]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/macintosh/windfarm_pm121.c
Merge branch 'msm-fixes-v5.13-rc6' into msm-next-redo
[mirror_ubuntu-jammy-kernel.git] / drivers / macintosh / windfarm_pm121.c
CommitLineData
2c162f9b 1// SPDX-License-Identifier: GPL-2.0-only
80ff974d
ÉB
2/*
3 * Windfarm PowerMac thermal control. iMac G5 iSight
4 *
5 * (c) Copyright 2007 Étienne Bersac <bersace@gmail.com>
6 *
7 * Bits & pieces from windfarm_pm81.c by (c) Copyright 2005 Benjamin
8 * Herrenschmidt, IBM Corp. <benh@kernel.crashing.org>
9 *
80ff974d
ÉB
10 * PowerMac12,1
11 * ============
12 *
80ff974d
ÉB
13 * The algorithm used is the PID control algorithm, used the same way
14 * the published Darwin code does, using the same values that are
15 * present in the Darwin 8.10 snapshot property lists (note however
16 * that none of the code has been re-used, it's a complete
17 * re-implementation
18 *
19 * There is two models using PowerMac12,1. Model 2 is iMac G5 iSight
20 * 17" while Model 3 is iMac G5 20". They do have both the same
21 * controls with a tiny difference. The control-ids of hard-drive-fan
22 * and cpu-fan is swapped.
23 *
80ff974d
ÉB
24 * Target Correction :
25 *
26 * controls have a target correction calculated as :
27 *
28 * new_min = ((((average_power * slope) >> 16) + offset) >> 16) + min_value
29 * new_value = max(new_value, max(new_min, 0))
30 *
31 * OD Fan control correction.
32 *
33 * # model_id: 2
34 * offset : -19563152
35 * slope : 1956315
36 *
37 * # model_id: 3
38 * offset : -15650652
39 * slope : 1565065
40 *
41 * HD Fan control correction.
42 *
43 * # model_id: 2
44 * offset : -15650652
45 * slope : 1565065
46 *
47 * # model_id: 3
48 * offset : -19563152
49 * slope : 1956315
50 *
51 * CPU Fan control correction.
52 *
53 * # model_id: 2
54 * offset : -25431900
55 * slope : 2543190
56 *
57 * # model_id: 3
58 * offset : -15650652
59 * slope : 1565065
60 *
80ff974d
ÉB
61 * Target rubber-banding :
62 *
63 * Some controls have a target correction which depends on another
64 * control value. The correction is computed in the following way :
65 *
66 * new_min = ref_value * slope + offset
67 *
68 * ref_value is the value of the reference control. If new_min is
69 * greater than 0, then we correct the target value using :
70 *
71 * new_target = max (new_target, new_min >> 16)
72 *
80ff974d
ÉB
73 * # model_id : 2
74 * control : cpu-fan
75 * ref : optical-drive-fan
76 * offset : -15650652
77 * slope : 1565065
78 *
79 * # model_id : 3
80 * control : optical-drive-fan
81 * ref : hard-drive-fan
82 * offset : -32768000
83 * slope : 65536
84 *
80ff974d
ÉB
85 * In order to have the moste efficient correction with those
86 * dependencies, we must trigger HD loop before OD loop before CPU
87 * loop.
88 *
80ff974d
ÉB
89 * The various control loops found in Darwin config file are:
90 *
91 * HD Fan control loop.
92 *
93 * # model_id: 2
94 * control : hard-drive-fan
95 * sensor : hard-drive-temp
96 * PID params : G_d = 0x00000000
97 * G_p = 0x002D70A3
98 * G_r = 0x00019999
99 * History = 2 entries
100 * Input target = 0x370000
101 * Interval = 5s
102 *
103 * # model_id: 3
104 * control : hard-drive-fan
105 * sensor : hard-drive-temp
106 * PID params : G_d = 0x00000000
107 * G_p = 0x002170A3
108 * G_r = 0x00019999
109 * History = 2 entries
110 * Input target = 0x370000
111 * Interval = 5s
112 *
113 * OD Fan control loop.
114 *
115 * # model_id: 2
116 * control : optical-drive-fan
117 * sensor : optical-drive-temp
118 * PID params : G_d = 0x00000000
119 * G_p = 0x001FAE14
120 * G_r = 0x00019999
121 * History = 2 entries
122 * Input target = 0x320000
123 * Interval = 5s
124 *
125 * # model_id: 3
126 * control : optical-drive-fan
127 * sensor : optical-drive-temp
128 * PID params : G_d = 0x00000000
129 * G_p = 0x001FAE14
130 * G_r = 0x00019999
131 * History = 2 entries
132 * Input target = 0x320000
133 * Interval = 5s
134 *
135 * GPU Fan control loop.
136 *
137 * # model_id: 2
138 * control : hard-drive-fan
139 * sensor : gpu-temp
140 * PID params : G_d = 0x00000000
141 * G_p = 0x002A6666
142 * G_r = 0x00019999
143 * History = 2 entries
144 * Input target = 0x5A0000
145 * Interval = 5s
146 *
147 * # model_id: 3
148 * control : cpu-fan
149 * sensor : gpu-temp
150 * PID params : G_d = 0x00000000
151 * G_p = 0x0010CCCC
152 * G_r = 0x00019999
153 * History = 2 entries
154 * Input target = 0x500000
155 * Interval = 5s
156 *
157 * KODIAK (aka northbridge) Fan control loop.
158 *
159 * # model_id: 2
160 * control : optical-drive-fan
161 * sensor : north-bridge-temp
162 * PID params : G_d = 0x00000000
163 * G_p = 0x003BD70A
164 * G_r = 0x00019999
165 * History = 2 entries
166 * Input target = 0x550000
167 * Interval = 5s
168 *
169 * # model_id: 3
170 * control : hard-drive-fan
171 * sensor : north-bridge-temp
172 * PID params : G_d = 0x00000000
173 * G_p = 0x0030F5C2
174 * G_r = 0x00019999
175 * History = 2 entries
176 * Input target = 0x550000
177 * Interval = 5s
178 *
179 * CPU Fan control loop.
180 *
181 * control : cpu-fan
182 * sensors : cpu-temp, cpu-power
183 * PID params : from SDB partition
184 *
80ff974d
ÉB
185 * CPU Slew control loop.
186 *
187 * control : cpufreq-clamp
188 * sensor : cpu-temp
80ff974d
ÉB
189 */
190
191#undef DEBUG
192
193#include <linux/types.h>
194#include <linux/errno.h>
195#include <linux/kernel.h>
196#include <linux/delay.h>
197#include <linux/slab.h>
198#include <linux/init.h>
199#include <linux/spinlock.h>
200#include <linux/wait.h>
201#include <linux/kmod.h>
202#include <linux/device.h>
203#include <linux/platform_device.h>
204#include <asm/prom.h>
205#include <asm/machdep.h>
206#include <asm/io.h>
80ff974d
ÉB
207#include <asm/sections.h>
208#include <asm/smu.h>
209
210#include "windfarm.h"
211#include "windfarm_pid.h"
212
213#define VERSION "0.3"
214
215static int pm121_mach_model; /* machine model id */
216
217/* Controls & sensors */
218static struct wf_sensor *sensor_cpu_power;
219static struct wf_sensor *sensor_cpu_temp;
220static struct wf_sensor *sensor_cpu_voltage;
221static struct wf_sensor *sensor_cpu_current;
222static struct wf_sensor *sensor_gpu_temp;
223static struct wf_sensor *sensor_north_bridge_temp;
224static struct wf_sensor *sensor_hard_drive_temp;
225static struct wf_sensor *sensor_optical_drive_temp;
226static struct wf_sensor *sensor_incoming_air_temp; /* unused ! */
227
228enum {
229 FAN_CPU,
230 FAN_HD,
231 FAN_OD,
232 CPUFREQ,
233 N_CONTROLS
234};
235static struct wf_control *controls[N_CONTROLS] = {};
236
237/* Set to kick the control loop into life */
4f256d56
GS
238static int pm121_all_controls_ok, pm121_all_sensors_ok;
239static bool pm121_started;
80ff974d
ÉB
240
241enum {
242 FAILURE_FAN = 1 << 0,
243 FAILURE_SENSOR = 1 << 1,
244 FAILURE_OVERTEMP = 1 << 2
245};
246
247/* All sys loops. Note the HD before the OD loop in order to have it
248 run before. */
249enum {
250 LOOP_GPU, /* control = hd or cpu, but luckily,
251 it doesn't matter */
252 LOOP_HD, /* control = hd */
253 LOOP_KODIAK, /* control = hd or od */
254 LOOP_OD, /* control = od */
255 N_LOOPS
256};
257
258static const char *loop_names[N_LOOPS] = {
259 "GPU",
260 "HD",
261 "KODIAK",
262 "OD",
263};
264
265#define PM121_NUM_CONFIGS 2
266
267static unsigned int pm121_failure_state;
268static int pm121_readjust, pm121_skipping;
4bb29711 269static bool pm121_overtemp;
80ff974d
ÉB
270static s32 average_power;
271
272struct pm121_correction {
273 int offset;
274 int slope;
275};
276
277static struct pm121_correction corrections[N_CONTROLS][PM121_NUM_CONFIGS] = {
278 /* FAN_OD */
279 {
280 /* MODEL 2 */
281 { .offset = -19563152,
282 .slope = 1956315
283 },
284 /* MODEL 3 */
285 { .offset = -15650652,
286 .slope = 1565065
287 },
288 },
289 /* FAN_HD */
290 {
291 /* MODEL 2 */
292 { .offset = -15650652,
293 .slope = 1565065
294 },
295 /* MODEL 3 */
296 { .offset = -19563152,
297 .slope = 1956315
298 },
299 },
300 /* FAN_CPU */
301 {
302 /* MODEL 2 */
303 { .offset = -25431900,
304 .slope = 2543190
305 },
306 /* MODEL 3 */
307 { .offset = -15650652,
308 .slope = 1565065
309 },
310 },
311 /* CPUFREQ has no correction (and is not implemented at all) */
312};
313
314struct pm121_connection {
315 unsigned int control_id;
316 unsigned int ref_id;
317 struct pm121_correction correction;
318};
319
320static struct pm121_connection pm121_connections[] = {
321 /* MODEL 2 */
322 { .control_id = FAN_CPU,
323 .ref_id = FAN_OD,
324 { .offset = -32768000,
325 .slope = 65536
326 }
327 },
328 /* MODEL 3 */
329 { .control_id = FAN_OD,
330 .ref_id = FAN_HD,
331 { .offset = -32768000,
332 .slope = 65536
333 }
334 },
335};
336
337/* pointer to the current model connection */
338static struct pm121_connection *pm121_connection;
339
340/*
341 * ****** System Fans Control Loop ******
342 *
343 */
344
345/* Since each loop handles only one control and we want to avoid
346 * writing virtual control, we store the control correction with the
347 * loop params. Some data are not set, there are common to all loop
348 * and thus, hardcoded.
349 */
350struct pm121_sys_param {
351 /* purely informative since we use mach_model-2 as index */
352 int model_id;
353 struct wf_sensor **sensor; /* use sensor_id instead ? */
354 s32 gp, itarget;
355 unsigned int control_id;
356};
357
358static struct pm121_sys_param
359pm121_sys_all_params[N_LOOPS][PM121_NUM_CONFIGS] = {
360 /* GPU Fan control loop */
361 {
362 { .model_id = 2,
363 .sensor = &sensor_gpu_temp,
364 .gp = 0x002A6666,
365 .itarget = 0x5A0000,
366 .control_id = FAN_HD,
367 },
368 { .model_id = 3,
369 .sensor = &sensor_gpu_temp,
370 .gp = 0x0010CCCC,
371 .itarget = 0x500000,
372 .control_id = FAN_CPU,
373 },
374 },
375 /* HD Fan control loop */
376 {
377 { .model_id = 2,
378 .sensor = &sensor_hard_drive_temp,
379 .gp = 0x002D70A3,
380 .itarget = 0x370000,
381 .control_id = FAN_HD,
382 },
383 { .model_id = 3,
384 .sensor = &sensor_hard_drive_temp,
385 .gp = 0x002170A3,
386 .itarget = 0x370000,
387 .control_id = FAN_HD,
388 },
389 },
390 /* KODIAK Fan control loop */
391 {
392 { .model_id = 2,
393 .sensor = &sensor_north_bridge_temp,
394 .gp = 0x003BD70A,
395 .itarget = 0x550000,
396 .control_id = FAN_OD,
397 },
398 { .model_id = 3,
399 .sensor = &sensor_north_bridge_temp,
400 .gp = 0x0030F5C2,
401 .itarget = 0x550000,
402 .control_id = FAN_HD,
403 },
404 },
405 /* OD Fan control loop */
406 {
407 { .model_id = 2,
408 .sensor = &sensor_optical_drive_temp,
409 .gp = 0x001FAE14,
410 .itarget = 0x320000,
411 .control_id = FAN_OD,
412 },
413 { .model_id = 3,
414 .sensor = &sensor_optical_drive_temp,
415 .gp = 0x001FAE14,
416 .itarget = 0x320000,
417 .control_id = FAN_OD,
418 },
419 },
420};
421
422/* the hardcoded values */
423#define PM121_SYS_GD 0x00000000
424#define PM121_SYS_GR 0x00019999
425#define PM121_SYS_HISTORY_SIZE 2
426#define PM121_SYS_INTERVAL 5
427
428/* State data used by the system fans control loop
429 */
430struct pm121_sys_state {
431 int ticks;
432 s32 setpoint;
433 struct wf_pid_state pid;
434};
435
13ddd0e3 436static struct pm121_sys_state *pm121_sys_state[N_LOOPS] = {};
80ff974d
ÉB
437
438/*
439 * ****** CPU Fans Control Loop ******
440 *
441 */
442
443#define PM121_CPU_INTERVAL 1
444
445/* State data used by the cpu fans control loop
446 */
447struct pm121_cpu_state {
448 int ticks;
449 s32 setpoint;
450 struct wf_cpu_pid_state pid;
451};
452
453static struct pm121_cpu_state *pm121_cpu_state;
454
455
456
457/*
458 * ***** Implementation *****
459 *
460 */
461
462/* correction the value using the output-low-bound correction algo */
463static s32 pm121_correct(s32 new_setpoint,
464 unsigned int control_id,
465 s32 min)
466{
467 s32 new_min;
468 struct pm121_correction *correction;
469 correction = &corrections[control_id][pm121_mach_model - 2];
470
471 new_min = (average_power * correction->slope) >> 16;
472 new_min += correction->offset;
473 new_min = (new_min >> 16) + min;
474
732eacc0 475 return max3(new_setpoint, new_min, 0);
80ff974d
ÉB
476}
477
478static s32 pm121_connect(unsigned int control_id, s32 setpoint)
479{
480 s32 new_min, value, new_setpoint;
481
482 if (pm121_connection->control_id == control_id) {
483 controls[control_id]->ops->get_value(controls[control_id],
484 &value);
485 new_min = value * pm121_connection->correction.slope;
486 new_min += pm121_connection->correction.offset;
487 if (new_min > 0) {
488 new_setpoint = max(setpoint, (new_min >> 16));
489 if (new_setpoint != setpoint) {
490 pr_debug("pm121: %s depending on %s, "
491 "corrected from %d to %d RPM\n",
492 controls[control_id]->name,
493 controls[pm121_connection->ref_id]->name,
494 (int) setpoint, (int) new_setpoint);
495 }
496 } else
497 new_setpoint = setpoint;
498 }
499 /* no connection */
500 else
501 new_setpoint = setpoint;
502
503 return new_setpoint;
504}
505
506/* FAN LOOPS */
507static void pm121_create_sys_fans(int loop_id)
508{
509 struct pm121_sys_param *param = NULL;
510 struct wf_pid_param pid_param;
511 struct wf_control *control = NULL;
512 int i;
513
514 /* First, locate the params for this model */
515 for (i = 0; i < PM121_NUM_CONFIGS; i++) {
516 if (pm121_sys_all_params[loop_id][i].model_id == pm121_mach_model) {
517 param = &(pm121_sys_all_params[loop_id][i]);
518 break;
519 }
520 }
521
522 /* No params found, put fans to max */
523 if (param == NULL) {
524 printk(KERN_WARNING "pm121: %s fan config not found "
525 " for this machine model\n",
526 loop_names[loop_id]);
527 goto fail;
528 }
529
530 control = controls[param->control_id];
531
532 /* Alloc & initialize state */
533 pm121_sys_state[loop_id] = kmalloc(sizeof(struct pm121_sys_state),
534 GFP_KERNEL);
535 if (pm121_sys_state[loop_id] == NULL) {
536 printk(KERN_WARNING "pm121: Memory allocation error\n");
537 goto fail;
538 }
539 pm121_sys_state[loop_id]->ticks = 1;
540
541 /* Fill PID params */
542 pid_param.gd = PM121_SYS_GD;
543 pid_param.gp = param->gp;
544 pid_param.gr = PM121_SYS_GR;
545 pid_param.interval = PM121_SYS_INTERVAL;
546 pid_param.history_len = PM121_SYS_HISTORY_SIZE;
547 pid_param.itarget = param->itarget;
bd0c30e3
RS
548 if(control)
549 {
550 pid_param.min = control->ops->get_min(control);
551 pid_param.max = control->ops->get_max(control);
552 } else {
553 /*
554 * This is probably not the right!?
555 * Perhaps goto fail if control == NULL above?
556 */
557 pid_param.min = 0;
558 pid_param.max = 0;
559 }
80ff974d
ÉB
560
561 wf_pid_init(&pm121_sys_state[loop_id]->pid, &pid_param);
562
563 pr_debug("pm121: %s Fan control loop initialized.\n"
564 " itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
565 loop_names[loop_id], FIX32TOPRINT(pid_param.itarget),
566 pid_param.min, pid_param.max);
567 return;
568
569 fail:
570 /* note that this is not optimal since another loop may still
571 control the same control */
572 printk(KERN_WARNING "pm121: failed to set up %s loop "
573 "setting \"%s\" to max speed.\n",
bd0c30e3 574 loop_names[loop_id], control ? control->name : "uninitialized value");
80ff974d
ÉB
575
576 if (control)
577 wf_control_set_max(control);
578}
579
580static void pm121_sys_fans_tick(int loop_id)
581{
582 struct pm121_sys_param *param;
583 struct pm121_sys_state *st;
584 struct wf_sensor *sensor;
585 struct wf_control *control;
586 s32 temp, new_setpoint;
587 int rc;
588
589 param = &(pm121_sys_all_params[loop_id][pm121_mach_model-2]);
590 st = pm121_sys_state[loop_id];
591 sensor = *(param->sensor);
592 control = controls[param->control_id];
593
594 if (--st->ticks != 0) {
595 if (pm121_readjust)
596 goto readjust;
597 return;
598 }
599 st->ticks = PM121_SYS_INTERVAL;
600
601 rc = sensor->ops->get_value(sensor, &temp);
602 if (rc) {
603 printk(KERN_WARNING "windfarm: %s sensor error %d\n",
604 sensor->name, rc);
605 pm121_failure_state |= FAILURE_SENSOR;
606 return;
607 }
608
609 pr_debug("pm121: %s Fan tick ! %s: %d.%03d\n",
610 loop_names[loop_id], sensor->name,
611 FIX32TOPRINT(temp));
612
613 new_setpoint = wf_pid_run(&st->pid, temp);
614
615 /* correction */
616 new_setpoint = pm121_correct(new_setpoint,
617 param->control_id,
618 st->pid.param.min);
619 /* linked corretion */
620 new_setpoint = pm121_connect(param->control_id, new_setpoint);
621
622 if (new_setpoint == st->setpoint)
623 return;
624 st->setpoint = new_setpoint;
625 pr_debug("pm121: %s corrected setpoint: %d RPM\n",
626 control->name, (int)new_setpoint);
627 readjust:
628 if (control && pm121_failure_state == 0) {
629 rc = control->ops->set_value(control, st->setpoint);
630 if (rc) {
631 printk(KERN_WARNING "windfarm: %s fan error %d\n",
632 control->name, rc);
633 pm121_failure_state |= FAILURE_FAN;
634 }
635 }
636}
637
638
639/* CPU LOOP */
640static void pm121_create_cpu_fans(void)
641{
642 struct wf_cpu_pid_param pid_param;
643 const struct smu_sdbp_header *hdr;
644 struct smu_sdbp_cpupiddata *piddata;
645 struct smu_sdbp_fvt *fvt;
646 struct wf_control *fan_cpu;
647 s32 tmax, tdelta, maxpow, powadj;
648
649 fan_cpu = controls[FAN_CPU];
650
651 /* First, locate the PID params in SMU SBD */
652 hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
653 if (hdr == 0) {
654 printk(KERN_WARNING "pm121: CPU PID fan config not found.\n");
655 goto fail;
656 }
657 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
658
659 /* Get the FVT params for operating point 0 (the only supported one
660 * for now) in order to get tmax
661 */
662 hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
663 if (hdr) {
664 fvt = (struct smu_sdbp_fvt *)&hdr[1];
665 tmax = ((s32)fvt->maxtemp) << 16;
666 } else
667 tmax = 0x5e0000; /* 94 degree default */
668
669 /* Alloc & initialize state */
670 pm121_cpu_state = kmalloc(sizeof(struct pm121_cpu_state),
671 GFP_KERNEL);
672 if (pm121_cpu_state == NULL)
673 goto fail;
674 pm121_cpu_state->ticks = 1;
675
676 /* Fill PID params */
677 pid_param.interval = PM121_CPU_INTERVAL;
678 pid_param.history_len = piddata->history_len;
679 if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
680 printk(KERN_WARNING "pm121: History size overflow on "
681 "CPU control loop (%d)\n", piddata->history_len);
682 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
683 }
684 pid_param.gd = piddata->gd;
685 pid_param.gp = piddata->gp;
686 pid_param.gr = piddata->gr / pid_param.history_len;
687
688 tdelta = ((s32)piddata->target_temp_delta) << 16;
689 maxpow = ((s32)piddata->max_power) << 16;
690 powadj = ((s32)piddata->power_adj) << 16;
691
692 pid_param.tmax = tmax;
693 pid_param.ttarget = tmax - tdelta;
694 pid_param.pmaxadj = maxpow - powadj;
695
696 pid_param.min = fan_cpu->ops->get_min(fan_cpu);
697 pid_param.max = fan_cpu->ops->get_max(fan_cpu);
698
699 wf_cpu_pid_init(&pm121_cpu_state->pid, &pid_param);
700
701 pr_debug("pm121: CPU Fan control initialized.\n");
942cc40a 702 pr_debug(" ttarget=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM,\n",
80ff974d
ÉB
703 FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
704 pid_param.min, pid_param.max);
705
706 return;
707
708 fail:
709 printk(KERN_WARNING "pm121: CPU fan config not found, max fan speed\n");
710
711 if (controls[CPUFREQ])
712 wf_control_set_max(controls[CPUFREQ]);
713 if (fan_cpu)
714 wf_control_set_max(fan_cpu);
715}
716
717
718static void pm121_cpu_fans_tick(struct pm121_cpu_state *st)
719{
720 s32 new_setpoint, temp, power;
721 struct wf_control *fan_cpu = NULL;
722 int rc;
723
724 if (--st->ticks != 0) {
725 if (pm121_readjust)
726 goto readjust;
727 return;
728 }
729 st->ticks = PM121_CPU_INTERVAL;
730
731 fan_cpu = controls[FAN_CPU];
732
733 rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
734 if (rc) {
735 printk(KERN_WARNING "pm121: CPU temp sensor error %d\n",
736 rc);
737 pm121_failure_state |= FAILURE_SENSOR;
738 return;
739 }
740
741 rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
742 if (rc) {
743 printk(KERN_WARNING "pm121: CPU power sensor error %d\n",
744 rc);
745 pm121_failure_state |= FAILURE_SENSOR;
746 return;
747 }
748
749 pr_debug("pm121: CPU Fans tick ! CPU temp: %d.%03d°C, power: %d.%03d\n",
750 FIX32TOPRINT(temp), FIX32TOPRINT(power));
751
752 if (temp > st->pid.param.tmax)
753 pm121_failure_state |= FAILURE_OVERTEMP;
754
755 new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
756
757 /* correction */
758 new_setpoint = pm121_correct(new_setpoint,
759 FAN_CPU,
760 st->pid.param.min);
761
762 /* connected correction */
763 new_setpoint = pm121_connect(FAN_CPU, new_setpoint);
764
765 if (st->setpoint == new_setpoint)
766 return;
767 st->setpoint = new_setpoint;
768 pr_debug("pm121: CPU corrected setpoint: %d RPM\n", (int)new_setpoint);
769
770 readjust:
771 if (fan_cpu && pm121_failure_state == 0) {
772 rc = fan_cpu->ops->set_value(fan_cpu, st->setpoint);
773 if (rc) {
774 printk(KERN_WARNING "pm121: %s fan error %d\n",
775 fan_cpu->name, rc);
776 pm121_failure_state |= FAILURE_FAN;
777 }
778 }
779}
780
781/*
782 * ****** Common ******
783 *
784 */
785
786static void pm121_tick(void)
787{
788 unsigned int last_failure = pm121_failure_state;
789 unsigned int new_failure;
790 s32 total_power;
791 int i;
792
793 if (!pm121_started) {
794 pr_debug("pm121: creating control loops !\n");
795 for (i = 0; i < N_LOOPS; i++)
796 pm121_create_sys_fans(i);
797
798 pm121_create_cpu_fans();
4f256d56 799 pm121_started = true;
80ff974d
ÉB
800 }
801
802 /* skipping ticks */
803 if (pm121_skipping && --pm121_skipping)
804 return;
805
806 /* compute average power */
807 total_power = 0;
808 for (i = 0; i < pm121_cpu_state->pid.param.history_len; i++)
809 total_power += pm121_cpu_state->pid.powers[i];
810
811 average_power = total_power / pm121_cpu_state->pid.param.history_len;
812
813
814 pm121_failure_state = 0;
815 for (i = 0 ; i < N_LOOPS; i++) {
816 if (pm121_sys_state[i])
817 pm121_sys_fans_tick(i);
818 }
819
820 if (pm121_cpu_state)
821 pm121_cpu_fans_tick(pm121_cpu_state);
822
823 pm121_readjust = 0;
824 new_failure = pm121_failure_state & ~last_failure;
825
826 /* If entering failure mode, clamp cpufreq and ramp all
827 * fans to full speed.
828 */
829 if (pm121_failure_state && !last_failure) {
830 for (i = 0; i < N_CONTROLS; i++) {
831 if (controls[i])
832 wf_control_set_max(controls[i]);
833 }
834 }
835
836 /* If leaving failure mode, unclamp cpufreq and readjust
837 * all fans on next iteration
838 */
839 if (!pm121_failure_state && last_failure) {
840 if (controls[CPUFREQ])
841 wf_control_set_min(controls[CPUFREQ]);
842 pm121_readjust = 1;
843 }
844
845 /* Overtemp condition detected, notify and start skipping a couple
846 * ticks to let the temperature go down
847 */
848 if (new_failure & FAILURE_OVERTEMP) {
849 wf_set_overtemp();
850 pm121_skipping = 2;
4bb29711 851 pm121_overtemp = true;
80ff974d
ÉB
852 }
853
854 /* We only clear the overtemp condition if overtemp is cleared
855 * _and_ no other failure is present. Since a sensor error will
856 * clear the overtemp condition (can't measure temperature) at
857 * the control loop levels, but we don't want to keep it clear
858 * here in this case
859 */
4bb29711 860 if (!pm121_failure_state && pm121_overtemp) {
80ff974d 861 wf_clear_overtemp();
4bb29711
AK
862 pm121_overtemp = false;
863 }
80ff974d
ÉB
864}
865
866
867static struct wf_control* pm121_register_control(struct wf_control *ct,
868 const char *match,
869 unsigned int id)
870{
871 if (controls[id] == NULL && !strcmp(ct->name, match)) {
872 if (wf_get_control(ct) == 0)
873 controls[id] = ct;
874 }
875 return controls[id];
876}
877
878static void pm121_new_control(struct wf_control *ct)
879{
880 int all = 1;
881
882 if (pm121_all_controls_ok)
883 return;
884
885 all = pm121_register_control(ct, "optical-drive-fan", FAN_OD) && all;
886 all = pm121_register_control(ct, "hard-drive-fan", FAN_HD) && all;
887 all = pm121_register_control(ct, "cpu-fan", FAN_CPU) && all;
888 all = pm121_register_control(ct, "cpufreq-clamp", CPUFREQ) && all;
889
890 if (all)
891 pm121_all_controls_ok = 1;
892}
893
894
895
896
897static struct wf_sensor* pm121_register_sensor(struct wf_sensor *sensor,
898 const char *match,
899 struct wf_sensor **var)
900{
901 if (*var == NULL && !strcmp(sensor->name, match)) {
902 if (wf_get_sensor(sensor) == 0)
903 *var = sensor;
904 }
905 return *var;
906}
907
908static void pm121_new_sensor(struct wf_sensor *sr)
909{
910 int all = 1;
911
912 if (pm121_all_sensors_ok)
913 return;
914
915 all = pm121_register_sensor(sr, "cpu-temp",
916 &sensor_cpu_temp) && all;
917 all = pm121_register_sensor(sr, "cpu-current",
918 &sensor_cpu_current) && all;
919 all = pm121_register_sensor(sr, "cpu-voltage",
920 &sensor_cpu_voltage) && all;
921 all = pm121_register_sensor(sr, "cpu-power",
922 &sensor_cpu_power) && all;
923 all = pm121_register_sensor(sr, "hard-drive-temp",
924 &sensor_hard_drive_temp) && all;
925 all = pm121_register_sensor(sr, "optical-drive-temp",
926 &sensor_optical_drive_temp) && all;
927 all = pm121_register_sensor(sr, "incoming-air-temp",
928 &sensor_incoming_air_temp) && all;
929 all = pm121_register_sensor(sr, "north-bridge-temp",
930 &sensor_north_bridge_temp) && all;
931 all = pm121_register_sensor(sr, "gpu-temp",
932 &sensor_gpu_temp) && all;
933
934 if (all)
935 pm121_all_sensors_ok = 1;
936}
937
938
939
940static int pm121_notify(struct notifier_block *self,
941 unsigned long event, void *data)
942{
943 switch (event) {
944 case WF_EVENT_NEW_CONTROL:
945 pr_debug("pm121: new control %s detected\n",
946 ((struct wf_control *)data)->name);
947 pm121_new_control(data);
948 break;
949 case WF_EVENT_NEW_SENSOR:
950 pr_debug("pm121: new sensor %s detected\n",
951 ((struct wf_sensor *)data)->name);
952 pm121_new_sensor(data);
953 break;
954 case WF_EVENT_TICK:
955 if (pm121_all_controls_ok && pm121_all_sensors_ok)
956 pm121_tick();
957 break;
958 }
959
960 return 0;
961}
962
963static struct notifier_block pm121_events = {
964 .notifier_call = pm121_notify,
965};
966
967static int pm121_init_pm(void)
968{
969 const struct smu_sdbp_header *hdr;
970
971 hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
972 if (hdr != 0) {
973 struct smu_sdbp_sensortree *st =
974 (struct smu_sdbp_sensortree *)&hdr[1];
975 pm121_mach_model = st->model_id;
976 }
977
978 pm121_connection = &pm121_connections[pm121_mach_model - 2];
979
980 printk(KERN_INFO "pm121: Initializing for iMac G5 iSight model ID %d\n",
981 pm121_mach_model);
982
983 return 0;
984}
985
986
987static int pm121_probe(struct platform_device *ddev)
988{
989 wf_register_client(&pm121_events);
990
991 return 0;
992}
993
1da42fb6 994static int pm121_remove(struct platform_device *ddev)
80ff974d
ÉB
995{
996 wf_unregister_client(&pm121_events);
997 return 0;
998}
999
1000static struct platform_driver pm121_driver = {
1001 .probe = pm121_probe,
1da42fb6 1002 .remove = pm121_remove,
80ff974d
ÉB
1003 .driver = {
1004 .name = "windfarm",
1005 .bus = &platform_bus_type,
1006 },
1007};
1008
1009
1010static int __init pm121_init(void)
1011{
1012 int rc = -ENODEV;
1013
71a157e8 1014 if (of_machine_is_compatible("PowerMac12,1"))
80ff974d
ÉB
1015 rc = pm121_init_pm();
1016
1017 if (rc == 0) {
1018 request_module("windfarm_smu_controls");
1019 request_module("windfarm_smu_sensors");
1020 request_module("windfarm_smu_sat");
1021 request_module("windfarm_lm75_sensor");
1022 request_module("windfarm_max6690_sensor");
1023 request_module("windfarm_cpufreq_clamp");
1024 platform_driver_register(&pm121_driver);
1025 }
1026
1027 return rc;
1028}
1029
1030static void __exit pm121_exit(void)
1031{
1032
1033 platform_driver_unregister(&pm121_driver);
1034}
1035
1036
1037module_init(pm121_init);
1038module_exit(pm121_exit);
1039
1040MODULE_AUTHOR("Étienne Bersac <bersace@gmail.com>");
1041MODULE_DESCRIPTION("Thermal control logic for iMac G5 (iSight)");
1042MODULE_LICENSE("GPL");
1043