
889 mempool_free(rqd, rrpc->rq_pool);
dece1635 890 return BLK_QC_T_NONE;
ae1519ec
MB
891}
892
893static void rrpc_requeue(struct work_struct *work)
894{
895 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
896 struct bio_list bios;
897 struct bio *bio;
898
899 bio_list_init(&bios);
900
901 spin_lock(&rrpc->bio_lock);
902 bio_list_merge(&bios, &rrpc->requeue_bios);
903 bio_list_init(&rrpc->requeue_bios);
904 spin_unlock(&rrpc->bio_lock);
905
906 while ((bio = bio_list_pop(&bios)))
907 rrpc_make_rq(rrpc->disk->queue, bio);
908}
909
910static void rrpc_gc_free(struct rrpc *rrpc)
911{
912 struct rrpc_lun *rlun;
913 int i;
914
915 if (rrpc->krqd_wq)
916 destroy_workqueue(rrpc->krqd_wq);
917
918 if (rrpc->kgc_wq)
919 destroy_workqueue(rrpc->kgc_wq);
920
921 if (!rrpc->luns)
922 return;
923
924 for (i = 0; i < rrpc->nr_luns; i++) {
925 rlun = &rrpc->luns[i];
926
927 if (!rlun->blocks)
928 break;
929 vfree(rlun->blocks);
930 }
931}
932
933static int rrpc_gc_init(struct rrpc *rrpc)
934{
935 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
936 rrpc->nr_luns);
937 if (!rrpc->krqd_wq)
938 return -ENOMEM;
939
940 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
941 if (!rrpc->kgc_wq)
942 return -ENOMEM;
943
944 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
945
946 return 0;
947}
948
949static void rrpc_map_free(struct rrpc *rrpc)
950{
951 vfree(rrpc->rev_trans_map);
952 vfree(rrpc->trans_map);
953}
954
955static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
956{
957 struct rrpc *rrpc = (struct rrpc *)private;
958 struct nvm_dev *dev = rrpc->dev;
959 struct rrpc_addr *addr = rrpc->trans_map + slba;
960 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
961 sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
962 u64 elba = slba + nlb;
963 u64 i;
964
965 if (unlikely(elba > dev->total_pages)) {
966 pr_err("nvm: L2P data from device is out of bounds!\n");
967 return -EINVAL;
968 }
969
970 for (i = 0; i < nlb; i++) {
971 u64 pba = le64_to_cpu(entries[i]);
972 /* LNVM treats address-spaces as silos, LBA and PBA are
973 * equally large and zero-indexed.
974 */
975 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
976 pr_err("nvm: L2P data entry is out of bounds!\n");
977 return -EINVAL;
978 }
979
980 /* Address zero is a special one. The first page on a disk is
981 * protected. As it often holds internal device boot
982 * information.
983 */
984 if (!pba)
985 continue;
986
987 addr[i].addr = pba;
988 raddr[pba].addr = slba + i;
989 }
990
991 return 0;
992}
993
994static int rrpc_map_init(struct rrpc *rrpc)
995{
996 struct nvm_dev *dev = rrpc->dev;
997 sector_t i;
998 int ret;
999
1000 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1001 if (!rrpc->trans_map)
1002 return -ENOMEM;
1003
1004 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1005 * rrpc->nr_pages);
1006 if (!rrpc->rev_trans_map)
1007 return -ENOMEM;
1008
1009 for (i = 0; i < rrpc->nr_pages; i++) {
1010 struct rrpc_addr *p = &rrpc->trans_map[i];
1011 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1012
1013 p->addr = ADDR_EMPTY;
1014 r->addr = ADDR_EMPTY;
1015 }
1016
1017 if (!dev->ops->get_l2p_tbl)
1018 return 0;
1019
1020 /* Bring up the mapping table from device */
16f26c3a 1021 ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
ae1519ec
MB
1022 rrpc_l2p_update, rrpc);
1023 if (ret) {
1024 pr_err("nvm: rrpc: could not read L2P table.\n");
1025 return -EINVAL;
1026 }
1027
1028 return 0;
1029}
1030
1031
1032/* Minimum pages needed within a lun */
1033#define PAGE_POOL_SIZE 16
1034#define ADDR_POOL_SIZE 64
1035
1036static int rrpc_core_init(struct rrpc *rrpc)
1037{
1038 down_write(&rrpc_lock);
1039 if (!rrpc_gcb_cache) {
1040 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1041 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1042 if (!rrpc_gcb_cache) {
1043 up_write(&rrpc_lock);
1044 return -ENOMEM;
1045 }
1046
1047 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1048 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1049 0, 0, NULL);
1050 if (!rrpc_rq_cache) {
1051 kmem_cache_destroy(rrpc_gcb_cache);
1052 up_write(&rrpc_lock);
1053 return -ENOMEM;
1054 }
1055 }
1056 up_write(&rrpc_lock);
1057
1058 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1059 if (!rrpc->page_pool)
1060 return -ENOMEM;
1061
1062 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1063 rrpc_gcb_cache);
1064 if (!rrpc->gcb_pool)
1065 return -ENOMEM;
1066
1067 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1068 if (!rrpc->rq_pool)
1069 return -ENOMEM;
1070
1071 spin_lock_init(&rrpc->inflights.lock);
1072 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1073
1074 return 0;
1075}
1076
1077static void rrpc_core_free(struct rrpc *rrpc)
1078{
1079 mempool_destroy(rrpc->page_pool);
1080 mempool_destroy(rrpc->gcb_pool);
1081 mempool_destroy(rrpc->rq_pool);
1082}
1083
1084static void rrpc_luns_free(struct rrpc *rrpc)
1085{
1086 kfree(rrpc->luns);
1087}
1088
1089static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1090{
1091 struct nvm_dev *dev = rrpc->dev;
1092 struct rrpc_lun *rlun;
1093 int i, j;
1094
1095 spin_lock_init(&rrpc->rev_lock);
1096
1097 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1098 GFP_KERNEL);
1099 if (!rrpc->luns)
1100 return -ENOMEM;
1101
1102 /* 1:1 mapping */
1103 for (i = 0; i < rrpc->nr_luns; i++) {
1104 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1105
1106 if (dev->pgs_per_blk >
1107 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1108 pr_err("rrpc: number of pages per block too high.");
1109 goto err;
1110 }
1111
1112 rlun = &rrpc->luns[i];
1113 rlun->rrpc = rrpc;
1114 rlun->parent = lun;
1115 INIT_LIST_HEAD(&rlun->prio_list);
1116 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1117 spin_lock_init(&rlun->lock);
1118
1119 rrpc->total_blocks += dev->blks_per_lun;
1120 rrpc->nr_pages += dev->sec_per_lun;
1121
1122 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1123 rrpc->dev->blks_per_lun);
1124 if (!rlun->blocks)
1125 goto err;
1126
1127 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1128 struct rrpc_block *rblk = &rlun->blocks[j];
1129 struct nvm_block *blk = &lun->blocks[j];
1130
1131 rblk->parent = blk;
1132 INIT_LIST_HEAD(&rblk->prio);
1133 spin_lock_init(&rblk->lock);
1134 }
1135 }
1136
1137 return 0;
1138err:
1139 return -ENOMEM;
1140}
1141
1142static void rrpc_free(struct rrpc *rrpc)
1143{
1144 rrpc_gc_free(rrpc);
1145 rrpc_map_free(rrpc);
1146 rrpc_core_free(rrpc);
1147 rrpc_luns_free(rrpc);
1148
1149 kfree(rrpc);
1150}
1151
1152static void rrpc_exit(void *private)
1153{
1154 struct rrpc *rrpc = private;
1155
1156 del_timer(&rrpc->gc_timer);
1157
1158 flush_workqueue(rrpc->krqd_wq);
1159 flush_workqueue(rrpc->kgc_wq);
1160
1161 rrpc_free(rrpc);
1162}
1163
1164static sector_t rrpc_capacity(void *private)
1165{
1166 struct rrpc *rrpc = private;
1167 struct nvm_dev *dev = rrpc->dev;
1168 sector_t reserved, provisioned;
1169
1170 /* cur, gc, and two emergency blocks for each lun */
1171 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1172 provisioned = rrpc->nr_pages - reserved;
1173
1174 if (reserved > rrpc->nr_pages) {
1175 pr_err("rrpc: not enough space available to expose storage.\n");
1176 return 0;
1177 }
1178
1179 sector_div(provisioned, 10);
1180 return provisioned * 9 * NR_PHY_IN_LOG;
1181}
1182
1183/*
1184 * Looks up the logical address from reverse trans map and check if its valid by
1185 * comparing the logical to physical address with the physical address.
1186 * Returns 0 on free, otherwise 1 if in use
1187 */
1188static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1189{
1190 struct nvm_dev *dev = rrpc->dev;
1191 int offset;
1192 struct rrpc_addr *laddr;
b7ceb7d5 1193 u64 paddr, pladdr;
ae1519ec
MB
1194
1195 for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1196 paddr = block_to_addr(rrpc, rblk) + offset;
1197
1198 pladdr = rrpc->rev_trans_map[paddr].addr;
1199 if (pladdr == ADDR_EMPTY)
1200 continue;
1201
1202 laddr = &rrpc->trans_map[pladdr];
1203
1204 if (paddr == laddr->addr) {
1205 laddr->rblk = rblk;
1206 } else {
1207 set_bit(offset, rblk->invalid_pages);
1208 rblk->nr_invalid_pages++;
1209 }
1210 }
1211}
1212
1213static int rrpc_blocks_init(struct rrpc *rrpc)
1214{
1215 struct rrpc_lun *rlun;
1216 struct rrpc_block *rblk;
1217 int lun_iter, blk_iter;
1218
1219 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1220 rlun = &rrpc->luns[lun_iter];
1221
1222 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1223 blk_iter++) {
1224 rblk = &rlun->blocks[blk_iter];
1225 rrpc_block_map_update(rrpc, rblk);
1226 }
1227 }
1228
1229 return 0;
1230}
1231
1232static int rrpc_luns_configure(struct rrpc *rrpc)
1233{
1234 struct rrpc_lun *rlun;
1235 struct rrpc_block *rblk;
1236 int i;
1237
1238 for (i = 0; i < rrpc->nr_luns; i++) {
1239 rlun = &rrpc->luns[i];
1240
1241 rblk = rrpc_get_blk(rrpc, rlun, 0);
1242 if (!rblk)
d3d1a438 1243 goto err;
ae1519ec
MB
1244
1245 rrpc_set_lun_cur(rlun, rblk);
1246
1247 /* Emergency gc block */
1248 rblk = rrpc_get_blk(rrpc, rlun, 1);
1249 if (!rblk)
d3d1a438 1250 goto err;
ae1519ec
MB
1251 rlun->gc_cur = rblk;
1252 }
1253
1254 return 0;
d3d1a438
WT
1255err:
1256 rrpc_put_blks(rrpc);
1257 return -EINVAL;
ae1519ec
MB
1258}
1259
1260static struct nvm_tgt_type tt_rrpc;
1261
1262static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1263 int lun_begin, int lun_end)
1264{
1265 struct request_queue *bqueue = dev->q;
1266 struct request_queue *tqueue = tdisk->queue;
1267 struct rrpc *rrpc;
1268 int ret;
1269
1270 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1271 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1272 dev->identity.dom);
1273 return ERR_PTR(-EINVAL);
1274 }
1275
1276 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1277 if (!rrpc)
1278 return ERR_PTR(-ENOMEM);
1279
1280 rrpc->instance.tt = &tt_rrpc;
1281 rrpc->dev = dev;
1282 rrpc->disk = tdisk;
1283
1284 bio_list_init(&rrpc->requeue_bios);
1285 spin_lock_init(&rrpc->bio_lock);
1286 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1287
1288 rrpc->nr_luns = lun_end - lun_begin + 1;
1289
1290 /* simple round-robin strategy */
1291 atomic_set(&rrpc->next_lun, -1);
1292
1293 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1294 if (ret) {
1295 pr_err("nvm: rrpc: could not initialize luns\n");
1296 goto err;
1297 }
1298
1299 rrpc->poffset = dev->sec_per_lun * lun_begin;
1300 rrpc->lun_offset = lun_begin;
1301
1302 ret = rrpc_core_init(rrpc);
1303 if (ret) {
1304 pr_err("nvm: rrpc: could not initialize core\n");
1305 goto err;
1306 }
1307
1308 ret = rrpc_map_init(rrpc);
1309 if (ret) {
1310 pr_err("nvm: rrpc: could not initialize maps\n");
1311 goto err;
1312 }
1313
1314 ret = rrpc_blocks_init(rrpc);
1315 if (ret) {
1316 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1317 goto err;
1318 }
1319
1320 ret = rrpc_luns_configure(rrpc);
1321 if (ret) {
1322 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1323 goto err;
1324 }
1325
1326 ret = rrpc_gc_init(rrpc);
1327 if (ret) {
1328 pr_err("nvm: rrpc: could not initialize gc\n");
1329 goto err;
1330 }
1331
1332 /* inherit the size from the underlying device */
1333 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1334 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1335
1336 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1337 rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1338
1339 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1340
1341 return rrpc;
1342err:
1343 rrpc_free(rrpc);
1344 return ERR_PTR(ret);
1345}
1346
1347/* round robin, page-based FTL, and cost-based GC */
1348static struct nvm_tgt_type tt_rrpc = {
1349 .name = "rrpc",
1350 .version = {1, 0, 0},
1351
1352 .make_rq = rrpc_make_rq,
1353 .capacity = rrpc_capacity,
1354 .end_io = rrpc_end_io,
1355
1356 .init = rrpc_init,
1357 .exit = rrpc_exit,
1358};
1359
1360static int __init rrpc_module_init(void)
1361{
1362 return nvm_register_target(&tt_rrpc);
1363}
1364
1365static void rrpc_module_exit(void)
1366{
1367 nvm_unregister_target(&tt_rrpc);
1368}
1369
1370module_init(rrpc_module_init);
1371module_exit(rrpc_module_exit);
1372MODULE_LICENSE("GPL v2");
1373MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");